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We study the physical mechanism of the surfdeed+is transition. We base our argument on first-order
perturbation theory and show that the zero-bias states drive the transition. We support the argument by various
estimates and consistency checks.
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I. INTRODUCTION and A, is a real, linear combination ofd,, and
Oxy(x2-y2-wave order-parameter components. Further, we

Many researchers presently believe that the order paranshould take into account the possibility of formation of mag-
eter in the hole-doped cuprate superconductors has a preetic domains indicated by recent ESR measurentéiée
dominantd-wave symmetry. Due to this symmetry, an in- should also consider corrections to_the quasiclassical ap-

. . . T . ; ; ; 2

homogeneity may scatter a quasiparticle between directiorgfoximation which are of the ordek“/Er~3 meV, and,
A. The Atiyah-Patodi-Singer index theorrthen implies tion since the cuprates are strongly-correlated systems. All
that for each such trajectory, the Andreev Hamiltonian has &'€Se complications would make our calculation and results
normalizable eigenstate of zero energy, so called zero-bigg0re realistic, but would obscure the main point, i.e., the
state(ZBS) irrespective of the detailed shape f This ef- role of the ZBSs in the transition. Hence, we will illustrate

fect is strongest for the specularly reflectitigl0) surface the basic physical mechanism of the transition on the simpli-
. 9 or the sp y i) " fied model used previously of a half CuQ plane with the
As Fig. 1 showsA in this case changes sign upon reflection

dominant and subdominant pairing having pdge 2 ands

along every qugsiclassical trajeptory. This gives rise to 3 mmetry respectivelyas if the cuprate were tetragonal, in
zero-bias peak in the local density of states as was realize hich case thel2_.» ands symmetries do not mi-19 anci
Xe—y 1

by Hu?3 ) . y2 STt
. , with translational invariance parallel to the boundary. To
Matsumoto and Shilfavere the first to suggest that the ive a feeling for how much physics is captured by this sim-

spon_taneous appearance of the order parameter compon%rpist model, we provide order-of-magnitude estimates for
of different symmetry, say or d,, close to the surface

. ; - . various quantities.
phaseiﬁhﬁzt%ds,byrlz rEIfat'\r'Ee_t%tr_'rehdommﬁnﬂfafmfght The paper is organized as follows. In Sec. Il, we demon-
TOVPT ”e S away fromt=U. The resuftant t-is—or strate our strategy on the familiar case of BCS instability.
d+id” state breaks time-reversal symmetry. dgafstrom

t al® then included surf h q ked tthThe main argument is presented in Sec. Il after we have
€t al” thén included surface roughness and worked out @, engeq the BCS formalism to inhomogeneous systems and
phase diagram. The calculatidiiswere carried out in the

Eilenberaer formalisrf. The Eilenberger function i . nons-wave pairing. Based on this argument, we calculate
-lienberger formais N € Ellenberger function 1S €SSen- o, r_ g iy sec. IV and estimate the transition temperature to
tially the local Green’s function in the quasiclassical ap-

. . 3 . o thed+is state in Sec. V. In Sec. VI, we discuss the surface
proximation, so it contains contributions from all the states

in the spectrum. Hence, the Eilenberger formalism does nounrrent. Finally, we discuss our results in Sec. VII.

show which states drive the transition, especially if the equa- Il. BCS INSTABILITY

tions are solved numerically. Hence, we use the Andreev

formalisn? that doesstudy the eigenstates individually. We  There are various ways to consider the energetic costs and
show that the transition is driven by the ZB8sly. This is  benefits of the transition to the superfluid state. The one that
the main result of the present paper.

A number of tunneling experimefits have observed the
zero-bias peak predicted by Hu. In optimally doped
YBa,Cu;0,_5 (YBCO), the peak splits at Ilow
temperature$? but experiments with Josephson junctions
and SQUIDs failed to detect the magnetic field spontane-
ously created in the state with broken time-reversal
symmetry™* If we want to compare theory to experiments,
we have to remember thatandd,z_,2 mix freely in YBCO
due to orthorhombicity, bufl,, andg,y2-y2) are incompat-
ible with them, as follows from group-theoretical
argument$'® and has been observed by tunnefihg? FIG. 1. (8 A schematic picture of the normal metal-
Hence, the actual transition would be more accurately desuperconductor junction in th@10) direction with a typical quasi-
scribed asA;— A +iA,, whereA; is a real, linear combi- classical trajectory(b) A schematic graph of the pairing potential
nation of s and d,2_,2-wave order-parameter components, along the trajectory ira).

AP)
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has proven useful in our study of tlle—~d+is transition is FE)=—TIn(1+e &M (2.6)
to decouple the attractive four-fermion interaction by the
Hubbard-StratonoviciiHS) transformation, and to make a and
saddle-point (mean-field approximation. That way, we 5 5
break up the total free energy of the system into free energy Ev= Ve +[A[%
of single particle states, which is lowered by the ggpand . . B
the extra term from the HS transformation, which grows VXe _see Athe 'EStab'“ty most clearly at=0, where
(quadratically with A. We then see that at small enough F(|A)=E(|A[). Then
the system favors transition to the superfluid state. FE)=6(—E)E

We will demonstrate this on the familiar BCS case. The '
model Hamiltonian igsince there is no universal convention so
as to whether the attractive interaction term should have a A2
plus sign with a negative coupling constahor a minus sign _ 0 A
with positive V, we use|V| which is unambiguously posi- E(JA])~E(0)=2N(0) ,wae(_ e+ Al —e)+ ™V
tive)

