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Zero-bias states and the mechanism of the surfaced\d¿ is transition
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We study the physical mechanism of the surfaced→d1 is transition. We base our argument on first-order
perturbation theory and show that the zero-bias states drive the transition. We support the argument by various
estimates and consistency checks.
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I. INTRODUCTION

Many researchers presently believe that the order par
eter in the hole-doped cuprate superconductors has a
dominantd-wave symmetry.1 Due to this symmetry, an in
homogeneity may scatter a quasiparticle between direct
with opposite signs of the superconducting order param
D. The Atiyah-Patodi-Singer index theorem2 then implies
that for each such trajectory, the Andreev Hamiltonian ha
normalizable eigenstate of zero energy, so called zero-
state~ZBS! irrespective of the detailed shape ofD. This ef-
fect is strongest for the specularly reflecting~110! surface.
As Fig. 1 shows,D in this case changes sign upon reflecti
along every quasiclassical trajectory. This gives rise to
zero-bias peak in the local density of states as was real
by Hu.3

Matsumoto and Shiba4 were the first to suggest that th
spontaneous appearance of the order parameter comp
of different symmetry, says or dxy close to the surface
phase-shifted byp/2 relative to the dominantdx22y2 might
move the ZBS’s away fromE50. The resultant ‘‘d1 is’’ or
‘‘ d1 id ’’ state breaks time-reversal symmetry. Fo¨gelstrom
et al.5 then included surface roughness and worked out
phase diagram. The calculations4,5 were carried out in the
Eilenberger formalism.6 The Eilenberger function is essen
tially the local Green’s function in the quasiclassical a
proximation, so it contains contributions from all the sta
in the spectrum. Hence, the Eilenberger formalism does
show which states drive the transition, especially if the eq
tions are solved numerically. Hence, we use the Andr
formalism7 that doesstudy the eigenstates individually. W
show that the transition is driven by the ZBSsonly. This is
the main result of the present paper.

A number of tunneling experiments8–11have observed the
zero-bias peak predicted by Hu. In optimally dop
YBa2Cu3O72d ~YBCO!, the peak splits at low
temperatures,12 but experiments with Josephson junctio
and SQUIDs failed to detect the magnetic field sponta
ously created in the state with broken time-rever
symmetry.14 If we want to compare theory to experiment
we have to remember thats anddx22y2 mix freely in YBCO
due to orthorhombicity, butdxy andgxy(x22y2) are incompat-
ible with them, as follows from group-theoretica
arguments15,16 and has been observed by tunneling.17,18

Hence, the actual transition would be more accurately
scribed asD1→D11 iD2, whereD1 is a real, linear combi-
nation of s and dx22y2-wave order-parameter componen
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and D2 is a real, linear combination ofdxy and
gxy(x22y2)-wave order-parameter components. Further,
should take into account the possibility of formation of ma
netic domains indicated by recent ESR measurements.19 We
should also consider corrections to the quasiclassical
proximation which are of the orderD2/EF;3 meV, and,
perhaps, even corrections to the mean-field BCS approxi
tion since the cuprates are strongly-correlated systems.
these complications would make our calculation and res
more realistic, but would obscure the main point, i.e., t
role of the ZBSs in the transition. Hence, we will illustra
the basic physical mechanism of the transition on the sim
fied model used previously4,5 of a half CuO2 plane with the
dominant and subdominant pairing having puredx22y2 ands
symmetry respectively~as if the cuprate were tetragonal,
which case thedx22y2 ands symmetries do not mix15,16!, and
with translational invariance parallel to the boundary.
give a feeling for how much physics is captured by this si
plest model, we provide order-of-magnitude estimates
various quantities.

The paper is organized as follows. In Sec. II, we demo
strate our strategy on the familiar case of BCS instabil
The main argument is presented in Sec. III after we ha
extended the BCS formalism to inhomogeneous systems
non-s-wave pairing. Based on this argument, we calculateD
at T50 in Sec. IV and estimate the transition temperature
the d1 is state in Sec. V. In Sec. VI, we discuss the surfa
current. Finally, we discuss our results in Sec. VII.

II. BCS INSTABILITY

There are various ways to consider the energetic costs
benefits of the transition to the superfluid state. The one

FIG. 1. ~a! A schematic picture of the normal meta
superconductor junction in the~110! direction with a typical quasi-
classical trajectory.~b! A schematic graph of the pairing potentia
along the trajectory in~a!.
©2001 The American Physical Society06-1
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ŠIMON KOS PHYSICAL REVIEW B 63 214506
has proven useful in our study of thed→d1 is transition is
to decouple the attractive four-fermion interaction by t
Hubbard-Stratonovich~HS! transformation, and to make
saddle-point ~mean-field! approximation. That way, we
break up the total free energy of the system into free ene
of single particle states, which is lowered by the gapD, and
the extra term from the HS transformation, which gro
~quadratically! with D. We then see that at small enoughT,
the system favors transition to the superfluid state.

We will demonstrate this on the familiar BCS case. T
model Hamiltonian is~since there is no universal conventio
as to whether the attractive interaction term should hav
plus sign with a negative coupling constantV or a minus sign
with positive V, we useuVu which is unambiguously posi
tive!

H5(
k,s

ekck,s
† ck,s2uVu(

k,k8
ck↑

† c2k↓
† c2k8↓ck8↑ , ~2.1!

which gives rise to the partition function

Z5E Dc̄ksDcks exp2E
0

b

dtF(ks
c̄ks~]t1ek!cks

2uVu(
k,k8

c̄k↑c̄2k↓c2k8↓ck8↑G , ~2.2!

where thec’s are nowt-dependent Grassmann numbers. W
perform the HS transformation by multiplying the partitio
function by the~infinite! constant

E Df̄kDfke
2uVu*0

bdt(
k,k8

(f̄k2 c̄k↑c̄2k↓)(fk82c2k8↓ck8↑),

so

Z5E Df̄kDfkDc̄ksDckse2S, ~2.3!

where

S5E
0

b

dtF(
k

~ c̄k↑ c2k↓! S ]t1ek D

D̄ ]t2ek
D S ck↑

c̄2k↓
D

1
uDu2

uVu G , ~2.4!

where we defined

D52uVu(
k

fk .

