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Self-trapped magnetic polaron: Exact solution of a continuum model in one dimension

S. Pathak and S. Satpathy
Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211

~Received 1 June 2000; published 9 May 2001!

A continuum model for the self-trapped magnetic polaron is formulated and solved in one dimension using
a variational technique as well as the Euler-Lagrange method, in the limit ofJH→`, whereJH is the Hund’s-
rule coupling between the itinerant electron and the localized lattice spins treated as classical spins. The
Euler-Lagrange equations are solved numerically. The magnetic polaron state is determined by a competition
between the electron kinetic energy, characterized by the hopping integralt, and the energy of the antiferro-
magnetic lattice, characterized by the exchange integralJ. In the broad-band case, i.e., for large values ofa
[t/JS2, the electron nucleates a saturated ferromagnetic core region~type-II polaron! similar to the Mott
description, while in the opposite limit, the ferromagnetic core is only partially saturated~type-I polaron!, with
the crossover being atac'7.5. The magnetic polaron is found to be self-trapped for all values ofa. The
continuum results are also compared to the results for the discrete lattice.

DOI: 10.1103/PhysRevB.63.214413 PACS number~s!: 75.25.1z, 75.90.1w
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INTRODUCTION

A self-trapped magnetic polaron is formed when an it
erant carrier nucleates a ferromagnetic core region in an
erwise antiferromagnetic lattice of localized spins and tr
itself in the core.1–7 The energy cost to form the ferromag
netic core is balanced by the energy gain of the itiner
carrier. This object has been given the name ‘‘ferron’’
Nagaev.8 The carrier thus disrupts the antiferromagnetic
der in the ‘‘self-trapped’’ region, but away from it the ant
ferromagnetic order is restored. The prototypical candida
for the self-trapped magnetic polaron are thought to be E
and EuTe, on which considerable attention has been focu
in the past.9–13 Interest on the magnetic polaron problem h
recently resurfaced in light of its relevance to a number
new systems, e.g., the high-Tc materials and the colossa
magnetoresistive manganites.14–19

In this paper, we formulate a continuum model and so
it exactly using the Euler-Lagrange method and study
energetics and the spin structure of the magnetic pola
The Euler-Lagrange equations are solved numerically us
an iterative procedure that yields ‘‘exact’’ results in the sen
that the solution can be obtained to any arbitrary accura
The results are compared with the Mott picture as well
with the results of a variational method, where energy
minimized by varying the parameters of a trial wave fun
tion. One key result is that the magnetic polaron is found
be self-trapped for all values of the electronic parametea
[t/JS2 in contrast to the Mott picture, but in agreement w
de Gennes’s results for the case of the lattice, where
magnetic polaron was found to be self-trapped for all val
of a.1

HAMILTONIAN

We consider the following Hamiltonian describing th
magnetic polaron in a lattice:

H52t (
^ i j &,s

ais
† aj s1H.c.2JH(

i
sW i•SW i1J(̂

i j &
SW i•SW j , ~1!
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a model studied by several authors in its latti
version.3–5,8,19The three terms in the Hamiltonian describ
respectively, the kinetic energy of the itinerant electron,
Hund’s-rule coupling between the electron and the localiz
spin on each site on the lattice, and the antiferromagn
exchange between the localized spins. The symbolsais

† and
ais denote the creation and the annihilation operators for
electron state with spins at site i, ^ i j & denotes summation
over nearest-neighbor sites,si is the spin of the itinerant
electron, andSi denotes the spin of the localized electron, t
latter treated as classical spins. Note that in the o
dimensional case with nearest-neighbor hopping, itiner
electron transfer is allowed only between lattice sites belo
ing to the two different magnetic sublattices. Second a
higher nearest-neighbor transfers could adversely affect
stability of the magnetic polaron4 and so could the quantum
fluctuations if the localized spins are treated as quan
spins instead of classical spins.

