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Heavy isotope ®He: Properties of bulk system and of clusters
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We have theoretically revisited the heavy isotope of fide. It was considered many years ago as a
possible superfluid system, but its short lifetime makes any experiment rather difficult and theoretical predic-
tions are not very favorable. We have applied the shadow wave-function technique to the study @fdulk
and we have also studied clusters®fe. We confirm that the ground state is solid but the energy difference
between the two phases is rather small and the solid order is also inhibited in clusters of many hundreds of
particles. From a study of the off-diagonal one-body density matrix we find that Bose-Einstein condensation is
present in these clusters. Thus clusters®de offer the unique opportunity to study the evolution from a
superfluid to a solid driven by size effect and the properties of a highly defected quantum solid.
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. INTRODUCTION %He will offer the unique opportunity to study the evolution
from a superfluid to a solid driven by size effect and the
Superfluidity is one of the phenomena of purely quantum-possibility of the existence of a supersolid state. We employ
mechanical origin that can arise in a system of interactinchere the variational theory based on shadow wave function
indistinguishable particles. This explains the search for othe(SWF). As we comment in the following, this theory is very
superfluids in addition to the He liquids. Bose-Einstein con-useful in situations in which a quasicrystalline order sets in.
densation(BEC) has been achieved with alkali atoms and  The contents of the paper are as follows. In Sec. Il the
atomic hydrogen and in the case of alkali atoms evidence fovariational method used to study bulk and cluster properties
superfluidity has been obtainédvith molecular hydrogen of ®He is reviewed. In Sec. Ill the results are presented for
BEC is prevented by solidification and ways to contrast sobulk ®He, for one®He impurity in liquid “He, and for®He
lidification have been considered theoretic&ll. cluster or clusters, whereas in Sec. IV the technique described is used
the free surface of His not efficient enough to cause a fluid to analyze the off-diagonal long-range order®ide clusters
state and only for a microscopically decorated adsorptiorand the relative results.
surface the inhibition of the solid phase appears to be strong
enough to leave a kind of modulated superfluid state. NO || THE SHADOW WAVE-FUNCTION TECHNIQUE
experimental study has been performed yet on such a system.
Another possible superfluid system was considered many A. Bulk ground state
years ago: the heavy isotope of Hele? Its short lifetime The shadow wave-function theory is a powerful varia-
(71,=0.82 sec) makes any experiment very difficult and thetional Monte Carlo method; it consists of using an integral
oretical predictions are not very favorable. On the basis ofunctional form for the trial wave function in order to take
quantum corresponding state arguments the ground state @fto account in an implicit way many-body correlations be-
bulk ®He was predicted to be solid, not liquidn a ®He*He  tween particles with the technique of subsidiary variables. In
mixture the estimated transition for tféle component was  this way one implicitly is introducing many-body correla-
so low that phase separation prevents any superfluid behawons and is not limited to two- and three-body correlations
ior. as in the case of the standard variational treatments. For a
We have revised théHe system. In the first place the pulk system composed of ®He atoms we write the shadow
earlier results® were based on rather primitive variational wave-function representation of the ground state in the form
theories. In particular those theories gave a better represen-

tation of the solid phase than of the fluid one and this might .

have altered the evaluation of the relative stability of the two Vo(R)= j dS RR.S), @
phases. Presently the variational theory has progressed to R - . )
such an extent that both phases are represented veWhereR={ry, ...ryj are the coordinates of the particles,
accuratel§ in the case of*He. In addition local solid order andS={sy, ... sy} is a set of auxiliaryshadow variables

can be described without difficulty in situations like liquid- that are integrated over the whole space. Interparticle corre-
solid coexistenceor in a doped cluster where the solidlike lations betweerfHe atoms are contained in

order around the impurity gives way to a fluid state far from
the impurity® We confirm on the basis of an advanced varia-
tional theory that the ground state is solid but the energy
difference between the two phases is rather small. In clusters
we find that the solid order is inhibited also in the case ofp(R) ~and ¢4(S) are Jastrow factors: ¢y(R)
clusters of many hundreds of particles. A large cluster of=Hi’\'<j:1fp(|ri—r,-|) and ¢S(S)=Hi’\'<j:1fs(|si—sj|). We

