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We improve the theoretical estimates of the critical exponents for the three-dimenXignahiversality
class. We finda=—0.01468), y=1.31715), »=0.67155(27), n=0.038Qq4), B=0.348%2), and &
=4.78(02). Weobserve a discrepancy with the most recent experimental estimatgetiof discrepancy calls
for further theoretical and experimental investigations. Our results are obtained by combining Monte Carlo
simulations based on finite-size scaling methods, and high-temperature expansions. Two improved models
(with suppressed leading scaling correctjioa® selected by Monte Carlo computation. The critical exponents
are computed from high-temperature expansions specialized to these improved models. By the same technique
we determine the coefficients of the small-magnetization expansion of the equation of state. This expansion is
extended analytically by means of approximate parametric representations, obtaining the equation of state in
the whole critical region. We also determine the specific-heat amplitude ratio.
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I. INTRODUCTION ical calculations. We mention the best available theoretical
estimates ofa: «=-—0.0150(17) obtained using high-

In the theory of critical phenomena continuous phase trantemperaturgHT) expansion techniquésg = —0.0169(33)
sitions can be classified into universality classes determineffom Monte Carlo(MC) simulations using finite-size scaling
only by a few properties characterizing the system, such ag=S9 technique$,and a= —0.011(4) from field theory.
the space dimensionality, the range of interaction, the num- The aim of this paper is to substantially improve the pre-
ber of components of the order parameter, and the symmetrgision of the theoretical estimates of the critical exponents,
Renormalization-grougRG) theory predicts that, within a reaching an accuracy comparable with the experimental one.
given universality class, critical exponents and scaling funcor this purpose, we will consider what we call “improved”
tions are identical for all systems. Here we consider thanodels. They are characterized by the fact that the leading
three-dimensionaKY universality class, which is character- correction to scaling is absent in the expansion of any ob-
ized by a two-component order paramet®f2) symmetry, servable near the critical point. Moreover, we will combine
and short-range interactions. MC simulations and analyses of HT series. We exploit the

The superfluid transition ofHe, whose order parameter effectiveness of MC simulations to determine, by using FSS
is related to the complex quantum amplitude of the heliunmtechniques, the critical temperature and the parameters of the
atoms, belongs to the three-dimension@Y¥ universality —improved Hamiltonians, and the effectiveness of HT meth-
class. It provides an exceptional opportunity for an experi-ods to determine the critical exponents for improved models,
mental test of the RG predictions, essentially because of thespecially when a precise estimateRyfis available. Such a
weakness of the singularity in the compressibility of thecombination of lattice techniques allows us to substantially
fluid, of the purity of the samples, and of the possibility of improve earlier theoretical estimates. We indeed obtain
performing the experiments, such as the Space Shuttle ex-
periment reported in Ref. 1, in a microgravity environment,
thereby reducing the gravity-induced broadening of the tran-
sition. Because of these favorable conditions, the specific
heat of liquid helium was accurately measured to within awhere, as we will show, the error estimate should be rather
few nanoKelvin from thex transition, i.e., very deep in the conservative. The theoretical uncertainty has been substan-
critical region, where the scaling corrections to the expectedially reduced. We observe a disagreement with the experi-
power-law behavior are small. The experimental low-mental value(2). The point to be clarified is whether this
temperature data for the specific heat were analyzed assumisagreement is significant, or it is due to an underestimate of

a=—0.01468), 3)

ing the behavior fot=(T—T.)/T.—0 to be the errors reported by us and/or in the experimental papers.
- R We think that this discrepancy calls for further theoretical
Cu(t)=AJt|"*(1+C[t|*+Dt)+B (1) and experimental investigations. A new-generation experi-
with A=1/22 This provided the estimaté* ment in microgravity environment is curr.ently in progréss;
it should clarify the issue from the experimental side.
a=-0.01056389). 2) In numerical(HT or MC) determinations of critical quan-

tities, nonanalytic corrections to the leading scaling behavior
This result represents a challenge for theorists because itepresent one of the major sources of systematic errors. Con-
uncertainty is substantially smaller than those of the theoretsidering, for instance, the magnetic susceptibility, we have
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x=Ct Y(1+agt+agt2+---+ay tA+a 2+ the improved HT(IHT) series allows us to substantially in-
A crease the precision and the reliability of the results, espe-
taptt2t-- ). 4 cially of the critical exponents. As we shall see, in order to

determine the critical exponents, the extrapolatiorBtoof

The leading exponen and the correction-to-scaling expo- the IHT series, using biased integral approximants, is more
nentsA,A,, ..., areuniversal, while the amplitudeS and  effective than the extrapolatidn— of the FSS MC data.
a; ; are nonuniversal. For three-dimensioial systems, the Moreover, we consider two improved Hamiltonians. The
value of the leading correction-to-scaling exponentAis comparison of the results from these two models provides a
~0.53%7 and the value of the subleading exponentis  check of the errors we quote. The estimates obtained for the
~2A° two models are in very good agreement, providing support

The leading nonanalytic correctiott is the dominant for our error estimates and thus confirming our claim that the
source of systematic errors in MC and HT studies. Indeed, igystematic error due to confluent singularities is largely re-
MC simulations the presence of this slowly-decreasing ternfluced when analyzing IHT expansions.
requires careful extrapolations, increasing the errors in the We consider a simple cubigsc lattice, two-component
final estimates. In HT studies, nonanalytic corrections introvector fields ¢,=(¢{",#{?), and two classes of models
duce large and dangerously undetectable systematic devidepending on an irrelevant parameter: the lattice model
tions in the results of the analyses. Integral approxint@nts and the dynamically diluteXY (dd-XY) model.
(see, e.g., Ref. 11 for a revigwan in principle cope with an  The Hamiltonian of thep* lattice model is given by
asymptotic behavior of the forr4); however, in practice,
they are not very effective when applied to the series of - - - -
moderate length available today. Analyses meant to effec- H¢4:_'3<X2y> Px: byt ; [¢>2<+)‘(¢>%_1)2]' (5
tively allow for the leading confluent corrections are based
on biased approximants, where the valueBgfand the first ~ The ddXY model is defined by the Hamiltonian
nonanalytic exponenfA are introduced as external inputs
(see, e.g., Refs. 12—17Nonetheless, their precision is still __ A 72
not comparable to that of the experimental reg@); see, Ttad B(%) Ox by sz: P ©
e.g., Ref. 14. The use of improved Hamiltonians, i.e., model
for which the leading correction to scaling vanisHes ;
=0 in Eq.(4)],*® can lead to an additional improvement of 1
the precision, even without a substantial extension of the HTdu($,) =d¢{") d¢?) [ 8(pM) 8(p{?) + S o(1- | (ZX|)},
series.

The use of improved Hamiltonians was first suggested in (@)
the early 1980s by Chen, Fisher, and NicRekho deter- and the partition function
mined improved Hamiltonians in the Ising universality class.
The crux of the method is a precise determination of the iy
optimal value of the parameter appearing in the Hamiltonian. f I_X[ dul¢y) e 7, ®
One can determine it from the analysis of HT series, but in
this case it is obtained with a relatively large etfd???and  In the limit D—« the standarXY lattice model is recov-
the final results do not significantly improve the estimatesered. We expect the phase transition to become of first order
obtained from standard analyses using biased approximant®r D<Dy;. Dy; vanishes in the mean-field approximation,

Recentlf'"2=%it has been realized that FSS MC simu- while an improved mean-field calculation based on the “star
lations are very effective in determining the optimal value ofapproximation” of Ref. 29 give®;<0, so that we expect
the parameter, obtaining precise estimates for several moddl,;<0.
in the Ising andX Y universality classes. The same holds true  The parametera in H 44 andD in Hyy can be tuned to
of models in theD(3) andO(4) universality classes.Cor-  obtain improved Hamiltonians. We performed an accurate
respondingly, the analysis of FSS results obtained in theseumerical study, which provided estimates\df, D*, of the
simulations has provided significantly more precise estimateiverse critical temperaturg, for several values af andD,
of critical exponents. An additional improvement of the pre-as well as estimates of the critical exponents. Using the
cision of the results has been obtained by combining imiinked-cluster expansion technique, we computed HT expan-
proved Hamiltonians and HT methods. Indeed, we alreadgions of several quantities for the two theories. We analyzed
showed that the analysis of HT series for improvedthem using the MC results fax*, D* and 3., obtaining
model$'*"?8 provides estimates that are substantially morevery accurate results, e.g., E§).
precise than those obtained from the extrapolation of the MC We mention that thep* lattice modelX 4+ has already
data alone. been considered in MC and HT studig&?® With respect to

In this paper we consider again te¥ case. The progress those works, we have performed additional MC simulations
with respect to the studies of Refs. 5,28 is essentially due tto improve the estimate of* and determine the values of
the improved knowledge g8. and of the parameters of the B.. Moreover, we present a new analysis of the IHT series
improved Hamiltonians obtained by means of a large-scal¢hat uses the MC estimates Bf to bias the approximants,
MC simulation. The use of this information in the analysis ofleading to a substantial improvement of the results.

%y the local measure
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TABLE |. Estimates of the critical exponents. See text for the explanation of the symbols in the second column. We indicate with an
asterisk {) the estimates that have been obtained using the hyperscaling relatiar=3v or the scaling relationy=(2— 7) v.

Reference Method y v 7 @
This work MCHIHT 1.317715) 0.67155%27) 0.038Q4) —0.0146(8Y)
This work MC 1.317710* 0.67165) 0.038Q5) —0.0148(15%
Reference 52000 IHT 1.317911) 0.6716655) 0.03813) —0.0150(17%
Reference 311999 HT —0.0149), —0.022(6)
Reference 141997 HT, sc 1.3283) 0.6752) 0.03717)* —0.025(6)
HT, bcc 1.32»3) 0.6742) 0.0397)* —0.022(6)
Reference §1999 MC 1.319024)* 0.672311) 0.03814) —0.0169(33¥
Reference 321999 MC 1.31512)* 0.6693598) 0.0355) —0.008(17¥
Reference 331996 MC 1.3163)* 0.672113) 0.042425) —0.0163(39%
Reference 341995 MC 0.672417) —0.017(5)
Reference 351993 MC 1.30714)* 0.6627) 0.0266) —0.014(21y
Reference 361990 MC 1.3165) 0.6702) 0.03614)* —0.010(6)
Reference 3@92001) FT d=3 exp 1.31648) 0.67047) 0.03498) —0.0112(21)
Reference 711998 FT d=3 exp 1.316220) 0.670315) 0.035425) —0.011(4)
Reference 11998 FT e-exp 1.311070) 0.668035) 0.038a50) —0.00411)
Reference 1,31996 ‘He 0.6701913)* —0.01056(38)
Reference 371993 “He 0.670%6) —0.0115(18¥
Reference 381992 “He 0.67084) —0.0124(125
Reference 391984 “He 0.67174) —0.0151(12§
Reference 4@1983 “He 0.67099)* —0.0127(26)

In Table I we report our results for the critical exponents,analytic propertiegGriffiths’ analyticity), and take into ac-
i.e., our best estimates obtained by combining MC and IHTcount the Goldstone singularities at the coexistence curve.
techniques—they are denoted by MCGiT—together with From our approximate representations of the equation of
the results obtained from the analysis of the MC data alonestate we derive estimates of several universal amplitude ra-
There, we also compare them with the most precise expertios. The specific-heat amplitude ratio is particularly interest-
mental and theoretical estimates that have been obtained ing since it can be compared with experimental results. We
the latest years. When only or « is reported, we used the obtain A*/A~=1.0644), which is not in agreement with
hyperscaling relation 2 =3 to obtain the missing expo- the experimental resui™/A~=1.0442 of Refs. 1 and 3. It
nent. Analogously, if onlyy or vy is quoted, the second ex- is easy to trace the origin of the discrepancy. In our method
ponent was obtained using the scaling relatien(2— ) v; as well as in the analysis of the experimental data, the esti-
in this case the uncertainty was obtained using themate ofA™/A~ is strongly correlated with the estimate @f
independent-error formula. The results we quote have beetnherefore, the discrepancy we observe for this ratio is a di-
obtained from the analysis of the HT series of ¥1¢ model  rect consequence of the difference in the estimates. of
(HT), by Monte Carlo simulations or by field-theof¥T) Finally, we also discuss the two-point function of the or-
methods. The HT results of Ref. 14 have been obtained analer parameter, i.e., the structure factor, which is relevant in
lyzing the 21st-order HT expansions for the standXd  scattering experiments with magnetic materials.
model on the sc and the bcc lattice, using biased approxi- The paper is organized as follows. In Sec. Il we present
mants and taking3. and A from other approaches, such as our Monte Carlo results. After reviewing the basic RG ideas
MC and FT. The FT results of Refs. 7,30 have been derivethehind our methods, we present a determination of the im-
by resumming the known terms of the fixed-dimensmn proved Hamiltonians and of the critical exponents. We dis-
expansion: the3 function is known to six-loop ordét while  cuss the several possible sources of systematic errors, and
the critical-exponent series are known to seven Id8ghe  show that the approximate improved models we use have
estimates from the& expansion have been obtained resum-significantly smaller corrections than the standdMmodel.
ming the availableO(e®) series™44 A careful analysis shows that the leading scaling corrections
We also present a detailed study of the equation of statere reduced at least by a factor of 20. We also comput®
We first consider its expansion in terms of the magnetizatiorhigh precision for several values af and D; this is an im-
in the high-temperature phase. The coefficients of this exparportant ingredient in our IHT analyses. Details on the algo-
sion are directly related to the zero-momentuwpoint  rithm appear in Appendix A.
renormalized couplings, which were determined by analyz- In Sec. Ill we present our results for the critical exponents
ing their IHT expansion. These results are used to construaibtained from the analysis of the IHT series. The equation of
parametric representations of the critical equation of statstate is discussed in Sec. V. After reviewing the basic defi-
that are valid in the whole critical region, satisfy the correctnitions and properties, we present the coefficients of the
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small-magnetization expansion, again computed from IHTpresent work we used a version of the algorithm that avoids

series. We discuss parametric representations that providee flip to antiperiodic boundary conditions. For a detailed

approximations of the equation of state in the whole criticaldiscussion see Appendix A 2.

region and compute several universal amplitude ratios. In

Sec. V we analyze the two-point function of the order pa- o

rameter. Details of the IHT analyses are reported in Appen- B. Summary of finite-size methods

dix B. The definitions of the amplitude ratios we compute |n this subsection we discuss the FSS methods we used to

can be found in Appendix C. compute the inverse critical temperature, the couplings
andD* at which leading corrections to scaling vanish, and

Il. MONTE CARLO SIMULATIONS the critical exponents and 7.