(2.7)
H=> €Cl oCro— |V > chiely e e, (2D whereN(0) is the density of states at the Fermi level angl
Ko KK’ is the Debye frequency. Direct calculation shows that the

integral behaves agA|?In(|Al/wp) for |A|—0, whose
nonanalytic decrease will win over the analytic increase of
o B o the second term for small enough no matter how weak the
Z= f DcyyDCy, EXP— f dT{E Cro( 9,1 €)Cro attractive interactiofV| is. By the same calculation, we can
0 ko also see that the integral becomes analytic if we do not inte-
gratee all the way up to zero, but to a finite negative energy.
, (2.2)  This means that the states close to the Fermi energy drive the
BCS transition—they benefit most from opening of the gap

, |A|. Similarly, we shall see that the states at zero energy, that
where thec’s are nowr-dependent Grassmann numbers. Wegs the ZBS's, will drive thed—d+is transition.

perform the HS transformation by multiplying the partition
function by the(infinite) constant

which gives rise to the partition function

=V > Emg—klc—mcm
K,k

So far, the argument has shown the BCS instability only
at T=0. At finite temperatures,

vy ~|VISBaT >, (dk—ciiCk)) (b —Ckr Ckry)
fpd’kpd’ke bor 2y (e e v, FE)+F~E)=-Tln

Ex
2+2 cosh? ,

S0 which gives the Ginzburg-Landau expansion in powers of
_ _ |A[?
ZIJ D¢ Db Dy, DCy €5, 2.3
F(AD-F(0)=[A]2 Nof0 %€ tann—
where (|A)=F(0)=]A| V] (0) e anh-—
B _ (97.+ €k A CkT 2 _N(O) 0 dE d 1 €
S= JO dT|:§k: (CkT kal) N aT_Ek) (Ekl +|A| ] IMD?& ;tanhﬁ
|AJ? +0(|A[°%). 2.9
—r 2.4
V| |’ @4 The function (1¢)tanh(/2T) is positive and monotonically
) increasing fore<0, so the integral in the quadratic coeffi-
where we defined cient is positive and the integral in the quartic coefficient is
negative for anyT>0. Hence, close to the temperaturg
A=— |V éy. that satisfies
K
. . ) 1 0 de €
From the action(2.4), we can read off that in the mean-field v N(O)j —tanhf=0, (2.9
approximation, the total free energy of the system is given by Vi ~wp € c

the Ginzburg-Landau functional Wwe can approximate

2
F(AD=2> []:(Ek)+]-"(—Ek)]+% 2.5 F(IAD-F(O)~a(T-T)|AP+pA% (210
K
where @ and B are positive constants. This shows that the
upon minimization with respect ta\|. Here, system is unstable to the BCS transition at temperatures be-
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low T.. In a similar way, we shall see below thai, the
mean-field transition temperature into the-is state, is fi-
nite.

IIl. THE d+is INSTABILITY
A. Formalism

We now need to develop the formalism that will enable us
to extend the strategy from Sec. Il to tldetis case. We
shall consider a singléwo-dimensiongl CuG, plane, and
model it by the Hamiltonian

6

d’r 2l Pl e(—iV)g,(r) -
o=T,

FIG. 2. Fermi-surface decomposition of the Fourier transform.

+f A2rd2r V(r—r ) gl (0wl (1) g (1),

(3.9

where € is the band energy an® is the short-range

interaction responsible for pairing. What makes this difficult

problem tractable is the separation of energy scales H=fd2r[2 J dke(6)
FS

When we substitute this into E¢3.1), we obtain

Wl (VE(O) - (—1V) (T

(the Fermi energ¥r is much bigger than the superconduct-
ing gapA), which gives rise to separation of length scales
Mg (Fermi wave length and ¢ (the coherence lengthWe dke(0) dke(6")
may, therefore, expand in powers of the small parameter st >0 >0
Ne/&; keeping the lowest nontrivial order is called the
guasiclassical approximation. This procedure is usually done
at the level of Green’s functioh?® which are thus trans- ><zplr_(,(r)wl_g,(r)ww,(r)}, (3.3
formed into Eilenberger functions that satisfy transportlike
equations.

Since we want to understand tke~d+is transition in
terms of quasiparticle eigenstates rather than Green’s funavherevg(#6) is the Fermi velocity at poinkg(#) and
tions, we will perform this separation of scales at the opera-
tor level instead. We denote as\2the width of the shell
around the Fermi surface containing the states that take part
in the pairing(see Fig. 2. We then factor out the fast Fermi-
surface oscillations and define the slowly varying field op-
eratory, o(r) (Ref. 21 by

V(8,0") (1)

V(0,0’)Ef d?re ke kel /(1)

o ):f d2k2Ck gk T The derivation of Eq(3.3) is given in Appendix A. Note the
7 (2m)= 7 linearized kinetic energy in Eq3.3), which will be crucial
in the following.
:f dke(6) ( IA dk, elkin(0)-1 | gike(6)-1 The Hamiltonian(3.3) gives rise to a partition function,
Fs 2w A2m Cho which we can write as a path integral over the fermion fields
¥, 4(r). We can again decompose the interaction by the HS
=f dkF(a)w (1) elkEO) T 3.2 transformation, i.e., we can multiply the partition function by
o ' the constant

dk-(6) dke( 6’
JDm(r)Dmmex{J dTJ o2 L SULLLANTYS

S 2
X[o(r) = 1oV — (D)o (1) = b (N by (]| (3.4
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In the mean-field approximation, the total free energy of thehey direction with the dependence on the angleand the
system equals the free energy given by thiegle-particl¢  coordinatep along the trajectory. Their relationship is obvi-

Hamiltonian ous from Fig. 1.
dke(0)
H= f dzr{ f o LoD —y(1)] B Argument
FS We now have all the tools needed to demonstratedthe
VE(6)-(—iV) A1) 1 o(T) +is transition in a way that brings out its physical mecha-
N i T nism. We follow the same line of thought as in Sec. II: We
Aj(r) VE(0)-(IV) ]\ (1) go to the zero temperature, and look at the energy gains and
dke(6) dke(6') losses when the-wave component oA appears.
—f 2F ; V(6,0 )5 (r)da(r), For anys-wave pairing to appear, it is necessary that the
FS &7 m

part of the functional integral3.4) over thes component of
(3.5 ¢ converge, i.e., tha¥ on top of the dominant-wave at-

