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Self-trapped magnetic polaron: Exact solution of a continuum model in one dimension
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A continuum model for the self-trapped magnetic polaron is formulated and solved in one dimension using
a variational technique as well as the Euler-Lagrange method, in the lindj{-efec, whereJy, is the Hund’s-
rule coupling between the itinerant electron and the localized lattice spins treated as classical spins. The
Euler-Lagrange equations are solved numerically. The magnetic polaron state is determined by a competition
between the electron kinetic energy, characterized by the hopping integrad the energy of the antiferro-
magnetic lattice, characterized by the exchange intebrhd the broad-band case, i.e., for large valuesrof
=t/JS, the electron nucleates a saturated ferromagnetic core rétyipe-ll polaron similar to the Mott
description, while in the opposite limit, the ferromagnetic core is only partially satu(gteet| polaron, with
the crossover being at.,~7.5. The magnetic polaron is found to be self-trapped for all values.ofhe
continuum results are also compared to the results for the discrete lattice.
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INTRODUCTION a model studied by several authors in its lattice
version®>819The three terms in the Hamiltonian describe,
A self-trapped magnetic polaron is formed when an itin-respectively, the kinetic energy of the itinerant electron, the
erant carrier nucleates a ferromagnetic core region in an otHdund’s-rule coupling between the electron and the localized
erwise antiferromagnetic lattice of localized spins and trapspin on each site on the lattice, and the antiferromagnetic
itself in the core™" The energy cost to form the ferromag- exchange between the localized spins. The symb@]sand
netic core is balanced by the energy gain of the itinerant;, denote the creation and the annihilation operators for the
carrier. This object has been given the name “ferron” by electron state with spie- at sitei, (ij) denotes summation
Nagae\? The carrier thus disrupts the antiferromagnetic or-over nearest-neighbor sites, is the spin of the itinerant
der in the “self-trapped” region, but away from it the anti- electron, and; denotes the spin of the localized electron, the
ferromagnetic order is restored. The prototypical candidategitter treated as classical spins. Note that in the one-
for the self-trapped magnetic polaron are thought to be EuSéimensional case with nearest-neighbor hopping, itinerant
and EuTe, on which considerable attention has been focuseglectron transfer is allowed only between lattice sites belong-
in the past~*®Interest on the magnetic polaron problem hasing to the two different magnetic sublattices. Second and
recently resurfaced in light of its relevance to a number otigher nearest-neighbor transfers could adversely affect the
new systems, e.g., the high- materials and the colossal stability of the magnetic polarérand so could the quantum
magnetoresistive manganit&és® fluctuations if the localized spins are treated as quantum
In this paper, we formulate a continuum model and solvespins instead of classical spins.
it exactly using the Euler-Lagrange method and study the The Hamiltonian parametetsJ,,, andJ are all taken to
energetics and the spin structure of the magnetic polarorbe positive. In this work we shall takly,— as appropriate
The Euler-Lagrange equations are solved numerically usingor many solids including the manganites. Note that a posi-
an iterative procedure that yields “exact” results in the sensaive J, leading to an antiferromagnetic spin structure in the
that the solution can be obtained to any arbitrary accuracyabsence of any charge carriers, is crucial to the description of
The results are compared with the Mott picture as well ashe problem. In the context of the manganites, band
with the results of a variational method, where energy iscalculationd’ as well as traditional wisdom show the itiner-
minimized by varying the parameters of a trial wave func-ant electron to come from the Mey) states, while the
tion. One key result is that the magnetic polaron is found tavin(t,,) electrons constitute the localized spins, interacting
be self-trapped for all values of the electronic parameter antiferromagnetically. The typical parameters in the solids

=t/JS" in contrast to the Mott picture, but in agreement with garet~0.1 eV andJS?~10 meV, so that the dimensionless
de Gennes's results for the case of the lattice, where thgarameterw=t/JS*~10.

