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Thermodynamic properties of a small superconducting grain
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The reduced BCS Hamiltonian for a metallic grain with a finite number of electrons is considered. The
crossover between the ultrasmall regime, in which the level spatisdarger than the bulk superconducting
gap A and the small regime, wher&=d, is investigated analytically and numerically. The condensation
energy, spin magnetization, and tunneling peak spectrum are calculated analytically in the ultrasmall regime,
using an approximation controlled by 18has a small parameter, whel is the number of interacting
electron pairs. The condensation energy in this regime is perturbative in the coupling constadt is
proportional tadNA2=\2wp . We find that also in a large regime witti>d, in which pairing correlations are
already rather well developed, the perturbative part of the condensation energy is larger than the singular, BCS
part. The condition for the condensation energy to be well approximated by the BCS result is found to be
roughly A>/dwp. We show how the condensation energy can, in principle, be extracted from a measurement
of the spin magnetization curve and find a reentrant susceptibility at zero temperature as a function of magnetic
field, which can serve as a sensitive probe for the existence of superconducting correlations in ultrasmall
grains. Numerical results are presented, which suggest that in theNdngdt the 1N correction to the BCS
result for the condensation energy is larger than
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I. INTRODUCTION AND SUMMARY OF RESULTS even and odd grain€;**and iii) a first-order paramagnetic
transition induced by a magnetic field®

In the macroscopic limit, a system described by the re- Though ultrasmall grains withA<d do not have as
duced BCS Hamiltonian is well treated by the mean-fieldstrongly developed signatures of pairing correlations as the
BCS method. When the size of a superconducting samplesmall grains withA=d mentioned above, pairing correla-
becomes small, two related questions can be asked: what i®ns nevertheless do exist in such grains, albeit in the form
the lower size limit for which superconducting properties areof weaker fluctuations, and they can affect various physical
observable, and what is the lower size limit for the validity quantities. For example, Lorenz al!® found that pairing
of the BCS theory? correlations affect the temperature dependence of the spin

In 1959 Andersoh considered the first question and ar- susceptibility of grains also in the ultrasmall regime.
gued that “superconductivity would no longer be possible” The crossover regime between small and ultrasmall grains
once the electron spectrum’s mean level spacifgecomes has also been studied in some detail numerically, using a
larger than the bulk superconducting gap 1/d=N{(0), the  simple reduced BCS model with a discrete set of single-
density of states per spin species near the Fermi energparticle levels:***1618|n particular, it was found that the
hencedx 1/vol.] This statement sets a lower limit for the size condensation enerdg¥.,q (i.e., the energy gain of the exact
above which a grain still exhibits superconducting proper-ground state relative to the uncorrelated Fermi ground)state
ties, but at the same time states that such a grain can well lsnoothly crosses over from being extensipeoportional to
much smaller than the superconducting coherence lengtithe size of the systenmfor A>d to being intensive forA
Superconductors in the regime where the level spacing is<d.
comparable to the gap energy have been studied for many One of the goals of the present paper is to obtain further
years both theoreticallye.g., Ref. 3 and experimentally insights into the crossover from the ultrasmall regime, which
(e.g., Ref. 4, see also the review by Perenbaral ). can be treated perturbatively in the dimensionless coupling

Recently, Ralph, Black, and Tinkham performed mea-(\) of the said reduced BCS model, to the small regime,
surements on single superconducting nm-scale grains in thghich cannot. Our point of departure is an exact solution,
regimes ofA=d andA <d.® These experiments and the con- due to Richardson and Sherm&f* of the reduced BCS
siderable amount of theoretical work they initiatef found ~ model of present interest. By analyzing Richardson’s solu-
various properties indicative of strong superconducting pairtion both analytically and numerically in the crossover re-
ing correlations in grains witlA=d (to be called “small gime, we elucidate in detail when and how perturbation
grains”), but not in grains withA<d (to be called “ultra- theory in\ breaks down, how the answer depends on the
small grains’), thus supporting Anderson’s criterion. These system size, and how the standard BCS results are recovered
properties includéi) a parity-dependent gap in the excitation in the bulk limitd<A.
spectrum(the gap exists only for grains with an even number The bulk regime is of course well known to require a
of electrong, which is driven to zero by magnetic field;>!®  nonperturbative treatment; indeed, the BCS result for the
(ii) a difference of orded in the ground-state energies of condensation energy
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EchnSd=A2/(2d) (1) gime) Our results for the condensation energy in regimes |
and Il also show that the condensation energy is not a uni-
is not analytical il asA— 0, since the bulk gap is given by versal function ofd/A, but an explicit function ofwp .
_ ) Z1h It should be mentioned here that the question of how to
A(N)=wp/sinl(IN)  [=2wpe for A<1], recover the BCS gap equation from Richardson’s exact so-
2 |ution has been solved by Richardson himety effec-

where wp=Nd is the bandwidth about the Fermi energy tively doing a 1N expansion around the bulk, thermody-
within which the pairing interaction actgypically the Debye hamic limit. Our work differs from his in that we do an
frequency. This nonanalyticity arises because BCS conside€xpansion in\ around the ultrasmall limit for a system of
the thermodynamic limit of an infinite system sizd-,  finite size, withA<1/InN as a small parameter.
d—0 at fixedwp). Using the insights gained from our studies of the conden-
We shall argue that if instead one considers a system witation energy, we also calculate various other thermody-
a finite number of pairs, sai, the condensation energy namic properties of ultrasmall grains at zero temperature,
Econd(\) is an analytical function about=0, with a finite ~ using a controlled analytical approximation with<1/InN
radius of convergence given approximately by=1/InN. ~ as the small parameter. Specifically, we calculate the spin
For A<\*(1—\*), corresponding taA<d [by Eq.(2)].?2  magnetization and susceptibility curves, and tunneling peak

Econd\) is found to be well approximated by the perturba- SPectrum of ultrasmall grains and find that pairing correla-
tive result tions have their signature in all the above physical quantities,

even in the regime\<\* where pairing correlations are
EPET (M) =In2-N2wp . (3  weakest.
The condensation energy can, in principle, be measured
On the other hand, the BCS mean-field resifif; of Eq. by integrating the spin magnetization as a function of mag-
(1) is found to become reliable only fax>2\*, corre- netic field (H) and comparing it to the linear curve of a

sponding to roughhA > \wpd. Thus, we identify a substan- normal grain. In fact, as we discuss in Sec. lll, since the
tial intermediate regime, energy levels in the grain are not equalty systematically
spaced, one needs to do the measurement on an ensemble of
NF<A<2N*, e, d<A< wpd, (4)  grains. Calculating the spin susceptibility of an ultrasmall

grain, we find that foH>d/ g, pairing fluctuations of lev-

in which neither the perturbative result nor the BCS meanyq far away fromE result in a correction of the order

field result adequately reproduc&s,,q (though, roughly 2 e . ; _
speaking, the surEPert + EECS does).on A“d/ugH to the normal susceptibility. Interestingly, this cor
' cond’ =cond ~-" L rection persists for all fieldsl<wp/ug, i.e., well beyond
The existence of this intermediate regime implies that the, Clogston-Chandrashekar fielgegHoc=A/\22% at
regime of validity of the BCS mean-field approach for cal-\ i “tor bulk systems, a first-order transition occurs from

culatingEong is S|gn|f|can.tly smalzler than realized hlthe_rto: the superconducting ground state to a paramagnetic ground
the crossover level spaC|ngj_(>A /wp) beyond which it tate.(Only for H>wp/ug, the grain becomes effectively
becomes inadequate is considerably smaller than the sca Bormal” since then all the levels withinwp from the

(d>A) beyond which the BCS approach formally breaksFermi energy become unpairgd.he correction to the spin

down (in _the sense of _y|eld|ng no non_tnwal solut|_on to the susceptibility results in a reentrant behavior of the differen-
self-consistency equatifnand up to which strong signatures %

- ! . . ial susceptibility as a function of magnetic field, which
for pairing correlations can still be observed, as mentione ould possibly serve as a sensitive probe to detect supercon-
above. L . fducting correlations in ultrasmall graif®.(The conse-

We are also able to pinpoint the reason for the failure Oquences of pairing correlations in the regite-Hc have