From the action~2.4!, we can read off that in the mean-fie
approximation, the total free energy of the system is given
the Ginzburg-Landau functional

F~ uDu!5(
k

@F~Ek!1F~2Ek!#1
uDu2

uVu
~2.5!

upon minimization with respect touDu. Here,
21450
y
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F~E!52T ln~11e2E/T! ~2.6!

and

Ek5Aek
21uDu2.

We see the instability most clearly atT50, where
F(uDu)5E(uDu). Then

F~E!5u~2E!E,

so

E~ uDu!2E~0!52N~0!E
2vD

0

de~2Ae21uDu22e!1
uDu2

uVu
,

~2.7!

whereN(0) is the density of states at the Fermi level andvD
is the Debye frequency. Direct calculation shows that
integral behaves asuDu2 ln(uDu/vD) for uDu→0, whose
nonanalytic decrease will win over the analytic increase
the second term for small enoughD, no matter how weak the
attractive interactionuVu is. By the same calculation, we ca
also see that the integral becomes analytic if we do not in
gratee all the way up to zero, but to a finite negative energ
This means that the states close to the Fermi energy drive
BCS transition—they benefit most from opening of the g
uDu. Similarly, we shall see that the states at zero energy,
is the ZBS’s, will drive thed→d1 is transition.

So far, the argument has shown the BCS instability o
at T50. At finite temperatures,

F~Ek!1F~2Ek!52T lnS 212 cosh
Ek

T D ,

which gives the Ginzburg-Landau expansion in powers
uDu2

F~ uDu!2F~0!5uDu2S 1

uVu
2N~0!E

2vD

0 de

e
tanh

e

2TD
1uDu4S 2N~0!

4 D E
2vD

0 de

e

d

de S 1

e
tanh

e

2TD
1O~ uDu6!. ~2.8!

The function (1/e)tanh(e/2T) is positive and monotonically
increasing fore,0, so the integral in the quadratic coeffi
cient is positive and the integral in the quartic coefficient
negative for anyT.0. Hence, close to the temperatureTc
that satisfies

1

uVu
2N~0!E

2vD

0 de

e
tanh

e

2Tc
50, ~2.9!

we can approximate

F~ uDu!2F~0!'a~Tc2T!uDu21buDu4, ~2.10!

wherea and b are positive constants. This shows that t
system is unstable to the BCS transition at temperatures
6-2
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ZERO-BIAS STATES AND THE MECHANISM OF THE . . . PHYSICAL REVIEW B 63 214506
low Tc . In a similar way, we shall see below thatTs , the
mean-field transition temperature into thed1 is state, is fi-
nite.

III. THE d¿ is INSTABILITY

A. Formalism

We now need to develop the formalism that will enable
to extend the strategy from Sec. II to thed1 is case. We
shall consider a single~two-dimensional! CuO2 plane, and
model it by the Hamiltonian

H5E d2r (
s5↑,↓

cs
†~r !e~2 i¹!cs~r !

1E d2rd2r 8V~r2r 8!c↑
†~r !c↓

†~r 8!c↓~r 8!c↑~r !,

~3.1!

where e is the band energy andV is the short-range
interaction responsible for pairing. What makes this diffic
problem tractable is the separation of energy sca
~the Fermi energyEF is much bigger than the superconduc
ing gapD), which gives rise to separation of length sca
lF ~Fermi wave length!, and j ~the coherence length!. We
may, therefore, expand in powers of the small param
lF /j; keeping the lowest nontrivial order is called th
quasiclassical approximation. This procedure is usually d
at the level of Green’s function,6,20 which are thus trans
formed into Eilenberger functions that satisfy transportl
equations.

Since we want to understand thed→d1 is transition in
terms of quasiparticle eigenstates rather than Green’s f
tions, we will perform this separation of scales at the ope
tor level instead. We denote as 2L the width of the shell
around the Fermi surface containing the states that take
in the pairing~see Fig. 2!. We then factor out the fast Ferm
surface oscillations and define the slowly varying field o
eratorcs,u(r ) ~Ref. 21! by

cs~r !5E d2k

~2p!2 ckseik•r

.E
FS

dkF~u!

2p S E
2L

L dk'

2p
ckseik'n(u)•r D eikF(u)•r

[E
FS

dkF~u!

2p
cs,u~r !eikF(u)•r. ~3.2!
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When we substitute this into Eq.~3.1!, we obtain

H5E d2r F(
s

E
FS

dkF~u!

2p
cs,u

† ~r !vF~u!•~2 i¹!cs,u~r !

1E
FS

dkF~u!

2p

dkF~u8!

2p
V~u,u8!c↑u

† ~r !

3c↓2u
† ~r !c↓2u8~r !c↑u8~r !G , ~3.3!

wherevF(u) is the Fermi velocity at pointkF(u) and

V~u,u8![E d2re2 i [kF(u)2kF(u8)] •rV~r !.

The derivation of Eq.~3.3! is given in Appendix A. Note the
linearized kinetic energy in Eq.~3.3!, which will be crucial
in the following.

The Hamiltonian~3.3! gives rise to a partition function
which we can write as a path integral over the fermion fie
cs,u(r ). We can again decompose the interaction by the
transformation, i.e., we can multiply the partition function b
the constant

FIG. 2. Fermi-surface decomposition of the Fourier transfor
E Df̄u~r !Dfu~r !expF E
0

b

dtE d2r E
FS

dkF~u!

2p

dkF~u8!

2p
V~u,u8!

3@f̄u~r !2c̄↑u~r !c̄↓2u~r !#@fu8~r !2c↓2u8~r !c↑u8~r !#G . ~3.4!
6-3
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ŠIMON KOS PHYSICAL REVIEW B 63 214506
In the mean-field approximation, the total free energy of
system equals the free energy given by the~single-particle!
Hamiltonian

H5E d2r F E
FS

dkF~u!

2p
@c↑u

† ~r !c↓2u~r !]

3S vF~u!•~2 i¹! Du~r !

Du* ~r ! vF~u!•~ i¹!
D S c↑u~r !

c↓2u
† ~r !

D
2E

FS

dkF~u!

2p

dkF~u8!

2p
V~u,u8!fu* ~r !fu8~r !,

~3.5!

upon minimization with respect tofu(r ), where we defined

Du~r !5E
FS

dkF~u8!

2p
V~u,u8!fu8~r !. ~3.6!