The Hamiltonian parameterst, JH , andJ are all taken to
be positive. In this work we shall takeJH→` as appropriate
for many solids including the manganites. Note that a po
tive J, leading to an antiferromagnetic spin structure in t
absence of any charge carriers, is crucial to the descriptio
the problem. In the context of the manganites, ba
calculations20 as well as traditional wisdom show the itine
ant electron to come from the Mn(eg) states, while the
Mn(t2g) electrons constitute the localized spins, interact
antiferromagnetically. The typical parameters in the sol
are t'0.1 eV andJS2'10 meV, so that the dimensionles
parametera[t/JS2'10.

MOTT POLARON

The simplest description of the magnetic polaron is due
Mott.5 Mott considered a self-trapped state, where the s
trapped region of radiusR is fully ferromagnetic and the
region outside it is fully antiferromagnetic~this scenario is
sketched in Fig. 1!. The size of the self-trapped region in on
dimension is obtained by minimizing the Mott total energ

EMott522t1\2p2/~8mR2!12R~2JS2!2JHS. ~2!
©2001 The American Physical Society13-1
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The first two terms here describe the electronic kinetic
ergy, with the quantity22t being simply the band structur
energy of the propagating state with Bloch momentumk
50 and the second term being the confinement energy o
electron~particle in a box!. The third term is the exchang
energy cost to align the localized spins ferromagnetica
inside the self-trapped region. Finally, the last term is
energy gain due to the Hund’s-rule coupling between
itinerant electron and the localized spins.

To determine the stability of the self-trapped ma
netic polaron, one has to compare the polaron energy w
that of the propagating electron state, which for the a
ferromagnetic spin lattice can be easily shown to beEk

56AJH
2 S214t2 cos2 ka, k being the Bloch momentum an

a being the lattice constant. The propagating state wit
ferromagnetic lattice is unfavorable because of the high
change energy cost for the localized spins.

Taking JH→` and using the relation in the tight-bindin
band theory\2/(2ta2)5m, the following results are ob
tained for the Mott polaron in one dimension:~a! The energy
of the polaronE/t53(p/a)2/322; ~b! a localized ~self-
trapped! magnetic polaron forms for the dimensionless p
rameter a[t/JS2.ac , where ac5(27p2/8)1/2;5.8, be-
yond which the propagating state has the lower energy;
~c! the radius of the self-trapped polaron is given byRmin
5(p2a/8)1/3a. In contrast to Mott’s result, de Gennes1 has
argued that the polaron should be self-trapped for all val
of a by considering a few-site discrete lattice model co
prising the central site of the magnetic polaron and its ne
est neighbors.

WAVE FUNCTION

Since we takeJH5`, the electron spin is always paralle
to the localized spins as the electron moves about in
lattice. The electron-hopping amplitude is then given by
Anderson-Hasegawa result of2t cos(x/2), wherex is the
cant angle between two neighboring core spins.21 The state
of the system is described by the orientation (un ,fn) of the
core spins at each lattice site together with the amplitude
the electronic wave function,

FIG. 1. Sketch of the Mott picture of the self-trapped magne
polaron, indicating the disruption of the antiferromagnetic order
the creation of a ferromagnetic region, where the charge ca
becomes self-trapped. Arrows indicate the localized spins, while
line shows the wave function of the trapped electron.
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cnan
†~un ,fn!u0&. ~3!

The operatoran
†(un ,fn) creates an electron at thenth site

with the electron spin oriented along the direction of the c
spin at that site. IfJH was finite, we would, of course, nee
to have a two-component spinor for the electron wave fu
tion at each site. Taking now the azimuthal anglesfn to be
zero ~justified in general by the existence of the easy pla
in the solid!, the ground state of the system is obtained
minimizing the total energy

E52t (
^nm&

cn* cm cos
un2um

2
1c.c.

1JS2 (
^nm&

cos~un2um!2JHS. ~4!