: : BCS - Mag also been studied by Aleiner and Altshutémho found an
show in detail thaE; ;. incorporates or]!y contrlbutlfJns to anomaly in the tunneling density of stafeSimilarly, we
Econa from the strongly pair-correlated, “condensed” levels 4rque pelow that in ultrasmall superconducting grains, pair-
within A of the Fermi energf, but neglects contributions - jq fiyctuations involving levels far away frofe are suffi-
from all the remaining, “weakly pair-fluctuating” levels that ¢jengy strong that they also leave their mark in the specific

extend to a distancep from Er. Althoug_h the latter levels heat(even forT>T,) and the tunneling peak spectrum.
are so weakly correlated that their contribution can be calcu- p our calculations are done for grains with an even num-

lated perturbatively, essentially yieldifigfgny, this contribu-  per of electrons. The results for grains with an odd number of

tion turns out to be larger thaiEgs,y as long asA  electrons are similar in the ultrasmall regime and will be
<\/wpd and is not negligible compared to tEES7in the  discussed shortly for each calculated quantity.

whole intermediate regimé4). (Note though, thatEE(‘f,ﬂ‘d The paper is arranged as follows: In Sec. Il we calculate
would largely cancel out when one considers energy differthe condensation energy of an ultrasmall superconducting
ences between eigenstates that differ only in the specifigrain in the regimel <d and also analyze the intermediate
placement of a small number of electrons in levels igar  regime of Eq.(4) for larger grains. In Sec. Il the spin mag-
An example would be the ground-state energy difference benetization of ultrasmall grains as a function of magnetic field
tween an even and odd superconducting grain, for which thies calculated. It is shown that the condensation energy is
BCS approach would be adequate in the intermediate regiven by integrating the magnetization frol=0 to

the BCS approach in the intermediate regitdg we shall
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wp/ug. In Sec. IV we calculate the differential spin suscep- oV U

tibility of ultrasmall grains as a function of magnetic field H=2 2¢blbj—Ad> blb;. (6)
and find that it exhibits a reentrant behavior. In Sec. V the ! 'l

tunnel_lng peak spectrum of an ultrasmall SUperpondUCt'ngﬁerebT:c-lc-t creates aair of electrons in levej, andU
grain is calculated. In Sec. VI we present numerical results U

for the contribution of the “condensed” and “fluctuating” is the set of paired levels withih i.e., the set of all levels
: 9 that belong td but not toB (the notation, in general, follows
levels to the condensation energy.

The technical aspects of our calculations are collected irBef' 26. Below, sums over levels labeled byare to be

three appendices. In Appexdh a detailed derivation of the understood as sums over levels witin

accuracy of the condensation energy approximation is given Once the configuration of unpaired electrons is given, Ri-
In Appendix B the functional behavior of the prefactors of chardson and Shermidr(see Ref. 17 for a reviewshow that

the series expansion of the approximate condensation energt;rgle eigenstates of the system are given by

is analyzed. In Appendix C the series expansion of the exact k
condensation energy is discussed. la)= H ot ) |‘I’k>=CH BT|O>
1o; ! v 1
ieB ! v=1
Il. CONDENSATION ENERGY OF AN ULTRASMALL
GRAIN b/
Bl=2 5 —¢ W
A. Richardson’s equations 1 <€ v
We consider the reduced BCS Hamiltonian where X is the number of electrons occupying the un-

blocked levels, andi0) is the state with all the levels below
R : Er— wp fully occupied and all the levels abovEr— wp
H= > cl,c,—Ad cliclccpy (5 empty (in our model|0) is the vacuum staje The energy
Lo== b parameter€E, (with »=1, ... k) are the solutions of a set
o ) . — of k coupled nonlinear equations, thh equation of which
for a grain with a given, finite number of electroNs The ;g given by
first term is the kinetic term, which we will refer to e&o

and the second term is the interaction Hamiltonian, denoted k 2 1

1
H,. The sum inH, is over all the levels inside the range a
Er— wp<e<Eg+ wp, which we designate ds The Hamil-
tonian(5) is the usual BCS Hamiltonian used when discuss-The total energy of the system is given?dg*
ing superconducting graifis’® and its validity is discussed
in, e.g., Refs. 11, 25, and 2@n particular, for the model to B k
be valid the grain's dimensionless conductamcenust be E:Z €+ 2 E,. 9
much larger than ongln all cases discussed below we con- ] v=1
sider states in which all levels belofir— wp are doubly
occupied, while all levels abovEr+ wp are empty. Since
the dynamics of electrons occupying levels outside the rang
I and their contribution to the total energy are trivially given 225=1Ev- lts \—0 limit is Eg_s_(x=0)=Z'§= e, where

by Ho, we will not consider them henceforth. . =1 :
0 2021 . . {2¢,,v=1, ... k} is the set of thé lowest-lying single-pair
Richardson and Sher showed that this Hamil- energies[This is consistent with the observation, following

tonian, with a finite number of electrons, can be solved ex'from Eq.(8), that in the limith — 0 the set o, ’s reduces to

actly. They define for each single-particle eigenstat¢lgf 5 set ofk single-pair energies €, which, for the ground
the operatorgj=c/, ¢;, —c/_c;_. This operator, for any,  state, must have the lowest total energy posgitanse-
is a constant of motion of the HamiltonidB) and takes the quently, the interaction energy of the even ground state
value +1 if the level is singly occupied, and O otherwise. g, (\), defined to be the reduction of the exact ground-state

The many-body eigenstates of E§) can therefore be clas- energy as the interaction is turned on from zero to some
sified into different subspaces according to their value of thejnite \, can be written as

§j's, i.e., according to the configuration of levels withithat

are occupied by one electron only. The many-body eigen-

states and the eigenenergies of H§) are then found Eint(\)=Egs(0)—Egs(\)=2> OE,, (10
separatel§?! for each of the above subspaces.

The electrons in the singly occupied levels are not scatwhere we introduced the energy differencég,=2¢,
tered to other levels by the interaction term, and the singly— E,. A closely related quantity is the condensation energy
occupied levels are “blocked” to pair scattering, and weEg_, (\), defined to be the energy gain of the exact even
therefore designate them & The dynamics of the singly ground state relative to the uncorrelated Fermi ground state:
occupied levels is also trivially given byy. Therefore, for
each seB one has to solve the reduced Hamiltonian EcondN)=Ef gs(N) —Eg (M), 11

- =0. 8
n=1(#v) E,u_EV j ZEj—EV ( )

Since the ground state of a grain with an even number of
lectrons does not contain any singly occupied leviets,
=1), the even ground-state energy is simplyg
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k over, our approach allows us to give a controlled estimate of
= E (2e,—N—E,)=E;p:(N)—k\d. (120  the error introduced by this approximation, both for ELf)
v=1 and our explicit calculation d&;,; andE;,,qin Appendix B.
The\ contribution in the first sum in Eq12) is the Hartree ~ Interestingly, Eq(18) can be interpreted as a sum over the
self-energy of leve] in the Fermi ground state. Hartree self-energie& ,d of the lowestN levels, each of
which is evaluated using its own level-specific “renormal-
ized coupling constant’n, (thus motivating our choice of
) ] . ) notation. The emergence of such renormalized coupling
Let us now consider the case in which the kef inter-  constants has been noted befdfré particular by Matveev
acting levels consists of R equally spaced energy levels and Larkirt® and Berger and Halperif.Matveev and Lar-
betweenEr—wp and Er+wp, occupied by N electrons,  kin, for example, were concerned with perturbatively calcu-

so thatk=N. Measuring the single-particle energies with |ating a certain parity parameter that was essentially equal to
respect to the bottom of the interacting band, we thus takg d/2 and found

€=jd, wherej=1,..., 2N and d=wp/N. (Note thatN

B. Perturbative results for E,,q and E;;

#N the total number of electrons in the grain, which is of L \
order ¢ /d, not 2wp/d.) AN T A n(wg/d)’ (19
Using Eq.(8), the energy differencesE, occurring in
Eq. (10) can be rewritten as in agreement with our resulEq. (15)] for Ay [see Eq(B6)
and the statement following]it
SE =2¢ —E = Ad ’ (13) Now, calculating the interaction or condensation energies
TP Y 1-ha, is considerably more involved than calculating the parity pa-
Where rameter of Matveev and Larkin, since, in contrast to their

calculation, not only one but a renormalized couplings,
2N 1 N enter in Eq.(18) for ED,, or E2, 4. This is a major compli-

a,=d| E e E 2 E_E | (14 cation, since their dependence turns out to be sufficiently
=10 2675y p=1Gn) BB important to make it impossible to replace ®| by a single
For small\, it is natural to approximatéE, by “effective coupling constant.”
Nevertheless, progress can be made by exparEJi‘ﬂqur
0 N Egond in powers ofA and analyzing the convergence proper-
OB, =\.d, where \,=-——7, (19 ties of the resulting series. This is done in Appendixfer
- aV 0 . . .
E?,, but here we shall give the results f&f, 4, which is
and agzav()\=0) is given by slightly more convenient, since it lacks the Hartree terin
is found that the convergence radius of the power series for
2N 1 N 2 EQ N) i
= 3 . S . (16) cond M) 1S
V=TT 220y 2u—2v
AM*=1/InN. (20

The accuracy of this approximation is studied in Appendix A
(by deriving an expression fcﬁayzay—aS), where we find  The regime of analyticity,
that the relative error indE, depends on both and N.