A. The lattice and the quantities that were measured ]
. . . 3 o 1. Summary of basic RG results
We simulated sc lattices of sizé=L>, with periodic

boundary conditions in all three directions. In addition to ~ The following discussion of FSS is based on the RG
elementary quantities such as the energy, the magnetizatiofi€ory of critical phenomena. We first summarize some basic
the specific heat or the magnetic susceptibility, we computeé€sults. In the three-dimensiondly universality class there
so-called phenomenological couplings, i.e., quantities that, i§Xist two relevant scaling fields; anduy,, associated with
the critical limit, are invariant under RG transformations. the temperature and the applied field, respectively, with RG
They are well suited to locate the inverse critical temperatur€xponentsy, andyy, . Moreover, there are several irrelevant
B.. They also play a crucial role in the determination of thescaling fields that we denote oy, i=3, with RG exponents
improved Hamiltonians. 0>y3>ys>ys>- - -.

In the present study we consider four phenomenological The RG exponenys;= —w of the leading irrelevant scal-
couplings. We use the Binder cumulddt, and the similar ing field u; has been computed by various methods. The
quantityUs, defined by analysis of field-theoretical perturbative expansiogiaes

©=0.802(18) € expansioh and w=0.789(11) =3 ex-
((m?)hy pansion. In the present work we find a result far that is
= (9  consistent with, although less accurate than, the field-

(m?) theoretical predictions. We also mention the estimate

whererﬁleEXJ)X is the magnetization of the system. We =0.85(7) that was obtainddy the “scaling-field” method,

also consider the second-moment correlation length divide@ Particular implementation of Wilson's “exact” renormal-
by the linear extension of the latticgg/L. The second- 'Zation group. Although it provides an estimate forthat is
moment correlation length is defined by less precise than those obtained from perturbative field-

theoretic methods, it has the advantage of giving predictions
\/ﬁ for the irrelevant RG exponents beyogg. Ref. 9 predicts
o=\ —————, (100 Ya=—1.77(7) andys=—1.79(7) (/421 andy,,,in their no-
4 sin(w/L)? tation) for the XY universality class. Note that, at present,
there is no independent check for these results. Certainly it

Uy;

where would be worthwhile to perform a Monte Carlo renormaliza-

1 o2 tion group study. With the computational power available

X= V< ( > X) > (11)  today, it might be feasible to resolve subleading correction

X exponents with a high-statistics simulation.
is the magnetic susceptibility and In the case ofJ,, Ug, andé&,,4/L we expect a correction
caused by the analytic background of the magnetic suscepti-
1 27Xq) - |, bility. This should lead to corrections witjy= —(2— )~
F= V2 g eXp bx 12 _1.962. We also expect corrections due to the violation of

rotational invariance by the lattice. For ti&Y universality

is the Fourier transform of the correlation function at theclass, Ref. 47 predictg,= —2.021). Note that the numeri-
lowest nonzero momentum. cal values ofyg andy; are virtually identical and should

The list is completed by the ratid,/Z, of the partition  hence be indistinguishable in the analysis of our numerical
function Z, of a system with antiperiodic boundary condi- data.
tions in one of the three directions and the partition function We wish now to discuss the FSS behavior of a phenom-
Z, of a system with periodic boundary conditions in all di- enological couplingR; in the standard RG framework, we
rections. Antiperiodic boundary conditions in the first direc- can write it as a function of the thermal scaling fieidand
tion are obtained by changing sign to the tefipp, of the  of the irrelevant scaling fieldsu;. For L—o and B
Hamiltonian for links(xy) that connect the boundaries, i.e., — B¢(\), we have
for x=(L,X2,X3) andy=(1x,,X3). The ratioZ,/Z, can be
measured by using the boundary-flip algorithm, which was
applied to the three-dimensional Ising model in Ref. 45 and R(L,B,\)=ro(u Lyt)+2 r(ulY) ulYi+---, (13)
generalized to th&Y model in Ref. 46. As in Ref. 26, in the T oLt BRI ' ’

214503-4



CRITICAL BEHAVIOR OF THE THREE-DIMENSIONA. . ..

where we have neglected terms that are quadratic in the scal-
ing fields of the irrelevant operators, i.e., corrections of order
L?s~L 16 Note that we include here the corrections due to

the analytic backgroungwith exponent. ~Yé~L7"?). In the
case ofU,, Ug, andé,ng/L (but notZ,/Zp), in Eq. (13) we
have also discarded terms of ordett™ Zh~| ~35,

The functionsry(z) andr;(z) are smooth and finite for
z—0, whileu;(B,\) andu;(8,\) are smooth functions g8
and\. Note that, by definitionu,(8,\)~B— B.(\). In the
limit t—0 andu,LYt~(B8— B,)LY"—0, we can further ex-
pand Eq.(13), obtaining

R(L,B\)=R*+c(B,\) LY+ ¢i(B,\) LY

+O[(B— Be)’LY L3 tLYYs],  (14)

where R* =r,(0) is the value at the critical point of the
phenomenological coupling.

2. Locating B.

We locate the inverse critical temperatye by using
Binder's cumulant crossing method. This method can be a|

couplings that we computed.

In its simplest version, one considers a phenomenological

coupling R(B,L) for two lattice sizesL andL’'=bL. The
intersectionByss Of the two curvesR(B,L) and R(B,L")
provides an estimate gB.. The convergence rate of this

estimateB.,sstoward the true value can be computed in the

RG framework.
By definition, B¢ ess at fixedb, L, and\ is given by the
solution of the equation

R(L,B,N)=R(bL,8,\). (15

Using Eq. (13), one immediately verifies thgB.ss CON-
verges tog, faster thanL Yt Thus, forL—, we can use
Eqg. (14) and rewrite Eq(15) as

C(B.N) LY+ ca(BN) L3~cy(B,\) (bL)™
+c3(B.\) (bL)Ys.  (16)

Then, we approximate,(8,\)~c; (B—B.) and c;(B,\)
~Ci(B:,\) =c;. Remember that,(3.,\)=0 by definition.
Using these approximations we can explicitly solve Bd)
with respect tgB, obtaining

C3(1—b¥3) LY
_—+

¢, (bYt—1) L% (a7

Beross= Be T

The leading corrections vanish like Y™ Ys~L =23 Insert-
iNg BerossiNto Eg. (15), we obtain

bYt—pYs

bY—1

which shows that the leading corrections vanish like.
Given a precise estimate &*, one can locates, from
simulations of a single lattice size, solving

R*+

LY3+ ..., (18

Reross™

PHYSICAL REVIEW B 63 214503

R(L.B)=R",

where the corrections vanish like Yts,

(19

3. Locating\* and D*

In order to compute the valug* for which the leading
corrections to scaling vanish, we use two phenomenological
couplingsR; andR,. First, we defineB;(L,\) by

Ri(L,Bs,N) =Ry, (20

where R ¢ is a fixed value, which we can choose freely
within the appropriate range. It is easy to see {BAtL,\)
—B:(\) asL—oe. Indeed, using Eq.13), we have

r13(zf)
r1ozs)

Bi(LN) = Be(N)=ziL Vi~ Ug(Be)LY3 Vit

(21)

where we have usegl>|ys| andz; is defined as the solution
of ry o(zs) =Ry ;. We have added a subscript 1 to make ex-
plicit that all scaling functions refer t&;. If Ry ;~R*, we
can expand the previous formula, obtaining

p_
plied in conjunction with any of the four phenomenological

R, .—R*
Br(L )~ Bo(N) +———
Cit

LS8 —vevs (22)
Cat

Notice that forR; ;=R} the convergence is faster, and thus
we will always takeR;~R} . Next we define

R(L,\)=Ry(L, B¢ \). (23)
ForL— andR;¢~R} , we have
o C! !
R(L,\) =R+~ (Ry—R¥)+ >, (cz,i—ﬁcl,i)w
Cyt | Cyit
=R*+ > ¢(\) LY, (24)

which shows that the rate of convergence is determined by
LYs,

In order to find\*, we need to compute the value)ofor
whichc;(\) =0. We can obtain approximate estimates f
by solving the equation

R(L,\)=R(bL,\). (25)
Using the approximatiofi24) one finds
N erose= e A (26)
cz 1-b}
where?é is the derivative 053 with respect tan, and
Roon R Gt L (27)
1-b}

In principle, any pairR;, R, of phenomenological cou-
plings can be used in this analysis. However, in practice we

214503-5
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wish to see a good signal for the corrections. This means, in | et us consider a second phenomenological coupRng
particular, that incy €, 3~ C; €1 3 the two terms should add  =R(L, ;,\), which, forL—, behaves as

up rather than cancel. Of course, also the corrections due to

the subleading scaling fields should be small. R=R* +€3 = (31)

4. The critical exponents The universality of the correction amplitudes implies that the

Typically, the thermal RG exponegt=1/v is computed ~ ratio B/cs is the same for thep® model and the daY
from the FSS of the derivative of a phenomenological coumodel and is independent af and D. Therefore, this ratio

pling R with respect tos at 8. Using Eq.(13) one obtains can be computed in models that have large corrections to
scaling, e.g., in the standaklY model. Then, we can com-
pute a bound omB for the (approximately improved model

from the known ratioB/c5 and a bound fOEg. This proce-
dure was proposed in Ref. 23.

JR

9B Bc=ra<0> Lyt+i§3 r{(0) uj(Be) LYV

) ! Yid ...
+i:23 ri(0) ui (Be) LYit-- . (28) C. The simulations

We simulated thep* and the ddXY model using the
wall-cluster update algorithm of Ref. 23 combined with a
local update scheme. The update algorithm is discussed in

Hence, the leading corrections scale witfs. However, in
improved models in whiclkiz(8;) =0, the leading correction
is of orderLY4. Note that corrections proportional td'3™ %t .
~L 23 are still present even if the model is improved. In Appendix A. -, .

Ref. 23, for the spin-1 Ising model, an effort was made to Most of the analyses need the quantities as functiongs of

eliminate also this correction by taking the derivative with Swlg/;:uzsnLeggeo?tatésg%i,e\;\(/?it;g:ldTP]gtresft)orree \?v"e Igiddlvr:?)ltjilse
respect to an optimal linear combination @fandD instead ‘ ’

of B. Here we make no attempt in this direction, since cor-the rg\{veighting method_..lnstea.ld, Wwe determined the Taylor
recti;)ns of ordell.—23 are subleading with res eé:t to those coefficients of all quantities of interest up to the third order
of orderLYa~| - 18 g P in (B— Bs), wherepy is the value ofg at which the simula-

In practice it is difficult to compute the derivative At tion was performed. We checked carefully that this is suffi-

. ) ) L cient for our purpose.
sincep. is only known numerically, and therefore, it is more purp

. . Most of our simulations were performedat2.1 in the
convenient to evaluateR/ap at B¢ [see EQ(20)]. This pro- . "¢ thep* model and aD=1.03 in the case of the dd-

cedure has been used before, e.g., in Ref. 33. In this case, _ . . *
(28) still holds, although with different amplitudes that de—%zgn;ieih); _r:S.iltlsfc;[gi i?tg“gee”;ﬁna‘r’; :r‘f;yiisagfa .

pend on the particular choice of the valueRjf. d btained I latti ddit ; q
The exponent; is computed from the finite-size behavior ata obtained on small lattices. In addition, we performe
simulations atA=2.0 and 2.2 for the¢* model andD

of the magnetic susceptibility, i.e., =0.9 and 1.2 for the dékY model in order to obtain an
x| g xL2 7, (29) estimate of the derivative of the amplitude of the leading
P corrections to scaling with respect xoandD, respectively.

Also, here the corrections are of ordefe for generic mod- We also performed simulations of the standrd model in

els, and of ordet.Y4 for improved ones. order to estimate the effect of the leading corrections to scal-
ing on the estimates of the critical exponents obtained from
5. Estimating errors caused by residual leading the FSS analysis.

scaling corrections

In Ref. 25, the authors pointed out that with the method D- Bc and the critical value of phenomenological couplings

discussed in Sec. I B 3, the leading corrections are only ap- |n a first step of the analysis we comput®d and the

proximately eliminated, so that there is still a small |eadinginverse critical temperaturg, at A\=2.1 andD=1.03, re-
scaling correction that causes a systematic error in the estépectively.

mates of, e.g., the critical exponents. The most naive solution Fgr\ =2.1 andD = 1.03 we simulated sc lattices of linear
to this problem consists in adding a tero @ to the fit  gjzel from 4 to 16 and.=18, 20, 22, 24, 26, 28, 32, 36,

ansatz, i.e., in considering 40, 48, 56, 64, and 80. For all lattice sizes smaller than
=24 we performed TOmeasurements. For larger lattices, we
@ —A Wy - collected approximately 0measurements fok ~40, and
=ALY(1+BL ). (30 - . .
B B approximately 16 for the largest lattices with.~80. A

measurement was performed after an update cycle as dis-
However, by adding such a correction term, the precision ofussed in Appendix A 1.
the result decreases, so that there is little advantage in using Instead of computingR* and g, from two lattice sizes as
(approximately improved models. A more sophisticated ap- discussed in Sec. Il B 2, we perform a fit with the ansatz
proach is based on the fact that ratios of leading correction
amplitudes are univers#f. R*=R(L,.), (32
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TABLE Il. Joint fits of theZ,/Z, data of the¢* model and the d&kY model with the ansat#33). All

lattice sized <L <L are used in the fit. In column four we give the results of the fitsGoof the ¢*

model at\=2.1 and in column five the results f@. of the ddXY model atD =1.03. Finally, in column six

we give the results for the fixed-point valug,(/Z,)*. The final results and an estimate of the systematic

errors are given in the text.

L min L max x*/DOF Be, A=2.1 B., D=1.03 @alZp)*

11 80 3.25 0.509153%23) 0.5628001435) 0.31979425)
13 80 2.48 0.509152835) 0.5627993839) 0.31988829)
15 80 1.06 0.509151929) 0.562798341) 0.32001935)
20 80 0.91 0.509151426) 0.5627978449) 0.32009852)
24 80 0.89 0.509151083) 0.5627974(56) 0.32016272)
28 80 0.73 0.509150783) 0.5627974766) 0.32019%102
32 80 0.85 0.5091506%5) 0.5627974682) 0.320208149
10 28 3.47 0.509157833) 0.562804689) 0.31952432)
14 40 1.78 0.509153348) 0.5627998(53) 0.31987739)

Our final result is obtained from the fit with,,;,,=28 and
Lmax=80. The systematic error is estimated by comparing
this result with that obtained using,,;,= 10 andL .= 28.
The systematic error ofi. is estimated by the difference of
the results from the two fits divided by Z:8-1, where 2.8
is the scale factor between the two intervals ane-y;
~2.3. Estimating the systematic error by comparison with
where B, is the 8 at which the simulation was performed, the intervall ,j,= 14 andL,,=40 leads to a similar result.
andR, d,, d,, andd; are determined in the MC simulation. We obtain 8,=0.509 150/ (6)[ 7] for the ¢* model at\

First, we perform fits for the two models separately. We=2.1 and8.,=0.562 79%(7)[ 7] for the ddXY model at
obtain consistent results f&* for all four choices of phe- D=1.03. In parentheses we give the statistical error and in
nomenological couplings. In order to obtain more precisehe brackets the systematic one. Our final result for the criti-
results for3. andR*, we perform joint fits of both models. cal ratio of partition functions is4,/Z,)* =0.3202(1)5].
Here, we exploit universality by requiring thR takes the Here the systematic error is computed by dividing the differ-
same value in both models. Hence, such fits have three freence of the results of the two fits by 2%8-1.
parametersR* and the two values oB;. In the following We repeat this analysis faf,,y, U4 and Ug. The final
we shall only report the results of such joint fits. results are summarized in Table Ill.