The minimization gives

fu~r !5^c↓2u~r !c↑u~r !&, ~3.7!

where the angular brackets denote thermal average with
spect to the Hamiltonian~3.5!, see Appendix C. We sha
write explicit formulas for the total energy and free energy
Sections IV and V@formulas~4.1! and ~5.1!#. Here we just
note that to calculate the single-particle contribution to
free energy, we will have to find the spectra of the Andre
Hamiltonians labeled byu, i.e., we will need the energie
Eu,n that satisfy7

S vF~u!•~2 i¹! Du~r !

Du* ~r ! vF~u!•~ i¹!
D S f u,n~r !

gu,n~r !
D 5Eu,nS f u,n~r !

gu,n~r !
D .

~3.8!

We note that the linear kinetic energy in~3.3! makes this
equation effectively one dimensional, i.e., an independ
equation for each line in the directionvF(u). In the presence
of the specularly reflecting boundary, we must find the A
dreev spectra along reflected lines such as the one in
1~a!. Equivalently, we solve the equation on a straight li
with the pairing potentialD shown in Fig. 1~b!. This is intu-
itively obvious; a derivation is given in Appendix B. For th
pured wave, we shall work in the gauge whereD is real.

As we mentioned in the Introduction, the spectrum alo
each trajectory having opposite signs ofD at the two
asymptotic ends will contain a zero-bias state. Its wave fu
tion is, up to a normalization constant

S f ~u,r!

g~u,r!
D

ZBS

5S 1

7 i D expS 7E
0

r

dr8D~u,r8!/vF~u! D ,

~3.9!

where the upper~lower! sign corresponds toD(u,r52`)
,0, D(u,r51`).0 @D(u,r52`).0, D(u,r51`)
,0], so that the wave function is normalizable. In our n
tation, we will freely interchange the dependence onr ~actu-
ally only onx, since the system is translationally invariant
21450
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the y direction! with the dependence on the angleu and the
coordinater along the trajectory. Their relationship is obv
ous from Fig. 1.

B. Argument

We now have all the tools needed to demonstrate thd
1 is transition in a way that brings out its physical mech
nism. We follow the same line of thought as in Sec. II: W
go to the zero temperature, and look at the energy gains
losses when thes-wave component ofD appears.

For anys-wave pairing to appear, it is necessary that t
part of the functional integral~3.4! over thes component of
f converge, i.e., thatV on top of the dominantd-wave at-
traction contain also ans-wave part~we use againuVsu rather
thanVs)

V~u,u8!5Vd~u,u8!2uVsu.

In this section, we will show that this condition is also su
ficient: At zero temperature, the system will favor thed
1 is state for an arbitrarily weak attractionVs .

With both d- ands-wave pairing present,

fu~r !5fdu~r !1fs~r !.

~The s components of bothV andf are angle independent.!
We begin with the second term in Eq.~3.5!, which then is

2E
FS

dkF~u!

2p

dkF~u8!

2p
@Vd~u,u8!2uVsu#@fdu* ~r !1fs* ~r !#

3@fdu8~r !1fs~r !#

52E
FS

dkF~u!

2p

dkF~u8!

2p
Vd~u,u8!fdu* ~r !fdu8~r !

1uVsu E
FS

dkF~u!

2p

dkF~u8!

2p
fs* ~r !fs~r !, ~3.10!

where we used the orthogonality of thes andd components

E
FS

dkF~u!

2p
Vd~u,u8!5E

FS

dkF~u8!

2p
Vd~u,u8!

5E
FS

dkF~u!

2p
fdu~r !

50.

We can also split up Eq.~3.6! into components and define

Ddu~r !5E
FS

dkF~u8!

2p
Vd~u,u8!fdu8~r !,

Ds~r !5E
FS

dkF~u!

2p
~2uVsu!fs~r !. ~3.11!

Thed component ofD was established well aboveTs , so the
change of the second term in Eq.~3.5! due to the opening of
a ~small! s-wave gap will be
6-4
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ZERO-BIAS STATES AND THE MECHANISM OF THE . . . PHYSICAL REVIEW B 63 214506
uDs~r !u2

uVsu
~3.12!

just as in the BCS case. Due to the translational invarianc
the y direction, we will from now on writeDs(r )[Ds(x).
Along the quasiclassical trajectory,x depends on bothr and
u ~see Fig. 1!, so we will then writeDs(u,r).

To examine the effect of the smalls wave component on
the quasiparticle energies, we need to look at the chang
the spectra of the 1D Andreev problems

S 2 ivF~u!]r Dd~u,r!

Dd~u,r! ivF~u!]r
D S f n~u,r!

gn~u,r!
D 5Eu,nS f n~u,r!

gn~u,r!
D

~3.13!

upon Dd(u,r)→Dd(u,r)1Ds(u,r). As Ds is small, it can
be treated as a perturbation; then the change of the qu
particle energies to the lowest order is

Eu,n
(1)@Ds#5E

2`

1`

dr~ f n* ~u,r! gn* ~u,r!!

3S 0 Ds~u,r!

Ds* ~u,r! 0 D S f n~u,r!

gn~u,r!
D

5E
2`

1`

dr@ f n* ~u,r!gn~u,r!Ds~u,r!

1gn* ~u,r! f n~u,r!Ds* ~u,r!#. ~3.14!

Let us first look at the change of energy of the ze
energy bound states. Then from Eq.~3.9!

gZBS~u,r!57 i f ZBS~u,r!, ~3.15!

so

Eu,ZBS
(1) @Ds#56E

2`

1`

dru f ~u,r!u22 ImDs~u,r!,

~3.16!

where the upper~lower! sign corresponds to the1y-
(2y-!moving trajectory. We notice several things by lookin
at Eq.~3.16!.

It depends only on ImDs , since ReDs just changes the
position of the node in the totalD(u,r), in which case the
bound state remains at zero energy. Hence, we will ass
ReDs50, and writeDs(u,r)5 is(u,r).

Eu,ZBS
(1) @Ds# is nonzero due to the form of the bound-sta

wave function~3.15! and due to the fact thats(u,r) does not
change sign along the quasiclassical trajectory~by virtue of
thes symmetry!. Out of the two possibilities for the sign ofs,
we will chooses(u,r).0 in the following, which means al
the 1y-moving states are shifted up in energy, whereas
2y-moving states are shifted down.