Specifically, we find that for alb, A<N*, ie., A<d, (21
6E,ISES=1+0O[1/(InN)?] for A<1/(2InN), [by Eq.(2)] will be called “regime I” below. Within regime
(178 1, we obtain an analytical expression 16f,,{\) as a series

SE,15E= 1+ O(1/c?) in \. We find(see Appendix Bthat the series foE_,,,4does
v O=y ™ not have one parameter that describes the ratio between con-
for 1/2INN)<A<1AnN—c/(InN)2, secutive terms in the series. Denoting théh term in the
power series a&°(™, we show that the low powers fulfill

(A7 the relationE?M+ D/EOM ~ m.\ while the high powers ful-

cond cond
for anyc>1. Note that Eq(17b) implies the emergence of a fill the relation EQSnd V/ESni=N - InN. This results in hav-
second scale near=1/InN, namely, 1/(IN)?. ing two separate scales ln While the high powers dictate

To the accuracy given by Eql7a and(17b), the inter-  the convergence radius of the series ta\be their contribu-

action and condensation energies can be approximated bytion is large only forx=X\*(1—\*) (see Appendix B in-
troducing the aforementioned second scale of Mjfnnear

o . N o N A=1/InN. As a result, forh<A*(1—\*) (i.e., in most of
Eint=Econat NAd= 21 oE,= 21 A,d, (18 regime ), EY,, 4 is well approximated by the contribution of
. - the low powers that turn out to correspond simply to the
wherel , is given in Eq.(15). This result coincides with that second-order perturbative resglip to a relative correction
obtained by Matveev and Lark[fEq. (17) of Ref. 10; more-  of 1/InN, see Appendix B

214518-4



THERMODYNAMIC PROPERTIES OF A SMALL ... PHYSICAL REVIEW B3 214518

3000
Econald

[by Eg. (2)], to be called “regime Il,” in which the BCS
mean-field approach is severely inadequate for calculating
Econg,» but which, according to the three properties men-
tioned in the introduction, nevertheless already features
strongly developed pairing correlations. In other words, the
condition for the adequacy of the BCS mean-field approxi-
mation \>2\*, “regime Ill” ) is more restrictive than the
condition for the existence of strongly developed pairing cor-
relations 4 >\*). Importantly, this also means that the BCS
mean-field approach becomes inadequate already for much
smaller level spacingsl~A?/ wp, than those at which it
formally breaks downin the sense of yielding no nontrivial
solution to the self-consistency equatipwhich occurs for
d=A.

! The inadequacy of the BCS approximation in regime Il
stems from the abundance of “fluctuating” levels compared
to “condensed” levels. Each “condensed” level within a

FIG. 1. The condensation energy of a grain witlk-1024, in  range A from the Fermi energy contributes approximately

units of level spacing, is plotted as a function\ofThe solid lineis ~ A/2 to the condensation energy and haviiygl, such levels

the numerical solution of the exact Richardson equations. Thejive the BCS term\ 2/2d. Though each “fluctuating” level

dashed line is the second-order approximation. The dotted line iputside this range contributes only an amount of order

the BCS approximation. The BCS approximation is good Xor  (d\)?/d to the condensation energy, there asg/d such

>\*=1/InN. In the inset the same graph is given for a small rangeleyels, and f0|A<)\\/w_Dd the total ContributiomzwD of all

of A and a much smaller range f@i;onq. The value at which the  ,0,a1ing levels is larger than2/2d. This sets an energy
perturbative term equals the BCS term tends asymptotically to — . -
2/InN (see texk, but here it is somewhat smaller sinldds not very scaleywpd, whichA has to exceed before the BCS approxi

2000

1000

mation becomes reliable. The above interpretation of the

large. - oo .
9 relative contributions of “condensed” and “fluctuating”
o pert ) levels to the total condensation energy is confirmed by a
Econd™=Econd M) =IN2-Nwp[1+O(1/InN)] detailed numerical analysis, see Sec. VI.

_ Second, by numerically analyzing Richardson’s equations
for AN<A*(1—\7%). 22 A

( ) (22 (see Refs. 20, 21, 28, and 29 and a review in Rejf, 2@
find that in the regime.>\*, the condensation energy can

This is illustrated in Fig. 1. Intuitively speaking, this contri- !
be written as

bution can be attributed to pairing fluctuations involviaig

the levels in the rangBr— wp<e<Eg+ wp .
JEeTepmenErT D Econd M =EESSN)+ A+ a(VERRN),  (24)

C. Analysis of the intermediate regime* <A<2\* where a(\) is a function of \ of order unity.[A rather

Although we are not able to extend the analytical calcu-Similar, but not identical, form was obtained in Eg4) of
lation to the regime oh>\* (i.e., A>d), we are able to Ref. 18 from a fit to numerical results f&@:,,(\) obtained
draw some conclusions about the value of the condensatioffith the density-matrix renormalization grolipAs will be
energy in the latter regime. First, we note that the perturbadiscussed in more detail in Sec. VI, the first two terms in Eq.
tive result (22) for the condensation energy at=\* is  (24) represent the contributions of those levels lying within
larger than the BCS mean-field res(i) as a function of, A from Eg (to be called “condensed levelgwhile the last

e., EPE(\*)>EBCS()\), as long asA <A wpd. In this term is due to the remaining levels withisp, from E¢ (to be

con 1 H 3 H H
regime E?ocnsd()\) is thus also much smaller than the aCtuaIf:alled fluctuating levels’). According to Eq(24), the size-

condensation energi;,n{\) [since, assuming monotonic- mcéepelr;\(ljent CO;I.’eCtIOIi] ,:.O tr][e E]CS ftesm?-' trtl)enl(ead;;st-
ity of E...{\) as function of n, we have E.,.{x) °rder IN correction relative to the extensive, bulk re

< EPert i\ —\*1. o at leastA. . _ .
Econd(A*) for A>A*]. In terms ofx andN the condition The numerical analyses carried out in Sec. VI and Appen-

is In[In 2 (\*)%2]+ 2/A >In N, which, for largeN, is roughly . . . .
. dix C also give evidence thé;,; (and alsoE;,,g is an
* eﬁo int con
A<2\*. [Note Fhat the exponential erendenc : _bn A analytical function on the positive real axis)fwith a radius
causes a relatively small change in the condition for f Ad=0 of . v 1/IN. This i
(<M\* versus<2\*) to translate into a parametric change in 2 convergentce ."f[lrr]ou - c|>t_alp;|)rttJX|r?ate)t/ f th‘ 'S ,:S b
o in agreement with our analytical treatment of the perturba-
the condition forA (<d versush\wpd).] The EPSTY con- g y P

O R tion series in Appendixes B and C.
tribution in Eq.(24) becomes significantly smalléby a fac- The results for the condensation energy of grains with an