CONTINUUM MODEL

We now take the continuum limit, where the amplitude
the electronic wave function and the cant angle between
neighboring core spins are taken as continuous variab
cn→Aac(x) andun112un[xn→x(x). The continuum ap-
proximation is valid if the polaron radius is large as com
pared to the lattice constant. The total energy Eq.~4! may
now be written as

E52tE
2`

` F2c2~x!1c~x!
d2c

dx2 Gcos
x~x!

2
dx

1JS2E
2`

`

@cosx~x!11#dx, ~5!

where we have expanded the electronic wave functionc(x)
and the cant anglex(x) in Taylor series. The first term in
Eq. ~5! is the kinetic energy of the electron, where the m
tiplicative cos(x/2) factor comes from the Anderson
Hasegawa double exchange and the second term is the
change energy of the core spins. The zero of energy has
redefined to be the energy of the lattice of the antiferrom
netic core spins. Notice that the energy is still zero ev
when an itinerant electron is present in the antiferromagn
lattice because the antiferromagnetic core spins suppres
electron hopping due to the Anderson-Hasegawa cos(x/2)
factor. Also in Eq.~5! and in the rest of the paper, the unit o
length is taken to be the lattice constanta51.

VARIATIONAL SOLUTION

In our variational treatment, we obtain the ground state
the magnetic polaron by minimizing the total energy Eq.~5!
with respect to the following variational wave function:

c~x!5N/cosh~lx!,

x~x!5H 2 cos21~htc2/4JS2!, if htc2/4JS2<1

0, otherwise.
~6!
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Herel andh are the two variational parameters andN is the
normalization constant. The form of the electronic partc(x)
was chosen so that it behaves like a free particle at the ce
of the polaronx→0 and it decays exponentially at long di
tancesx→`.

The form of the cant anglex(x) was chosen following the
expression for the cant angle expected from the dou
exchange model. To see this, consider a system of two s
with an antiferromagnetic interactionJ and take the numbe
of electronsn mediating double exchange between them
be the local wave function squareducu2. The cant anglex
between the two spins is then obtained by minimizing
energy

E52tc~x!2 cos~x/2!1JS2 cosx, ~7!

which leads to the result

x~x!52 cos21@ tc~x!2/4JS2#. ~8!

From this expression, a ferromagnetic alignmentx50 is ob-
tained for sufficiently large values ofn. The variational wave
function Eq.~6! reflects this form except that the variation
parameterh has been introduced. We note thath is expected

TABLE I. Calculated ground-state energies and variational
rametersl andh for the trial wave function Eq.~6!. Energies are in
units of t.

a Energy l h

1 20.087 0.82 1.60
10 20.885 0.79 1.78

100 21.696 0.55 2.23

FIG. 2. The normalized electronic wave functionsc(x) and the
cant-angle functionsx(x) calculated for the continuum model from
the Mott, variational, and the exact~Euler-Lagrange! solutions for
a520. The cant anglesx are in units ofp, so that we have a
ferromagnetic central region~x50! that turns into an antiferromag
netic region~x5p! away from the center of the polaron as se
from the figure. All wave functions and cant angles are shown
positivex only, since they are symmetric about the origin.
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to be of the order of the number of nearest neighbors in
solid ~two in one dimension!, since the kinetic energy term in
Eq. ~7! becomes multiplied by this factor. In addition to th
trial function~6!, we have in fact tried several others. Amon
those tried, the trial function Eq.~6! gives the best overal
result in the range ofa considered. The variational param
eters were obtained numerically by minimizing the total e

-

r

FIG. 3. The electronic wave functionc(x) and the cant-angle
functionx(x) obtained from the exact calculation for the casea51
~a!, 10 ~b!, and 100~c!.
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TABLE II. Ground-state energies of the magnetic polaron for several values ofa[t/(JS2). Energies are
in units of t. ^x2&1/2 indicates the size of the self-trapped region in units of the lattice constant.

a Energy Energy Energy Eke Espin ^x2&1/2

Mott variational exact exact exact exact

1 4.435 20.087 20.088 20.017 0.105 1.379
2 2.054 20.174 20.192 20.469 0.277 0.891
5 0.201 20.435 20.504 21.009 0.505 0.866

10 20.614 20.885 20.889 21.472 0.582 0.895
100 21.701 21.696 21.751 21.930 0.179 1.954
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ergy Eq.~5! with respect tol and h. Results are shown in
Table I.