L . ] traction contain also agwave part(we use agaifV,| rather
upon minimization with respect té¢4(r), where we defined thanVy)

dke( 6’ "= "_
sin=[ T g, @o V(6.6)=Ve(6.6)= V.
Fs In this section, we will show that this condition is also suf-
The minimization gives ficient: At zero temperature, the system will favor tbe
+is state for an arbitrarily weak attraction.
Do(1)=()—o(1) b1 (1)), (3.7 With both d- ands-wave pairing present,
where the angular brackets denote thermal average with re- bo(1)= hug(1) + p(r).

spect to the Hamiltoniai3.5), see Appendix C. We shall

write explicit formulas for the total energy and free energy in(The s components of botV and ¢ are angle independent.
Sections IV and fformulas(4.1) and (5.1)]. Here we just We begin with the second term in E(8.5), which then is
note that to calculate the single-particle contribution to the dke(0) dke(8)
free energy, we will have to find the spectra of the Andreev F F "N * *
Hamiltonians labeled by, i.e., we will need the energies Ls 27 27 [Va(0,0) = Ve[l ¢do(r) + ¢5 (r)]
E,,, that satisfy

X[ g (1) + ps(1)]
VE(O) - (—iV)  Ayr) )(fa,nm)_ (fmr)) dke(6) dke(6")
850 ve0)-(9) ggan)] T g0 | T T V.05 )

38 dke(6) dke(6")
o e, (310

We note that the linear kinetic energy {8.3) makes this +]V
equation effectively one dimensional, i.e., an independent
equation for each line in the directio(6). In the presence where we used the orthogonality of thendd components
of the specularly reflecting boundary, we must find the An-
dreev spectra along reflected lines such as the one in Fig. dke(60)
1(a). Equivalently, we solve the equation on a straight line L
with the pairing potential shown in Fig. 1b). This is intu-
itively obvious; a derivation is given in Appendix B. For the dke(6)
pured wave, we shall work in the gauge whekeis real. = L

As we mentioned in the Introduction, the spectrum along

Fs 27

dke(0')
Vd(0,0’)=LS ;(77 Vy(0,6")

5277

s 27 Paa(r)

each trajectory having opposite signs af at the two =0.
asymptotic ends will contain a zero-bias state. Its wave func- . . '
tion is, up to a normalization constant We can also split up Eq3.6) into components and define
dkg(6")
—( ~ Jexd = [“ap a0 10e(0) | )= d(0,0")bao (1),
(g(e,p) sos LT p<+ o 0P 8(8.£7)vel6) Fs 2w
(3.9 dke(0)
where the uppeflower) sign corresponds ta (6,p= — ) Ag(r)= FS?(_|VS|)¢)S(r)' (3.1

<0, A(8,p=+2)>0 [A(H,p=—2)>0, A(H,p=+x)

< 0], so that the wave function is normalizable. In our no-Thed component ofA was established well abovig, so the
tation, we will freely interchange the dependence dactu-  change of the second term in E§.5 due to the opening of
ally only onx, since the system is translationally invariant in a (smal) s-wave gap will be
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[A(r)|? quasiparticle energy is only linear 8y i.e., not as dramatic
W (3.12 as the nonanalytic d_ec.rease in the BCS case, but nevertheless
it beats the quadratic increase for small enosghhus, for
just as in the BCS case. Due to the translational invariance ian arbitrarily small but nonzero interactifvy|, s=0 cannot

the y direction, we will from now on writeA¢(r)=A¢(X). be a minimum of the total energy, and the additiosralave
Along the quasiclassical trajectory depends on both and  gap phase shifted by/2 from thed-wave gap will appear.
0 (see Fig. 1, so we will then writeA¢(8,p). From the formula3.16), we see that the superconductor will

To examine the effect of the smallwave component on benefit from opening up the gap only close to the surface
the quasiparticle energies, we need to look at the change efhere|f|? is effectively nonzero, so the transition into the

the spectra of the 1D Andreev problems d+is state is a surface effect. The decay into the bulk will
) be discussed more quantitatively in the next section.
—ive(0)d, Aqg(0.p) [ F(0:p) _ fa(6.p) We should also note that the remaining states on the qua-
Ag(0.p)  ivp(0)d,/\gn(0.p)] "\ gn(6.p) siclassical trajectories do not change this situation, that is,

they do not contribute linearly to the change of the total

(3.13 quasiparticle energy. Due to the time-reversal symmetry in

upon Ay(8,p)—Aq4(6,p) +A4(0,p). As Ag is small, it can the pured-wave state, every state on a given quasiclassical
be treated as a perturbation; then the change of the quadrajectory corresponds to a state of the same energy on a

particle energies to the lowest order is reversed trajectory. Indeed, if we label the coordinate along
the trajectory reversed to the one in H§.13 asp=—p,
e * * then the Hamiltonian on the reversed trajectory is
EfalAd= | dp(fr(0.p) 97(0.0))

—ive(—0)7; Ad<—e,?>>>
Ag(—0.p)  Tve(=0)7;

:( iUF(G)ap Ad(aa_P)>
Ad(ar_P) _ivF(a)ap

x( 0 As(é’,p)>(fn(0,9))
AZ(0.p) 0 On(0.p)

- f,:dp[fﬁ(0,p)gn(«9,p)AS(e,p)