2 BCS H :
tor 1) than thek g contribution only forA> ywpd. Thus, o4 number of electrons are similar. In the ground state of an

we identify an intermediate regime odd grain the state at the Fermi level is occupied by a single
electron. Due to the considerations above, one does all the
d<A<yowpd, ie., N*<A<2\* (23 calculations neglecting this level, and therefore, when the
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ground-state energy is concerned, a grain with an odd numin the calculations of the eigenstate energies belowTAt
ber of electrons is equivalent to a grain with an even number=0 and zero magnetic field the ground state of the system
of electrons with a noninteracting level spectrum, which doesas no broken pairs, meaning there are no bare levels occu-
not contain the single level at the Fermi energy and is othpied with a single electron. Of all the states witlbroken
erwise identical. This change introduces only small quantitapairs, the one with the lowest energy will be denotednd
tive changes in the results above. its energyE;. One can show tha#; has all thel levels
One way in which one can, in principle, measure the in-closest toEg from above and all thé levels closest td&
teraction energy of an ultrasmall superconducting grain is byrom below singly occupied, while all the other levels are not
measurement of the specific heat. The interaction energy isingly occupied. FoiH#0 all the electrons in the singly
then given by occupied levels will have their spin in the direction of the
magnetic field. In this casg;(H)=E,;(0)—2lugH. For T
_ - _ =0 and finiteH the ground state of the systemigswith the
Eint= fo [es(T) = Cn(T)]dT. (25 smallestE,(H) of all I's. While for a large superconducting
_ _ grain an abrupt transition frofn=0 to| = A/(y/2d) occurs at
Cn(s)=dEn(s) /dT, whereE, is the thermal average of the H=A/(\2ug),?* in an ultrasmall grain the number of bro-
energy of a norma(superconductinggrain. While in mac-  ken pairs in the ground state increases by one at a tinké as
roscopic samples one obtains the leading-of@atensiveé s increased® The magnetic field for which the transition of
term of the interaction energy by performing the above intethe ground state frong,_; to i, occurs is denotedl, . For
gral from zero toT¢, in ultrasmall grains, since the fluctua- H,<H<H,,,, ¢ is the ground state of the grain with
tions involve states in the whole range Eﬁ— wp<e< EF ground state energ&l(o)—ZLU/BH, and therefore the mag-
+wp, one has to replace the upper limit of the integral bynetization equalsig.g . The magnetization is a step function
Tmax~wp in order to have a good estimate Bfy;. At T in H, with equal steps of magnitudeg . One needs only to
>Tmax, ONe expects that the interaction term in the Hamil-find the values ofH, to get the magnetization curve. The
tonian would play a negligible role, andEf) and (E,) above picture is also true for a normal graiBy normal and
would be roughly the same. Another way to measure theuperconducting grains we mean here similar grains, with the
interaction energy is by spin magnetization measurements, @aame single-particle noninteracting spectrum that differ only

we discuss in the next section. by the value of\, which is zero for the normal grain and
finite for the superconducting grain. The relation of the
IIl. SPIN MAGNETIZATION OF AN ULTRASMALL above to a realistic situation is discussed be]mrom its
GRAIN definition as the solution of
Since the condensation energy of an ultrasmall grain has EYN(HY™ =EF" (HP™, (27)

contributions from all the levels within the range @f , in
order to measure it one has to probe all the levels within thi
range. One way to dp thls is to put 'an_ultrasmall, preferably ZMBHIS/n: Els/n(o)_ Els/_nl(o)_ (29)
pancake-shaped grain in a magnetic field parallel to the flat
direction. One can then neglect orbital magnetization andt follows that
consider only the Pauli paramagnetidt.

The interaction energy can then be obtained by

éfor both pair-correlated or normal graingi®" is given by

|max

2, 2ueHi"=E;]" (0)~EG"(0). (29

op/pg
Eint= fo (Mp—Mg)dH, (260 Taking .= wp/d and subtracting the equation for normal
grains from that for pair-correlated ones, we find

where M, is the magnetization of the normédupercon-
ducting grain. This is a general thermodynamic identity, re-
lying only on the fact that the electrons further thag from
Er are noninteracting, so tha#l,(H)=Mg4(H) for ugH ) .
>wp . We now derive this relation for ultrasmall supercon- Where we tooke?  (0)=EJ (0), since at energies beyond
ducting grains and calculate the magnetization of such grains, ,,d=wp the pairing interaction is no longer operative.
for H>d/ ug . But, as can be seen from Fig.(@8rawn for equally spaced

We introduce the Zeeman term to the Hamiltoni&@  normal and pair-correlated grajpshe sum on the left-hand
changinge;— ¢j—ougH (taking theg factor to equal 2 side equals the area between the solid and dashed lines, and
Each eigenstate of the Hamiltoniéh) is also an eigenstate hence also equals the integral in Eg6).
of the modified Hamiltonian, with an energy,=Ey_g Finding H, amounts to solving Eq27). We first assume
—ugH(n;—n)), wheren,(n)) is the number of levels sin- that the noninteracting energy levels in the grain are equally
gly occupied by an electron with a spin (opposite t9 the  spaced. For a normal grain this equation then reduces to
direction of the magnetic field. (21-1)d—2ugH=0, where the first term is the extra ki-

We consider, as above, an ultrasmall grain with an evemetic energy of thé state compared to tHe- 1 state, and the
number of electrons and neglect orders\dfigher than two  second term is its gain in Zeeman energy. In an ultrasmall

Imax
21 2ug(HP—H)=EQ(0)—E§(0)=Ejr;,  (30)
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M (32), and the expressions above Eg2), one immediately

B 16 confirms the equalityto second order in) of the interaction
energy, as was calculated in Appendix B, and the integral in
Eq. (26).

So far we considered the idealized case of grains with
equally spaced energy levels. In order to relate to experi-
ment, we now relax this assumption. It is not possible to see
the effects of superconducting correlations on the condensa-
tion energy by measuring only a single ultrasmall grain,
since the fluctuations of the noninteracting energy levels
cause larger shifts in the position of thi's than those in-
duced by the superconducting interaction. We therefore con-
sider an ensemble of grains with the same noninteracting
mean level spacingl and an energy spectrum that obeys
Gaussian orthogonal ensemi§{8OE) statistics. We assume
that the pairing interaction constant in all the grains is the
same, given by.d, and calculate the mean spin magnetiza-

MBH/d . ~ .

tion of such an ensemble féi>d/ug. For each grain, the

FIG. 2. Magnetization curve of normasolid) and supercon- equation(32) for H, now becomes
ducting(dashed grains with an equally spaced noninteracting spec-
trum. The width of the rectangles between the curves decreases L+Nd+In(21,N)AZd—2ugH,=0. (33
with increasing magnetic field due to the decrease of the second-
order term. The sum of all the areas of the rectangles equals ¢, is the energy difference between thk level above the
Econd/d. Fermi energy and théth level below it in that grain. The
Hartree term is not affected by level statistics, and we ne-

superconducting grain one has to add the energy contribyject the change incurred by the second-order term due to the
tions due toH, to the different ground states. To second effects of level statistics, since this change is small compared
order in\, one can show, by using either Richardson’s equato its mean value. We approximate the second-order term in

tions or perturbation theory, that the difference in the inter-£q. (33) by \2d In[wp /(2ugH)] (replacmgl inside the loga-
action energies o andy;—, is rithm by its mean value and replacmg by In). We then

12

[y

2 4 6 8

N+1-1 N+I obtain, for a given magnetic field, for each grain, an equation
A+ Y 1+ 2 1/j | N2d=Xd+In(21,N)\%d, for I, the number of broken pairs. Itis given by the maximum
j=21-1 k that satisfies the equation
(31
2ugH—Nd—Nd Infwp /(2ugH) 1= k. (34)

where we define ii,j)==_.1/k. Therefore, the equation for

H is The mean value of the magnetization of a grain at a ghten

. is therefore
(2l—1)d+xd+In(2l,N)A\?d—2ugH=0. (32

The above equation is true for &k wp /d, while for larger My(H)=2ugH/d =\ ug— N up IN[wp /(2ugH)].
| the interaction term vanishes, and one obtains the same (39
equation as for the normal grain.

The first term in the equation reflects the kinetic- energy
;(r);itnogagr:a_lr(rl]r;gstggzdpfelrrmar:sﬂ:esctsslTrllé':lr“éci)retggagcr)égnal the left side of Eq.(34). Since the level statistics of the
energy cost of breaking a pair, coming from the diagonal pargralns is given by GOE statistics, the variation in the mag-
of the interaction term in the Hamiltoniai). This term is ~ Netization of one grain is approximatelysM 4(H)
not| dependent, and therefore is not reflected in the suscep= ug IN[2ugH/d)/7* (see e.g., Ref. 31 This variation is in-
tibility, as we shall see in the next section. The third term isdeed larger than the shift of the mean magnetization com-
the result of the two levels, orlébelow E¢ and ondl above pared to that of a normal grajiEq. (35)], but in an ensemble
Er becoming blocked to pairing fluctuations. Its magnitudeof n grains the variation reduces as/i/ while the shift in
is a decreasing function df since as the levels are further the mean value does not change.
from Eg their contribution to the pairing fluctuations is  One can therefore, in principle, measure the interaction
smaller. This dependence biis reflected in the susceptibil- energy of ultrasmall superconducting grains by measuring
ity. the magnetization of an ensemble of such grains and calcu-

In Fig. 2 we plot the magnetization curve for a normal lating the integral in Eq(26). While Mg is measuredM , is
grain \=0) and a superconducting grain with the samegiven by the straight line starting from the origin with a slope
equally spaced noninteracting spectrum. Using B6), Eq. equal to the measured ensemble magnetizationHat

The variation around the mean value is given by the varia-
tion of the number of levels within the energy range given by
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>wp/ug. The Hartree term in Eq35) shifts the magnetiza- X%/ Xo
tion of a pair-correlated grain relative to that of a normal

grain by a constant, resulting in a parallel line not intersect- 1.05
ing the origin. Its contribution to the integral is trivially
Awp . The second-order term changes the slope of the mag-
netization and introduces a nonlinear correction to the nor-
mal Pauli susceptibility, which we discuss in the next sec-
tion.