magnetic polaron was found to be self-trapped for all values

1
of . MOTT POLARON

The simplest description of the magnetic polaron is due to
Mott.> Mott considered a self-trapped state, where the self-
We consider the following Hamiltonian describing the trapped region of radiu® is fully ferromagnetic and the

magnetic polaron in a lattice: region outside it is fully antiferromagnetighis scenario is
sketched in Fig. 1 The size of the self-trapped region in one
dimension is obtained by minimizing the Mott total energy,

HAMILTONIAN

H=-t > ala,+Hc—-J4> s-S+I> §-S, (1
%a o ”Ei S <iEj>S1 @) Emott=—2t+4272/(8mR2) + 2R(2JS%) - JS.  (2)
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[9)= 2 cnan(0n,bn)]0)- @3)

e The operator(d,,#,) creates an electron at theh site
with the electron spin oriented along the direction of the core
spin at that site. Il was finite, we would, of course, need

to have a two-component spinor for the electron wave func-
Jj T \L T T T T T T T T J] T \L tion at each site. Taking now the azimuthal angfgsto be

zero (justified in general by the existence of the easy planes
in the solid, the ground state of the system is obtained by

FIG. 1. Sketch of the Mott picture of the self-trapped magneticminimizing the total energy

polaron, indicating the disruption of the antiferromagnetic order and

the creation of a ferromagnetic region, where the charge carrier B N 0n— 01y,
becomes self-trapped. Arrows indicate the localized spins, while the E=—t> Cn Cm COS—5— +c.c.

localized spins

line shows the wave function of the trapped electron. ()

+JS2 D>, cog 6y~ 0)—IuS. 4
The first two terms here describe the electronic kinetic en- <%q> L0~ Om) = Jn @
ergy, with the quantity— 2t being simply the band structure
energy of the propagating state with Bloch momentkm CONTINUUM MODEL

=0 and the second term being the confinement energy of the

electron(particle in a box. The third term is the exchange ~ We now take the continuum limit, where the amplitude of
energy cost to align the localized spins ferromagneticallythe electronic wave function and the cant angle between the
inside the self-trapped region. Finally, the last term is thaeighboring core spins are taken as continuous variables:

energy gain due to the Hund's-rule coupling between thén— Vay(x) and 1~ 6,=x,— x(x). The continuum ap-
itinerant electron and the localized spins. proximation is valid if the polaron radius is large as com-

To determine the stability of the self-trapped mag_pared to the lattice constant. The total energy &g.may
netic polaron, one has to compare the polaron energy witROW Pe written as
that of the propagating electron state, which for the anti- . A2y ()
ferromagnetic spin lattice can be easily shown to He E:_tJ [sz(x)ﬂ//(x)—z cosX—dx
=+ \JJ;,S?+4t? cog ka, k being the Bloch momentum and - dx 2
a being the lattice constant. The propagating state with a o
ferromagnetic lattice is unfavorable because of the high ex- +J82J [cosx(x)+1]dx, (5
change energy cost for the localized spins. -
Taking Jy—c0 and using the relation in the tight-binding
band theory#?/(2ta?)=m, the following results are ob-

where we have expanded the electronic wave funcyitx)

. . ) . and the cant anglg(x) in Taylor series. The first term in
tafmt(re]d for The Méjtt Eoel)aro/n 'Q,Sj‘g_d'(”g)ens"li") '[hedeFe:?y Eq. (5) is the kinetic energy of the electron, where the mul-

or the polarontt= (m/a) ’ a localized (sett- tiplicative cosf/2) factor comes from the Anderson-
trapped magnetlzc polaron forms for the2d|n2/ezzn5|onless pa'Hasegawa double exchange and the second term is the ex-
ramgterhq?tt/h\ls =~ A, \{\_/heret Of[‘?:h(277t'rh /8|) ~5.8, be-' hange energy of the core spins. The zero of energy has been
yonthw '((:j. € fp:ﬁpaga}flrsg N ag als € lower enggy, aNfadefined to be the energy of the lattice of the antiferromag-
(_C) 2e /g"l,'ys Io etse t_trapl\ljl.ett’ po arol? 5 ggenﬁdﬁé“ netic core spins. Notice that the energy is still zero even
=(m (éllth) t?ﬁ n ccl)n ras ho Idob N re;l: ’ ed fen I SI when an itinerant electron is present in the antiferromagnetic
argued that the polaron shouid be sell-trapped for all Valu€R,yice hecause the antiferromagnetic core spins suppress the
of a by considering a few-site discrete lattice model COM-4lactron hopping due to the Anderson-Hasegawa yé®}(
prising the central site of the magnetic polaron and its neart, or. Also in Eq.(5) and in the rest of the paper, the unit of
est neighbors. length is taken to be the lattice constant 1.