Let us discuss in some detail the results R=Z,/Z, Next we computes. at additional values of andD. For
that are summarized in Table Il. In each fit, we take all datahis purpose we simulated lattices of slze 96 and compute
with  Ljy<L<Lq. into account. ForL.,~80, the B using Eq.(19). We use onlyR=Z,/Z, with the above-
x?/degree of freedomDOF) becomes approximately one reported estimate Z4,1Z,)* =0.320Z6). The results are
starting from L,,=15. However, we should note that a summarized in Table IV.

X?/DOF close to one does not imply that the systematic er-
rors due to corrections that are not taken into account in the
ansatz are negligible.

whereR* and 3. are free parameters. We comp®ReéL, 3)
using its third-order Taylor expansion

R* :R(Lvﬁs)+d1(L1ﬁs)(/BC_Bs)+% dZ(L’ﬂS)(ﬁC—BS)Z
+ % dS(LaIBs)(IBC_Bs)3a (33)

E. Eliminating leading corrections to scaling

In this subsection we determing andD* . For this pur-
ose, we compute the correction amplitucie for various
TABLE Ill. Summary of the final results fos, and R*. In P P plitucte
column one the choice of the phenomenological coupkhdgs
listed. In columns two and three we report our estimategofor is obtained from Eq(19) usingZ,/Z, as phenomenological cou-
the ¢* model atA=2.1 and the d&XY model atD=1.03, and  pling. In parentheses we give the statistical error and in brackets the

finally in column four the result for the fixed-point value of the error due to the error onZ(,/Z,)*. “stat” gives (the number of

TABLE IV. Estimates of8, from simulations of 98 lattices.3,

phenomenological coupling. Note that the estimateg@of based measurements000.
on the four different choices d®, are consistent within error bars.
Model \; D stat Be
— — *

R Be. A=21 p., D=103 R &* 2.07 545 0.50938536)[8]
Z,1Z, 0.50915076)[ 7] 0.562797%7)[7] 0.32021)[5] @* 2.2 510 0.50833666)[8]
EonglL 0.50915077)[ 3] 0.56279717)[ 2] 0.59251)[2] dd-XY 0.9 720 0.57645825)[9]
U, 0.509149%9)[10] 0.562797210)[11]  1.243G1)[5] dd-XY 1.02 1,215 0.56379722)[9]
Us 0.50914989)[15] 0.562797610)[15] 1.7505%3)[25] dd-XY 1.2 665 0.54703717)[9]
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TABLE V. The quantity (5|D:0.9—§|D:1_2) L%8for the ddXY model. In the top row we give the choice
of Ry andR,. For instancel, at (Z,/Z,); means thaR,;=Z,/Z, andR,=U,.

L U4 at (Zalzp)f U6 at (Za/Zp)f U4 at (§2nd/|-)f UG at (§2nd/|-)f Za/Zp at (§2nd/|-)f UG atU4,f

6 0.036%2) 0.12978) 0.04093) 0.14429) 0.00692) 0.00441)
8 0.03693) 0.131210) 0.04213) 0.148911) 0.00813) 0.00442)
10 0.03684) 0.131113) 0.04194) 0.148314) 0.00784) 0.00452)
12 0.03724) 0.132415) 0.04275) 0.151117) 0.00844) 0.0045%3)
16 0.03606) 0.128620) 0.04117) 0.146@22) 0.00785) 0.00444)
choices ofR; andR, for the ¢* model at\ = 2.1 and the dd- In order to see whether we can predict the expoagnte

XY model atD=1.03. In order to convert these results into perform a fit with the ansatz
estimates o\ * andD*, we determine the derivative of the

correction amplitudec; with respect ton (resp.D) at A AR=Kk L ® (35)
=2.1 (resp.D=1.03). We also simulated thé¢Y model in '
order to obtain estimates of the residual systematic error due.
to the leading corrections to scaling. Note that, in the follow-""
ing, we always use as the valueRf; in Eq. (20) the esti-
mates ofR* given in Table III.

with k and w as free parameters. Frod, at Z,/Z,
=0.3202 we geto=0.795(9) withy?/DOF=0.66, using aII
available data. This value is certainly consistent with field-
theoretical results. Note, however, that we would like to vary
the range of the fit in order to estimate systematic errors. For
this purpose more data at larger valued aire needed.

For this purpose we simulated the ¥d& model atD In the following we need estimates 0t;/dD|p_4 gzand
=0.9 andD=1.2 on lattices of siz& =5, 6, 7, 8, 9, 10, of the corresponding quantity for th&* model, in order to
12, and 16. Thep” model was simulated at=2.0 and\  determineD* and\*. We approximated this derivative by a

=2.2 on lattices of siz& =3, 4, 5, 6, 7, 8, ggd 9. In the finite difference betweed = 0.9 andD = 1.2. The coefficient
case of the ddkY model we performed 10010° measure- C3 is determined by fixingn=0.8. Our final result is the

ments for each parameter set. In the case ofdfienodel average of the estimates fhr=10,12 and 16 in Table V. In

25?thhoa ;nlfasyremen;s_; were pelrfotrhmega¥ del. si a similar way we proceed in the case of #& model, aver-
n the foflowing we discuss only the model, since aging theL=28,9 results. The results are summarized in

the analysis of thes” data is performed analogously. Table VI. We make no attempt to estimate error bars.

In Refs. 6,26 it was observed that subleading correctlongources of error are the finite difference My subleading
to scaling cancel to a large extent when one considers th(‘?orrectlons the error om, and the statistical errors. Note,

difference ofR at close-by values ok. In order to get an however, that these errors are small enough to be neglected
idea of the size of the corrections, we report in Table V. ijn the following.

1. Derivative of the correction amplitude with respect oor D

ARL*®=(R|p_0o—Rlp_12 L*® (34) 2. Finding R*, A* and D*

For this purpose we fit our results &=1.03 and\

for various choices oR; andR,. We see that this quantity — 21 with the ansatz

varies little withL in all cases. In the case 8&,=2,/Z, and
R,=U,, ARL%®is already constant within error bars start- o
ing fromL=5. =R*+c3L "9, (36)

In order to computes, see Eq(24), we needAR RL%8to
be as flat as poss|b|e and espec|al|R |arge Compared to where we fixw=0.8. We convinced ourselves that Settmg
the statistical errors. Looking at Table V, we see that the twg= 0.75 or 0.85 changes the final results very little compared
combinations Ry = &g/, Rp=Z,/Z, and Ry=U,, R, with statistical errors and errors caused by subleading cor-
=Ug are unfavorable compared W|th the other four combi-rections. We perform joint fits, by requmr@* to be equal
nations. in both models.

TABLE VI. Estimates ford?sldD atD=1.03(dd-XY) andda,/d)\ atA=2.1 (¢%). In the first row we
give the combination oR; andR,.

Model U, at (Za/Zp)f Ug at (Za/Zp)f Uy, at (éong/L)¢ Ug at (éong/L)¢
dd-XY —0.122 —0.435 —0.140 —0.495
o* —0.0490 —0.175 —0.0546 —0.194
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TABLE VII. Results of fits with the ansatB6). The coefficients, are converted int®* and\* using
Eq. (37). All data with L ,j,.<L <L, are fitted.

L rmin L max x%/DOF R* N* D*
Rit=(ZalZ,)1=0.3202 andR,=U,.
8 80 1.55 1.24302) 2.0774) 1.0202)
12 80 1.01 1.24304) 2.0718) 1.0223)
16 80 1.07 1.24308) 2.05714) 1.0195)
20 80 1.12 1.24308) 2.07322 1.0289)
8 40 1.62 1.24308) 2.0774) 1.0202)
10 40 1.02 1.24308) 2.0706) 1.0202)
Rit=(ZalZ,)1=0.3202 andR,=Us.
8 80 2.15 1.7515@) 2.0064) 0.9902)
12 80 1.15 1.75128.3) 2.0187) 1.0003)
16 80 1.22 1.751209) 2.01713 1.0035)
20 80 1.19 1.750827) 2.04321) 1.0158)
8 40 2.21 1.75160) 2.0044) 0.9892)
10 40 1.24 1.751431) 2.0106) 0.9942)
Ry¢=(£2ng/L)1=0.5925 andR,=U,.
8 80 4.01 1.24353) 1.9774) 0.98712)
12 80 1.19 1.24322) 2.0318) 1.01Q3)
16 80 1.29 1.24318) 2.04914) 1.0195)
20 80 1.13 1.24299) 2.08323) 1.0359)
8 40 4.19 1.24353) 1.9734) 0.9852)
10 40 1.49 1.24338) 2.0066) 1.0002)
Ry = (€2ng/L)1=0.5925 andR,=Us.
8 80 6.62 1.753230) 1.9154) 0.9612)
12 80 1.55 1.751894) 1.9857) 0.9913)
16 80 1.51 1.751422) 2.01313 1.0045)
20 80 1.24 1.750782) 2.05522) 1.0248)
8 40 7.02 1.75338.0) 1.91%4) 0.9592)
10 40 2.21 1.752482) 1.9536) 0.9782)

The results of the fits for four different combinations of | ;. =20 andL,,=80, including the statistical error, and
R; andR; are given in Table VII, where we have already therefore should take into proper account all systematic er-
translated the results far; into an estimate oh* andD*, rors.

by using From these results, it is also possible to obtain a conser-
o vative upper bound on the coefficieaf for A=2.1 andD
. —[dcg =1.03. Indeed, using the estimatesNdf andD* and their
=2.1-¢3 an (37 errors, we can obtain the upper bouns1-A*[<AN

=0.08 and|1.03-D*|<AD=0.04. Then, we can estimate
for the ¢* model and the analogous formula for the X-- [cs(A=2.1)|<AN(dcz/d\), and analogously |cs(D

model, and the results of Table VI. »
! . —1.03)<AD(dcs/dD). For Uy, at (Za/Z,);=0.3202, us-
A x2/DOF close to 1 is reached far,,;,=10 andL .y ing the|results of Tabie VI, we have -« !

=80 in the case o, at (Z,/Zp);=0.3202. This has to be

compared withL ;,=11, 11, and 14 in the case &f; at

(Za1Z,)¢=0.3202, Uy at (§2na/L)¢=0.5925, andUg at |ca(A=2.1)|<0.004, |c3(D=1.03|<0.005. (39
(§2nd/|-)f= 0.5925.

This indicates that, at (Z,/Z,){=0.3202 has the least
bias due to subleading corrections to scaling. Therefore we
take as our final resuk* =2.07 andD* =1.02 that is the We simulated the standaklY model on lattices with lin-
result ofL i,=12 andL,,,= 80 in Table VII. Starting from ear sizes =6, 8, 10, 12, 16, 18, 20, 22, 24, 28, 32, 48, 56,
L min= 20 all results fon* andD* are within 2o of our final ~ and 64 a{B,=0.454 165, which is the estimate B8f of Ref.
result quoted above. 33. Here, we used only the wall-cluster algorithm for the

Our final results ara* =2.07(5) andD* =1.023). The update. In one cycle we performed 12 wall-cluster updates.
error bars are such to include all results in Table VII with For L<16 we performed 10 cycles. For lattice sizes 16

3. Corrections to scaling in the standard XY model
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TABLE VIII. Corrections to scaling in the standaXlY model

PHYSICAL REVIEW B 63 214503

TABLE IX. Fit results for the critical exponent obtained from

for R with R,=U, andR, (= (Z,/Z,);=0.3202. We use the ansatz the ansat239). In all casesp is fixed by ,/Z;);=0.3202. We
(36) with w=0.8 fixed.

analyze thep* model at\ = 2.1, the ddXY model atD =1.03, and

the standarX'Y model. We consider the slope of the Binder cumu-

L min L rmax x*/DOF R* Es lantU, an_d of the ratio of partition fgnctionzalzp. We included
all data withL pin<L <L . into the fit.
12 64 1.78 1.2432) —0.1120(7)
16 64 0.73 1.243Q) —0.1087(13) L min L max X%/ DOF v
20 64 0.38 1.2422) —0.1048(22) 5* model: derivative olJ
24 64 0.24 1.242@) —0.1083(34) . 80 7 4 0.671682)
12 32 2.32 1.2433) —0.1124(8) 9 80 0:79 0:671&&5)
11 80 0.85 0.671819)
. 16 80 0.98 0.671934)
<L =64, we spent roughly the same amount of CPU time for 4* model: derivative oz, /Z
each lattice size. Fdr =64 the statistics is 2.2810° mea-  , 80 3.01 e 0.67049)
surements. ' )
. . . .16 80 1.61 0.67104
We determine the amplitude of the corrections to scallng20 80 104 0 671%3
for R with R;;=(Z,/Z,);=0.3202 andR,=U,. Other 80 0.54 0.671982)
choices lead to similar results. We fit our numerical results dd-XY model: derivative otU
with the ansata36), where we fixw=0.8. The results are 7 80 ' 206 4 0.672582)
given in Table VIII. 9 80 1'13 0.6721(65)
Note that the results fdR* are consistent with the result ;4 80 1.19 0.672029)
obtained from the joint fit of the two improved models. In ¢ 80 0.97 0.671581)

Table VIl we obtained, e.g.R*=1.24301(8) withL p,
=20 andL = 80. 12
Corrections to scaling are clearly visible, see Fig. 1. Fromyg

the fit with L,,=20 and L,,=64 we obtain c; 20
=—0.1048(22). For the following discussion no estimate of24

the possible systematic errors of is needed. Comparing

with Eq. (38), we see that in théapproximately improved 12
models the amplitude of the leading correction to scaling isL6
reduced by a factor of at least 20. Note, that even if thiso
result was obtained by considering a specific observable,

at fixedZ,/Z,, the universality of the ratios of the sublead- 12
ing corrections implies the same reduction for any quantity1g
In the following section we will use this result to estimate the g
systematic error on our results for the critical exponents. 54

dd-XY model: derivative oZ,/Z,

80 1.89 0.6701(®)
80 1.60 0.6704@4)
80 0.79 0.670921)
80 0.80 0.671130)
XY model: derivative olU,

64 4.48 0.6645@8)
64 1.30 0.666182)
64 0.54 0.667483)

XY model: derivative ofZ,/Z,

64 1.33 0.672633)
64 0.69 0.67300Q9)
64 0.30 0.673280)
64 0.25 0.673241)

15—

F. Critical exponents from finite-size scaling

123 —

124 0.0_0 ..... <

PoLO
23ule}

AT}

1.22

FIG. 1. Corrections to scaling for the ad¥ model atD =0.9,

1.03, and 1.2, and for the standaxdY model. We plotﬁ with
Ry=(Z4/Z,)¢=0.3202 andR,=U, as a function of the lattice

10 20
L

size. The dotted lines should only guide the eye.