Note incidentally that Mott’s description of the polaro
discussed earlier is also variational, corresponding to the
wave function:c(x)5N cos@px/(2R)# for x,R and 0 forx
.R and x(x)5p for x.R and 0 forx,R, where the po-
laron radiusR is the variational parameter andN is the nor-
malization constant. Unlike the Mott form, our variation
wave function allows for a cant angle other than 0 orp,
allowing a better description of the boundary region of t
polaron, which is important in the narrow-band limit.

In Fig. 2, we show the wave function and the cant an
obtained from the variational calculation fora520, which
are also compared to the Mott solution as well as the ex
solution obtained from the Euler-Lagrange equations, wh
is described later. Notice the gradual turnover of the c
angle from ferromagnetic to antiferromagnetic alignment
well as the penetration of the electronic wave function in
the antiferromagnetic region. The exactc(x) is more or less
free-particlelike near the central ferromagnetic region, i
similar to the Mott solution, with its tail extending into th
antiferromagnetic region. The variational parametersl andh
for several values ofa are listed in Table I.

EXACT SOLUTION USING
EULER-LAGRANGE METHOD

While the variational wave function is quite useful an
provides an analytical form of the solution, it is actua
possible to solve the problem exactlyalbeit numerically, us-
ing methods of the calculus of variations.22 The appropriate
Euler-Lagrange equations that minimizes the energy exp
sion Eq.~5! are given by

]F

]y
2

d

dx

]F

] ẏ
1

d2

dx2

]F

] ÿ
50, ~9!

where y5c or x. The function F[ f (x,c,ċ,c̈,x,ẋ,ẍ)
1bc2, wheref is the integrand appearing in the energy e
pression Eq.~5! and where the normalization conditio
*2`

` c2(x)dx51 has been enforced via the Lagrange mu
plier b. Using Eq.~5!, the Euler-Lagrange equations becom

~4c1c̈ !cos
x

2
1

d2

dx2 S c cos
x

2D22bc/t50, ~10!
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H ac~c1c̈/2!22 cos
x

2J sin
x

2
50. ~11!

These are the two coupled differential equations, wh
we have solved by the following iterative procedure:~a!
Choose a guess cant-angle functionx(x); ~b! solve the first
differential equation Eq.~10! by the Numerov or any of the
standard methods to obtainc; ~c! with this c, obtain the
cant-angle functionx(x) by inverting Eq.~11!; and ~d! iter-
ate the above steps until the functionx has converged to the
desired accuracy. The energy may then be obtained from
expression~5!. Our convergence criterion forx(x) was that
the computed energy be converged to the desired accur

The functionsc(x) andx(x) obtained from the solution
of the Euler-Lagrange equations are shown in Fig. 3 for s
eral values of the patametera. As seen from the figure, the
magnetic polaron can have two types of behaviors depen
on whether the ferromagnetic core of the polaron is satura
or not. For large valuesa.ac , the ferromagnetic core is
fully saturated~type II!, while for smaller values, the ferro
magnetic core is only partially saturated~type I!.7 The value
of ac is found to be about 7.5 from the exact results obtain
from the solution of the Euler-Lagrange equations.