The consideration of grains with an odd number of elec-
trons would lead to similar results in the regimgH>d. 0.9
The magnetization graph for an odd grain would be similar
to that in Fig. 2, only shifted by one unit down and half a 0.85
unit to the left, not affecting the average quantities discussed.

In this section we were concerned with the magnetization FIG. 3. Spin susceptibility as a function of magnetic fieldTat
atH>d/ug, which depends on level statistics through their=0 for A=0.28 is shown. AsH decreasesy® increases, until
effect on energy levels far fronk-. The effect of level reaching a maximum of 1.3 for H~1.3d/ug, implying a reen-
statistics is more dramatic for small magnetic fields trant behaviorx"(H) (thin solid ling and the high-field approxi-
=<d/ug, for which the magnetization is due to the levels mation obtained in Eq.36) (dashed lingare given for comparison.
closest toEg. In the next section we are interested in the

magnetic susceptibility also in the regime whete-d/ug  where yo=2u3/d. The susceptibility is a decreasing func-
and therefore consider the levels closestfo more care- tion of H, and the positive H correction to the normal grain
fully. A more rigorous treatment of level statistics that will susceptibilityy" [for H>a/,us to first order ind/ gH, one

also be valid in the regime ofi<d/ug is deferred to a gbtainsy"= y, (Refs. 32 and 34 is smaller than the lead-

future work. ing, normal term by 2d/2ugH=\?%/2l.
The intuitive reason for why the correction is positive is
as follows: For a given magnetic field, the magnetization of a
IV. REENTRANCE OF THE SUSCEPTIBILITY pair-correlated grain is, on the average, smaller than that of a

Measuring the interaction energy by a magnetization mead°mal grain(see Fig. 2, because breaking pairs to increase

surement might be a difficult task, since it requires very hightn® Magnetization costs pairing energy. However, since the
magnetic fields of the order ofp /uz . As an alternative, we pairing energy per extra pair decreases the further the pairs

propose here a susceptibility measurement that would reve!ﬂvqlve,d lie fromEg, the dlffer'ekr]u':e betV\{een the two "I]ag'
the presence of superconducting correlations in ultrasmalj€tiZzation curves decreases with increasig@onsequently,

: d onl . tic fields of the or It requires a smalleH increment to break the next pair for a
grains and only requires magnetic fields of the ordés . pair-correlated grain than a normal grain, implying a larger

Let x¥"(H,T)=aM*"(H,T)/dH denote the spin suscep- sysceptibility for the former.
tibility as a function of magnetic field and temperature for a  The result in Eq(36) is already sufficient to establish the
superconducting or normal grain, respectively. Lorenzgeentrant behavior of the susceptibiligi(H,0), since a# is

et gl.lg _calculated)_(s_(O,T), findigg_that even for ultrasmall | oo belowd and approaches zeraS(H.0) decreases
grains it has a minimum af~d, implying a reentrant be- and approaches zero, too, due to level repulsion. Precisely at
havior as a function of decreasifig Since this reentrance H=Q the susceptibilityyS(H,0) of an odd grain has an ad-
differs from the monotonic increase expected for the Paulkitional (H)-like peak due to the contribution of the single,
susceptibilityx"(0,T) of normal grains, they suggested that ynpaired electron & ; in fact, for finite T it is the contri-
it could be a sensitive probe to detect superconducting colyytion of this unpaired electron that is responsible for the
relat|on_s n SU.Ch grains. reentrance 0f°(0,T) predicted in Ref. 19. However, for any

In this section we discuss an analogous but complemeryionzeroH the spin of this electron is fully aligned with the
tary quantity, namelyx®(H,0). We find thaty*(H,0) has a = magnetic field and hence makes no contributionyfgH
maximum atH~d/ug and decreases asHLfor H>d/ ug >0,0).
(see Fig. 3 Thus, x°(H,0) shows a reentrant behavior in  We now proceed with a calculation @, which gives a
ultrasmall superconducting grains, just §5(0,T) does. quantitative estimate of the magnitude of the reentrance ef-
Since this again contrasts with the Pauli susceptibilityfect. We consider an ensemble of odd and even grains. For a
x"(H,0) of normal graing?*3*measuringy®(H,0) as a func- normal grain, y"(H) is proportional to the probability to
tion of H could possibly serve as a sensitive probe to detechave a pair of stated (pair), | above and below Eg (de-

3 3.5 4

nsH/d

superconducting correlations in ultrasmall grains. noted —1) separated by,=¢—€_,=2ugH and is given
For H>d/ g we use Eq(35) and obtain to first order in  by**®
d/,LLBH,
2ug [ 2ugH
s 2 X"=—= = ) (37)
X°=Xxot+ N ug/H, (36) d d
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whereR(x) is the probability of finding two levels a spacing peaks, i.e., those that survive ®s-0 and in this limit cor-

x apart regardless of the position of the other letfels respond to the tunneling peaks of the normal grain. A non-
[R(x)=1-0(1/x?) for x>1]. We now consider a single zero pairing interaction reduces their strength by a factor of
superconducting grain. THeh pair of this grain would con- 1—\? and shifts their energy. In this section we are con-
tribute, without pairing interaction, to the value of the spincerned only with the energy shift of these primary peaks due
susceptibility atH=¢,/(2ug). However, due to the extra to the pairing interaction. We show that this shift, being a
energy cost of breaking a pair, which was discussed in théecreasing function of energy, causes, é¥¢d, the mean
previous section, thepair contributes to the susceptibility at spacing between the primary peaks to be smaller than in an
a higher magnetic field. This shift is specific to each grain, agquivalent normal grain and therefore introduces a positive
it is a function of the energies of the noninteracting levelscorrection to their density.

further thani from the Fermi energythe levels closer thah Consider a grain with equally spaced energy levels having
to Er are singly occupied and therefore do not contribute toan even number (@ of electrons and a ground stdtﬁ?k),

the interaction energy While the energy of thd pair is and consider the tunneling at positive energies into any
arbitrary and later is taken to satisfy GOE statistics, we noveigenstatese,, . 1) with 2k+ 1 electrons. We assume that
make the approximation that the levels further tha@mom  the Coulomb blockade energy is the same for the tunneling
Er are equally spaced with level spaciﬂg the first ones to all states with R+ 1 electrons, and henceforth neglect it,
beingd apart from thd levels. Due to the smallness of the SiNce we are interested here only in enedjfferencesbe-
fluctuations in the GOE ensemble we believe that the abov&V€en tunneling peaks.

aporoximation is not only proper for>d/ but also To first order in the tunneling Hamiltonian, tunneling will
bp y prop KB, occur whenever there is a finite matrix element between any

gives fairly good results foH~d/ug. Under our approxi- state| 5, ;)=cl|¢S,), wheresis an index labeling single
mation, wh.|ch introduces a modnﬁcaﬂop of E@l) due to noninteracting levels and any eigenstatgy, ) with 2k
the arbitrariness of the energies of theair, we find that the 1 electrons.

| pair will contribute tox*(H) at aZj-dependent field(£)) If the grain is normal\ =0, then the only relevant eigen-

given by states with X+ 1 electrons are those in which all levels up
1 1 Ny to Er are filled with two electrons, and one stateabove
H==——|+\d+3-| =+2> ——|\%d|. (38 E, is occupied by one electron. We defing;, ;) for ei-
2pp 4 =1 ht) ther a superconducting or a normal grain as the lowest-

nergy many-body eigenstate ok21 electrons for which
he statesis singly occupied. For a normal grdi#3, , ;) and
|$5¢+1) are identical. The spectrum of tunneling peaks in a
xS(H)=(2ua/d)P[2ugH(£)/d], (399  normal grain would therefore be identical to the noninteract-
ing single-particle energy spectrum of the grain. In a similar
whereH({) is given by Eq.(38) with {; replaced by, and  yitrasmall superconducting grain ¢0), pair fluctuations
- - will affect the tunneling spectrum in three ways. The pri-
P[2ugH({)/d]=R(&/d)(2ugdH/d) . (400 mary peaks are shifted ari) reduced in magnitude due to
the fact that the overlap of the states, ;) and|¢3, ) is
smaller than one(iii) Many small peaks emerge due to the
small overlap(of order\) between 5, . ;) and all the other
many-body eigenstates wittk2 1 electrons that are differ-

Therefore, for an ensemble of ultrasmall superconductin
grains as considered,

The result for this calculation witk=0.28 is given in Fig. 3.