Since we are at zero temperature, only the states
move down from zero energy will be occupied. We can th
argue similarly as in the BCS case: opening of the additio
s-wave gap costs the system energys2/uVsu @from Eq.~3.12!#
but the quasiparticles save energy;s. The lowering of the
21450
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quasiparticle energy is only linear ins, i.e., not as dramatic
as the nonanalytic decrease in the BCS case, but neverth
it beats the quadratic increase for small enoughs. Thus, for
an arbitrarily small but nonzero interactionuVsu, s50 cannot
be a minimum of the total energy, and the additionals-wave
gap phase shifted byp/2 from thed-wave gap will appear.
From the formula~3.16!, we see that the superconductor w
benefit from opening up the gap only close to the surfa
where u f u2 is effectively nonzero, so the transition into th
d1 is state is a surface effect. The decay into the bulk w
be discussed more quantitatively in the next section.

We should also note that the remaining states on the q
siclassical trajectories do not change this situation, that
they do not contribute linearly to the change of the to
quasiparticle energy. Due to the time-reversal symmetry
the pured-wave state, every state on a given quasiclass
trajectory corresponds to a state of the same energy o
reversed trajectory. Indeed, if we label the coordinate alo
the trajectory reversed to the one in Eq.~3.13! as r̃52r,
then the Hamiltonian on the reversed trajectory is

S 2 ivF~2u!]r̃ Dd~2u,r̃ !

Dd~2u,r̃ ! ivF~2u!]r̃
D

5S ivF~u!]r Dd~u,2r!

Dd~u,2r! 2 ivF~u!]r
D

sincevF(2u)5vF(u), so

S f n~2u,r̃ !

gn~2u,r̃ !
D 5S gn~u,2r!

f n~u,2r!
D

will also have energyEu,n . Now Eq. ~3.14! implies that to
the first order, a small ImDs will shift the energies of the two
corresponding states by an equal amount with opposite si
Hence, the only way they can linearly contribute to the to
energy atT50 is when one of them crosses zero and th
changes its occupancy, which happens only when their or
nal energy~in absolute value! is smaller than thes-wave gap.
But ass→0, there will be fewer and fewer such states
smaller and smaller neighborhoods of thed-wave nodes. It is
only the ZBS’s that change their occupancy for arbitrar
smalls. We thus conclude that the onset of the transition in
the d1 is state is driven by these states.

IV. s-WAVE GAP AT TÄ0

In the study of the instability of the pured state in the last
section, we used first-order perturbation theory sinces→0 at
the onset ofd1 is. Now we will argue that this theory hold
up to the the actual value ofs, i.e.,s!uDdu. As we will show
in Sec. V,s(T50);Ts , the mean-field transition tempera
ture into thed1 is state. BecauseTs ;7 K, it is much
smaller thanTd , the superconducting transition temperatu
of the order of 100 K, which sets the scale forDd . Figure 3
shows the magnitude of the two gaps as a function of an
around a quarter of the Fermi surface. We see that the
quired inequalitys!uDdu holds for most of the Fermi surfac
6-5
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except for small neighborhoods of the nodes. First-order p
turbation theory certainly breaks down there, but upon av
aging over the Fermi surface, the nodes will only introdu
an error of the orderTs /Td . Thus, we will use that theory to
obtain s(x) at T50. As discussed at the end of Sec. III B
first-order perturbation theory implies that we have to lo
only at the zero-energy states. Also, sinces is a small per-
turbation, we shall neglect its effect onDd .

Now we can write down the energy due tos per unit
length of the surface~they direction! as a functional ofs(x):

E@s~x!#5E
0

1`

dx
s2~x!

uVsu

1E
ue(2p/2,0)

dkF~u!

2p
Eu@s~u,r!#cosu, ~4.1!

whereEu@s# is given by Eq.~3.16!; for the rest of this sec-
tion, we shall drop the superscript~1!, since we shall be
using only the first-order formula. We freely interchan
s(x) for s(u,r); the relation between the two is discuss
below Eq.~3.12!. Note the correct dimensions: thex integra-
tion makess2/uVsu from energy per unit area into energy p
unit length. In the second term, the integrand is energy
the dimension of the measure iskF , i.e., inverse length. The
extra factor of cosu in the second integral accounts for th
difference of the density of trajectories along they direction
compared to their angle-independent intrinsic density~mea-
sured perpendicularly to their direction!, as shown in Fig. 4.
In the second term in Eq.~4.1!, we sum up only the occupie
2y-moving states for whichEu,0 according to Eq.~3.16!.

We obtains(x) by minimizing Eq.~4.1!. Let us first make
an order-of-magnitude estimate

E@s#;j
s2

uVsu
2kFs, ~4.2!

sinces will extend into the bulk only as far as the coheren
lengthj5\vF /D0 (D0 is the amplitude of thed wave!, and
from Eq. ~3.16!, we seeEu@s#;s. The angular averaging

FIG. 3. The magnitude of thed- and s-wave order parameter
around the Fermi surface.
21450
r-
r-
e

d

will, up to numerical factors of order unity, multiplyEu@s#
by kF . Minimization of Eq.~4.2! will give

s;
kFuVsu

j
. ~4.3!

By takings;1 meV from the experiment,12 kF;1 Å21, and
j;10 Å, we get an estimate for the strength of thes-wave
pairing

uVsu;10 meV Å2.

We minimize Eq.~4.1! exactly by solving

dE@s#

ds~x!
50,

i.e.,

2
s~x!

uVsu
2E

ue(2p/2,0)

dkF~u!

2p
cosu

3E
2`

1`

dr2u f ~u,r!u2
ds~u,r!

ds~x!
50.

Now

ds~u,r!

ds~x!
5d~x2r cosu!1d~x1r cosu!

5
1

cosu FdS r2
x

cosu D1dS r1
x

cosu D G ,
~4.4!

since cosu.0, and r, unlike x, can be both positive and
negative. The factors of cosu cancel, and we obtain

FIG. 4. The decrease of the density of the trajectories in thy
direction by the factor cosu.
6-6
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s~x!5uVsu E
ue(2p/2,0)

dkF~u!

2p FU f S u,
x

cosu D U2

1U f S u,2
x

cosu D U2G . ~4.5!

Physically, we get two terms on the right-hand side beca
for each angleu, there are two trajectories contributing tos
at a given point as shown in Fig. 5.

We should remark here that we also obtain the form
~4.5! when we calculate the contribution from the occupi
(2y-moving! bound states to the pairing potential in the g
equation. This is done in Appendix C. The result is

Ds~x!ZBS5 i uVsu E
ue~2p/2,0!

dkF~u!