N
F(R,S)= %(R)xiljl fos(Ifi—siDX (9. (2
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have used simple parametrized forms for the correlating fac- TABLE I. Variational parameters optimized for the SWE at
tors fp(r)ZeX[{—ll2(b/r)5], and f. contains a rescaled some densities for bulkHe, together with the variational energy
form of the Aziz potentiaf, which is also used to model the Per particle. Lengths are in units of=2.556 A.

interaction betweerfHe atomsf(s) =exd — dvaAas)]. For
the shadow-particle correlations a Gaussian has been used? A®  blo Co®  ao 6  (E)IN[K]  State

fos(ITi—Si|)=exd —C(Ii—s|)?]. This wave function con- 002186 1.1 7.2 0915 011 —11.55(3) L

tains four variational parametets 8, «, andC, which are 0.02620 111 7.8 0091 0.11 —12.86(2) L

determinated by minimization of the expectation value of the 9. o2844 1.11 7.8 0091 0.13 —13.18(2) L

Hamiltonian. The computation is standard and details can bey 0294 111 7.8 091  0.13 —13.24(3) L

found elsewher@Let us just notice that the essential trick in 593161 111 7.8 091 0413 —14.39(3) S

this Monte Carlo technique is that the integration over the 5 93070 111 78 0091 0.11 —14.50(3) S

shadow variaple is pgrformed stochas_tically together with theq ga455 111 83 o001 0.11 —14.39(2) s

qute Carlo integration over real vanables_, so that one hasol03703 111 85 001 0.11 —13.82(3) S

to integrate over ¥ dX N variables, wherd is the number

of particles in the system and is the dimensionality.

Shadow wave function has been extensively applied to the 1 o "

“He system in many different physical situations giving su- ni=x P2 I(|si—sj]), 1(s)=e"*<". (5)
J(#F1

perior result§ not only for the ground state but also for ex-
cited states. Probably the most important achievement of this . .
variational technique is that shadow wave functions are able Thg correlatuons mtroduﬂced by the glue fadkfS) act as
to describe with the same functional form the liquid and@ “SPring,” trying to keepn; not too far from 1. When the
solid phases: when one increases the density of the systepyStem is homogeneous the argument for the exponential
the correlations between shadow variables become so strofignction inL(S) can be expanded around the average value
that they drive the system to the solid phase anépoiori  (n;), and to the lowest order im; — (n;) the effect of the glue
equilibrium positions have to be introduced. factorL(S) is simply a renormalization of the Jastrow factor
With the same functional form of SWF it is possible to fg for shadow. To second order, it introduces triplet correla-
also represent &He system with a finite concentration of tions between shadow variables. The situation is completely
®He impurity atoms. This is completely similar to the calcu- different if the homogeneous state is such g} is much
lations we have already done to obtain ground- and excitedhelow unity. This is the case in whidd atoms have a very
state properties of &He impurity in liquid bulk “He® In |arge volumeV available so that the average density is much
this way we are able to estimate the chemical potential obelow the equilibrium density of the system. In this case the
one °He impurity in liquid “He and then the solubility of glue term causes a symmetry breaking in the state of the
®He in “He. system, i.e., thé atoms do not fill uniformly the volum¥

but only partially in order to let the value cﬁf, be close to
B. Self-binding with glue SWF unity in that portion ofV that is occupied by particles. The
remaining region has zero density. In fact the probability that

In the present work we have also studide clusters. In a single particle can escape from the fluid is zero due to the
order to describe the self-binding properties of quantum clus- gep P

ters we have extended our treatment of dishomogenéidas ~ Presence of; in the denominator in the exponential of Eq. 4:
systems with a free surfal%to ®He. Binding in a quantum @ configuration in WhICfJ onéHe atom that is far from the
system aff=0 K is peculiar because the dense system cotest of the system causasto be near zero and therefore also
exists with a vacuum, not a vapor as in a classical systenl.(S) so that the SWF vanishes for such configurations. In
This means that the quantum probability densRyR) principle we could have evaporation of dimers or trimers but
=|¥,(R)|? cannot have a classical analogue with a systenthe actual computation shows that this never happens when
with local interparticle interactions. We noticed that the fol-the wave function is optimized. In this way we are able to
lowing form of ¥, has the desired properties: reproduce the self-bound properties %e in the presence

of a free surface. Among the new variational parameters con-

tained inL(S), D controls the force of the “spring,”’u

‘I’G(R)=j dS HR,SXL(S). (3)  characterizes the range of the local-density operator,/Aand
controls the average density of the system.