+ (00 (0p)AL (0] (314 SNV OTue(0). S0
Let us first look at the change of energy of the zero- fo(—6.p) [ 9n(6,—p)
energy bound states. Then from E§.9) gu(—6.7) T\ f.(0,—p)
0785(0,p)=Fif 154 0,p), (319 will also have energ¥E, ,. Now Eq.(3.14 implies that to
so the first order, a small Im ¢ will shift the energies of the two

corresponding states by an equal amount with opposite signs.
o B +eo ) Hence, the only way they can linearly contribute to the total
Ebzed As]=* J_m dplf(6.p)|°2ImA(6.p), energy atT=0 is when one of them crosses zero and thus
(3.16 changes its occupancy, which happens only when their origi-
nal energy(in absolute valugis smaller than the-wave gap.

where the upper(lower) sign corresponds to thety-  But ass—0, there will be fewer and fewer such states in
(—y-)moving trajectory. We notice several things by looking smaller and smaller neighborhoods of thevave nodes. It is
at Eq.(3.16. only the ZBS'’s that change their occupancy for arbitrarily

It depends only on Im, since Re\g just changes the smalls. We thus conclude that the onset of the transition into
position of the node in the total(#,p), in which case the thed+is state is driven by these states.
bound state remains at zero energy. Hence, we will assume
ReA¢ =0, and writeA4(60,p)=is(6,p).

E{ed Ag] is nonzero due to the form of the bound-state
wave function(3.15 and due to the fact tha( 6,p) does not In the study of the instability of the pukkstate in the last
change sign along the quasiclassical trajectby virtue of ~ section, we used first-order perturbation theory ssee) at
thes symmetry. Out of the two possibilities for the sign ef  the onset ofi+is. Now we will argue that this theory holds
we will chooses(8,p)>0 in the following, which means all up to the the actual value sfi.e.,s<|A4|. As we will show
the +y-moving states are shifted up in energy, whereas thén Sec. V,s(T=0)~T, the mean-field transition tempera-
—y-moving states are shifted down. ture into thed+is state. Becaus ~7 K, it is much

Since we are at zero temperature, only the states thamaller thanTy, the superconducting transition temperature
move down from zero energy will be occupied. We can therof the order of 100 K, which sets the scale fiog. Figure 3
argue similarly as in the BCS case: opening of the additionashows the magnitude of the two gaps as a function of angle
swave gap costs the system enesd§|V,| [from Eq.(3.12]  around a quarter of the Fermi surface. We see that the re-
but the quasiparticles save energns. The lowering of the  quired inequalitys<|A 4| holds for most of the Fermi surface

IV. sWAVE GAP AT T=0
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s(T=0)

—nfd 4

FIG. 3. The magnitude of thd- and swave order parameters
around the Fermi surface. FIG. 4. The decrease of the density of the trajectories inythe
direction by the factor co&
except for small neighborhoods of the nodes. First-order per-
turbation theory certainly breaks down there, but upon averwill, up to numerical factors of order unity, multipli [ s]
aging over the Fermi surface, the nodes will only introducepy k. Minimization of Eq.(4.2) will give
an error of the ordeTs/T4. Thus, we will use that theory to

obtains(x) at T=0. As discussed at the end of Sec. Il B, ke|V4
first-order perturbation theory implies that we have to look ~= 4.3
only at the zero-energy states. Also, sirecis a small per- §

turbation, we shall neglect its effect dyy.
Now we can write down the energy due $oper unit
length of the surfacé&hey direction as a functional o§(x):

By takings~1 meV from the experimertt ke~1 A~1, and
£~10 A, we get an estimate for the strength of therave

pairing
e SA(X)
E[S(X)]=f dX—7 [Vg|~10 meV 2.
o IV
dke(0 We minimize Eq.(4.1) exactly by solvin
+f A )Ee[s(a,p)]cose, 4.7 a4.1 Yoy g
Oe(—m/2,0) 27
L . SE[s]
whereE [ s] is given by Eq.(3.16); for the rest of this sec- 55(X) =0,
tion, we shall drop the superscript), since we shall be
using only the first-order formula. We freely interchange;.
s(x) for s(6,p); the relation between the two is discussed
below Eq.(3.12. Note the correct dimensions: tkéntegra-
tion makess?/|V¢| from energy per unit area into energy per S(x) _ J dke(0) coso
unit length. In the second term, the integrand is energy and WA 0e(—ml2,0) 27T
the dimension of the measurekis, i.e., inverse length. The
extra factor of co® in the second integral accounts for the +Ocd f 295(0.p) _
. . e - X p2|t(6,p)| =0.

difference of the density of trajectories along thdirection —w 8S(X)

compared to their angle-independent intrinsic dengitga-

sured perpendicularly to their directipras shown in Fig. 4. Now

In the second term in E@4.1), we sum up only the occupied

—y-moving states for whicliE ,<0 according to Eq(3.16). 5s(0,p)
We obtains(x) by minimizing Eq.(4.1). Let us first make 35(x)

an order-of-magnitude estimate

= §(x—p cosf)+ 5(x+ p cosh)

2 L

s -
E[S]~§|V— Kes, (4.2 cosé

J

S X S X
cosd ol pt cosé
(4.4

sinces will extend into the bulk only as far as the coherence

lengthé=hve/Ag (Ag is the amplitude of thel wave, and  since co¥>0, andp, unlike x, can be both positive and
from Eq. (3.16, we seeE/[s]~s. The angular averaging negative. The factors of césancel, and we obtain
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y

Also, we shall assume a spheridgaircularn Fermi surface

x/cos6

Then the wave function of the y-moving bound states, in-
cluding the normalization, will be

( f(6.p) = A\ /—|Sin 20|(1)epsin20|/§ 4.8
g(6.p) 2¢ \i ’