As discussed in Sec. Il B, we may use the derivative of
phenomenological couplings taken @t in order to deter-
miney, . Given the four phenomenological couplings that we
have implemented, this amounts to 16 possible combina-
tions. In the following we will restrict the discussion to two
choices: in both cases we fi& by (Z,/Z,);=0.3202. Atg;
we consider the derivative of the Binder cumulant and the
derivative ofZ,/Z,. In Table IX we summarize the results
of the fits with the ansatz

JR v
B |5, =cL (39)

for the ¢* model at\=2.1, the ddXY model atD=1.03,
and the standar®Y model.

We see that for the santg,;, andL ,,,, the statistical error
on the estimate of obtained from the derivative &,/Z, is
smaller than that obtained from the derivativelbf. On the
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other hand, for the two improved models, scaling corrections TABLE X. Results for the critical exponenf from the FSS of

seem to be larger fOZa/Zp than forU,. the magnetic susceptibility. Fits with ansai0). All data with
In the case 0%,/Z,, for both improved models, the re- Lmin<L<Lmaxare taken into account.

sult of the fit forv is increasing with increasing,,;,. In the

case of the Binder cumulant, it is increasing wiitfy, for the ~ Lmin L max Xx*/DOF 7
¢* model and decreasing for the &¥ model. The fact that 4* model
scaling corrections affect the two quantities and the two im-, 80 2 44 0.0370)
proved models in a quite different way suggests that systems, 80 0.73 0.0373)
atic errors in the estimate of can be estimated from the .o 80 0.94 0.037%)
variation of the fits presented in Table IX. 3 80 0.41 0.0378)
As our final result we quote=0.6716(5) that is consis- ddXY mo&el '
tent with the two results fronZ,/Z, at L =24 and with 20 80 188 0.0370)
the results fromJ, at L ,,=16. oy 80 1'19 0'037(3)
In the case of the standakdy model, the derivative df , ' '
requires a much larger,,, to reach a smal{y?/ DOF than for 28 80 1.52 0.0372)
the improved models. For the derivative 2f/Z, instead a 32 80 1.24 0.037@)
X’/DOF~1 is obtained for arL,,, similar to that of the XY model
20 64 7.92 0.0322)

improved models. Note that the result feffrom the deriva-

tive of U, for L,,,=16 is by several standard deviations 24 64 1.81 0.0342)
smaller than our final result from the improved models,28 64 0.27 0.034@)
while the result from the derivative &,/Z, is by several 32 64 0.06 0.0342)

standard deviations larger. Again we have a nice example
that ay?/DOF~1 does not imply that systematic errors due
to corrections that have not been taken into account in the f®y subleading corrections. Therefore, we consider 0.0375,
are small. which is the result of the fit with. ,,;,=24 in the * model,
Remember that in improved models the leading correcas a lower bound of).
tions to scaling are suppressed at least by a factor of 20 with Finally, we perform a fit that takes into account the ana-
respect to the standaXlY model. Since the range of lattice lytic background of the magnetic susceptibility. In Ref. 6, it
sizes is roughly the same for theY model and for the im- was shown that the addition of a constant term to @@)
proved models, we can just divide the deviation of X%  leads to a smalf*/DOF already for smalL ;< 10. Similar
results fromy=0.6716(5) by 20 to obtain an estimate of the results have been found for the Ising universality class. This
possible systematic error due to the residual leading corre@nsatz is not completely correct, since it does not take into
tions to scaling. For the derivative &,/Z, we end up with ~account corrections proportional t*"Y with y~—1.8,
0.0001 and for the derivative &, with 0.0003. which formally are more important than the analytic back-
We think that these errors are already taken into accouriround. However, the difference between these exponents is
by the spread of the results ferfrom the derivatives o), ~ small, and a four-parameter fit is problematic. Therefore, we
and Z,/Z, and the two improved models. Therefore, we decided to fit our data with the ansatz
keep our estimate=0.6716(5) with its previous error bar.
Next we compute the exponent For this purpose we Xlg=cL? 7+bL¥, (42)
study the finite-size behavior of the magnetic susceptibility f
at B;. In the following we fix B¢ by Rys=(Za/Zy)¢

=0.3202. Other choices fd®, ; give similar results. with « fixed to 0.0 and to 0.2. The difference between the
In a first attempt we fit the data of the two improved results of the fits with the two values of will give an
models and the standalY model to the simple ansatz estimate of the systematic error of the procedure. Results for

all three models are summarized in Table XI.

The valuey?/DOF is close to one fok ;=8 for the ¢*
model andL ;=10 for the ddXY model, and it does not
allow to discriminate between the two choices wof The
The results are summarized in Table X. values ofy are rather stable ds,,;, is varied, although there

For all three models rather large valued gf,, are needed is a slight trend toward smaller results lag;, increases; the
in order to reach g?/DOF close to one. In all cases the trend seems to be stronger fer=0.2. Moreover, the results
estimate ofy is increasing with increasing,,,. ForL,,, from the two models are in good agreement.
=24 the result fory from the standarcKY model is lower The fits for theXY model also give a goog?/DOF for
than that of the improved models by an amount of approxii ,,=12; the value ofy is, however, much too small, and
mately 0.0030. Therefore, the systematic error due to leadinghows an increasing trend. We can estimate from the differ-
corrections on the results obtained in the improved modelence between th&Y model and the improved models at
should be smaller than 0.003020.000 15. Given this tiny L,,;,=16 that the error on the value ef obtained from im-
effect, it seems plausible that, for the improved models, theoroved models, induced by residual leading scaling correc-
increase of the estimate af with increasingL i, is caused tions, is smaller than 0.003/200.00 015.

Xlg=cL?7". (40)
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TABLE XI. Results for the critical exponeng from the FSS of We analyze the HT series by means of integral approxi-
the magnetic susceptibility. Fits with ansail). All data with  mants(IA’s) of first, second, and third order. The most pre-
Lmin<L<Lpax are taken into account. cise results are obtain biasing the valugggf using its MC

estimate. We consider several sets of biased IA’s, and for
Fit with «=0.0 Fit with <=0.2 each of them we obtain estimates of the critical exponents.
Lmn  Lmax x°/DOF 7 x?/DOF 7 These results are reported in Appendix B 2. All sets of IA’s
#* model give substantially consistent results. Moreover, the results
8 80 072 0.0386) 116 0.03911) are also stable with respect to the number of terms of the

series, so that there is no need to perform problematic ex-

12 28 g'sg 8'8§£§ é‘éi g'ggggi trapolatipns in the number of terms in order_ to obtain the
14 80 0'84 0'03&@ 0'92 0.03882) final estimates. The error due to the uncertainty\dnand
' ' ' ' D* is estimated by considering the variation of the results
16 80 0.72 0.0382) 0.73 0.038(2) when changing the values af andD.
20 80 0.88 0.0388) 0.88 0.038%4) Using the intermediate results reported in Appendix B 2 ,
dd-XY model we obtain the estimates of and v shown in Table XII. We
8 80 1.85 0.038(@) 3.06 0.03901) report ony and v three contributions to the error. The num-
10 80 095  0.0384) 115 0.0388) ber within parentheses is basically the spread of the approxi-
12 80 0.99  0.0384) 1.04  0.03861) mants at the central estimate »f (D*) using the central
14 80 0.94  0.038®) 103  0038®2)  value of B,. The number within brackets is related to the
16 80 0.85 0.0382) 114 0.03842) uncertainty on the value @, and is estimated by varying,
20 80 0.90 0.038%) 0.90 0.038%4) within one error bar ak =\* or D=D* fixed. The number
XY model within braces is related to the uncertainty »h or D*, and
12 64 0.64 0.035@) is obtained by computing the variation of the estimates when
16 64 0.48 0.0353) A* or D* vary within one error bar, changing correspond-
20 64 0.37 0.0358) ingly the values ofB.. The sum of these three numbers

should be a conservative estimate of the total error.
_ ~ We determine our final estimates by combining the results
From the results for the improved models reported infor the two improved Hamiltonians: we take the weighted

Table XI, one would be tempted to take=0.0384 as the average of the two results, with an uncertainty given by the
final result. However, as we can see from the results for thegmallest of the two errors. We obtain forand v

XY model, we should not trust blindly the gogd/DOF of

these fits. Taking _into account the decreasi_ng trend of the y=1.31775), (42)
values of» for the improved models, we assign the conser-

vative upper boundpy<0.0385. By combining it with the

lower bound obtained from ansaf0), we obtain our final v=0.6715%27), (43
result 0.0375%7<0.0385, i.e.,n=0.038(5).

and by the hyperscaling relatian=2—3v

lll. HIGH-TEMPERATURE DETERMINATION

OF CRITICAL EXPONENTS a=—0.0148). (44)

In this section we report the results of our analyses of thé&Consistent results, although significantly less precese-
HT series. The details are reported in Appendix B. proximately by a factor of g are obtained from the IHT

We computey and v from the analysis of the HT expan- analysis without biasing. (see Appendix B 2
sion to O(B?9) of the magnetic susceptibility and of the  From the results fory and », we can obtainy by the
second-moment correlation length. In Appendix B 2 we re-scaling relationy=(2— n)v. This gives »=0.0379(10),
port the details and many intermediate results so that theshere the error is estimated by considering the errorg on
reader can judge the quality of our results without the nee@nd » as independent, which is of course not true. We can
of performing his own analysis. This should give an idea ofobtain an estimate of with a smaller, yet reliable, error by
the reliability of our estimates and of the meaning of theapplying the so-called critical-point renormalization method
errors we quote, which depend on many somewhat arbitrarfCPRM) (see, e.g., Refs. 10 and references therainthe
choices and are therefore partially subjective. series ofy and 2. The results are reported in Table XII. We

TABLE XII. Estimates of the critical exponents obtained from the analysis of the HT expansion of the
improved ¢* lattice Hamiltonian and déY model.

Y 14 n o
#* Hamiltonian 1.3178A0[27}{15}  0.671615)[121{10}  0.038a3){1} —0.0148(8)
dd-XY model 1.3174@0)[221{18  0.6714510[101{15  0.03806)}{2}  —0.0144(10)
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report two contributions to the error op as discussed foy  with F(z)=0A/dz. Because of Griffiths’ analyticityF(M)
andv; the uncertainty o8, does not contribute in this case. has also a regular expansion in powerst éor |M| fixed.
Our final estimate is Therefore,F(z) has the large- expansion

=0.038@4). 45
7 ) 49 F(2)=2°>, Fiz ¥, (54)
Moreover, using the scaling relations we obtain k=0
5 The functionF (z) is defined only fot>0, and thus, in order

7 =4.7802) (46) to describe the low-temperature regiorn0, one should per-

5:
1+n form an analytic continuation in the compleglane?®*°The
coexistence curve corresponds to a compgx|z|e”'"?
v B such thatF(zy) =0. Therefore, the behavior near the coex-
p= §(1+ 7)=0.348%2), (47 istence curve is related to the behaviorqfz) in the neigh-

h h has b , db idering th borhood ofz,. The constants and|z| can be expressed in
where the error o has been estimated by considering the g g of yniversal amplitude ratios, by using the asymptotic

errors ofv and » as independent. behavior of the magnetization along the critical isotherm and

at the coexistence curve:
IV. THE CRITICAL EQUATION OF STATE
(C+)(3b‘*l)/2

A. General properties of the critical equation of state F*= , (55)
of XY models 0 (8Ce)(—C oD
We begin by introducing the Gibbs free-energy density I2o/2= R} =—C; B2(C*)? (56)
ol — ™ — 4 ]
. here the critical amplitud defined in Appendix C
H)= —loa Z(H 4 where the critical amplitudes are defined in Appendix C.
G(H) VOg (H), “8) The functionF(z) provides in principle the full equation

of state. However, it has the shortcoming that temperatures
t<0 correspond to imaginary values of the argument. It is
thus more convenient to use a variable proportional to
t|M|~ Y2, which is real for all values of. Therefore, it is

convenient to rewrite the equation of state in a different

and the related Helmholtz free-energy density
FIM)=M-H-G(H), (49)

whereV is the volumeM the magnetization densityj the
magnetic field, and the dependence on the temperature {8
understood in the notation. In the critical limit, the Helm- - - _ _
holtz free energy obeys a general scaling law. Indeedt for H=M[M[**f(x), x=tM|" Y, (57)
—0, [M|—0, andt|M|~# fixed, it can be written as wheref(x) is a universal scaling function normalized in such
. a way thatf(—1)=0 andf(0)=1. The two functions(x)
AF=F(M)— Fred M) ~t>" “F(M[t"F), (50 andF(z) are clearly related:

where fffg(M) is a regular background contribution. The 2 F(2)=Fsf(x), z=|zo|x *. (58)
function F is universal apart from trivial rescalings.

The Helmholtz free energy is analytic outside the criticallt i €asy to reexpress the results we have obtaineé fay
point and the coexistence curvriffiths’ analyticity).  in terms ofx. The regularity ofF(z) for z—0 implies a
Therefore, it has a regular expansion in powerghf for  largex expansion of the form
t>0 fixed, which we write in the forft?

m2 f(x)=x7>, fox 28, (59)
AF=—A(2), (51) n=0
94 The coefficientsf,; can be expressed in terms iof, using

wherem=1/¢, ¢ is the second-moment correlation length, Eq. (52). In particular, using Eq955) and(56),
andg, is the zero-momentum four-point coupling. Note that .
z<|M|t~# for t—0, thus the expansion aF(|M|t~#) for fo=R, ", (60)
IM|t™#—0 is equivalent to the smatl-expansion oA(2):  \here R, is defined in Appendix C. Griffiths’ analyticity

1 1 1 implies thatf (x) is regglar forx>—1. .

A(Z)= =22+ —Z2%+ D, ——r,7% (52) We want now to discuss the behavior tfx) for x—

2 4 =3 (2j)1 —1, i.e., at the coexistence curve. General arguments predict

that at the coexistence curve the transverse and longitudinal

Correspondingly, we obtain for the equation of state magnetic susceptibilities behave respectively as

. AFAM) M M M
= — B9 _ _ -12
H prv oc|M|t F(z), (53 X1= YL=—-ocH % (62
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TABLE XIll. Estimates ofg,, rg, rg, andr, obtained from the analysis of the HT series for the two
improved Hamiltonians. Final results will be reported in Table XIV.