The glue factoiL(S) has the form

Ill. RESULTS
N o 2
n—1 A. Bulk °H
Lo=11 exp[—D#} @ | . "
i=1 n; We have studied bulkHe at different fixed densities in a

. simulation box withN=108 particles with periodic bound-
n; represents a suitably normalized local-density operator ofiry conditions. Typical runs generatex30° Monte Carlo
shadow variables around tfith shadow and we have used steps after 5 10* steps used to equilibrate the starting con-
the form figuration. In Table | we report the variational parameters
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FIG. 1. Equation of state ofHe atT=0. The lowest branch FIG. 2. Pressur® and chemical potentigk for bulk solid ®He

represents the solid phase. Crosses represent freezing and meltigth:O
densities in the metastable region at negative pressure. '

density of “He turns out to beug"P=—10.0+0.6 K. This
result gives us the possibility to obtain the solubilityof
5He in “He at low temperatures. The equilibrium condition
?or a solution of®He in “He is given by the following rela-
II\ion between the chemical potential of pufele wg, the

optimized for the bulk®He system at some densities together
with the variational energy per particle. The simulation box
for the solid phase has been kept cubic in order to stabiliz
the fcc lattice. The full equation of state is shown in Fig. 1.
The lines are fits to the calculated energies per particle wit

a cubic polynomial of the form impurity chemical potentia."?, and the solubilityx of
®He in “He:
E(p)=Eo+B[(p—po)/pol*+CL(p—po)pol®.  (6) mp
me=pmg +kgTInx. 7

The parameters of the fit are reported in Table IIl. From the

fitted equation of state we can calculate the equilibripgp ~ From the value ofug=E, at the equilibrium densityp
=0.03319, freezingp,=0.02984, and melting densities =0.03319 A3 and from the value ofug"® we obtain the
Pme=0.02417 A3 We confirm that on the basis of our solubility of ®He in *He: x= exp(~4.43 KIT).

microscopic theory, the ground state $fle atT=0 is solid We have also studied excited-state properties of e
but the energy difference between the two phases is rath@mnpurity in liquid “He. We write the shadow wave function
small. From the equation of state it is possible to obtain &or an excited®He atom in the form

number of different physical quantities of the system such as

the pressure and chemical potential; these are shown in Fig. | i
2 for the solid phase. V. (R)= [ dSKR,S)d;, 8

B. One ®He impurity in “He where the momentum carrying factor reads

We have also studied ground- and excited-state properties 5-:eiq"~§imp )
of a system composed of orfféle impurity in liquid *He. In q '
this system the interatomic interaction between th im- WhereR={Fimp,F1, ... In} are the coordinates of the par-

purity an%I“He atoms is equal to the one betwekte; there- ticles (the subscriptmp refers to the®He impurity variables;
fore, the °He atom differs from the'He atoms only for its  the others refer tdHe atoms and similarly for the shadows

bare mass. As already done in the case of of S={Simp,S1, - - - ,Sn}- In this simulation we have computed
|mpu4r|ty,4 the correlating factors in the SWF fdiHe-"He directly the excitation spectrum of tH#He impurity without

and !—|e- He are assumed fo_r S'mP"C'ty to be eq_“a!- Theperforming the orthogonalization with the collective mode as
chemical potential of théHe impurity at the equilibrium done recently with the’He impurity casé® This is not a
crude approximation because in that calculation we have
found that the orthogonalization-diagonalization process has
strong influence only on the spectrum of the collective exci-

TABLE Il. Parameters of the fitted equation of state.