SO0
FIG. 5. Two contributions from the sam#to the pairing po- kF|Vs|

tential at the poink. f |S'n 26| —(2/¢)|(x/cos)sin 26|
77'/2277

2

dke(6)] X kF|V |
s(x)=|V4| e fl 6. =5sg > f d 6 sin 6 cosge 4sin /o), (4.9
+1fl g - ? (4.5) We can do the integral by substitution #ist, which gives
" coséd '
2 1
Physically, we get two terms on the right-hand side because s(X)= kel Vel —tf—(f) e‘“(x’f)} . (410
for each angled, there are two trajectories contributing o me X X t=0

at a given point as shown in Fig. 5. o o
We should remark here that we also obtain the formula We can neglect the contribution from the upper limit because
(4.5 when we calculate the contribution from the occupledIt is effectively nonzero only fok<£/4, where our assump-

. o o tion of constantA, does not hold. The lower limit should
(—y-moving) bound states to the pairing potential in the gap d .
equation. This is done in Appendix C. The result is have been at4/Ty, rather than at 0, to exclude the trajec-

tories close to the nodes where the first-order perturbation
dke(6 X
F( )H )

2 theory breaks down. That cuts off the lower-bound contribu-
— tion atx~ (T4/4Ts)é~100 A, beyond which we would need
be(~m2,0) 27 cosd a more refined theory for the behavior of the quasiparticles
x \|2 around the nodes. Formuch smaller than this distance, we
+|fl 6,— —) } (4.6) can neglect the first term on the right hand side of @dL0),
cosd and replace the exponential by 1. We conclude, therefore,

in agreement with Eq(4.5). This formula, however, shows that

more clearly the internal consistency of the picture: Bgr

in Fig. 1, the additionalis potential pushes down the S(X) = kF|Vs|§ (.11
—y-moving states i§>0. As Eq.(4.6) shows, these states, 16mx? '

in turn, give rise toAg=iX positive.

We should note here that, is absent on the right-hand
side of Eq.(4.6), so the gap equation in this cagelike in
the BCS theory is an explicit formula for the gap. The §<X<E§_
physical reason for this is tha(x) is considered small, so Ts
we neglect the change of the bound-state wave functions due . . :
to its presence. The only effect sfx) we are taking into We see thas=kg|V,|/£ times a function that is of order
account is the change of the occupancy of the zero-energyity for x<¢, and decays fast for>¢, as expected.
states, which, by Eq.3.16), depends only on the sign sf
not on its detailed shape. This is wisfx) does not feed V. TRANSITION TEMPERATURE
back into the right-hand side of E¢.6).

To estimate the decay df; into the bulk, we shall as-
sumeA 4 to be constant in space and with the angular depe

Ag(X)zgs= V5|

for

So far, we have shown the instabilith—d+is only at
=0. Just as in the BCS case, it remains to be demonstrated
that the mean-field transition temperaturg is finite. We

dence therefore must study the free energy of the system, which we
Ag o(r)=Agsin 26, (4.7) obtain from Eq.(4.1) w_hen we re_placeEg[s] by F(Es]),
’ the free energy of a single fermion lejskee Eq(2.6)], that
which should hold for is,
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2()

F[s]= J dX———+ |V| cosé(—T)

@2 do
ffw/Z E
XIn(1+e BTy, (5.2)

Minimization of this functional will give an equation for

s(x) that again agrees with the contribution to the gap equa-

tion from the ZBS’s. As we see from E@5.1), the varia-
tional equation fors will now be very nonlinear; it will no
longer be an explicit formula fas. The reason is that at finite

temperatures, the occupancy of a given state depends on the

value of its energy. Even in first-order perturbation theory
this value depends on the shapes@f), not just its sign, so

PHYSICAL REVIEW B 63 214506

ImA

®

ReA

FIG. 6. The pairing potential along the trajectory in Figa)l
'The corresponding twist of the phase of the order parameter is
clockwise.

s(x) enters through the Fermi function into the right-hand

side of the gap equation, making it nonlinear and therefor

difficult to solve.
We still can make an order-of-magnitude estimaté& afs
follows:

EdlslT) 4 In(1+e"
E(,[S]/T)(l_’_ eEg[S]/T)]

nl2+2 coshﬁ

In(1+e E-dlslIT)

=In[(1+e"

o[s]|?

+O(E[s]*)

=In4+ 4(
2

s
5 +0(s%),

~In4+4_|_

SO

£
[V

F[s]-F[0]~s? —?F +0(s%. (5.2)

From Eq.(5.2) we see that the system is unstable to the

transition to thed+is state below the temperaturgg
~kg|V4|/ €&, which is therefore of the same order of magni-
tude agA¢|t—o. [see Eq(4.3)].

Following Ref. 22, we can trade the coupling constédpnt
for the transition temperaturd, of a BCS superconductor
with this couplingT.c~e~ Vsl Then

-1

Ts~ INTgs

(5.3
Hence, T increases sharply close Tg.,=0, which is con-
sistent with the numerical resuft$?

VI. CURRENT

To study the surface current in thikt-is state, we shall
go back toT=0 for simplicity. We observe that the states on
the +y-moving quasiclassical trajectory from Fig. 1 will,
upon the transition into the+is state withs>0, feel the
pairing potential shown in Fig. 6. Ap goes from—x to
+ o0, the twist of the phase of the order parameter is clock-
wise (from 7 to 0) for an +y-moving trajectory and coun-
terclockwise(from O to ) for a —y-moving one. In both

Rases, this implies current flowing in they direction. This
agrees with our previous calculations that showed that the
—y- (+y-)moving bound states will béun)occupied ifs
>0.