J4 3 g 10
¢* Hamiltonian 21.186) 1.95520) 1.3715 —13(7)
dd-X'Y model 21.187) 1.94815) 1.4710) —11(14)

In particular the singularity ofy, for t<0 andH—0 is (51) and (52). Indeed, these quantities can be expressed in
governed by the zero-temperature infrared-stable Gaussidarms of zero-momentumj2correlation functions and of the

fixed point>>~>3leading to the prediction correlation length.
Details of the analysis of the HT series@f, rg, g, and
f(x)~cs (1+x)2 for x— —1. (62) 1o are reported in Appendix B 3. We obtained the results

shown in Table XIII. In Table XIV we report our final esti-
The nature of the corrections to the behaviép) is less ~Mmates(denoted by IHJ, obtained by combining the results
clear. It has been conjectur8i® using essentially Of the two models; we also compare them with the estimates
e-expansion arguments, that, fpe 0, i.e., near the coexist- OPtained using other approaches. Note that our final estimate
ence curvep=1+x has a double expansion in powers of Of 94 is slightly larger than the result reported in Ref.(88e
y=HM % and y(d—2)/2_ This implies that in three dimen- Table XIV). The difference is essentially due to the different
sionsf(x) can be expanded in powerswoft the coexistence analysis employed here, which should be more reliable. This

curve. On the other hand, an explicit calculaffoio next-to- ~ POInt is further discussed in Appendix B 3.
leading order in the N expansion shows the presence of

logarithms in the asymptotic expansion fii) for x— —1. C. Parametric representations of the equation of state
However, they are suppressed by an additional factar’of | order to obtain a representation of the equation of state
compared to the leading behavi@?2). that is valid in the whole critical region, we need to extend

. . 4 . . .
It should be noted that for the transition in "He the  apalytically the expansiof62) to the low-temperature region
order parameter is related to the complex quantum amplitude~q. For this purpose, we use parametric representations

of helium atoms. Therefore, the “magnetic” field is not ex- that implement the expected scaling and analytic properties.
perimentally accessible, and the function appearing in Edrhey can be obtained by writifity 3

(57) cannot be measured directly in experiments. The physi-

cally interesting quantities are universal amplitude ratios of M =myRPm(6),

guantities formally defined at zero external field, such as

Uo,=A"/A", for which accurate experimental estimates t=R(1—6?),

have been obtained. On the other hand, the scaling equation

of state(57) is physically relevant for planar ferromagnetic H=hoRA%h(0), (63)
systems.

wherehy andmg are normalization constants. The variaBle

is nonnegative and measures the distance from the critical

point in the ¢,H) plane, while the variabl® parametrizes

the displacement along the lines of constanthe functions
Using HT methods, it is possible to compute the first co-m(68) andh(#) are odd and regular &=0 and atf=1. The

efficients g,; and r,; appearing in the expansion of the constantsm, and h, can be chosen so than(¢)=#6

Helmholtz free energy and of the equation of state, see Eqs: O(6°) andh(6) =6+ O(6°). The smallest positive zero of

B. Small-M expansion of the equation of state in the high-
temperature phase

TABLE XIV. Estimates ofg,, rg, g, andr g obtained using the following methods: analyses of im-
proved HT expansiondHT), of HT expansions for the standakly model (HT), of fixed-dimension per-
turbative expansionsdE 3 g-exp), and of e expansions §-exp). A more precise determination of, will
be reported in Table XV.

IHT HT d=3 g-exp. e-exp.

04 21.146) 21.289) (Ref. 16 21.165) (Ref. 9 21.54) (Refs. 15,57
21.056) (Ref. 28 21.3417) (Ref. 15 21.11(Ref. 42

Ie 1.95Q15) 2.2(6) (Ref. 58 1.967 (Ref. 59 1.96912) (Refs. 57,60
1.951(14) (Ref. 28

rg 1.4410 1.641(Ref. 59 2.1(9) (Refs. 57,60
1.369) (Ref. 28

10 —13(7)
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TABLE XV. Universal ratios of amplitudes computed using=—0.01468), »=0.038q4), rg
=1.950(15) andg=1.44(10),r o= —13(7). The nurbers of the first four lines correspond to central values
of the input parameters. The errors reported are only related to the uncertainty on the input parameters.
Numbers marked with an asterisk are inputs, not predictions.

[(A)n=1rg,rg] [(B)n=1;rg,rg] [(A)n=2;rg,rg,R] [(B)N=2;rg,rg,r1q

p 2.22974 2.06825 2.23092 2.04
% 3.88383 2.93941 3.88686 2.70
c1 —0.0260296 0.0758028 —0.0265055 0.11
c 0 0 0.0002163 0.01
ATIA” 1.0624) 1.0644) 1.0623) 1.0625)
R/ 0.3553) 0.3501) 0.3552) 0.3545)
Re 0.1276) 0.1152) 0.1262) 0.1198)
R, 1.357) 1.502) *1.356 1.4%8)
Ry 7.502) 7.928) 7.496) 7.83)
Fo 0.03023) 0.030G2) 0.03022) 0.03024)
M0 -10(1) —11.9(1.4) -10(1) *—13(7)
c 4(2) 52(20) 4(2)

h(#), which should satisfyg,>1, corresponds to the coex- where p is a free parametéf:*° In the exact parametric
istence curve, i.e., td<T. andH—0. The singular part of equation the value gf may be chosen arbitrarily but, as we

the free energy is then given by shall see, when adopting an approximation procedure the de-
. pendence onp is not eliminated. In our approximation
AF=homeR*"“g(6), (64 scheme we will fixp to ensure the presence of the Goldstone
whereg(6) is the solution of the first-order differential equa- SiNgularities at the coexistence curve, i.e., the asymptotic be-
tion havior (68). Since z=p #+0(#°), expandingm(6) and

h(6) in (odd powers of6,
(1-6%)9'(0)+2(2—a)0g(0)=[(1— 6)m’ (0)

+286m(6)1h( ) (65) m(6) = 0+n§l Man 162",

that is regular ag=1. In particular, the raticA*/A~ of the
specific-heat amplitudes in the two phases can be derived by

using the relation h(6)=6+ 21 hons 1677, (71
n=
0 . . .
A+/A‘=(03—1)2‘“£_ (66) and using Eqgs(69) and (70), one can find the relations
9(6o) amongp, My, 1, honyq and the coefficients,, of the ex-

The parametric representation satisfies the requirements ansion ofA(2). _ _
regularity of the equation of state. Singularities can appear Following Ref. 28, we construct approximate polynomial
only at the coexistence cur¢due, for example, to the loga- Parametric representations that have the expected singular
rithms discussed in Ref. 56i.e., for 6= 6,. Notice that the ~behavior at the coexistence cutve®***(Goldstone singular-

mapping (63) is not invertible when its Jacobian vanishes, ity) and match the known smatl-expansion(52). We will

which occurs when not repeat here in full the discussion of Ref. 28, which
should be consulted for more details. We consider two dis-
Y(6)=(1—6>m’'(8)+2B6m(6)=0. (67)  tinct schemes of approximation. In the first one, which we

denote by(A), h(6) is a polynomial of fifth order with a

Thus, parametric representations based on the magfBig double zero atd,, and m(6) a polynomial of order (1

are acceptable only i< 6, where 6, is the smallest posi-

tive zero of the functiory (6). One may easily verify that the +2n):
asymptotic behavio(62) is reproduced simply by requiring n
that scheme(A): m(6)=6| 1+ >, ciezi),
=1
h(0)~(6,— 6)% for 6— 6,. (68)
The functionsm(8) andh(6) are related td-(z) by h(6)=6(1— 62 03)2. (72
z=pm(6)(1—6?) "~ (69)  In the second scheme, denoted (By, we set
F(z(6))=p(1—6%) P°h(0), (70 scheme(B): m(6)=40,
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FIG. 2. The scaling functiofr(z).

FIG. 3. The scaling functiofi(x). The MC curve is taken from
Ref. 64.

h(6)=6(1— 6% 63)?

n
1+ 2 ciazi). 73 N

i=1 quires an analytic continuation, which turns out to be effec-
Here h(6) is a polynomial of order 5 2n with a double tively performed by the approximate parametric representa-

zero até,. Note that for scheméB) tions we have considered. o _
Larger differences between the approximations given by
Y(0)=1—6*+2B62, (74) schemegA) and(B) for n=1 appear in the scaling function

f(x), which is shown in Fig. 3, especially in the regian

scheme(A), we note that the analyticity of the thermody- <0, V_VhiCh cor.responds to<0 andz imaginf':\ry. Note that
namic quantities fof6|< 6, requires the polynomial func- the sizeable differences for>0 are essentially caused by

tion Y(8) not to have complex zeroes closer to the originthe normalization of (x), which i_s_ performed at the coe>.<ist—
than 6. ence curvex=—1 and at the critical poink=0, by requir-

In both schemes the paramegeis fixed by the require- ing f(—=1)=0 and f(0)=1. Although the large« region
ment(68), while 6, and then coefficientsc; are determined corresponds to small values nfthe difference between the
by matching the smalt-expansion ofF (z). This means that, two approximate schemes does not decrease in the ¥arge-
for both schemes, in order to fix tmecoefficientsc; we need  limit due to their slightly different estimates &, (see Table
to know n+1 values ofryj, i.€.,rg, ... lgion. AS input  XV). Indeed,f(x)~R;lx7for large values ok. In Fig. 3 we
parameters for our analysis we consider the estimates oladso plot the curve obtained in Ref. 64 by fitting the MC
tained in this paper, i.e.q¢=—0.0148), =0.03804), data.
re=1.950(15),rg=1.44(10),r o= —13(7). In Table XV we report the results for some universal ra-

Before presenting our results, we mention that the equatios of amplitudes. The notations are explained in Appendix
tion of state has been recently studied by MC simulations o, The reported errors refer only to the uncertainty of the
the standarKY model, obtaining a fairly accurate determi- input parameters and do not include the systematic error of
nation of the scaling functiofi(x).** In particular we men-  the procedure, which may be determined by comparing the
tion the precise result obtained for the universal amplitudgesults of the various approximations. Comparing the results
ratio R, (see Appendix C for its definition i.e., R, for R, andc with the MC estimates of Ref. 64, we observe
=1.35d4), and for theconstanty, i.e.,c;=2.857),where  that the parametrizatiofA) is in better agreement with the
¢t is defined in Eq(62). In the following we will take into  numerical data. This is also evident from Fig. 3.
account these results to find the best parametrization within We also consider both schemes with: 2. If we user 1,
our schemesA) and (B). to determine the next coefficient, schemeA) is not par-

By using the few known coefficients,j—essentiallyrg  ticularly useful because it is very sensitive ttg,, whose
andrg because the estimate ofy is not very precise—one estimate has a relatively large erf8iThis fact was already
obtains reasonably precise approximations of the scalingbserved in Ref. 28, and explained by considerations on the
function F(z) for all positive values o, i.e., for the whole  more complicated analytic structure. One may instead deter-
HT phase up ta=0. In Fig. 2 we show the curves obtained minec, by using the MC resuR, = 1.35§4). Theestimates
in schemegA) and(B) with n=1 that use the coefficientg  of the universal amplitude ratios obtained in this way are
andrg. The two approximations df (z) are practically in-  presented in Table XV. They are very close to tel case,
distinguishable. This fact is not trivial since the smakx-  providing additional support to our estimates and error bars.
pansion has a finite convergence radius that is expected to I8theme(B) is less sensitive to,, and provides reasonable
|zo|=(R;)Y2~2.7. Therefore, the determination B{z) on  results if we user;, to fix the coefficientc, in h(#) and
the whole positive real axis from its smallexpansion re- impose the consistency conditiofy<6,. The results are

independently ofn, so that §,=(1—28) . Concerning
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TABLE XVI. Estimates ofA*/A™ obtained in different approaches.

IHT-PR d=3 exp. e-exp. Experiments
1.0624) 1.0564) (Ref. 66 1.02913) (Ref. 67 1.0442(Refs. 1,3,4
1.0553) (Ref. 28 1.06713) (Ref. 39

1.0584) (Ref. 40
1.0887) (Ref. 68

shown in Table XV, where one observes that they get closer V. THE TWO-POINT FUNCTION OF THE ORDER
to the estimates obtained by using scheig PARAMETER IN THE HIGH-TEMPERATURE

As already mentioned, the most interesting quantity is the PHASE
specific-heat amplitude ratid™/A~, because its estimate

can be compared with experimental results. Our results fo{; The critical behavior of the two-point correlation function
A*/A™ are quite stable and insensitive to the different ap- ) OT the order parameter Is relevant to the description of
cattering phenomena with light and neutron sources.

proximations of the equation of state we have considerecf " . o .
essentially because they are obtained from the funci(a), shcl)l;]/v;h: Sr:;vgg;a!ségﬁ]rllon’bgz\}i\g? %‘:}'?:]Lugcggz(l)%
which is not very sensitive to the local behavior of the equa- 9 ' .

tion of state, see E(65). From Table XV we obtain the and ¢ Is the second-moment correlation lengthith y
, 09). =k?/m? fixed, we can writé&'

estimate
9(y)=x/G(k). (77)
ATIAT=1.0624). (75 . o
The functiong(y) has a regular expansion in powersyof
In Table XVI we compare our resultlenoted by IHT-PIR * _
with other available estimates. Note that there is a marginal g(y)=1+y+ > cy'. (78
i=2

disagreement with the result of Ref. 28, i.eA"/A~

=1.0593), which was obtained using the same method butrwo other quantities characterize the low-momentum behav-

with different input parametersi= —0.012 85(38)(the ex-  jor of g(y): they are given by the critical limit of the ratios
perimental estimate of Ref)17=0.038%3), rg=1.962),

rg=1.40(15) and ;o= —13(7). This discrepancy is mainly Su=Miadm?,  S;=xM?/Zgyp, (79
due to the different value o, since the raticA*/A~ is
particularly sensitive to it. This fact is also suggested by th
phenomenological relatiShAT/A~~1—4a.