For larger, but still small grains, wher=1d, the spin
susceptibility is very different atl <A/ug. However, simi-

lar calculation®® to those leading to Eq36) show that for . . .
u'ad "9 436 W ent from|é3,,,1). We will not consider effectsii) and iii )

2 ~ . .
A%/(dug)<H<wp/ug One obtains the same result as in here and proceed with the calculation of the mean spacing

Eq. (36). Th? reason es_sentially s that in this regir_ne enoug_rbetween the primary peaks in ultrasmall superconducting
levels are singly occupied, so the energy levels involved "brains as a function of energy

tmhgnlpttca)rzgtlogllgre sufficiently far for the perturbative treat-= 1o tunneling of an electron into théh level above the
vaild. Fermi energy costs a total energy of

V. TUNNELING PEAK SPECTRUM E( by 1)~ E(6S)—1d+ Ndi2+ \2d R(N.1)/2. (41)

Superconducting correlations in ultrasmall grains are also
reflected in their tunneling excitation spectrum. For a normalThe first term is the kinetic-energy contribution. The second
grain, the tunneling peak spectrum is simple, consisting oferm is the Hartree term, and the factorois due to the fact
peaks at the single-particle excitation energies of the grairthat the number of pairs withia, belowEr changes by, on
When the pairing interaction is present, the spectrum is muchverage,— 3 when an electron is added to the grétiecause
more complex, containing peaks at the energies of all thave have assumed that the band of interacting electrons is
many-body states of the grain with one electron added ospaced symmetrically abo#,, and E¢ shifts upward by
removed. However, for a small coupling constant, most otalf a unit ofd when an electron is added to the gpain
these peaks are smdfproportional tox?), and we do not Tunneling an electron into theh level also affects the
consider them here. Instead, we consider only the “primary”interaction energy, which to second ordernis reduced,
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due to the blocking of levell, by \2din(N|)2  This can be seen as a first sign for the onset of the gap in the

=X\2In(N/)/2. (This second-order term can be found, using,density of states in a macroscopic sample.

e.g., perturbation theory, and calculating the difference in the

second-order interaction energy of a Fermi state wikh 2 VI. NUMERICAL ANALYSIS OF RICHARDSON'S

electrons and the same state up to a single electron added to EQUATIONS

the Ith level) Both the kinetic energy and the Hartree term . i . )

leave the distance between nearby tunneling energies un- In this section we analyze the solutions of Richardson’s
changed @). However, the second-order term becomesequations(8) for the ground state of a grain with equally
smaller with increasing energy, and therefore the distanc&Paced energy levels. The above equations for the energy
between tunneling energies is smaller than that of a similaParameters can be studied numericfihe energy param-
normal grain. This reduction manifests itself in the meaneters are, in principle, complex, and one can show that they
spacing of the primary tunneling peaks in an ensemble of"® either real or come m_compl_ex-conjl_Jgate pairs. If the
ultrasmall superconducting grains. One can obtain the mea@ound state of the system is considered, it is fétitiuat for
primary peak spacing of such an ensemble by a similar prOA<1/InN all the energy paramete_rs are real, monotonically
cedure to the one we used in Secs. Ill and IV for the spirflecreasing functions of the coupling. Takihgto be even,
magnetization and susceptibility. Here we obtain the sami€ group all the energy parametéts into pairs labeled by
result in a simpler way. We consider a grain with equally@n indexa, starting from the largest two and counting down-

spaced energy levels as above. The difference between tM&rd: {Eni2-2a,En+1-24}, With a=1,... N/2. (The case
tunneling energy to statégh,,,) and to state|ghit, of oddN can be treated analogously, except tBawill then

is  approximately d-+\2d{In[N/(I+1)]—In(N/)}/2=d[ 1 remain unpaire()I.Egch pair of energy parameters are real,
—\2/(21)]. The mean density of primary peaks in an en-until, for someh , (Fig. 1 of Ref. 29, theath pair becomes a

semble foi > 1,e>d, including spin degeneracy, is therefore Pair 0f complex-conjugate numbers, which they do in order
given by of increasinga (i.e., A\;<A,.1). At the transition poinf,,

the two energy parameters are equal to the value of the
_ 2 lower-energy parameter at=0:
Me)=g- ————. (42
1-M"di(2¢) En+2-2a=En+1-2a=2€N+1-2a- (43
The functional behavior of the primary peak density re-gach energy parameter is an analytic functionNer\ , and
sembles that of the magnetic susceptibility. In both cases thgzs a pranch point at, .
correction to the leading term reflects the change in interac- By solving Richardson’s equation®) for »=N and »
tion energy as levels further from the Fermi energy are— N_ 1 with the conditions abovét3d) we find that
blocked. Similar considerations for negative enerdies-
neling electrons out of the grain, going from_the grou_nd state N=1/(NN+a,), (44)
of 2k electrons to states ofk2-1 electrong will result in a
similar shift of the tunneling peaks, and the tunneling SpecwhereTnszg\‘:ll/j and 0<a;<1.
trum being symmetric around . It would seem that the interaction energy
We now consider shortly the case of the tunneling process
(at positive energigschanging a grain with an odd number
of electrons to a grain with an even number of electrons. In Eintzzv (26,7 E,) (45)
the even-to-odd case described above, the change in the
number of singly occupied noninteracting levels from zero towould be nonanalytical at this point. However, although
one induced an upward shift in the primary tunneling peakEy ,Ey_, have a branch point at;, their sum is analytical at
energies. Most primary tunneling peaks in the odd-to-everthis point, due to the cancellation of the singularities. The
case correspond to a change in the number of singly occwnalyticity of the sum, as well as the result in E44), are
pied noninteracting levels from one to two and therefore arderived® in the following way: We first defing and 7 to
upward shift in the tunneling peak energies similar to thesatisfy the equationsEy=2ey_1+&+in and Ey_g
even-to-odd case. The only exception is the peak closest te 2¢y_;+ &—i %, using the fact thaEy and Ey_; are real
the Fermi level, which is a result of tunneling into the singly (in which case# is imaginary or complex conjugates of
occupied level, resulting in the even grain having no singlyeach other(in which case is rea). We insert the above
occupied levels. This induces a downward shift of this tun-definitions in Richardson’s equations fer=N and »=N
neling peak. The functional behavior of the mean peak spac-1 and obtain equations faf and 772 as a function ofn
ing at e>d will be similar to Eq.(42) above. (similar equations are given in Refs. 29 and.28/e then
We now relax the assumption of the noninteracting en-expand¢ and »? in a series indA=(\—\,) and solve the
ergy spectrum of the grain being equally spaced and considefquations for each order @i\ separately) ; is obtained by
the regime B<e<d. Due to the positive shift in energy of the solution to the zeroth order and yields E4¢). Solving
the tunneling peaks as a result of the pairing interactionfor the next orders we find that the coefficients for bgtnd
Me) is smaller for ultrasmall superconducting grains com-7? of (\)' are, up to a factor of order unity, (M)*. This
pared to its value for similar normal graifhis can also be results in¢ and »° being in fact expanded as a series in
obtained by conservation of the number of primary pgaks S\ - (InN). This result both reflects a scale of 1/N) near
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FIG. 4. (a) The singularity point of the complex coupling parameter closest to the origin is plotteérdar top right to bottom left
N=16, 24, 32, 48, 64, 96, 128, and 192. Not plotted is their mirror image acrossattis, with negative imaginary partg) The real(top)
and imaginary(bottom) parts of the complex coupling parameter at the above singularity points are plotted as a fundliorhefdashed
lines are fits, 1/IMN for the real part and 1.33/(MN)? for the imaginary part. The error in both graphs is 0.066t plotted.