The agreement is quantitative, as we can easily check. In
the linearized Andreev formalism, the contribution to the
current density from a given state is

(10)(0 o)

=eve(|fa(0,p)*+]9n(8,0)[?),  (6.)

that is, the charge of the state times(Egrmi velocity times

the occupation of that state. In our case, all of the current is
carried by the occupied bound states because the contribu-
tions from the remaining pairs of corresponding countermov-
ing states cancel each other dsee the end of Sec. III)B

To calculate the total current density in tedirection, we
again have to include the contribution from both the incom-
ing and the outgoing part of eachy-moving trajectory(see

Fig. 5, and we have to project onto tlyedirection

[izes(X)]y=k fo 9 Ging 142 6, ——
JzBs(X) Jy=Kg Ry I 783 cosf
X
J%Ds( 0,- —— 6.2

coséh

On the other hand, in terms of the one-dimensional den-
sity n®®=k./7 and the phase of the order parameter
¢(6,p) along the trajectory

1
i6(0.p)=e5-n3,0(0,p)= p¢(0 p),

(6.3

since for a spherical Fermi surfaog =kg/m. The formula

for the total surface-current density will be the same as Eq.
(6.2), except that we now have to integrate over betk-

and —y-moving trajectories

0, X
cosé

](lD)(

)

. w2 do
lorb0l,=ke | 5o sing

X
0,———

cosf 6.4

j(lD)<
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We do not expect the current densitig€2) and (6.4) to z

be the same at a given point because the fornieid has X

corrections, which are higher-order derivatives¢of Those j B

corrections will not, however, contribute to the total surface y

current o
ly= f “dxiy(x) 6.5 de S
Yy~ ), y\ ) ‘ e

which should then come out the same in the two calculations. CL L,

Indeed, the bound states give us

0 de e b
(IZBS)yszf 22—smacosaf ) dpjzes(0.p),

. ekaF
- 47T ) (6'6)

since

| aoiR0.0)- v

due to the normalization of the wave functions; the minus
sign indicates that the current is flowing in they direction.
The formula for the total current in terms of the order-

parameter phase is

w2
(Iop)yzkpf - 2—sm0cos€f dpj 5D 6,p).

(6.7
Now
f_ dpiGe’( 6, p)——[qow +90) = (6, )]
€uE
== —-sgro), (6.8
SO
k
(lop)y=— %:“zss)y, (6.9

FIG. 7. Side view of theab planes with the current flowing in
the —y direction. The induced magnetic field is along thaxis.

. 4evek fo s f “|*
Jy(X)=4ev ke s L vy
w2
__ Aeveke %smzacosee AxIg)sin 6
& Jo 2m
2eveke (1
- 772 :  dttter (%, (6.10

By the same argument as presented in the last section, we
find that foré<x<<(Ty4/Ty)é,

ev ke f 3
]y(X)N_ 16mé

(6.1

The extra power ok in the denominator in Eq6.11), com-
pared to Eq(4.11), comes from the directional sine in Eq.
(6.2.

The surface current induces magnetic field, which will be
screened by the diamagnetic current in the superconductor.
The total current density therefore is

[jtot(X)]y:[jZBS(X)]y+[jdm(X)]y- (6.12

According to Eq.(6.11), the current is localized within the
distance~ ¢ from the surface, which is much smaller than

the in-plane penetration depth, because the cuprates are
strongly type-2 superconductors. Hence, the diamagnetic re-
sponse does not resolve the internal structurig gfs(x) ],

since sgn@)sind is an even function, so the factor 1/2 in Eq. and we can estimate
(6.8 compensates for the doubling of the integration domain

of #in Eq. (6.4 compared to Eq(6.2). To get an order-of-

magnitude estimate, we put
e~101° C,
ve~10° mi/s,

kF"" 1010 mil,

and getl,|~10"° A per CuG plane. From the approximate

[ am0OTy=[]am(0)Iye ™. (6.13
The surface current will be screened completely, because
the magnetic field it induces is smaller thBf, , the lower
critical field in the c direction. Indeed, even if the current
flows in the same direction along all the Cu@lanes(as
shown in Fig. 7, the magnetic field at distances>d. (the
interplane spacing-10 A) from the surface will be

27 |

BZTd—C"’lOz G

(6.14

form of the bound state wave functions introduced in the
previous section, we can also estimate the spatial distributiowhich is smaller by an order of magnitude th&, for

of the current density

YBCO (see Ref. 28 The complete screening implies
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p

(lody= [ @101y~ 6.15

which together with Eq(6.9) gives

. _ evpke
[ian(0)]y=— - (6.16

For é<x<<(T4/Ts) &, we can approximate the exponential in
Eq.(6.13 by 1, so

eveke[4  1[¢&)\3 61
o) ly=—51% Zlx (6.17)
This changes sign at distance
X0~§Kl/3! (61&

wherexk=2\/¢ is the Ginzburg-Landau parameter. Due to the
one-third powerx,~ ¢ for reasonable values af (say, be-
tween 50 and 500 This is consistent with the numerical
results®

Note that the two calculations of the surface current agre& Wave vortex.
[see Eq.6.9)] because the ZBSs moving in the direction of
the current are shifted down in energy and thus occupied,