We observe a discrepancy with the experimental result 7
reported in Refs. 1 and 3A*/A~=1.0442. However, we G(X)~ — 0 o~ Mgag|, (80)
note that in the analysis of the experimental data of Ref. 1 4mlx|
the estimate oA "/A~ was strongly correlated to that of,  |f y, is the negative zero aj(y) that is closest to the origin,
indeedA /A~ was obtained by analyzing the high- and low- then, in the critical limit, Su=-Yo and S,
temperature data with fixed to the value obtained from the = 5g(y) /ay|y=yo_

low-temperature data alone. Therefore the discrepancy for The coefficientss, can be related to the critical limit of

A"/A" that we observe is again a direct consequence of thg, ) viate dimensionless ratios of spherical moments of
differences in the. estimates of . .. G(x) and can be computed by analyzing the corresponding
As suggested in Ref. 69, one may consider the quantity HT series in thep* and in the ddX Y models, which we have

calculated to 20th ordéf:*” We report only our final esti-
1-A"/A” mates of c, and cj, i.e., C,=—3.99(4)x10°% c;
Ra= o ' (76) =0.09(1)x 10 4, and the boundic,| <10 ®. As already ob-
served in Ref. 47, the coefficients show the pattern

vheremg,, (the mass gap of the thegrgnd Z,, determine
the long-distance behavior of the two-point function:

which is expected to be much less sensitive to the value of
Our analysis leads to the estimae=4.3(2), which com-
pares very well with the experimental estim&g~4.19 that  Therefore, a few terms of the expansiorgg¥) in powers of
can be obtained from Refs. 1,3 and with the field-theoreticay provide a good approximation in a relatively large region
result reported in Ref. 70, i.eR,=4.39(26). aroundy=0, larger thany|=<1. This is in agreement with
For the other universal amplitude ratios we quote as outhe theoretical expectation that the singularityg6y) closest
final estimates the results obtained by using sche@evith to the origin is the three-particle cuisee, e.g., Refs.
n=1: Rg =0.3553), R.=0.12716), R,=1.357), R,  47,72,73.If thisis the case, the convergence radiysf the
=7.5(2),Fy=0.03023), c{=4(2). These results are sub- Taylor expansion ofj(y) is rq=9Sy . Since, as we shall
stantially equivalent to those reported in Ref. 28. see,Sy~1, at least asymptotically we should hawg ;~

lci|<|ci_q|<- - <]cy <1 for i=3. (81
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—3¢;. This behavior can be checked explicitly in the laige- small gain in performance was found with respect to the

limit of the N-vector modef'’ single-cluster algorithm in simulations of the three-
Assuming the patteri81), we may estimates,, andS,  dimensional Ising model.
from c,, c3, andc,. We obtain Note that, since the cluster update does not change the
modulus of the field, identical routines can be used for the
Su=1+Cp—Cy+Cy+2C5+- - (82 ¢* model and for the déY model.
For the ¢* model we sweep through the lattice with a
S,=1-2c,+ 3C3—4C4—ZC§+ I (83 local updating scheme. At each site we perform a Metropolis

. - I ..., step, followed by an over-relaxation step and by a second
where the ellipses indicate contributions that are neg"g'blq\/letropolis step. In particular, the over-relaxation step is
with respect toc,. In Ref. 47 the relation82) has been

iven b
confirmed by a direct analysis of the HT seriesSgf. From g y
Egs. (82 and (83) we obtain S,=0.999592(6) andS; L (J, g, ) j,
=1.000825(15). These results improve those obtained in by=by—2 - azn i) (A1)

Ref. 47 by using HT methods in the standa{¥d model and
field-theoretic methods, such as tlkeexpansion and the
fixed-dimensiorng expansion.

For large values ofy, the functiong(y) follows the
Fisher-Langer la#

where ¢, ==, . by and nnk) is the set of the nearest
neighbors ofk. Note that this step takes very little CPU time.
Therefore, it is likely that its benefit out-balances the CPU
cost.
A A A The local update of the d¥-Y model is achieved by per-
gly) t=— |14 —2 43 ) (84)  forming at each site one Metropolis update followed by the
1=nl2 y(dmal@y) -y 12) over-relaxation updatéAl). In the Metropolis update, the

proposal for the field(;7>X at the sitex is given by

The coefficients have been computed in thexpansion to
three loops? obtaining A;~0.92, A,~1.8, A;~—2.7. In

order to obtain an interpolation that is valid for all values of ¢x=(0,0 for |hy|=1
y, we will use a phenomenological function proposed by -, ) -
Bray.” This approximation has the correct large- and small- dy=[coga),sin(a)] for |#,/=0, (A2)

y behavior. It requires the values of the exponents, and

7, and the sum of the coefficier®s + As. For the exponents
we use of course the estimates obtained in this paper, whil
the coefficientA,+ Az is fixed using thes-expansion predic-
tion A,+A;=—0.9. Bray’s phenomenological function pre-
dicts then the constant; andc;. We obtain:A;~0.915,
A,~—24.7, A3~23.8, C,~—4.4X10 4 c3~1.1x10 °,
c,~—5%10’. The results forA;, ¢,, c3, andc, are in
good agreement with the above-reported estimates, While separately each component of the field.

andAj differ significantly from thee-expansion results. No- We used ANSI C to implement our simulation programs.
tice, however, that, sinde| is very small, the relevant quan- \ye used our own implementation of treoscAF random-
tity in Eq. (84) is the sumA,+ Az which is, by construction,  nymper generator from the NAG-library. Th&sCAF is a

where« is a random number with a uniform distribution in
0,27). One can prove that this Metropolis update leaves the
oltzmann distribution invariant.

We summarize the complete update cycle: local update
sweep; global field rotation, in which the angle is taken from
a uniform distribution ir{ 0,27); 6 wall-cluster updates. The
sequence of the 6 wall-cluster updates is given by the wall in
1-2, 1-3 and 2-3 plane. In each of the three cases, we update

equal in Bray’s approximation and in theexpansion. linear congruential random-number generator with modulus
m= 2%, multiplier a= 13" and increment= 0. Most of our
APPENDIX A: THE MONTE CARLO SIMULATION simulations were performed on 450-MHz Pentium 1ll PC’s

running the Linux operating system.
Concerning the efficiency of the Monte Carlo algorithm,
At present the best algorithm to simuldievector sys- we only mention that for thep* model atA=2.1 andp
tems is the cluster algorithm proposed by Wolffsee Ref. =0.50915 and the dd-Y model at D=1.03 and B
76 for a general discussipnHowever, the cluster update =0.5628, the integrated autocorrelation tim@s units of
changes only the angle of the field. Therefore, followingupdate cyclessof the magnetic susceptibility slightly increase

Brower and Tamayé] we add a local update that changesuwith increasingd., and they arer,~4 for the largest lattices.
also the modulus of the field.

We use the embedding algorithm proposed by Wbdlff
with two major differences. First, we do not choose an arbi- . ]
trary direction, but we consider changes of the signs of the One of the phenomenological couplings that we have
first and of the second component of the fields separatelystudied is the rati@,/Z, of the partition functionz, of a
Second, we do not use the single-cluster algorithm to updatdystem with antiperiodic boundary conditiofesb.c) in one
the embedded model, but the wall-cluster variant proposed iflirection and the partitioZ, with periodic boundary condi-
Ref. 23. In the wall-cluster update, one flips at the same timé&ions (p.b.c) in all three directions. The a.b.c. are obtained
all clusters that intersect a plane of the lattice. In Ref. 23 @y multiplying the term¢, ¢, in the Hamiltonian by-1 for

1. The Monte Carlo algorithm

2. MeasuringZ,/Z,

214503-18



CRITICAL BEHAVIOR OF THE THREE-DIMENSIONA. . .. PHYSICAL REVIEW B 63 214503

all x=(L1,X2,X3) andy=(1x,,X3). This ratio can be ob- (0510, 0.515, and 0.520. We computé®l with Ry
tained using the so-called boundary-flip algorithm, applied in:(Za/Zp)f:O.3202 andRy = (&,nq/L);=0.5925 andR,

Ref. 45 to the ISIng mOde-l and genera”ZEd in Ref. 46 to— U4 and R2: U6 for all these simulations, using a third-
generalO(N)-invariant nonlinea models. order Taylor expansion. The results show that there is a large

In the boundgry—flip algorithm, one consild.ers fIUCt!J""tinginterval in which the method works: indeed, the resultsRor
boundary conditions, i.e., a model with partition function for B,=0.505, 0.510 and 0.515 agree within two standard
. deviations, although the variation &f, and Ug at B is
Zgye=Zpt Zy= > f D[] eXL{BE Jixy) Px by se\./eral-hundrec_i standard deviations. In addition, we have
Jp=*1 {xy) gained information about the range gfwhere the extrapo-
lation works with the desired accuracy:

+ ., (A3)

| Bs— B| <0.005x (L/4)". (A7)

where Jy,, =J, for x=(L1,X3,X3) andy=(1Xxz,X3), and  The factor (/4)"" takes care of the fact that the slope of the
Jixyy=1 otherwiseJ,=1 andJ,=—1 correspond to p.b.c. couplingsR scales likeL'”. We carefully checked that this
and a.b.c., respectively. requirement is always fulfilled in our simulations. Therefore,
In this notation, the ratio of partition functions is given by e are confident that the extrapolationdnusing the Taylor
expansion, was implemented correctly.
Z, <5Jb 1) Al
Zy (63,0 (Ad) APPENDIX B: ANALYSIS OF THE HIGH-TEMPERATURE

. . . . EXPANSIONS
where the expectation value is taken with fluctuating bound-
ary conditions. In this appendix we report a detailed discussion of our HT

In order to simulate these boundary conditions, we nee@nalyses. This detailed description should allow the reader to
an algorithm that easily allows flips df,. This can be done understand how we determined our estimates and the reli-
with a special version of the cluster algorithm. For both com-ability of the errors we report, which are to some extent
ponents of the field we perform the free@keletd operation ~ Subjective.
for the links with probability

1. Definitions and HT series

—mi — (P) 4(P)

Pa=Min1.ex =283y $x” by ] (AS) Using the linked-cluster expansion technique, we com-
where ¢§(P) is the chosen component ¢f,. The sign ofJ, puted the 20th-order HT expansion of the magnetic suscep-
can be flipped if there exists, for the first as well as thetibility and of the second moment of the two-point function
second component of the field, no loop of frozen links with
odd winding number in the first direction. In Ref. 78 it is _ _ 2
discussed how this can be implemented. For a more formal X ; (a0 PalX)), M ; XX{¢a(0)4a(X)),
and general discussion, see Ref. 79. Note thatlfor —1 (B1)
the flip can always be performed. Hence, as Gliozzi and )
Sokal have remarkelf, the boundary flip needs not to be and therefore of the second-moment correlation Ier_’g{}th
performed in order to determirg,/Z, . Itis sufficient to use . M2/(6x). Moreover, we calculated the HT expansion of
p.b.c. and check if the flip to a.b.c. is possible. Setting "€ Zéro-momentum connected-@oint Green’s functions
=1 if the boundary can be flipped atd=0 otherwise, we X2
have

7 Xoi= 2 {ba(0)hu,(Xa) - b (Xaj 1) by (Xa)))e
Z_: =(b), (AB) z (B2)

(x= x2). More precisely, we computeg, to 18th order g
to 17th order,yg to 16th order, ang¢,o to 15th order. The
series for thep* Hamiltonian withh =2.07 and the ddY
model withD =1.02 are reported in Tables XVII and XVIII.
The properties of the integration measure allow to deriveThe HT series of the zero-momentum four-point coupling
an infinite set of nontrivial Schwinger-Dyson equationsand of the coefficients,; that parametrize the equation of
among observables of the model. We have used two sucftate can be computed using their definitions in termg.of
equations to test the correctness of the programs and thghdé?, i.e.,
reliability of the random-number generator. For a more gen-
eral discussion of such tests, see Ref. 81. 3N x4
As a test of the MC program and of the analysis software, 94=— N+2 F (B3)
we simulated thep* model forL=4 and\=2.1 at the fol-
lowing values ofB: 8=0.485, 0.490, 0.495, 0.500, 0.505, and

where the expectation value is taken with p.b.c.

3. Checks of the program
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TABLE XVII. Coefficients of the HT expansion of,, x, x4, Xs. Xs andyxig. They have been

computed using the)* Hamiltonian with\ =2.07.

M2 X2 Xa
0 0 0.82195468340525626553069 —0.18234682673209145113698
1 1.01341425235775258955047 2.026828504715505179100951.79856993883835218414950
2 4,99788354573054604609481 4.3983602327844286513783110.1455394390643744635266
3 17.0521428795050699809477 9.4560830338463963616866144.4379274874486579169902
4 50.2802232377961742954821 19.7509483421835061143003166.911247402827967481247
5 136.081955345771888598704  41.0953224517675210993058%666.231817578861031037728
6 349.014986520228913452360 84.37846814740127317399651783.81074566131415934408
7 861.072204516234675501406 172.8314199743389909276785314.73425458572561425498
8 2065.11115559310738635122 351.41246768727347889561715153.8054671243945401658
9 4843.65801296852863958594 713.32714137562077406936611706.6393990107185189143
10 11163.1410843891753269547 1441.2953754367806249826911480.350225534613432415
11 25357.2828059634753398090 2908.62198285250042113961290779.553330813045449802
12 56914.8160479537305800002 5851.2270085564213560488(042792.316757751368697227
13 126448.957588634753901037 11759.8313973078166535503.863674.70918289087066236
14 278504.794338270260511244 23580.69692533324106965681603313.91229513488724197
15 608775.044038619834901124  47248.9211902315365277418.1214943.2818348822933596
16 1321948.27688188944339553 94508.347504641336066336826991439.1725436301683188
17 2853823.94933643220583008 188924.81139708316566096164258568.1525362515312215
18 6128960.82003386821732524 377150.816225492759953164151492730.104215500664052
19 13101467.5362982920867821 752534.725866450821199491
20 27889129.6761627014637264 1499898.13514730628043402
i X6 X8 X10
0 0.41197816889670188853628-2.04244608438484921752518 17.4966181373390399118217
1 8.09031485009238719234751-65.5324533503954629382215 827.907846284122870554505
2 80.5579033480687931078788-993.099544110386544944672 17583.1558423294442666385
3 569.040955700888943670354—10125.9430216092445934264 242162.737636025061958065
4 3235.75380473965447264355-79870.4410385967305759821 2508010.66864972545742050
5 15823.8724636340283846359—-524859.679867495864300189 21148750.0733186453907577
6 69189.8243270623365490494— 3005237.58408599956662949 152451568.855786252573448
7 277430.904691458150896928— 15443601.8321215251366505 970471959.824139222337835
8 1038008.04844006612521747—72717890.9115560213984880 5582186363.05878798571648
9 3669720.02487068188513696-318510657.462768013289640 29507970388.4631661994252
10 12374182.7602063550019508-1312668767.17043587616989 145203489229.461390006077
11 40084338.4384102309965122-5135470803.97668705323439 671866031736.491009927361
12 125446404.887628912440242-19206423870.3058981804587 2946715041148.83369711661
13 381003987.146313729964559-69057827061.9724837730205 12330196249913.8306690405
14 1127156412.88952101681812-239824993302.080594778804  49488831955055.0830738902
15 3257906807.50792443987963-807540440278.527392223891 191378645936343.575972510
16 9223412391.97191941389912-2645013087720.90303565763
17 25631282620.7774958190658

5(N+2) xex2 The formulas relevant for th¥Y universality class are ob-

re=10— 3NTD) 2 (B4)  tained by settingN=2.
2 2 2. Critical exponents
280N+2) xex2 ~ 35N+2)"  xsx3 : L
rg=280- 3(NT4) 2t O(NT4)(N+6) ' In order to determine the critical exponentandv from
Xa Xa the HT series ofy and £%/ 8 respectively, we used quasidi-
2 2.2 agonal first-, second-, and third-order integral approximants
( 10= 15400~ 7700N+2) XoXz2, 35(IN+22) XoX2 (IAL's, IA2’s, and IA3's, respectively Since the most pre-
(N+4) X3 (N+4)*  x; cise results are obtained by using the MC estimate8.ab
1400 N+ 2)2 2 b!as the approximants, we shall report only the re;ults of the
+ 0a ) X8§2 biased analyses. We used the valueggfobtained in Sec.
3(N+4)(N+6) xy 1D, ie., those reported in Table IV,B.(\=2.0)
— — _ 4
35(N+2)3 X106 =0.509904 9(15) B.(A=2.1)=0.509 150 7(13) for the

model, andB.(D=1.03)=0.5627975(14) for the da-Y

3(N+4)(N+6)(N+8) 3 model (see also Ref.)6

214503-20



CRITICAL BEHAVIOR OF THE THREE-DIMENSIONA. . ..