WAVE FUNCTION VARIATIONAL SOLUTION

In our variational treatment, we obtain the ground state of

Since we takel; =, the electron spin is always parallel e magnetic polaron by minimizing the total energy E5)
to the localized spins as the electron moves about in théh. 9 P yr N9 gy 1.
with respect to the following variational wave function:

lattice. The electron-hopping amplitude is then given by the
Anderson-Hasegawa result oft cos(y/2), wherey is the
cant angle between two neighboring core spinghe state

of the system is described by the orientatiah (¢,,) of the
core spins at each lattice site together with the amplitudes of Y(%)
the electronic wave function,

(X)=N/cosh\x),

2 cos Y ptyPlAdS?), if ptyllaIS<1
o, otherwise.

(6)
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FIG. 2. The normalized electronic wave functiopéx) and the
cant-angle functiong(x) calculated for the continuum model from
the Mott, variational, and the exatEuler-Lagranggsolutions for
a=20. The cant angley are in units ofw, so that we have a
ferromagnetic central regiofy=0) that turns into an antiferromag-
netic region(y=) away from the center of the polaron as seen
from the figure. All wave functions and cant angles are shown for
positive x only, since they are symmetric about the origin.

Here\ and 7 are the two variational parameters aXds the
normalization constant. The form of the electronic p&(x)

was chosen so that it behaves like a free particle at the center
of the polaronx— 0 and it decays exponentially at long dis-
tancesx— .

The form of the cant anglg(x) was chosen following the
expression for the cant angle expected from the double-
exchange model. To see this, consider a system of two spins
with an antiferromagnetic interactiahand take the number
of electronsn mediating double exchange between them to
be the local wave function squaréd|2. The cant angley
between the two spins is then obtained by minimizing the
energy

E=—ty(x)? cog x/2) + IS’ cosy, 7)
which leads to the result
x(X)=2 cos Yty(x)%4IS]. (8)

From this expression, a ferromagnetic alignmgs0 is ob-
tained for sufficiently large values of The variational wave
function Eq.(6) reflects this form except that the variational
parametem has been introduced. We note thais expected
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FIG. 3. The electronic wave functio#i(x) and the cant-angle

. L function y(x) obtained from the exact calculation for the casel
TABLE |. Calculated ground-state energies and variational pa-(a)’ 10 (b), and 100(c).

rameters\ and » for the trial wave function Eq(6). Energies are in
units oft.

a Energy A n
1 —0.087 0.82 1.60
10 —0.885 0.79 1.78
100 —1.696 0.55 2.23

to be of the order of the number of nearest neighbors in the
solid (two in one dimension since the kinetic energy term in
Eq. (7) becomes multiplied by this factor. In addition to the

trial function (6), we have in fact tried several others. Among
those tried, the trial function Ed6) gives the best overall
result in the range of considered. The variational param-
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TABLE II. Ground-state energies of the magnetic polaron for several values=tf(JS%). Energies are
in units oft. (x2)*2 indicates the size of the self-trapped region in units of the lattice constant.

a Energy Energy Energy Exe Espin (x?)12
Mott variational exact exact exact exact

1 4.435 —0.087 —0.088 —-0.017 0.105 1.379

2 2.054 -0.174 —-0.192 —0.469 0.277 0.891

5 0.201 —0.435 —0.504 —1.009 0.505 0.866

10 —-0.614 —0.885 —0.889 —1.472 0.582 0.895

100 —-1.701 —1.696 —-1.751 —1.930 0.179 1.954

ergy Eq.(5) with respect ton and 7. Results are shown in . x| x
Table |. ay(y+ §I2) = 2 cos;  siny =0. (11)
Note incidentally that Mott's description of the polaron
discussed earlier is also variational, corresponding to the trig),
wave function:¢(x) =N cog m/(2R)] for x<R and 0 forx