2p FU f S u,
x

cosu D U2

1U f S u,2
x

cosu D U2G ~4.6!

in agreement with Eq.~4.5!. This formula, however, show
more clearly the internal consistency of the picture: ForDd
in Fig. 1, the additionalis potential pushes down th
2y-moving states ifs.0. As Eq.~4.6! shows, these states
in turn, give rise toDs5 i 3 positive.

We should note here thatDs is absent on the right-han
side of Eq.~4.6!, so the gap equation in this case~unlike in
the BCS theory! is an explicit formula for the gap. The
physical reason for this is thats(x) is considered small, so
we neglect the change of the bound-state wave functions
to its presence. The only effect ofs(x) we are taking into
account is the change of the occupancy of the zero-en
states, which, by Eq.~3.16!, depends only on the sign ofs,
not on its detailed shape. This is whys(x) does not feed
back into the right-hand side of Eq.~4.6!.

To estimate the decay ofDs into the bulk, we shall as-
sumeDd to be constant in space and with the angular dep
dence

Dd,u~r !5D0 sin 2u, ~4.7!

which should hold for

FIG. 5. Two contributions from the sameu to the pairing po-
tential at the pointx.
21450
se
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ue

gy
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x.j[
\vF

D0
.

Also, we shall assume a spherical~circular! Fermi surface

dkF~u!5kFdu.

Then the wave function of the2y-moving bound states, in
cluding the normalization, will be

S f ~u,r!

g~u,r!
D 5Ausin 2uu

2j S 1

i D e2ur sin 2uu/j, ~4.8!

so

s~x!5
kFuVsu

j E
2p/2

0 du

2p
23

usin 2uu
2

e2(2/j)u(x/cosu)sin 2uu

5
kFuVsu

pj E
0

p/2

du sinu cosue24sinu(x/j). ~4.9!

We can do the integral by substitution sinu5t, which gives

s~x!5
kFuVsu

pj F2t
j

4x
2S j

4xD 2

e24t(x/j)G
t50

1

. ~4.10!

We can neglect the contribution from the upper limit becau
it is effectively nonzero only forx,j/4, where our assump
tion of constantDd does not hold. The lower limit should
have been atTs /Td , rather than at 0, to exclude the traje
tories close to the nodes where the first-order perturba
theory breaks down. That cuts off the lower-bound contrib
tion atx;(Td/4Ts)j;100 Å, beyond which we would nee
a more refined theory for the behavior of the quasipartic
around the nodes. Forx much smaller than this distance, w
can neglect the first term on the right hand side of Eq.~4.10!,
and replace the exponential by 1. We conclude, theref
that

s~x!.
kFuVsuj
16px2 ~4.11!

for

j,x!
Td

Ts
j.

We see thats5kFuVsu/j times a function that is of orde
unity for x,j, and decays fast forx.j, as expected.

V. TRANSITION TEMPERATURE

So far, we have shown the instabilityd→d1 is only at
T50. Just as in the BCS case, it remains to be demonstr
that the mean-field transition temperatureTs is finite. We
therefore must study the free energy of the system, which
obtain from Eq.~4.1! when we replaceEu@s# by F(Eu@s#),
the free energy of a single fermion level@see Eq.~2.6!#, that
is,
6-7
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F@s#5E
0

`

dx
s2~x!

uVsu
1kFE

2p/2

p/2 du

2p
cosu~2T!

3 ln~11e2Eu[s]/T!. ~5.1!

Minimization of this functional will give an equation fo
s(x) that again agrees with the contribution to the gap eq
tion from the ZBS’s. As we see from Eq.~5.1!, the varia-
tional equation fors will now be very nonlinear; it will no
longer be an explicit formula fors. The reason is that at finite
temperatures, the occupancy of a given state depends o
value of its energy. Even in first-order perturbation theo
this value depends on the shape ofs(x), not just its sign, so
s(x) enters through the Fermi function into the right-ha
side of the gap equation, making it nonlinear and theref
difficult to solve.

We still can make an order-of-magnitude estimate ofF as
follows:

ln~11e2Eu[s]/T!1 ln~11e2E2u[s]/T!

5 ln@~11e2Eu[s]/T!~11eEu[s]/T!#

5 lnS 212 cosh
Eu@s#

T D
. ln 41

1

4 S Eu@s#

T D 2

1O~Eu@s#4!

; ln 41
1

4

s2

T2 1O~s4!,

so

F@s#2F@0#;s2S j

uVsu
2

kF

T D1O~s4!. ~5.2!

From Eq. ~5.2! we see that the system is unstable to
transition to the d1 is state below the temperatureTs
;kFuVsu/j, which is therefore of the same order of magn
tude asuDsuT50. @see Eq.~4.3!#.

Following Ref. 22, we can trade the coupling constantVs
for the transition temperature,Tcs of a BCS superconducto
with this couplingTcs;e21/uVsu. Then

Ts;
21

ln Tcs
. ~5.3!

Hence,Ts increases sharply close toTcs50, which is con-
sistent with the numerical results.5,13

VI. CURRENT

To study the surface current in thed1 is state, we shall
go back toT50 for simplicity. We observe that the states o
the 1y-moving quasiclassical trajectory from Fig. 1 wil
upon the transition into thed1 is state withs.0, feel the
pairing potential shown in Fig. 6. Asr goes from2` to
1`, the twist of the phasew of the order parameter is clock
wise ~from p to 0! for an 1y-moving trajectory and coun
terclockwise~from 0 to p) for a 2y-moving one. In both
21450
-

the
,

e

e

cases, this implies current flowing in the2y direction. This
agrees with our previous calculations that showed that t
2y- (1y-!moving bound states will be~un!occupied if s
.0.

The agreement is quantitative, as we can easily check
the linearized Andreev formalism, the contribution to t
current density from a given state is

j n
(1D)~u,r!5evF~ u f n~u,r!u21ugn~u,r!u2!, ~6.1!

that is, the charge of the state times its~Fermi! velocity times
the occupation of that state. In our case, all of the curren
carried by the occupied bound states because the cont
tions from the remaining pairs of corresponding counterm
ing states cancel each other out~see the end of Sec. III B!.
To calculate the total current density in they direction, we
again have to include the contribution from both the inco
ing and the outgoing part of each2y-moving trajectory~see
Fig. 5!, and we have to project onto they direction

@ j ZBS~x!#y5kFE
2p/2

0 du

2p
sinuF j ZBS

(1D)S u,
x

cosu D
1 j ZBS

(1D)S u,2
x

cosu D G . ~6.2!