Liquid Solid tations. It should be kept in mind that the present calculation
Eo —13.240 —14.507 of the excitation spectrum of théHe impurity is not as
B 28.193 50.411 accurate as in the case of tAee impurity because we have
C 17.369 17.308 not used an explicit backflow term in the expression of the
Po 0.0298 0.0332 excited state in order to optimize its contribution. It is

known'! in fact that introducing the phase in the subsidiary
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T . — 2.1 TABLE Ill. Variational parameters optimized fdtHe clusters
with different numbers of particlell, simulated via the SWE3).
12 Lengths are in units of-=2.556 A.
20 |
119

N blo Co?> aoc 6 D we? A (EYNK]

20 111 7.8 098 0.09 045 0.1 45-3.86(2)
40 112 7.8 098 0.09 045 0.1 55-522(1)

1o 65 112 78 098 0.09 045 0.1 70 —5.16(1)

E(q) K]
—>—
——
—>—
=,
——
—
——
——
2
m'(qVmy [K]

® 118 70 1.12 7.8 0.98 0.09 045 0.1 75-6.29(1)
¢ 112 111 7.6 092 011 045 0.1 85-7.11(1)

* 1'® 125 1.11 7.6 092 011 045 0.1 88-7.32(1)

..’ {14 217 111 75 092 011 045 0.1 100-8.22(1)

o®® 240 111 75 0.92 011 045 0.1 105-8.37(1)

% e p 5 PR 500 1.11 7.2 0.92 0.11 045 0.1 110-—9.35(1)
gIA'] 1000 1.11 7.2 0.91 011 045 0.1 136-10.10(2)

FIG. 3. Filled circles: excitation spectrum of®de impurity in

liquid “He at equilibrium density; triangles: effective mass of the eters contained iF(R,S) in order to optimize the wave
®He impurity inmg units. function. In Table Ill we report the variational parameters
optimized for ®He clusters with different numbers of par-
variables is a way to implicitly incorporate backflow up to ticles together with the variational energy per particle. In
high order in the real variables. However this contribution isgigs. 4 and 5 we show the density profiles for thitge
determined by the ground-state pseudopotentials and in geBrysters with different numbers of particles; in particular in
eral it is not optimized. Backflow can be optimized only by Fig. 4 the origin of the density profiles coincides with the
introducing an explicit backflow term, which we have not center of the mass of the clusters, whereas in Fig. 5 the origin
done in the present computation. For this reason the presept the density profiles coincides with tfiHe atom nearest
estimation of the effective mass of tfiele impurity in liquid  the center of the mass of the cluster; in this way it is possible
*He should be considered only as a lower bound. The excir also analyze the amplitude of the density oscillations
tation spectrum of th€He impurity is shown in Fig. 3 to- around an®He atom inside the cluster. In all the density
gether with the wave-vector dependence of the effectivgyofiles one can see the presence of a shell structure; more-
mass of the®He impurity. Our computation can be per- gver the oscillations in the density profiles centered in the
formed only for a discrete set ofvalues such that the peri- SHe atom nearest the center of the mass of the cluster be-
odic boundary conditions of the simulation box are Satisﬁedcome (o) h|gh in density that it is possib'e that the inner part
Our theoretical quasiparticle excitation spectrum shows littlesf these clusters becomes solid. In order to investigate this,
deviation from a simple parabola. The values of the effectiveye have analyzed the local order Bfle atoms around the
mass for the’He impurity range from 1.6—1.78; between one nearest the center of the mass of the cluster, studying

q=0.37 and 3 A%, wherems is the °He atomic mass. The four-body angular correlations in the same way as wé wid
deviation of the quasiparticle spectrum from the parabolic

behavior is smaller than the one found in thide impurity 0.05 .
case. Moreover the renormalization of the mass of tHe
impurity turns out to be less than that of thlle impurity1°
this is probably due to the absence, in the present case, ofa  0.04 | .
explicit backflow term in the wave-function. This term in

fact has been able to increment the variational estimation of

the 3He impurity effective mass from 1.74-2185 when 0.03 1
used in SWF. <
< oo 1
C. ®He clusters ST