These are the two coupled differential equations, which
e have solved by the following iterative procedura)
Choose a guess cant-angle functjpfx); (b) solve the first
>R and x(x) =7 for x>R and 0 forx<R, where the po- jfferential equation Eq(10) by the Numerov or any of the
laron radiusR is the variational parameter amdis the nor-  gtandard methods to obtai; (c) with this ¢, obtain the
malization constant. Unlike the Mott form, our variational Cant_ang'e functiorx(x) by inverting Eq(ll), and (d) iter-
wave function allows for a cant angle other than 0mr ate the above steps until the functigrhas converged to the
allowing a better description of the boundary region of thedesired accuracy. The energy may then be obtained from the

polaron, which is important in the narrow-band limit. expressiorn(5). Our convergence criterion fop(x) was that
In Fig. 2, we show the wave function and the cant anglethe computed energy be converged to the desired accuracy.
obtained from the variational calculation fa=20, which The functionsy(x) and y(x) obtained from the solution

are also compared to the Mott solution as well as the exaatf the Euler-Lagrange equations are shown in Fig. 3 for sev-
solution obtained from the Euler-Lagrange equations, whicteral values of the patametet As seen from the figure, the

is described later. Notice the gradual turnover of the cantmagnetic polaron can have two types of behaviors depending
angle from ferromagnetic to antiferromagnetic alignment a®n whether the ferromagnetic core of the polaron is saturated
well as the penetration of the electronic wave function intoOr not. For large values>«., the ferromagnetic core is
the antiferromagnetic region. The exaj(x) is more or less  fully saturated(type I1), while for smaller values, the ferro-
free-particlelike near the central ferromagnetic region, i.e.magnetic core is only partially saturatégtpe I).” The value
similar to the Mott solution, with its tail extending into the of a. is found to be about 7.5 from the exact results obtained
antiferromagnetic region. The variational parameteamd,  70M the solution of the Euler-Lagrange equations.

for several values of are listed in Table 1. The energy obtained from the variational wave function
(6) is good overall as compared to the exact energy in a large
EXACT SOLUTION USING range ofa. However, the electronic pag(x) is not a good
EULER-LAGRANGE METHOD description of the wave function, especially for large values

of a, which may be expected by an inspection of its

While the variational wave function is quite useful and exp(FAx)-type functional form. In fact, as seen from Table

provides an analytical form of the solution, it is actually I, Mott's simple-minded wave function gives a better energy
possible to solve the problem exac#ibeit numerically, us-

f s h 1 o-000000——T—0900000
ing methods of the calculus of variatioffsThe appropriate ' !
Euler-Lagrange equations that minimizes the energy expres- 2 : ro=50
sion Eq.(5) are given by t ': ;
=< ': :'
oF_doF & oF o S 05F L e .
oy dx gy Tak gy O © © A
L !
L \ A
where y=4¢ or y. The function F=f(X,¢, ¥, ¥, x,x,x) ,"'. ey
+ B2, wheref is the integrand appearing in the energy ex- 0 $-osesddb005000 S eeeed
pression Eq.(5) and where the normalization condition -10 -5 0 5 10
J”..#*(x)dx=1 has been enforced via the Lagrange multi- lattice site i

plier 8. Using Eq.(5), the Euler-Lagrange equations become
FIG. 4. The electronic wave functian and the cant-angle func-
2 tion y; for the magnetic polaron in the discrete lattice case. The
(Ay+ l./.I)COS)Zﬁ'F d_z( z//cos)£> —2B41t=0 (10) indexi denotes the lattice sites. Individual points are connected by
dx 2 ' dashed lines to guide the eye. Cant angleare in units ofs.
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FIG. 5. Ground-state energy of the magnetic polaron as a func- 0 (/ 10 20 30 40 50
tion of the parameter. The exact energies are compared to the ¢ a