A= 1/InN, which we will return to later, and shows that the =~ We separate the energy parameters into two grdjps
sum Ey+Ey.,; can indeed be expanded perturbatively inandC, , containing those energy parameters that for a given
S\. \ are real or complex, respectively. We define the contribu-

This result also suggests that,(\) is analytical on the tion of the complex energy parameters to the condensation
positive real axis. The only points at which one can suspecgnergy(disregarding the Hartree tejm
nonanalyticities to occur are the differexf’s. The reason-
able assumption that f@a>1 the behavior oE;,; near\, is comp_
similar to that neai ; discussed above, i.e., that the sum of Econd_EV (26,~A—E,) (47
the singular energy parameters is analytical, leads to the ana-
lyticity of Ejn; on the positive real axis. This is also sup- and find thaiESSP— (A%/2d+ A)| < 3d for 8<N<1024 for
ported by contour integration in the complexplane, as we all A<0.3. The relative correction decreases withand A
discuss in Appendix C. and is 0.1% foiN=1024 and\ =0.3.

However,E;; is not an analytical function in the whole  For those energy parameters that have already become
complex X plane. By numerically analyzing Richardson’s complex at a giver\, we can separate the contribution of
equations as a function of complax we find that the inter- E, ., ,.+Eon+1-24 t0 the condensation energy into two
action energy has singular points in the complex plane, th@arts, one containing the decrease that e&GR.,— 2

Cx

closest to the origin occurring at approximately +Eona1-24 Underwent as is increased from O ta, (the
perturbative regime the other containing its further decrease
Nsing(N)=1/INnN=1.33/(In N)?, (46)  for A=A, (the singular regime

Defining, for each energy parametgy, its value at the
pranch point a) [by Eq. (43), E5=Ej_;=2e5 1], we

In Fig. 4 we plot the real and imaginary parts of the closes -
g P ginary p write ESSMP=ESINS + EPEt where

singular points as a function df, with the corresponding comp?
fits. c, c,

This numerical result suggests that the radius of conver- sing _ b pert _ . &b
gence of the perturbation series for the interaction energy Econd_zv (B, ~Ey), Ecomp_zv (26,=A—E,).
around\ =0 is roughly 1/InN, in agreement with our ana- (48)

lytical treatment of the perturbation series in Appendixes B
and C. It also reflects a convergence radius of the order dfcongiS the singular contribution t&.onq0r Ejp . (Note that
1/(InN)? for the sumEy+ Ey_; around\ =\ 4, in agreement  the Hartree term is subtracted E’@gr’rﬁpwhen calculating the
with the 1/(InN)? scale mentioned above. condensation energy; for the analogous calculation of the
The second part of this section is devoted to establishing diteraction energy, this subtraction should be omijtée-
connection between the analytical properties of Richardson’garkably, our numerical analysis shows that this singular
energy parameters and the BCS theory. In particular, weontribution is well approximated by the BCS expression for
show that in the regime whex<A the BCS result for the the condensation energyEgso%=A2/2d[1+ O(d/A)?] for
condensation energyl) is closely related to the singular 64<N<1024 for allx<0.3} as is shown in Fig. ®. This
contribution of the complex energy parameters to the consuggests that the BCS approximation is equivalent to consid-
densation energy, and that the points, on the positive readring only the singular contribution to the condensation en-
axis of \, at which the energy parameters become complexergy. By taking first the limitN—co, one would indeed get
are related to the values af at which additional states be- the singular point of the interaction energy to be at the origin
come “condensed’{i.e., come to lie withinA of Ef). (46), and no contribution from the perturbative terms. In this
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E"™ [(9N24) Eros /(2Nd)

04 ¢

0.001 -

0.2 r

(a) (b)

FIG. 5. The different contributions of the complex energy parameters to the condensation energy are(@ldtecshow thaEiL,”ngd is
well approximated by the BCS result by plottirefe2/(2N2d) for N=64 (dashed ling and N=128 (solid line and the function
exp(—2/\) (dotted ling for comparison. Plots for largéd are not drawn since they are indistinguishable from exi{) in the resolution
of this figure. (b) EES,’,‘,JZNd for N=64 (dashed line, large stepsnd N=256 (solid line, small stepsis plotted and compared to

exp(—1/\) (smooth solid ling showing thatEf:’g'mtpzA. Steps occur at points, in which pairs of energy parameters become complex.

limit the Hartree term in the reduced Hamiltoniés) van-  values ofN (regular lines, obtained by numerically solving
ishes, and the condensation energy equals the interaction eRichardson’s equationsWe find that the difference can be
ergy. well fit by

These results suggest that thé\ Idorrection to the BCS
result in the Iarge_\l Im_ut is at leastA. However, one alsp has Napprod Ne) = M(Nne)=0.055/InN, (50)
to add the contribution of the energy parameters in group

R\, which correspond to the levels betweBa—wp and  jmplying that the approximate prediction becomes very ac-
Er—A. This contzrlbutlon would give an additional correc- cyrate forN— . Equation(50) represents a one-parameter
tion of the ordem “wp . Summing the above three contribu- fit that can be used for any combination Nfand nc, the

tions toE¢qng, We obtain Eq(24). , quality of which is illustrated in more detail in the inset of
Since Egonf=A%2d+A+0(d) and Egg=A%2d  Fig. 6.
+O(d), we find thatEEfj,r]ﬁpzA [see Fig. 8)]. This implies,
since Z,— Efj equals 2 for evenv and O for oddv, the 035
approximate equation Ao ¢
0.27
A(N)/d 03 L

2nc(h)= (49

(I-M)°

whereA()\) is given in Eq.(2), andn¢c(\) is the number of
pairs of energy parametef&y . -4,Eni1-2af that have
already turned complex for the given. Remarkably, Eq.
(49 tells us that the associated number of bare levels
€N12-24 @Nd €y 124, NAMely, D:(N\) is just the number o2 L
of bare levels withind of A (up to a factor close to unijy

i.e., the number of what we have called “condensed levels.”
The reason for this nomenclature now becomes apparent
since we have just established that the singular, BCS part 00.15 .
E.ong arises precisely from those energy parameters thai
have evolved from thesen2(\) bare levels.

If we solve Eq.49) for }, the result gives a functi_on, say FIG. 6. The bottom four curves are plotsf as a function of
)‘appro%(nc), that act_ually depends aw an_dnc only via t_he 1/In(N/a) computed by changing for fixed (from bottom up N
ratio N/nc and that is plotted as a function of 1Mi(ic) in _15g 256, 512, and 1024. The topmestick, solid curve is the
Fig. 6 (thick bold ling. This function can be used to approxi- sojution to Eq.(49). In the inset we plo., as a function ofa for
mately predict, for giverN andnc, at which value of the (from top left to bottom rightN =64, 128, 256, 512, and 1024. The
coupling constant thecth pair of energy parameters will numerical curvegdashediare each fit with the solution to E49)
become complex. For comparison, we plot in Fig. 6 also theninus 0.055/IMN (solid lines. The error in\, is 0.0002 and is not
actual value at which this happens, sefnc), for several drawn.

0.25

1 1
0.2 0.25 0.3 0.35

1/ln&
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Expanding\ ;ppr0{Nc) to first order in Inf/n¢), we find 2N SE
that da,=— . -
" =iy (2] - 20+ 6E,) (2] - 2v)
1  Inn N 2(8E,— 5E
N(ne)=1IN(N/ng)= —— +——. (51) + (5E,~ %E,) _
InN " (InN)2 w=5Cer) (2u—2v+ 6E,— OE,) (2u—2v)

This equation shows, once again, that the scale of Nf3is (AD)
present also fok>\*, both in BCS theory and in the ana-  £qr ) < 1/In N—c/(In N)?, we assumeand later check for

lytical properties of Richardson’s equations. consistency that 0< SE,<1/c for all v. Separating each
sum in Eq.(Al) into a sum over the levels above and below
VII. CONCLUSIONS v, one can see that|da,|<(1l/lc)-3-232s(2s