In the variational optimization of the wave functidB)
we have performed an optimization of all its variational pa- 0.01
rameters and not only of those contained in the glue factor
(4), as done in previous simulations tile clusters. This has
been necessary because we have seen evidence that as - 0
dimension of the®He clusters increases, one goes from a
high-density liquid to a system that tends to become a solid
in the bulk limit. The sign that there is a substantial modifi-  FIG. 4. Radial density profiles(r) for three ®He clusters with
cation of correlations in these systems as their size increasesferent numbers of particlel. The origin coincides with the cen-
can be seen in how we have to modify the variational paramter of the mass of the clusters.

r [A]
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0.05

short-range order is present with no definite sign of solidlike
order. It should be noticed that these angular correlations
become more and more pronounced as the size of the clusters
increases. It is instructive to consider the case of a cluster of
“He with one impurity ion such as K In this case we fintf

a highly ordered first shell ofHe atoms around the ion as
shown by the presence of well-defined peak® (9, ) ex-
tending over all directions{, ¢). In addition the radial den-
sity profile shows more pronounced oscillations than in the
present case ofHe. We conclude that a cluster of a few
hundered®He atoms is in a state intermediate between a
liquid and a solid in which there is a pronounced layering but
no well-defined angular correlations. Presumably one needs
a substantially larger cluster in order for a well-defined solid
order to become stabilized.

0.03

0.01

IV. BOSE-EINSTEIN CONDENSATION AND MOMENTUM
FIG. 5. Radial density profileg(r) for three ®He clusters with DISTRIBUTION

different numbers of particleN. In this case the origin is fixed to

h di f théH h fth fth The disordered state of a cluster ®fle atoms suggests
tcljs(t:g:)r inate of theHe atom nearest the center of the mass of they; i g superfluid at low-enough temperature. With our

technique we are not able to assess superfluidity but we can
study the presence of Bose-Einstein condensation in our

analyze the local solid order around thegSfolecule or the  small liquid ®He clusters. In a strongly interacting system
K* ion in “He systems. This analysis consists of choosingike the present one, the property of off-diagonal long-range
two of the ®He atoms in the first shell around tiiéle atom  order (ODLRO) in the one-body density matficharacter-
nearest the center of the mass of the clugtdiich is taken izes the presence of Bose-Einstein condensation. The one-
as the origin of coordinat@sOne of these two atoms is used body density matrix is defined by
to fix the z axis, and the second is used to define xhg

plane. Having oriented the coordinate axis in this way we s - - - - -
analyze the statistic®(6,¢) for the angles at which the p(r,r")=N [ dry...dryW(r,ry, ... ry)
other ®He atoms are found. The result for &kle cluster
with N=217 atoms is shown in Fig. 6. One can see that only XW(r',ro, ... In); (10
N this function is related to the momentum distribution simply
2 TR - . .
$::¢::¢:$ “"‘"fé'é'qf'?’f\\\‘ by a Fou.rler trzimasforr-n, so in the bulk sys.tem. the presence of
$§$::$;¢:5 s ‘g’,‘%«:&&\\ ODLRO inpy(r,r") (limy_;/_.py# =0) implies a macro-
S ‘~#~ '~‘sr4
SN
P(®©.0) $~;$§§.-;:~:~;!\\\\\\\\§§.-. SO 1.000
NNT 72 S
SR NN
T
$“:$:~$§:77/ 0.100
SRS
R
=
:Q
(8]
0.010 |
160
0 0.001 ' :
. ) _ 6 0 5 . 10 15
FIG. 6. Probabilty functionP(8,¢) to find a °He at angles r[A]

(8,¢) having one fixed®He on thez axis and one on the-y plane
(in this case#=60°). The cluster hat\=217 ®He atoms. The FIG. 7. Estimation of the local condensate fractiog(r) for
origin of the coordinates is thBHe atom nearest the center of the three ®He clusters with different numbers of particlés For r
mass of the cluster, and this analysis is performed only with the<2.5 A, ny(r) is not shown because the long-range limit is not
8He belonging to the first shell @r<5 A) around this atom. reached. Notice the logarithmic scale fuy.
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these clusters. In the inner part of the cluster the value of
no(r) strongly decreases as the size of the cluster increases
and this reflects the building up of a more ordered structure.
The value ofng(r) in all cases is about 10% in the region of