The energy obtained from the variational wave functi
~6! is good overall as compared to the exact energy in a la
range ofa. However, the electronic partc(x) is not a good
description of the wave function, especially for large valu
of a, which may be expected by an inspection of
exp(6lx)-type functional form. In fact, as seen from Tab
II, Mott’s simple-minded wave function gives a better ener

FIG. 4. The electronic wave functionci and the cant-angle func
tion x i for the magnetic polaron in the discrete lattice case. T
index i denotes the lattice sites. Individual points are connected
dashed lines to guide the eye. Cant anglesx i are in units ofp.
3-4
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than the variational wave function for very large values ofa,
e.g., for the casea5100.

DISCRETE LATTICE

We have also solved the magnetic polaron problem
the discrete lattice by minimizing the energy expression
~4! subject to the normalization condition for the electron
wave function. The relevant equations for the discrete lat
are given by

cn11 cos~xn/2!1cn21 cos~xn21/2!1lcn /t50,

4 cos~xn/2!5a~cn* cn111cncn11* !, ~12!

which were solved by an iterative procedure analogous to
procedure described earlier for the continuum case.
wave functions for the discrete lattice case are shown in
4 for the parametera550.

The calculated energies for both the continuum and
lattice cases are shown in Fig. 5, where the energies obta
from the Euler-Lagrange method~‘‘exact’’ ! have been com-
pared with the variational energies as well as with the M
energies. Both the exact energies as well as the variati
energies are lower than the Mott values~Table I!. The varia-
tional solution is quite close to the exact results in the en
parameter range ofa. Unlike Mott’s solution, our calculated
energies are always negative with respect to the energy o
propagating state, implying that the magnetic polaron is s
trapped for all values ofa.

We have also shown in Fig. 5 the energy for the discr
lattice case, which is quite close to the energy obtained
the continuum case. This is remarkable considering the
that the calculated polaron radius is only of the order o
few lattice constants. Even for such a small polaron size,
continuum approximation seems to work quite well.

The expectation valuêx2&1/2 as obtained from the exac
results for the continuum case has been shown in Fig. 6.
easy to see that in both the limits oft→0 or `, the electronic

FIG. 5. Ground-state energy of the magnetic polaron as a fu
tion of the parametera. The exact energies are compared to t
variational as well as the Mott results. The zero of energy being
of the propagating state in the antiferromagnetic lattice, our res
indicate that the magnetic polaron forms a bound, self-trapped
for all values ofa. Energies for the discrete lattice case are a
shown.
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wave function is completely delocalized. In the latter ca
the strong double exchange turns the entire lattice ferrom
netic and the electron gains the kinetic energy2zt, z being
the number of nearest neighbors. Fort→0 the near-
antiferromagnetic lattice is not able to produce a stro
enough potential well to localize the electron. Fort50, the
lattice is antiferromagnetic and the energy of the electron
in fact independent of its wave function, with the stipulatio
that at each lattice site, the electron spin is aligned along
direction of the localized spin at that lattice site.

CONCLUSION

In conclusion, we have solved a continuum model for t
self-trapped magnetic polaron in an antiferromagnetic h
lattice and obtained the exact solution by solving the coup
Euler-Lagrange differential equations. Solutions correspo
ing to type-I ~unsaturated ferromagnetic core! and type-II
~saturated ferromagnetic core! polarons were obtained for th
parametera,ac and a.ac(a[t/JS2), respectively, with
the critical value beingac.7.5 for the continuum model. A
variational wave function, suitable to describe both the typ
and the type-II behaviors, was proposed and was found
reproduce the exact energy rather well. The polaron w
found to be self-trapped for all values ofa, both in the con-
tinuum and the lattice models, if only the nearest-neigh
electron transfer is allowed. Higher-neighbor electron tra
fer, which permits electron transfer within the same magne
sublattice, would tend to delocalize the polaronic wave fu
tion and so would the zero-point quantum fluctuations of
localized spins. Both these effects, which are not conside
here, could in principle destabilize the self-trapped state
small values ofa.
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FIG. 6. Variation of^x2&1/2 with a for the continuum case ob
tained from the exact calculation. The critical valueac'7.5 sepa-
rates the type-I and the type-II regions.
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