On the other hand, in terms of the one-dimensional d
sity n(1D)5kF /p and the phase of the order parame
w(u,r) along the trajectory

j op
(1D)~u,r!5e

1

2m
n(1D)]rw~u,r!5

evF

2p
]rw~u,r!,

~6.3!

since for a spherical Fermi surfacevF5kF /m. The formula
for the total surface-current density will be the same as
~6.2!, except that we now have to integrate over both1y-
and2y-moving trajectories

@ j OP~x!#y5kFE
2p/2

p/2 du

2p
sinuF j OP

(1D)S u,
x

cosu D
1 j OP

(1D)S u,2
x

cosu D G . ~6.4!

FIG. 6. The pairing potential along the trajectory in Fig. 1~a!.
The corresponding twist of the phase of the order paramete
clockwise.
6-8
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We do not expect the current densities~6.2! and ~6.4! to
be the same at a given point because the formula~6.3! has
corrections, which are higher-order derivatives ofw. Those
corrections will not, however, contribute to the total surfa
current

I y5E
0

`

dx jy~x!, ~6.5!

which should then come out the same in the two calculatio
Indeed, the bound states give us

~ I ZBS!y5kFE
2p/2

0 du

2p
sinu cosuE

2`

1`

dr j ZBS
(1D)~u,r!,

52
evFkF

4p
, ~6.6!

since

E
2`

1`

dr j ZBS
(1D)~u,r!5evF

due to the normalization of the wave functions; the min
sign indicates that the current is flowing in the2y direction.
The formula for the total current in terms of the orde
parameter phase is

~ I OP!y5kFE
2p/2

p/2 du

2p
sinu cosuE

2`

1`

dr j OP
(1D)~u,r!.

~6.7!

Now

E
2`

1`

dr j OP
(1D)~u,r!5

evF

p
@w~u,1`!2w~u,2`!#

52
evF

2
sgn~u!, ~6.8!

so

~ I OP!y52
evFkF

4p
5~ I ZBS!y , ~6.9!

since sgn(u)sinu is an even function, so the factor 1/2 in E
~6.8! compensates for the doubling of the integration dom
of u in Eq. ~6.4! compared to Eq.~6.2!. To get an order-of-
magnitude estimate, we put

e;10219 C,

vF;105 m/s,

kF;1010 m21,

and getuI yu;1025 A per CuO2 plane. From the approximat
form of the bound state wave functions introduced in
previous section, we can also estimate the spatial distribu
of the current density
21450
s.

s

n

e
n

j y~x!54evFkFE
2p/2

0 du

2p
sinuU f S u,

x

cosu D U2

52
4evFkF

j E
0

p/2 du

2p
sin2u cosue24(x/j)sin u

52
2evFkF

pj E
0

1

dtt2e2(4x/j)t. ~6.10!

By the same argument as presented in the last section
find that forj,x!(Td /Ts)j,

j y~x!.2
evFkF

16pj S j

xD 3

. ~6.11!

The extra power ofx in the denominator in Eq.~6.11!, com-
pared to Eq.~4.11!, comes from the directional sine in Eq
~6.2!.

The surface current induces magnetic field, which will
screened by the diamagnetic current in the supercondu
The total current density therefore is

@ j tot~x!#y5@ j ZBS~x!#y1@ j dm~x!#y . ~6.12!

According to Eq.~6.11!, the current is localized within the
distance;j from the surface, which is much smaller thanl,
the in-plane penetration depth, because the cuprates
strongly type-2 superconductors. Hence, the diamagnetic
sponse does not resolve the internal structure of@ j ZBS(x)#y ,
and we can estimate

@ j dm~x!#y5@ j dm~0!#ye
2x/l. ~6.13!

The surface current will be screened completely, beca
the magnetic field it induces is smaller thanBc1

c , the lower
critical field in the c direction. Indeed, even if the curren
flows in the same direction along all the CuO2 planes~as
shown in Fig. 7!, the magnetic field at distancesx.dc ~the
interplane spacing;10 Å! from the surface will be

B5
2p

c

I

dc
;102 G, ~6.14!

which is smaller by an order of magnitude thanBc1
c for

YBCO ~see Ref. 23!. The complete screening implies

FIG. 7. Side view of theab planes with the current flowing in
the 2y direction. The induced magnetic field is along thec axis.
6-9
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~ I tot!y[E
0

`

dx@ j tot~x!#y50, ~6.15!

which together with Eq.~6.9! gives

@ j dm~0!#y5
evFkF

4pl
. ~6.16!

For j,x!(Td /Ts)j, we can approximate the exponential
Eq. ~6.13! by 1, so

@ j tot~x!#y.
evFkF

16p F4

l
2

1

j S j

xD 3G . ~6.17!

This changes sign at distance

x0;jk1/3, ~6.18!

wherek[l/j is the Ginzburg-Landau parameter. Due to t
one-third power,x0;j for reasonable values ofk ~say, be-
tween 50 and 500!. This is consistent with the numerica
results.5

Note that the two calculations of the surface current ag
@see Eq.~6.9!# because the ZBSs moving in the direction
the current are shifted down in energy and thus occup
whereas those moving against the current are shifted up
unoccupied. We wish to stress that this is exactlyoppositeto
the sign of the Doppler shift: the states moving along
current would be Doppler-shifted up, whereas those mov
against the current would be Doppler-shifted down.

This point is further supported by the analogy between
ZBSs and low-lying excitations in a core of ans-wave vor-
tex. We consider an idealized case:D50 inside the vortex
~at distances from the center smaller thanR), and uDu
5const outside with the phase winding counterclockw
once around. We look at a quasiclassical trajectory pas
close to the center of the vortex. We denote the coordin
along the trajectory asr again and the phase at the interse
tion point with the vortex edge asw6 , see Fig. 8. Then the
energy of a low-lying excitation moving fromr52` to r
51` on that trajectory is24

E5
vF

4R
@~w12w2!2p#mod 2p . ~6.19!