the last shell of atoms in the cluster ang(r) becomes even
larger as we move in the tail of the density profile. This last
behavior is similar to what is found in clusters t#le atoms.
However as in the case dHe, the local condensate never
reaches its maximum value of unity (100% condensation
even at the lowest densities in the tail of the density profile
and this has been interpreted as an effect of the zero-point
motion of surface fluctuations. In summary we find that in
the surface region of §He cluster there is always a rather
large condensate whereas in the central region the value of
ng strongly decreases in large clusters. In order to investigate

r [A] the strength of this effect we have computed the total number

6 ) N, of condensed®He atoms in each cluster. These values
ﬁguFr:eC's. 8. ng(r) X p(r) for the three®He clusters of the previous t_urlnzgu;rtlzNbiNf;g'iievaeszl:?G?.’hgge: :rl_:s_zlt\;v?ﬁgitlate
- y c— . - .
that as their size increases, the core region of these clusters is
joing towards a phase transition from a liquid to a solid
here BEC is not present or it has a very small value.

0.003

0.002 |

ny(r) p(r) [K']

0.001 |

0.000
0

scopic occupation of the zero-momentum state, i.e., Bos

Einstein condensation. A cluster is a finite system, so it is no
possible to extend to infinity the off-diagonal limit of the

one-body density matrix and a genuine Bose-Einstein con-
densate cannot existd However, it is possible to study the

off-diagonal behavior op,(r,r’), increasing the number of

atoms in the cluster in order o extrapolate the results to aﬁgreement with earlier results. However finite-size effects as
infinite system. In the spherical geometry of a clustef thefound in clusters have a strong disordering effect on the sys-
one-body density matrix is a function of the modulusrof - tem. In fact we find that even clusters of a few hundred
and r’ and the angle¢ betweenr and r’' py(r,r') atoms do not show a well-defined solid order. At the same
=p4(r,r',#). As shown by KrotschecK in an inhomoge- time we find that there is a significant off-diagonal long-
neous system when andr’ are far apart, the one-body range order so that Bose-Einstein condensation is present in
density matrix approaches a nonzero limit such clusters and superfluidity should be present. Therefore
clusters of ®He offer the unique opportunity to study the
p1(r,r',¢)=[p(r)p(r")ng(r)ng(r")1*? 11

evolution from a superfluid to a solid and this is driven by
and this allows us to define the local condensate fraction at~c effect. Due to the marginal stability of the solid phase it
distancer from the center of the mass of the clustefr) is

IS quite possible that even the solid, like clusters, have a
the density profile of the cluster. We have studied the one]flnlte Bose-Einstein condensate and the solid _m|gh'g have su-
s , - - -, persolid properties. Unfortunately our theory is limitated to
body density matrix,(r,r’) in °He clusters withr andr T=0 K and we cannot compute the superfluid fraction. A
that lie on circumferences with the center in the center of th%ath-integral Monte Carlo computation should be able to as-
mass of these clusters; thatfis=r’. In this way the off-  goqq these questions. The prospect of produbliteyclusters
diagonal long-range limit is reached when the angléde- i, free space is rather dim but it should be possible to pro-
tweenr andr’ is abouts: in a cluster with a diameter larger duce such clusters inside bufide as a result of phase sepa-
than the healing length we have approximately ration. We do not expect that inclusion of a few hundred
atoms of ®He in liquid “He will produce properties very
No(r) =pa(r.r,=m)/p(r). (12) gifferent from those of clusters dHe atoms in free space.
In Fig. 7 we show the local condensate fractigyfr) com-

puted in this way for threéHe clusters with different num-
bers of particles =65, 125, 217. In Fig. 8 we show in-
stead the produaty(r) X p(r) between the local condensate = We thank G. L. Masserini for carrying out some prelimi-
fraction and the radial density of the same thPete clusters. nary calculations in this work. This work was supported by
Our results show that there is always a sizeable condensatetine INFM Parallel Computing Initiative.

V. CONCLUSIONS
We find that the ground state of buliHe is solid, in
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