whereas those moving against the current are shifted up and |n order to understand the basic physical mechanism of
unoccupied. We wish to stress that this is exaofipositeto  the d—d+is transition, we considered the change of the
the sign of the Doppler shift: the states moving along theyee energy of a Cuphalf-plane when as-wave component
curr_ent would be Doppler-shifted up, Whgreas those movingys A appears close to the 110 surface. By the Hubbard-
against the current would be Doppler-shifted down. Stratonovich transformation and the mean-field approxima-
This point is further supported by the analogy between thgjon we decomposed the total free energy into the contribu-
ZBSs and low-lying excitations in a core of awave Vor- o from the single-particle states, which is decreased by
tex. We consider an idealized cage=0 inside the vortex | A, and the HS term, which increases quadratically with
(at distances from the center smaller th&), and |[A|  A_. Using first-order perturbation theory, we saw that the
=const outside with the phase winding counterclockwisesystem favors thel+is state aff=0, and that the transition
once around. We look at a quasiclassical trajectory passing griven by the zero-bias states. Based on this argument and
close to the center of the vortex. We denote the coordinatg, the separation of energy scales associated witd-taed
along the trajectory ag again and the phase at the intersec-g.yave components af, we then calculated  at zero tem-
tion point with the vortex edge as.. , see Fig. 8. Then the perature and estimated the transition temperature. Finally, we
energy of a low-lying excitation moving from=—% 10 p  giscussed the surface current in the is state. We saw that
=+ on that trajectory &' it is carried by the occupied ZBSs; these states we
Doppler-shifted by the current. This current could be dem-
E— UF _ _ 6.19 onstrated experim_entally by An_dreev reﬂ_ect?é_n.
4R (¢+= @)= TJmod2r- ' In the Introduction, we mentioned various improvements
that would make the model more realistic, such as magnetic
For a trajectory passing through the center,—¢_=m, so  domains, interlayer coupling, and going beyond quasiclassi-
E=0, and the low-lying excitation is a ZBS. If we now shift cal approximation or mean-field theory. Before developing
the trajectory slightly to the left as shown in Fig. 8, thenthe model further, it would be worthwhile to reexamine its
o,—¢_>mandE>0. In a real vortexA would be non- assumptions, especially tllewave symmetry of the domi-
zero even inside, and the phasefofvould wind clockwise nant order parameter in light of various recent experimental
as we go fromp=—o to p=-+», so we are going resultsin support of-wave symmetry’
against the current. Moreoverp(p=+»)—¢@(p=—x)
=mmod 2w, so A behaves the same way as in Fig. 6. ACKNOWLEDGMENTS
Hence, thed—d+is transition is analogous to shifting the
guasiclassical trajectory away from the vortex center. In both | want to give special thanks to M. Stone for suggesting
cases, the ZBS will have a positive energy if it is movingthe problem and discussing it with me. | wish to thank A.J.
against the current and negative energy if it is moving in the_eggett for helping me figure out the diamagnetic response
direction of the current. in Sec. VI. | have also benefited from discussions with I.

FIG. 8. A quasiclassical trajectory going through the core of an

VII. DISCUSSION
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APPENDIX A: DERIVATION OF THE QUASICLASSICAL
HAMILTONIAN f d2r D, gl e(—iV),(r)
o=1,|
We derive Eq.(3.3) from Eq. (3.1) by expressing the
original field ,(r) in terms of the slowly varying field JdZFE f dke(0) dkF(B) k() ke (8] -1
Uso(r), see(3.2). We first substitute into the kinetic-energy s 27 Jgs 2w
operator ; _
Xthy o (NDVE(O) - (—1V) by o(1). (A2)
(—iV)y(r )_f dke(9) KED T e(ke(8) — 1 V) by o(F) Now e'lke(D=Ke(!)1'1 oscillates with a wavelength much
27 shorter than the length scale on whigh, 4(r) changes.
dk Thus, the integral will be zero unle&s(6) —kg(6')=0, so
:J F(0) ke 1L e(Ke( ) we can effectively drop one integration over the Fermi sur-
Fs 27 face, and obtain the kinetic energy of the form
+ V€Ki (0)- (—1V)+ - 1ip (1) dk
i F(6) .
ae(6) f dr f 5 Vo f(DVE(D) - (1) (1),
— FUY) ike(0)- i 7
_fFS 2 I F(0) rVF(a)'( IV)‘#O’,O(I’)! (A3)

(A1) The potential energy is now given by

dke(6;) dke(6,) dke(603) dke(8,)
fdzrdz' S o s V(T =1 )Xl —Ke(0) T —Ke(0) 1 +Ke(03) 1"+ ke( 0) 1T}

Xl (VW] (1), (1) 16, (1)

,Ake(61) dke(62) dke(63) dKe(64) i _ =1y 1t t
mf d2rd?r o o o > V(r—r )el[kF(Gz) ke(63)]-(r r)wTGl(r)lﬁlﬂz(r)(ﬂl%(r)lm%(r)
Xexpli[ —Ke(01) —Ke(82) +Ke(03) +Ke(04)] 1}
,dk(a)dk(a)dk(a)dk(e)
= [z S e N (02,090 (0 V(1)1
X expli[ —Kp(01) —Ke(02) +Ke(03) +Ke(0a4)] 1}, (A4)
|
where we used the assumption thatthanges on a much 61+ 6,= 03+ 6,=0 mod 2. (A5)

shorter length scale thap, 4(r), performed the’ integra-
tion, and introduced the Fourier transform
Since we now have two constraints, we can drop two Fermi-
surface integrations, and obtain the potential energy of the
V(0,0’)EJ d2reitke(O)=ke()] Ty (), form

SinceV(r)=V(-r), we see tha¥/(0,60")=V(6',0). Again,

the integral vanishes unless the sum of the four momenta is

zero. Out of the various ways that this may happen, we pick J d2r dke(6) dke(0' )V(a o' W
only the one that contributes to the singlet pairing, namely, 2 2 [

Ke(61) +Ke(0,) =Ke(03)+ke(6,)=0, ie., X! o) g ()1 0(r).
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The total Hamiltonian in the quasiclassical approximation fo  n(r) fo n(r)
out’ In’

then is i Y :
(e|[kF(9|n) Ke(oud] r)resurface

g0out’n(r) - gl9in’n(r)
dke( 6
H:J'dzr[; fF . )'//;a(r)VF(G)'(_iV)‘/’mﬁ(r) since

327T

N-[Ke(Oin) = Ke(Oou) 1=0

dke(0) dke(6'
+J'F r(0) dke( )V(B,B’)d/%(r)

s 2m 2m for n perpendicular to the surface, and we used
Xlﬁle(r)'/ﬂa'(r)lﬂw'(r)} (AB) f f
Ke g >n-V, g