For a trajectory passing through the center,w12w25p, so
E50, and the low-lying excitation is a ZBS. If we now shi
the trajectory slightly to the left as shown in Fig. 8, th
w12w2.p and E.0. In a real vortex,D would be non-
zero even inside, and the phase ofD would wind clockwise
as we go from r52` to r51`, so we are going
against the current. Moreover,w(r51`)2w(r52`)
5p mod 2p, so D behaves the same way as in Fig.
Hence, thed→d1 is transition is analogous to shifting th
quasiclassical trajectory away from the vortex center. In b
cases, the ZBS will have a positive energy if it is movi
against the current and negative energy if it is moving in
direction of the current.
21450
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VII. DISCUSSION

In order to understand the basic physical mechanism
the d→d1 is transition, we considered the change of t
free energy of a CuO2 half-plane when ans-wave component
of D appears close to the 110 surface. By the Hubba
Stratonovich transformation and the mean-field approxim
tion, we decomposed the total free energy into the contri
tion from the single-particle states, which is decreased
Im Ds , and the HS term, which increases quadratically w
Ds . Using first-order perturbation theory, we saw that t
system favors thed1 is state atT50, and that the transition
is driven by the zero-bias states. Based on this argument
on the separation of energy scales associated with thed- and
s-wave components ofD, we then calculatedDs at zero tem-
perature and estimated the transition temperature. Finally
discussed the surface current in thed1 is state. We saw tha
it is carried by the occupied ZBSs; these states arenot
Doppler-shifted by the current. This current could be de
onstrated experimentally by Andreev reflection.25

In the Introduction, we mentioned various improvemen
that would make the model more realistic, such as magn
domains, interlayer coupling, and going beyond quasicla
cal approximation or mean-field theory. Before developi
the model further, it would be worthwhile to reexamine
assumptions, especially thed-wave symmetry of the domi-
nant order parameter in light of various recent experimen
results in support ofs-wave symmetry.26
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APPENDIX A: DERIVATION OF THE QUASICLASSICAL
HAMILTONIAN

We derive Eq.~3.3! from Eq. ~3.1! by expressing the
original field cs(r ) in terms of the slowly varying field
csu(r ), see~3.2!. We first substitute into the kinetic-energ
operator

e~2 i¹!cs~r !5E
FS

dkF~u!

2p
eikF(u)•re„kF~u!2 i¹…cs,u~r !

5E
FS

dkF~u!

2p
eikF(u)•r$e„kF~u!…

1¹ke~k!ukF
~u!•~2 i¹!1•••%cs,u~r !

.E
FS

dkF~u!

2p
eikF(u)•rvF~u!•~2 i¹!cs,u~r !,

~A1!
ta
ic
ly

21450
l.

-

since

e~kF!50, and ¹ke~k!ukF
5vF .

The kinetic energy therefore is

E d2r (
s5↑,↓

cs
†~r !e~2 i¹!cs~r !

5E d2r(
s

E
FS

dkF~u!

2p E
FS

dkF~u8!

2p
ei [kF(u)2kF(u8)] •r

3cs,u8
†

~r !vF~u!•~2 i¹!cs,u~r !. ~A2!

Now ei [kF(u)2kF(u8)] •r oscillates with a wavelength muc
shorter than the length scale on whichcs,u(r ) changes.
Thus, the integral will be zero unlesskF(u)2kF(u8)50, so
we can effectively drop one integration over the Fermi s
face, and obtain the kinetic energy of the form

E d2r(
s

E
FS

dkF~u!

2p
cs,u

† ~r !vF~u!•~2 i¹!cs,u~r !.

~A3!

The potential energy is now given by
E d2rd2r 8
dkF~u1!

2p

dkF~u2!

2p

dkF~u3!

2p

dkF~u4!

2p
V~r2r 8!exp$ i @2kF~u1!•r2kF~u2!•r 81kF~u3!•r 81kF~u4!•r #%

3c↑u1

† ~r !c↓u2

† ~r 8!c↓u3
~r 8!c↑u4

~r !

'E d2rd2r 8
dkF~u1!

2p

dkF~u2!

2p

dkF~u3!

2p

dkF~u4!

2p
V~r2r 8!ei [kF(u2)2kF(u3)] •(r2r8)c↑u1

† ~r !c↓u2

† ~r !c↓u3
~r !c↑u4

~r !

3exp$ i @2kF~u1!2kF~u2!1kF~u3!1kF~u4!#•r%

5E d2rd2r 8
dkF~u1!

2p

dkF~u2!

2p

dkF~u3!

2p

dkF~u4!

2p
V~u2 ,u3!c↑u1

† ~r !c↓u2

† ~r !c↓u3
~r !c↑u4

~r !

3exp$ i @2kF~u1!2kF~u2!1kF~u3!1kF~u4!#•r%, ~A4!
mi-
the
where we used the assumption thatV changes on a much
shorter length scale thancs,u(r ), performed ther 8 integra-
tion, and introduced the Fourier transform

V~u,u8![E d2re2 i [kF(u)2kF(u8)] •rV~r !.

SinceV(r )5V(2r ), we see thatV(u,u8)5V(u8,u). Again,
the integral vanishes unless the sum of the four momen
zero. Out of the various ways that this may happen, we p
only the one that contributes to the singlet pairing, name

kF~u1!1kF~u2!5kF~u3!1kF~u4!50, i.e.,
is
k
,

u11u25u31u450 mod 2p. ~A5!

Since we now have two constraints, we can drop two Fer
surface integrations, and obtain the potential energy of
form

E d2r
dkF~u!

2p

dkF~u8!

2p
V~u,u8!c↑u

†

3~r !c↓2u
† ~r !c↓2u8~r !c↑u8~r !.
6-11
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The total Hamiltonian in the quasiclassical approximat
then is

H5E d2r F(
s

E
FS

dkF~u!

2p
cs,u

† ~r !vF~u!•~2 i¹!cs,u~r !

1E
FS

dkF~u!

2p

dkF~u8!

2p
V~u,u8!c↑u

† ~r !

3c↓2u
† ~r !c↓2u8~r !c↑u8~r !G . ~A6!

The derivation of Eq.~A6! from Eq. ~3.1! is far from rigor-
ous. We could give a somewhat better, although m
longer, argument. We believe the approximations used h
are equivalent to the approximation in the Eilenberger f
malism, because the Eilenberger equations can now be
orously ~apart from the mean-field approximation! derived
from Eq. ~A6!.