variational as ngl as the .Mott resu!ts. The zero .of energy being that FIG. 6. Variation of(x2)¥2 with « for the continuum case ob-
_of t_he propagating state_ln the antiferromagnetic lattice, our resu“f‘ained from the exact calculation. The critical valug~7.5 sepa-
indicate that the magnetlc_ polaron forms a bouno_l, self-trapped stateios the type-1 and the type-II regions.
for all values ofa. Energies for the discrete lattice case are also
shown. wave function is completely delocalized. In the latter case,
the strong double exchange turns the entire lattice ferromag-
than the variational wave function for very large valuesrpf netic and the electron gains the kinetic energyt, z being
e.g., for the case=100. the number of nearest neighbors. For-0 the near-
antiferromagnetic lattice is not able to produce a strong
enough potential well to localize the electron. Eer0, the
lattice is antiferromagnetic and the energy of the electron is
We have also solved the magnetic polaron problem foin fact independent of its wave function, with the stipulation
the discrete lattice by minimizing the energy expression Egthat at each lattice site, the electron spin is aligned along the
(4) subject to the normalization condition for the electronicdirection of the localized spin at that lattice site.
wave function. The relevant equations for the discrete lattice

DISCRETE LATTICE

are given by CONCLUSION
Crs 1 COS Xn/2) + Cp_1 COL Xy 1/2) + NC, [t =0, In conclusion, we .have solveq a continuum model for the
. . self-trapped magnetic polaron in an antiferromagnetic host
4 cog xn/2)=a(CiCyi1tCrCrin), (12 Jattice and obtained the exact solution by solving the coupled

which were solved by an iterative procedure analogous to thEUl€r-Lagrange differential equations. Solutions correspond-
procedure described earlier for the continuum case. Th&'9 to type-l (unsatura?ed ferromagnetic cb>ran_d type-ll
wave functions for the discrete lattice case are shown in FiglSaturated ferromagnetic cc)naaolaronsz were obtained for the
4 for the parametea=>50. parametera < ac anq a>a(a=t11S), res_,pectlvely, with
The calculated energies for both the continuum and th&he critical value beingr.=7.5 for the continuum model. A
lattice cases are shown in Fig. 5, where the energies obtain&@'iational wave function, suitable to describe both the type-|
from the Euler-Lagrange methdtexact” ) have been com- and the type-ll behaviors, was proposed and was found to
pared with the variational energies as well as with the MotféProduce the exact energy rather well. The polaron was
energies. Both the exact energies as well as the variationipund to be self-trapped for all values af both in the con-

energies are lower than the Mott valu@able |). The varia- tinuum and the lattice models, if only the nearest-neighbor
tional solution is quite close to the exact results in the entirél€ctron transfer is allowed. Higher-neighbor electron trans-

parameter range af. Unlike Mott's solution, our calculated fer, Wh?ch permits electron transfer within the same magnetic
energies are always negative with respect to the energy of treublattice, would tend to delocalize the polaronic wave func-

propagating state, implying that the magnetic polaron is selftion and so would the zero-point quantum fluctuations of the
trapped for all values of. localized spins. Both these effects, which are not considered

We have also shown in Fig. 5 the energy for the discretd1€re, could in principle destabilize the self-trapped state for

lattice case, which is quite close to the energy obtained forMall values ofa.
the continuum case. This is remarkable considering the fact
that the calculated polaron radius is only of the order of a
few lattice constants. Even for such a small polaron size, the Part of the work was performed during a visit of one of
continuum approximation seems to work quite well. the authors(S.S) to the Institute of Theoretical Physics at

The expectation valuéx?)'/2 as obtained from the exact the University of California, Santa Barbara, where it was
results for the continuum case has been shown in Fig. 6. It isupported in part by the National Science Foundation under
easy to see that in both the limitstf>0 or«, the electronic  Grant No. PHY94-07194.
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