The derivation of Eq(A6) from Eq. (3.1 is far from rigor- ) ) )
ous. We could give a somewhat better, although mucii© neglect the gradient of the Andreev wave function. Since

longer, argument. We believe the approximations used her’éq- (3.9) is linear, we can drop multiplicative constants and
are equivalent to the approximation in the Eilenberger forSimply assume
malism, because the Eilenberger equations can now be rig-

orously (apart from the mean-field approximatjoderived foout*n(r) fain*n(r)
from Eq. (AB). 9o,n(M) | =1 94, (1) (B3)
APPENDIX B: BOUNDARY CONDITIONS at the surface for either choice of the boundary condition. As
AT THE SURFACE 6, is uniquely determined by, through the relatiorfB2),

We show the effect of the boundary on the Andreev spec?V€ shall 'Iabel the potential alo'ng the trajectory as well as
trum. In general, the boundary will cause mixing of different the solutions of the corresponding Andreev equatiomby.
¢'s. For eachd, though, we have a different Andreev equa- "€ Shall drop the subscript out everywhere except in Appen-
tion, so adding the solutions of E3.9) for different ¢'s  dix C, where we will need to distinguishy,, the label for a
does not make sense. However, the Andreev wave functiorfEi€ctory as in Fig. 1, fron#, the label for a position on the
describe only the slow variation of our excitatiofthanges ~Fermi surface as in Fig. 2.
on the length scal&). The full wave functions containing

the rapid oscillations as well are APPENDIX C: GAP EQUATION
¢ We obtain the gap equation by substituting ty(r) in
on(r) Ke(0)-r Eqg. (3.6) its mean-field value, that is, the pairing amplitude
Jon(r) | € S (B1) Do(r)=(—¢(r)h14(r)). To calculate this amplitude, we
expand the field operators into energy eigenstates
and these describe the single-particle excitations oséme ) f.(6.p)
Hamiltonian (3.1) (in the mean-field approximation so ( Tw ):2 Yo n( me ) (CD
those can be added. If we assume a specularly reflecting bi_o(r)]  F "7\ gn(6,p)

boundary, then the wave function will contain only two Equation(C1) gives atT=0

terms
_ * T
fo .n(r) fo,,.n(r) <%79(r)%0(r)>—2 f0(0,0)9,,(0,0) Yy Vo)
ik (0in)' ik (‘9ou . n'n’
gy, (1) | E€F T g, () [
=§ O(—Epn)fn(0.0)95(0.p).
such that
(C2
Oin+ Oou= 7™ mod 2, (B2) Note that in Eq.(C1), we explicitly sum over both positive

and negative energies, unlike the Bogoliubov—de Gennes
(BdG) formalism where we can sum over positive energies
only, using the fact that

since the angles are measured from the poskiisemiaxis,
see Fig. 1a). The Dirichlet boundary condition gives

1:f)out'n(r) f(’in'n(r) Un(r)) d _v:(r) (C3)
_ — ailKe(0i) —Ke(Ooud] - an
Go, (D) | = gy ar) | (- TR gyace oa(r) ux (r)
are both solutions of the BdG equations with energies equal
whereas the Neumann boundary condition gives in absolute value and opposite in sign. However, this sym-
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metry is lost here because the Andreev wave functions cor-
responding to the BdG wave functiofS3) live on different

guasiclassical trajectories.

Close to the surface, we have to remember again that each

PHYSICAL REVIEW B 63 214506

dke(0")
Ao(X)ZBS:f A V(6,6")

0" e(—m,0) 2w

X gr(N)h19:(T)) 285

line contributes to the pairing amplitude at a given point for

two directions §; see Fig. 5. We will, therefore, have to
distinguish between the label of the trajectdty,; and the

label for the pairing amplitud®. Specifically,

a
Oou= 0 for 96( — 5’0 and
a
Oou=—7—6 for 06( -, = E) , (C9

so the contribution to the pairing amplitude from the ponent of the pairing potential from the occupied bound

—y-moving bound states will be

X X
— _— * P
<l//l* o(1) lr//T 0(r)>ZBS_ f( Oouts Cosaout) 9 ( Gout: COS@out)
ol
1 % %os0/9 | ¥ Cose
for
0 70
€ _E! (CS)
and
() —o()h19(r)) zBS
o —— X g*le. -2
~ 1 Pou ™ Cosg,, 9 | Tou T Cosayy,
= 0 X * 0 _X )
= =0, 55sa/9 % coso
for

T
96( — T, — E) . (C6)

Substituting Egqs(C5) and (C6) into Eq. (3.6) gives

d kF( aéut)
= - V 0, 6! _ |
j Opu€(—/2,0) 2 (0,05, (—1)

2
V(0= 7= O (—1)

x| f

!
‘9out7 ,

out

2

x|f| 6 , (Cv)

! —
out»

cosa(',u)

where
V(0,050 = = Vs + V(0. O
and we used Ed3.15. The contribution to the-wave com-

states therefore is

2

dkF(géut) X
Ay(X) =ivf b ] VA
s\ ZBS | s| Héute(—wlz,o) 2 out COSB(’)ut
2
+ | f atl)ut’_—, (C8)
COSO

For the calculation of thd-wave component oh g5, we
will assume that the unperturbéq is antisymmetric around
its vertical node

Ag,p(r)=—Ag,—7—4(r). (C9

PresumablyA arises from an antisymmetric interaction

Vd(0,0’)=—Vd(0,—7T—0’). (C].O)
Along the quasiclassical trajectory, E€9) means
Ad(avp):_Ad(gl_p)- (Cll)
which, by Eq.(3.9), implies
f(6.p)|?=1f(6,—p)|?. (C12

Thus, under these assumptions,

dkF(ac,Jut)
Ay o(X =(—i f ———[V4(86,6!
d,6(X)zes=(—1) )ni0) 2T [Va( 0,854
2
f 9’ L
" cose!

+Vy(0,— 7= 65,01 =0.

(C13
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