APPENDIX B: BOUNDARY CONDITIONS
AT THE SURFACE

We show the effect of the boundary on the Andreev sp
trum. In general, the boundary will cause mixing of differe
u ’s. For eachu, though, we have a different Andreev equ
tion, so adding the solutions of Eq.~3.8! for different u ’s
does not make sense. However, the Andreev wave funct
describe only the slow variation of our excitations~changes
on the length scalej). The full wave functions containing
the rapid oscillations as well are

S f u,n~r !

gu,n~r !D eikF(u)•r, ~B1!

and these describe the single-particle excitations of thesame
Hamiltonian ~3.1! ~in the mean-field approximation!, so
those can be added. If we assume a specularly reflec
boundary, then the wave function will contain only tw
terms

S f u in ,n~r !

gu in ,n~r !D eikF(u in)•r1S f uout ,n
~r !

guout ,n
~r !D eikF(uout)•r,

such that

u in1uout5p mod 2p, ~B2!

since the angles are measured from the positive-x semiaxis,
see Fig. 1~a!. The Dirichlet boundary condition gives

S f uout ,n
~r !

guout ,n
~r !D 5S f u in ,n~r !

gu in ,n~r !D ~2ei [kF(u in)2kF(uout)] •r !re surface,

whereas the Neumann boundary condition gives
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S f uout ,n
~r !

guout ,n
~r !D 5S f u in ,n~r !

gu in ,n~r !D ~ei [kF(u in)2kF(uout)] •r !re surface

since

n•@kF~u in!2kF~uout!#50

for n perpendicular to the surface, and we used

kFS f

gD @n•¹ rS f

gD
to neglect the gradient of the Andreev wave function. Sin
Eq. ~3.8! is linear, we can drop multiplicative constants a
simply assume

S f uout ,n
~r !

guout ,n
~r !D 5S f u in ,n~r !

gu in ,n~r !D ~B3!

at the surface for either choice of the boundary condition.
u in is uniquely determined byuout through the relation~B2!,
we shall label the potentialD along the trajectory as well a
the solutions of the corresponding Andreev equation byuout.
We shall drop the subscript out everywhere except in App
dix C, where we will need to distinguishuout, the label for a
trajectory as in Fig. 1, fromu, the label for a position on the
Fermi surface as in Fig. 2.

APPENDIX C: GAP EQUATION

We obtain the gap equation by substituting forfu(r ) in
Eq. ~3.6! its mean-field value, that is, the pairing amplitud
fu(r )[^c↓2u(r )c↑u(r )&. To calculate this amplitude, we
expand the field operators into energy eigenstates

S c↑u~r !

c↓2u
† ~r !

D 5(
n

gu,nS f n~u,r!

gn~u,r!
D . ~C1!

Equation~C1! gives atT50

^c↓2u~r !c↑u~r !&5 (
n,n8

f n~u,r!gn8
* ~u,r!^gu,n8

† gu,n&

5(
n

Q~2Eu,n! f n~u,r!gn* ~u,r!.

~C2!

Note that in Eq.~C1!, we explicitly sum over both positive
and negative energies, unlike the Bogoliubov–de Gen
~BdG! formalism where we can sum over positive energ
only, using the fact that

S un~r !

vn~r !
D and S 2vn* ~r !

un* ~r !
D ~C3!

are both solutions of the BdG equations with energies eq
in absolute value and opposite in sign. However, this sy
6-12
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metry is lost here because the Andreev wave functions
responding to the BdG wave functions~C3! live on different
quasiclassical trajectories.

Close to the surface, we have to remember again that e
line contributes to the pairing amplitude at a given point
two directionsu; see Fig. 5. We will, therefore, have t
distinguish between the label of the trajectoryuout and the
label for the pairing amplitudeu. Specifically,

uout5u for ueS 2
p

2
,0D and

uout52p2u for ueS 2p,2
p

2 D , ~C4!

so the contribution to the pairing amplitude from th
2y-moving bound states will be

^c↓2u~r !c↑u~r !&ZBS5 f S uout,
x

cosuout
Dg* S uout,

x

cosuout
D

5 f S u,
x

cosu Dg* S u,
x

cosu D
for

ueS 2
p

2
,0D ~C5!

and

^c↓2u~r !c↑u~r !&ZBS

5 f S uout,2
x

cosuout
Dg* S uout,2

x

cosuout
D

5 f S 2p2u,
x

cosu Dg* S 2p2u,
x

cosu D
for

ueS 2p,2
p

2 D . ~C6!

Substituting Eqs.~C5! and ~C6! into Eq. ~3.6! gives
21450
r-

ch
r

Du~x!ZBS5E
u8e(2p,0)

dkF~u8!

2p
V~u,u8!

3^c↓2u8~r !c↑u8~r !&ZBS

5E
uout8 e(2p/2,0)

dkF~uout8 !

2p FV~u,uout8 !~2 i !

3U f S uout8 ,
x

cosuout8
D U2

1V~u,2p2uout8 !~2 i !

3U f S uout8 ,2
x

cosuout8
D U2G , ~C7!

where

V~u,uout8 !52uVsu1Vd~u,uout8 !,

and we used Eq.~3.15!. The contribution to thes-wave com-
ponent of the pairing potential from the occupied bou
states therefore is

Ds~x!ZBS5 i uVsu E
uout8 e(2p/2,0)

dkF~uout8 !

2p FU f S uout8 ,
x

cosuout8
D U2

1U f S uout8 ,2
x

cosuout8
D U2G . ~C8!

For the calculation of thed-wave component ofDZBS, we
will assume that the unperturbedDd is antisymmetric around
its vertical node

Dd,u~r !52Dd,2p2u~r !. ~C9!

Presumably,Dd arises from an antisymmetric interaction

Vd~u,u8!52Vd~u,2p2u8!. ~C10!

Along the quasiclassical trajectory, Eq.~C9! means

Dd~u,r!52Dd~u,2r!, ~C11!

which, by Eq.~3.9!, implies

u f ~u,r!u25u f ~u,2r!u2. ~C12!

Thus, under these assumptions,

Dd,u~x!ZBS5~2 i !E
uout8 e(2p/2,0)

dkF~uout8 !

2p
@Vd~u,uout8 !

1Vd~u,2p2uout8 !#U f S uout8 ,
x

cosuout8
D U2

50.

~C13!
6-13
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