TABLE XVIII. Coefficients of the HT expansion ofm,, x, x4, Xs, Xs and xip. They have been

computed using the dd-Y Hamiltonian withD=1.02.

X2 X4

0.73497259946651881066155 —0.12952381667498436104661

1.62055416589971566017876L.14235747481325709236407
3.192402898725078218510865.86566452750871250322137
6.2441216458405669474699(23.4964691362678107734860
11.80789910801107100610380.6562687454557047131467
22.2452167397051997713027249.761461812242731292855
41.3083108337880277068933717.220908333053642342640
76.53600510015609164405%71945.68221342894368675090
140.6796608851197636909586046.15791369304901147071
258.17825174407966888088112622.3575801936426660898
471.4787559437570265932680642.5601039304090869577
860.0105045875913441581582548.9796473949259402584
1563.48753262138558216865.68135.618026803729643010
2839.86987807993137143111B82565.790192788611922604
5145.8450363887470362919856629.943580595646246982
9317.67206591240832596126.891351.24076972180490224
16841.066007613018749456%1124166.11180668899412336
30421.5573167338465805828893532.37374656560556900
54875.4729390613106530869.8987953.9690154439591383

X8 X10

M2
0 0
1 0.81027708294985783008938
2 3.57318872366283058263222
3 11.0006482367650529136739
4 29.3868020693268986850123
5 72.0537292098720051000559
6 167.391323293772704647731
7 373.956365385479749391430
8 811.915341705911027278243
9 1723.52034635335232533650
10 3594.34333565606104441219
11 7386.64345245316356464020
12 14997.4679478666032080397
13 30136.9726456923668836816
14 60029.1887398932204011553
15 118656.316956262327168223
16 232979.699867454031093529
17 454746.664171304150538747
18 882960.924794534410812953
19 1706330.67007276458833100 98938.9870168970865371838
20 3283569.77023650242548276 178182.095750601905570976
i X6
0 0.19923804166181643967757—0.67796674603175173967960
1 3.64240617023376584468207—20.6297276122379010898516
2 33.7843552454418076210054— 295.585300853935935335485
3 221.913477156277495814452-2838.14010017098792994188
4 1169.53606787476515583468-20984.8625853355842977237
5 5284.11768819259530573126-128723.340916169008103149
6 21286.1074543663282451107-685456.078166050751079896
7 78446.3667728434480782029-3265581.01409539304748618
8 269224.069430361947223693-14216412.9210915918573320
9 871590.289814654747926984—-57438991.7197952962871671
10 2687478.50894078411160055-217927113.188388756606030
11 7951104.44962467048194209-783550202.710253766125616
12 22703108.4838172682261707 2689172405.44915075129067
13 62855482.2396162632890035-8861507312.08886862026490
14 169374342.873715022154662-28171979758.2629139055303
15 445613055.420361814905254-86751935057.8910676591399
16 1147647339.61141521962212-259625721060.742527022681
17 2899724764.50550187290555

4.06523419917732615691360
182.870340299506381670926
3697.42581896510915833415
48330.0439419608161526720
472993.887593911146392516
3752687.19462636307477999
25350793.0882363704732840
150699914.609020169056435
806981988.823436545704567
3960575199.72383885451240
18052318528.0576344450433
77211058033.5079429953492
312454827813.125173762158
1204410146707.71423350686
4446806950469.81858484485
15798640107921.6847945606

Given annth-order series(B8)=="_,c;8', its kth-order
integral approximanfmy,/m,_4/---/mgy/1] 1Ak is a solu-
tion of the inhomogeneough-order linear differential equa-
tion

PUBTR(B) + P 1(BFED(B)+ - +PuBTN(B)
+Po(BF(B)+R(B)=0, (B5)

where the function®;(8) andR(B) are polynomials of or-

PHYSICAL REVIEW B 63 214503

known nth-order smallg expansion off(8) (see, e.g., Ref.

12).

We consider three types of biasedkié:
(i) The first kind of biased IK's, which will be denoted
by blAK’s, is obtained by setting

P(B)=(1=BIBc)px(B),

wherep,(B) is a polynomial of ordem,—1.
der m; and |, respectively, which are determined by the (ii)) Since on bipartite lattice@=— . is also a singular
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point associated to the antiferromagnetic critical behatior, (f) [m,/m;/mq/k] bFCIA2's with
we consider IA’s with

Pu(B)= (1~ B BIPUA), 6D 3)/4]—q,2]=m,— 1m, .m,k=[(n—3)/4
wherep,(B) is a polynomial of ordem,— 2. We will denote Bn=3/4=a.2J=m;=hms,mo k=[(n=3) ](Ef4)

them by b.lAK’s. )
(i) Following Fisher and Chefl, we also consider I&s (9 [Ms/my/my/mg/k] bIA3's with
where the polynomial associated with the highest derivative
of f(B) is even, i.e., it is a polynomial i?. In this casem,

is the order of the polynomiaP, as a function of8?, i.e.,
PKEE;“:kOc,-,BZi. Thus, in order to bias the singularity At ,

we write +q. (B19

n=m,+m;+my+k+3=n—p,

n=ms+my,+m;+my+k+5=n—p,

Max|(n—5)/5]—q,2]<m;—1,m,,m;,my,k<[(n—5)/5]

Pu(B)=(1—B% B2)py(B?), (B8) In the following we fixq=3 for the IAl’'s andq=2 for
the 1A2's and IA3’s.

For each set of IK's we calculate the average of the
alues corresponding to all nondefectiveklé listed above.
pproximants are considered defective when they have sin-
jularities close to the red axis near the critical point. More
recisely, we consider those approximants defective that
ave singularities in the rectangle

wherep,(B) is a polynomial ing? of orderm,— 1. We will
denote them by bFCIKs.

In our analyses we consider diagonal or quasidiagona
approximants, since they are expected to give the most a
curate results. Below, we give the rules we used to select th
guasidiagonal approximants. We introduce a parameter h
that determines the degree of off-diagonality allowsde
below. In order to check the stability of the results with Xmin<ReBIBc=<Xmaxs |IM BIBc|<Ymax- (B16)
respect to the order of the series, we also perform analyses in . }
which we average over the results obtained with series of € values oXpin, Xmax, @andymay are fixed essentially by
different length. For this purpose, we introduce a parameter stability criteria, and may differ in the various analyses. One

and perform ana|yses in which we use all approximants obShould alWﬁyS check that the results depend very little on the

tained from series ofi terms withn=n=n-p. cho§en values Ok, Xmax, and Ymax: by varying them
We consider the following sets of ks: within a reasonable and rather wide range of values. The

‘e i domain (B16) cannot be too large, otherwise only few ap-
(@) [m; /mo/K] bIAL’s with proximants are left. In this case the analysis would be less
n=m;+my+k+1=n-p, robust and therefore less reliable. We introduce a pararaeter
such that
Max|(n—1)/3]—q,3]<m;,my,k<[(n—1)/3]+q.
Aln=DI3=a.31<ms,mo ksfn-D/3+a. o m1os xamlis youms  (BLD
(b) [m;/my/k] b.1A1’s with We obtain results for various values gfchecking their de-
pendence os. We also discard some nondefective IA’'s—we
n=m;+my+k=n—p, call them outliers—whose results are far from the average of
the other approximants. Such approximants are eliminated
Max(|(n—1)/3|—q,3]<my,mg,k<[(n—1)/3]+0. algorithmically: first, we compute the averageand the
(B10) standard deviatiorr of the results using all nondefective
(c) [m;/my/k] bFCIAL's with IA’s. Then, we discard those IA’'s whose results differ by
more tham o from A with n,=2. We repeat the procedure
n=m;+my+k+1=n-p, on the remaining IA’s, by calculating the nevand o, but
now eliminating the 1A’s whose results differ by more than
Max{[(n—1)/3|—q,3]<=my,mg,k<[(n—1)/3]+q. n,o with n,=3. The procedure is again repeated, increasing
(B11) n, by one at each step. This procedure converges rapidly
(d) [m,/m, /my/K] bIA2’s with and, as we shall see, the outliers so determined are always a
very small part of the selected nondefective IA’s.
n=m,+m;+my+k+3=n—p, In the Tables XIX and XX, we present the results for the

critical exponentsy and v respectively, obtained from the
MaxX{|(n—3)/4|—q,2]<my—1m;,my,K<[(n—3)/4]+q. HT analysis of the¢* and ddXY models. There we also
(B12)  quote the “approximant ratio’t ,=(g— f)/t, wheret is the

(e) [my/m,; /my/K] b IA2’s with total number of approximants in the given sgis the num-
- ber of nondefective approximants, afids the number of
n=m,+m;+my+k+2=n-p, outliers that are discarded using the above-presented algo-

rithm; g—f is the number of “good” approximants used in
Max| (n—3)/4]—q,2]<m,—2,m;,my,k<[(n—3)/4]+q. the analysis; notice thag>f, andg—f is never too small.
(B13) For each analysis, beside the corresponding estimate, we re-
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TABLE XIX. Results fory obtained from the analysis of the 20th-order HT serieg @ir the ¢* and dd-
XY models. The numben of terms used in the analysis is indicated explicitly when it is smaller than the

number of available terma& 20). p=0 when its value is not explicitly given.

Approximants ra y
A=2.00 bIAL_ 1) (28-2)/48 1.3175611)[19]
bIA2s_ 1/ (82—5)/115 1.3174®)[17]
A=2.07 bIAL_ 1) (28—2)/48 1.3178610)[29]
bIAL,_35-112 (103-1)/172 1.3176@1)[24]
b 1ALl 1 (21-1)/48 1.3178@2)[28]
bFCIAL_ 4, (35—4)/48 1.317780)[28]
bIA2,_ 18 (99-7)/115 1.3178M)[27]
bIA2._ 14 (93-4)/115 1.3178®)[27]
bIA2,_ 1/, (87—4)/115 1.3178(B)[28]
bIA2,_; (60—2)/115 1.3178@)[27]
bIA2,_19s-112 (48-6)/70 1.3177710)[28]
bIA2,_155-112 (53—-4)/62 1.317689)[28]
bIA2,_35_11 (277-18)/345 1.3177@4)[25]
b IA2,_1) (46—3)/100 1.3178@9)[23]
bFCIAZ,_ (91-2)/140 1.31780L1)[29]
bIA3,_ 1), (56—4)/61 1.3178®)[31]
A=2.10 bIAL_ ), (29-2)/48 1.3177W)[16]
bIA2,_ 1/, (92—-2)/115 1.31776)[15]
bIA2,_35-112 (295-17)/345 1.3176a.0)[14]
b.1A24_ 1 (49-5)/100 1.31770)[15]
bFCIA2_ 1) (92—5)/140 1.3177@5)[17]
N=2.20 blAL_ 1) (31-3)/48 1.318007)[30]
bIA2s_ 1) (94-6)/115 1.3180®)[27]
D=0.90 bIAL_ ), (35—1)/48 1.3168829)[24]
bIA2._ 1/ (66— 3)/115 1.3169@8)[27]
D=1.02 bIAL_ ), (41-3)/48 1.3174617)[22]
bIAL,_35-112 (162—9)/172 1.3173®5)[20]
b lAl_q) (35—2)/48 1.3173613)[22]
bFCIAL_ 4, (31-4)/48 1.317481)[22]
bIA2s_ 14 (103-3)/115 1.3174@5)[23]
bIA2s_ 1) (68—1)/115 1.3174616)[22]
bIA2,_; (22—-1)/115 1.3175@0)[20]
bIA2,_35-15 (259-7)/345 1.3173®6)[19]
b 1A2_ 1 (74— 3)/100 1.3175@6)[22]
bFCIAZ,_ 4,5 (69— 4)/140 1.3173@88)[18]
bIA3,_ 1), (41-1)/61 1.3177619)[24]
D=1.03 bIAL_ ), (40— 3)/48 1.3174715)[14]
bIA2s_ 1) (71-1)/115 1.317503)[15]
bIA2,_35 1> (263—11)/345 1.3173@2)[13]
b.1A2_ 1 (73—2)/100 1.3175@4)[13]
bFCIA2,_ (72— 4)/140 1.3174@7)[11]
bIA3._ 1) (41-2)/61 1.3177616)[16]
D=1.20 bIAL_ ), (43—-1)/48 1.3186720)[28]
bIA2,_ 1/ (99-4)/115 1.31866L0)[25]

port two numbers. The number in parenthesss,is basi-
cally the spread of the approximants 6 fixed at the MC

same type, obtained imposing different constraints. The
number in bracketsg,, is related to the uncertainty on the

estimate. It is the standard deviation of the results obtainedalue of 8. and it is estimated by varying, in the range

from all “good” IA’s divided by the square root of ,, i.e.,
e,=o/+r,. Such a definition o&; is useful to compare re-

[Bc_ ABC 1Bc+ Aﬂc]-

The results of the analyses are quite stable: all sets of IA’s

sults obtained from different subsets of approximants of thejive substantially consistent results. The comparison of the
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TABLE XX. Results forv obtained from the analysis of the 19th-order HT serie§B for the ¢* and
the ddXY models. The numbar of terms used in the analysis is indicated explicitly when it is smaller than

the number of available term& € 19). p=0 when its value is not explicitly given.