) , o —1)]"Y=|sa,|<6/c (actually a more careful treatment
Though many superconducting properties are limited {41 reduce the numerical factor multiplyingclto be of

grains large enough thét<A, pair correlations exist also in . qer unity, but this is of no importance hgre
ultrasmall grains, wheré>A. We calculated the effect of  Tperefore. one can write

pair correlations on the condensation energy, spin magneti-

zation, and tunneling spectrum of ultrasmall superconducting N
grains. We found that the contribution of pair fluctuations to SE,= 5 , (A2)
the condensation energy is much larger than the BCS result 1-\Na,+Ab,(N)/c

even for grains in whickA >d, and that the condition for the . . .
validity of the BCS approximation for calculating the con- Wherelbv()\)|o<6. Manipulating the above equation, we ob-
densation energy i&>+ wpd. The interaction energy of ul- tain o€, = 6E, + R, where
trasmall grains can, in principle, be experimentally obtained )
through measuring their spin magnetization, which was cal- R —_ A°b,(N) (A3)
culated above. The pair correlations result in a positive cor- v c-[1—ra%+nb,(\)/c]-(1—2a%) '
rection to the differential spin susceptibility which is propor-
tional toA?d/(ugH) for ugH>d, and a positive correction The relative accuracy is therefore
to the mean tunneling peak density which is proportional to
\2d/e for e>d. The differential spin susceptibility at=0 R,(\) |
of ultrasmall superconducting grains shows a reentrant be- r(N)= SE ()\)| =
havior as a function oH, which could serve as a sensitive Y
probe for the existence of superconducting correlations in . — ~
such grains. We argued that the interaction energy is an ana- Consider now A<1/nN—c/(InN)>, and v=N (the
lytic function of the coupling parameter, with a convergencehighest-energy ~ paramejer Since ag=(InN+inN—1)/2
radius of approximately 1/IN. We showed that the BCS =[nN we see that y<6/c?.
result for the condensation energy can be obtained from the One can obtain from Eq16) thatag increases monotoni-
singular part of Richardson’s energy parameters, and that thelly with », and by differentiating EqA4) with respect to
correction to the BCS result in the regime wher€A isat a0 't increases monotonically with®. We conclude that
leastA. r,<6/c? for all v, and thereforeSE ,= SE%[ 1+ O(1/c?)] for

all v. In the same way one finds thag,<1/c for all v,
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By summing over allv, one shows that
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APPENDIX A: ACCURACY OF THE ENERGY APPENDIX B: APPROXIMATE FORMULA FOR THE
APPROXIMATION MTH ORDER TERM OF THE INTERACTION ENERGY
In this appendix we show that the relative accuracy of the In this appendix we expand E¢L8) for the approximate
approximations in Eqg15) and(18) is as stated in Eq17). interaction energ)Eiont in powers of\ and analyze the con-
In this appendix we takd=1. vergence properties of the resulting series. We begin by
From Egs.(16) and(14), da,=a,—a’ is given by showing that the ordex™™ contribution toE?,, has the form
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N the approximation becomes better, since the relative contri-
EXM=d\™>, (a%™m (B1)  bution of the levels far fronN decreases. Fan>2 we ne-
v glect the factor £)™ in Eq. (B7). For m=InN only the j
dA™b, N(m—1)! for m<InN, =1 term in Eq.(B7) contributes, an&"{"™ is approximated
= by A™-In N(™D, For m<In N one can show that
dATBL(INNY™ D for  m>InN, y
(B2) N
_ _ (m—1) iyym—1 _
whereb,, andb/, are constants of order unity and then ana- (m=1)IN=InN <j21 [In(N/P]™*<(m=1)IN
lyze the consequences of this result. Since we are not inter- (B8)
ested here in numerical factors of order unity, we will allow N N
ourselves to make some crude approximations. and therefore2 ;[ IN(N/j)]™ "=(m—1)!N. o
The expression obtained8) for the interaction energy ~ Having thus established E(B1), let us now examine its
can be written as consequences. First, since the low powers in the series for
EO, fulfill the relation EXM*Y/EXM=m.\, whereas the

N

A (af)m-t
v=1

high powers fulfill the relatiorEQM™ " Y/EXM =)\ .InN, the
' (B3) series forE’, does not have a single parameter describing
int
the ratio between consecutive terms in the series.

wherea! is given by Eq.(16). The first-order term is given Second, while the high powers dictate the convergence

Eiont: 2 Eion(tm): d%:

m

trivially by ES(M=x\dN. radius of the series to be roughly 18ntheir contribution is

The second-order term of the interaction energy is giverarger than that of the low powers only fat=1/InN

by —1/(InN)?, introducing a scale of 1/(IN)?> nearA=1/InN
N N N (see also Sec. VI This can be seen by estimating the partial

EO(Z)—)\ZdE 1 B 1 sum of Eq.(B3) for m=InN using the result in Eq(B2).

it R ey 2 —0) e (i Takingb;,=1 for all m we get
N 2N * InN
1 (N INN)
=\% —|. B4 AT(InN)™M e B9
2 ,-=N+12<J—|>} B4 P NN e ey (B9

This result can also be obtained by standard second-ord&©r A =1/INN—c/(In N)? for anyc=1, the above sum equals
perturbation theoryRef. 26, and references thergirfor _ nN e
large N one obtain€EX?~In 2 %dN=In 2 \?wyp, . A=c/nNJ"7 ° (B10)
The calculation of the higher-order terms is more difficult. ¢ ¢

We now make some approximations th.at enable us to f'ng\/hich is smaller than one, while the low orders are propor-
the mth order within a factor of order unity. tional to N

. . 0s .
First we manipulate the,’s (16) and obtain Third, for A<1/InN—1/(InN)?, where the low powers

v—1 N— 2N—» dominate, one readily obtains
1 1 1
P 2[E k& k k=T k E2 . =ANd+EXP[1+0O(1/InN)]. (B11)
This can be approximated by Here the first-order term Nd is the Hartree term, and the

1 second-order ternE{Z)~In2-\%wp is obtained from Eq.
a8=—|n[2(N+1)/V—1]—|n[(N+1)/V—1]. (B6) (B_4). The order _1/IrN can be understood as follows. The
2 third-order term is smaller than the second-order term by a
0 factor of order\, which is smaller than 1/IN. All the higher
For »<N one obtainsa,=—In(N/»)/2, and for v=N  orders are smaller than the second-order term by a factor of

(meaningN—»<N) one obtains)=In(N/»). order 1/(InN)? or smaller, and since there are aboutlauch
We now make a crude approximation: terms, their sum is also approximately Ilrsmaller than the
N o1 N second-order term.
oym-1_|1_[= — The corresponding perturbative result for the condensa-
;1 @) 1 (2 ;1 [In(N/I™. - (B7) tion energyE%, =EP", now immediately follows by in-

serting Eq.(B11) into Eq. (11) (with k=N). The result is
This approximation is proper only for the's that are  given by Eq.(22), namely,Eﬁgrﬂtd()\):ln 22 %0p .

either small or close t®l. However, since these's contrib-
ute the most to the sum, we expect this approximation to be
correct within a numerical factor of order unity. Indeed, for
m=2, the last sum in EqB7) approximately equalbl, and
the total result we obtain, ON is different than the correct In Eqg. (18) we obtained an expression for the interaction
result In2N only by a factor of order unity. Increasing, energy, whose accuracy for different regimes in the range

APPENDIX C: SERIES EXPANSION
OF THE INTERACTION ENERGY
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A<1/InN was obtained in Appendix A. We then expanded Im )4
the result in a series iN. This series converges, in the re-

gime)x<1/|71 N, to the approximate result. We were not able
to find a series that converges to the exact result for the
interaction energy in the above regime. However, we ob-
tained results that suggest that the interaction energy is ana-
lytical on the positive real axis of the coupling parameter and I
can be expanded in a seriesNnwith a finite convergence Re A

radius that equals 1/(IN-+b), whereb is of order unity(Sec.
VI). As another check of the above statement we solved,
numerically, Richardson’s equatio®) for complex values

of N and calculated the integral

FIG. 7. An integration contour in the complaxplane.

f Ein(2)dz, (CD
C

The exact interaction energy is given by H40). Ex-
panding the exact expressionfag,=d=;_,a,\™, we find

where C is a contour circumventing the positive real axis that
(see Fig. 7. m-3
The integral was calculated for variods in the range am=2, | (@M D+ > by(a%?]. (C2
v s=1

4<N<64 (a few contours for eacl, each extending to a
different value of Ré\, up to Rex=0.7). For allN the inte-  The approximation we make in E@18) is equivalent to
grals were zero within the numerical error, which suggestsaking only the highest powemn{—1) in Eq. (C2) for each

that there are no singularities on the positive real axis. m, v and neglecting the sum in the brackets.
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