Approximants ra v
A=2.00 bIAL_ 1) 36/37 0.6714@)[9]
bIA2._ 1) (63—6)/70 0.671414)[8]
N=2.07 bIAL_ 11 36/37 0.6716@1@)[13]
bIAL, Z18s=112 30/36 0.6716()[13]
bIAL,_175-1/ (30—-1)/33 0.67168L1)[12]
bIAL,_35-11 (124-5)/134 0.67165)[12]
bIAL, 35-1 (120-6)/134 0.67165)[12]
b.IALs_ 1 (33-1)/36 0.671612)[13]
bFCIAL_ 4, (29— 3)/37 0.6715810)[12]
bIA2._ 1) (66—5)/70 0.671614)[12]
blA2,_, (50-3)/70 0.6716%4)[12]
bIA2,_ 1551/ (44—3)/62 0.67165)[12]
bIA2,_175-1/ (38—2)/49 0.671664)[11]
bIA2, 351 (180-6)/215 0.67166)[12]
blA2, 354 (145-7)/215 0.67166)[12]
b 1A2_ 1 (55— 3)/55 0.671613)[13]
bFCIAZ,_ 4,5 (60—4)/85 0.6716111)[14]
bIA3,_1), (17-1)/34 0.6715%6)[14]
A=2.10 bIAL- 1) 36/37 0.6716(@)[8]
bIA2._ 1) (63—-5)/70 0.671614)[8]
A=2.20 bIAL_1) 36/37 0.6718®3)[14]
bIA2s_ 1) (60—4)/70 0.671887)[14]
D=0.90 bIAL_ (33—2)/37 0.670916)[12]
bIA2._ 1/ (62—3)/70 0.6709210)[12]
D=1.02 bIAL_ 1, (35— 3)/37 0.671467)[10]
bIAl,_; (30-1)/37 0.67147)[10]
bIAL_155- 1/ (32-1)/36 0.6714815)[10]
bIAL, 175112 (31-2)/33 0.671328)[9]
bIAL,_35-112 (124—11)/134 0.6714@2)[10]
bIAL,_5¢—1 (103-9)/134 0.67148.0)[10]
b. 1AL 1 (34—1)/36 0.6714%)[11]
bFCIAL_)» (33—-3)/37 0.6713612)[10]
bIA2._ 1/ (64—1)/70 0.671445)[10]
bIA2,_; (55-3)/70 0.671484)[10]
bIA2,_155- 1/ (54—2)/62 0.67146L1)[10]
bIA2,_ 17— 1/ (48-5)/49 0.6713®)[9]
bIA2,_3¢—1/ (198-9)/215 0.6714@)[9]
b.1A24_ 1 (53-9)/55 0.67144)[10]
bFCIAZ_ 1), (78—-8)/85 0.67140m)[11]
bIA3_ 1) (34— 4)/34 0.6714%)[10]
D=1.03 bIAL_ ) (34—2)/37 0.671497)[8]
bIA2¢_ 1) (67—4)/70 0.67147)[7]
D=1.20 bIAL_ ), (30-1)/37 0.6723112)[13]
bIAl,_1), (64—4)/70 0.672367)[12]

results obtained using all available terms of the series wittseries. Therefore, we do not need to perform problematic
those using less ternig; the Tables the number of terms is extrapolations in the number of terms, or rely on phenom-
indicated explicitly when it is smaller than the number of enological arguments, typically based on other models, sug-
available termp and those obtained fop=3 (i.e., using gesting when the number of terms is sufficient to provide a
n,n—1n—-2, andn—3 terms in the serigsshows that the reliable estimate.

results are also stable with respect to the order of the HT From the intermediate results reported in Tables XIX, and
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XX (which, we stress, are determined algorithmically once TABLE XXI. Results for 7 obtained using the CPRMa) ap-
chosen the set of IKs), we obtain the estimates gfand».  plied to% 8 andy (19 order3; (b) applied to£? and (20 orders.
From the analyses for th¢* Hamiltonian at\ =2.07, we

obtain Approximants la v
y=1.3178010)[ 28]+ 0.003A—2.07, (Blg =200 (@ bIAL_ 33/37 0.02547)
(@ bIA24_ 1), (47-1)/70 0.02562)
v=0.671615)[12]+0.002\ —2.07). (B19) (b) bIA2,_ 1/ (99-9)/115 0.02513)
. ) A=2.07 (@ blALg_ 1) 37/37 0.025567)
As before, the number between parentheses is basically the (@ blA2,_,, 47170 0.025R)

spread of the approximants at=2.07 using the central
value of 8., while the number between brackets gives the
systematic error due to the uncertainty gp. Egs. (B19)

(8 bIA3._,,, (20-1)/34 0.02582)
(b) bIA2,_ 4/ (96—8)/115 0.02523)

b) blA3._ 51-2)/61 0.025
and (B19) show also the dependence of the results on the _, 5 Ea; b|AlSil/2 ( 33/3)7 0025?2}
chosen value ok. The coefficient is estimated from the re- ' @ blA25:1’2 (49—2)/70 0'02593)
s=1/2 - :

sults forn=2.2 and\=2.0, i.e., from the rati Q(A=2.2)
—Q(\=2.0)]/0.2, whereQ represents the quantity at hand. (b) DIAZs- (95-11)/115 0.025@)

Using A\* =2.075), we obtain finally y=1.317 80(10])28] D=0.90 (a) blA2,_y) (45-1)/70 0.02523)

{15} andv=0.67161(5)12]{10}, where the error due to the (b) bIA2,_ 1/ (84— 3)/115 0.024®)
uncertainty on\* is reported between braces. D=1.02 (a) blALg_ (22-1)/37 0.02569)
Since forA =2.10 a more precise estimate gf is avail- (@ bIA2._,,, (37—1)/70 0.02573)
able, it is interesting to perform the same analysis, using the (a) bIA3._ ) (23-2)/34 0.025%5)
HT series of thep* model at\ = 2.10. We obtain (b) bIA2,_ ), (93-3)/115 0.02508)
y=1.3177310)[15]+0.003\—2.10,  (B20) (b) bIASsy,  (59-3)/61 002584

D=1.20 (a) blA2,_ 4 (33-2)/70 0.02683)

»=0.671605)[8]+0.002\ —2.10), (B21) (b) bIAZ,_ 1, (96-4)/115 0.02588)

which, using\* =2.075), give y=1.317 64(10)15]{15}

and v=0.67154(5)8]{10}, in perfect agreement with the we determines.. and v from the analvsis of . using 1A2's
results obtained at=2.07. The slight difference of the cen- £~ a0'g an(?BICA3’s yandv from theyanalj(s,is ofgg usingi
tral values is essentially due to the independent estimates @f ¢ t;iased with ,the estimate g8, obtained in the HT

Cc

B rom the analyses for the & model atD=1.02 analysis ofy.

h rom the analyses for the model atD=1.02, we From the results fory and v, one can obtainy by the

ave scaling relationy=(2—n)v. This gives =0.0379(10),

y=1.317 4820)[ 22] + 0.006 D — 1.02), (B22) where the_ error is estimatgd py considering the errorg on
and v as independent, which is of course not true. We can

»=0.6714%10)[10]+0.005D —1.02), (B23)  obtain an estimate ofy with a smaller, yet reliable, error
using the so-called critical-point renormalization method

where the coefficient determining the dependence of the rqcpRM) (see Ref. 10 and references theyein the CPRM,

sults onD is estimated by computingQ(D=1.2)-Q(D  gjven two serie(x) andE(x) that are singular at the same
=0.9)]/0.3. SinceD*=1.023), we obtain the final esti- point x,, D(x)=3;dix~(xo—x)"° and E(x)=Zex

mates y=1.317 48(20)22]{18; and »=0.67145(10)10]  ~(x,—x)~¢, one constructs a new series(x)
{15}. Since forD=1.03 a more precise estimate f is  =3,(d,/e;)x'. The functionF(x) is singular a=1 and for
available, it is worthwhile to repeat the analysis using they .1 pehaves asF (x)~(1-x) "¢, where ¢=1+5—e.
series at this value db. We have Therefore, the differencé— e can be obtained by analyzing

-~ the expansion of (x) by means of biased approximants with

y=1.3175120)[15]+0.006D ~1.03), (B24) a singularity atx,=1. In order to check for poss%i;JIe system-
_ atic errors, we applied the CPRM to the seriegdf3 and

v=06714810[8]+0.008D~1.03, (25 (analyzing the c%prresponding 19th-order seriastg to tf)1(e

which, for D*=1.022), give y=1.31745(20)15]{18}, series ofé? and y (analyzing the corresponding 20th-order

and v=0.67143(10)8]{15}, in good agreement with the serie3. We used IA’s biased at.=1. In Table XXI we

results obtained from the analysist=1.02. present the results of several sets of 1A’s. For gfemodel

Consistent, although significantly less precise, results arat A =2.07 we obtain

obtained from IHT analyses that do not make use of the MC

estimate of8.. For example, by analyzing the HT series for

the ¢* Hamiltonian at\ =2.07, we findB.=0.509 38%8), 7v=0.0255020)+0.0013x —2.09.  (B26)

vy=1.3178(8]3}, »=0.6716(4]1}, where the error in pa-

rentheses is the spread of the approximants and the errdhus, taking into account that* =2.0715), we find v

between braces corresponds to the uncertaintyonHere, =0.02550(20)7}, where the first error is related to the
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TABLE XXII. Results for g,, obtained from the analysis of the 17th-order serie@of?g,(8), for A
=2.07 in the¢* model andD =1.02 in the ddXY model.

Approximants ra U4 4
N=2.07 bIAL 1110 1740 (41-2)/43 21.176) 1.25)
bIAL_ 1/a,-05 (38—2)/43 21.166) 1.2(5)
bIAL_ 17413 (-0 23143 21.1%6) 1.02)
BIAL 261740 (105-4)/118 21.147) 1.78)
b IALs-1/10.1/4;>0 (40-3)/44 21.145) 1.409)
b.lALs 1405 (39— 2)/44 21.145) 1.49)
PIALs1141.3-¢>07 (20—-1)/44 21.163) 1.21)
balALy ps-yazo0 (80—3)/97 21.187) 2(2)
D=1.02 bIAL1110.-0 (31-2)/43 21.1610) 1.51.4)
bIAL, 14,0 (30-2)/43 21.1610) 1.5(1.4)
bIAL_ 1/a,-05 (24— 1)/43 21.186) 1.7(1.4)
bIALs- 14137507 9/43 21.167) 0.92)
bIALy 5o a0 (69-8)/118 21.23) 1613
b IALG_ 14,0 (36— 3)/44 21.187) 1.51.0
b.lALs_1a-05 (32— 4)/44 21.115) 1.58)
PIALs-1141.3-¢>07 (16—1)/44 21.183) 1.21)
balALy 55 yaze0 (66—7)/97 21.1812) 2(2)

spread of the 1A’s and the second one to the uncertainty o(B10)] and impose various constraints on the valug dify
A*, evaluated as before. Analogously, for theXid-model  selecting blA1's with larger than a given non-negative
we find value.
In Table XXII we report the results obtained fgj using
nv=0.0255040)+0.004D — 1.02), (B27)  different sets of approximants. In this case the variation due

and therefore, usin@* =1.023), 7v=0.02550(40)12} to the uncertainty of3; is negligible. Therefore, we report
where again the first error is related to the spread of the 1A'sONlY the average of the results of the “good” IAL's and their

while the second one is related to the uncertaintyDdn standard deviatior(divided by \r,) calculated atg.. In
Table XXII we also report the value df obtained from the

selected 1A1's. The comparison of the results for different

values ofA andD shows that the errors due to uncertainty on
In the following we describe the analysis method we em-\* andD* are small and negligible.

ployed to evaluate zero-momentum renormalized couplings, From the results of Table XXIl we derive the estimates

such agy, andry; . In the case ofj, we analyzed the series g,=21.15(6) andg,=21.137), respectively for the¢*

3. Amplitude ratios

B¥g,=3{ a8 Hamiltonian and the déY model. We note that these re-
Consider an amplitude ratié which, for t=8./8—1  sults are slightly larger than the estimates reported in Ref.
—0, behaves as 28. The difference is essentially due to the different analysis
employed. There, the analysis was based on” R&ue,
A(t)=A* +citt +cptiet - - - (B28)  plog-Pade(DPA) and IAl’s, selecting those without singu-

In order to determinéd* from the HT series ofA(t), we larities in a neighborhood g8, and evaluating them &, .

. . , : o However, by analyzing the longer series that are now avail-
consider biased IAl’s, whose behaviortis given by(see, ; .
e.g., Ref. 10 g v able for the Ising modét® we have realized that such proce-

dure is not very accurate and that the analyses using blA1’s
IAL=~f(B)(1—BIB)+g(B), (B29)  are more reliable when a sufficiently large number of terms
is available. Moreover, when the series is sufficiently long,
wheref(B) andg(pB) are regular a., except whery isa  most (and eventually all PA’s, DPA’s and IA1l’'s become

non-negative integer. In particular, defective. Indeed, the functions we are considering do have
singularities at3.., although with a positive exponent.
Po(Bc) R(Bc) In the analysis of ,; , we also consider PA’s and DPA’s.
(===, 9(B)=—p (B30 ]

We indeed expect that, when the series is not sufficiently
long to be asymptotic, the approximants obtained by biasing
In the case we are considering,is positive and therefore, the singularity a3, may not provide a robust analysis. For
g(B.) provides an estimate &&*. Moreover, for improved comparison, we also use quasi-diagonal Pagleroximants
Hamiltonians we expect=A,~2A and A~0.5. In our (PA’s) and Dlog-Padeapproximants(DPA'’s), evaluating
analyses we consider blIAl's and IA1's[see Eqs(B9) and  them atf.. Forrg andrg the above PA’s and DPA’s give

P1(Be) Po(Be)
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results substantially consistent with those of bIA1’s. Our fi-phase y,=5C;t~?"2f° the second-moment correlation

nal estimates are reported in Table XllIl. Fog we obtain
only very rough estimates using essentially PAfsy=
—13(7) from the¢* Hamiltonian andr o= —11(14) from
the ddXY model.

APPENDIX C: UNIVERSAL AMPLITUDE RATIOS

We give here the definitions of the amplitude ratios that
are used in the text. They are expressed in terms of the am-

length in the high-temperature phage f "t~ 7, the sponta-
neous magnetization on the coexistence civeB|t|#, and
of the susceptibility along the critical isothermy,
=CC|H| ""#%. We consider the following universal ampli-
tude ratios:

plitudes derived from the singular behavior of the specific

heatC,=A*|t| %, the magnetic susceptibility in the high-
temperature phasg=2C"t~?, the zero-momentum four-

point connected correlation function in the high temperature

aA*Ct C,B?
RcET, R4E—(C—+)3,
C+B§_l
_ _ 3
X=W, R§=(A+)1 (i (Cy
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