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Electron spin-flip relaxation by one magnon processes: Application to the gadolinium surface band
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~Received 10 January 2001; published 7 May 2001!

The ‘‘s-f model,’’ also known as the ferromagnetic Kondo lattice, contains a description of band electrons
coupled to localized spins that is an appropriate description of the magnetic part of the low-energy physics of
Gd metal. Here the model is used to estimate the lifetime broadening of the minority-spin component of the
surface-electron band in ferromagnetic gadolinium metal at temperatures below the Curie temperature. The
low-temperature result 1/t'0.1 eV agrees nicely with a measurement by Fedorovet al.
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I. INTRODUCTION

Fedorov et al.1 have recently measured the line sha
A(kW ,v) of photoemitted electrons in the ferromagnetic me
Gd. For photoelectrons associated with a photohole in
(001) surface band, they find somewhat different lifetim
broadening depending on whether the emitted electron
up ~majority! or down ~minority! spin. They interpret the
source of lifetime broadening to be electron-phonon scat
ing for the majority-spin component of the photohole, a
electron-magnon scattering for the minority-spin compon
of the photohole. Although the arguments given by Fedo
et al. seem perfectly sensible, nevertheless, this interes
diversity suggests a need for theoretical inquiry. The mag
tude of electron-phonon scattering in Gd has previous2

been estimated, with results roughly agreeing with the
signed majority-spin equilibration rate. Electron-magn
scattering has not previously been estimated.

Here I argue that the ‘‘s-f ’’ or ‘‘ferromagnetic Kondo
lattice’’ model allows reasonable estimates without free
rameters. I suggest an extreme model for the nature
surface-electron and surface-magnon states: surface-ele
states have amplitude 1 on the top layer and zero elsewh
while magnon states at the surface3 are simply the bulk
Bloch states, ignoring surface boundary conditions. Us
this model, and the measured massm* '1.2 of the surface-
hole band, the zero-temperature equilibration rate
minority-spin holes more than 25 meV from the top of t
hole band is predicted to be 1/t50.10 eV, agreeing with the
experiment.

II. FORMULA FOR RELAXATION RATE

The generic Hamiltonian for the ‘‘s-f ’’ or ‘‘ferromagnetic
Kondo lattice’’ model couples electron bandskWn with energy
e(kWn) ~independent of spin, so far! to localized spinsSW i lo-
cated on atoms at lattice sitesRW i :

H5(
kWns

e~kWn!c†~kWns!c~kWns!

2J (
imab

SW i•c†~ ima!sW abc~ imb!. ~1!
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The electron bands derive from the outer atomic orbit

u ima& with wave functionscm(rW2RW i)xa , wherexa is the
spin part. This model should describe the low-energy sp
related physics of a metal like Gd, with three conducti
electrons per atom in orbitals derived from atomics and d
states of Gd. These three orbitals have a magnetic interac
with the well-localizedS57/2 half-filled 4f shell. The ex-
change parameterJ comes from the atomic Hund’s rule try
ing to keep ‘‘electron’’ spins parallel to ‘‘core’’ spins. The
same Hamiltonian, in theJ→` limit, is known as the
‘‘double-exchange Hamiltonian’’4 and is very popular right
now5 for discussions of hole-doped LaMnO3.

The zero-temperature phase diagram of thes-f model~for
a singles band! as a function of filling andJ/bandwidth ratio
has been computed approximately.6 Ferromagnetic order oc
curs over a wide range of parameters, with a Curie temp
ture (Tc5292 K for Gd! proportional toJ. Electron bands
acquire a spin splitting proportional toJ. Lindgard et al.7

used the model to calculate~in random-phase approximation!
the spin-wave dispersion, which was measured for Gd
Koehleret al.8, and that has been studied using spin-dens
functional theory by Perlovet al.9

In lowest-order spin-wave approximation, we replace
Fourier-transformed spin operatorSW Q in Eq. ~1! by spin-
wave creation and destruction operatorsaQ

† and aQ using
SQz5SdQ,02aQ

† aQ , (SQx1 iSQy)/25SQ
15A2SaQ , and

(SQx2 iSQy)/25SQ
25A2SaQ

† . The Q50 term in lowest or-
der gives spin splitting 2JS, lowering the energy of band
with spin parallel to the localized spinSW i;Sẑand raising the
other bands equally. TheS6 terms give rise to spin-flip scat
tering events.

In this paper I estimate the rate 1/t at which a single
out-of-equilibrium hole in a surface band relaxes back
ward equilibrium by spin-flip processes. The rate can
found from\/t522 ImS, where the leading Feynman dia
gram for the self-energyS is shown in Fig. 1. Only the
one-magnon process is considered. This approximation
be questioned on the grounds of fallibility of the ‘‘Migda
approximation’’ for electron-magnon processes.10 However,
it is a proper first estimate, the only one that can be relia
computed, and seems to me unlikely to make a large e
whenT!Tc . Two magnon processes have been conside
by Lutovinov and Reizer.11
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PHILIP B. ALLEN PHYSICAL REVIEW B 63 214410
The actual states (kW ,n) of interest are surface states
spin primarily but not exclusively up. The probabilit
p(kW ,n,↑) @or p(↑) for short# that the spin state is up, is les
than one. The amplitude of the up-spin component of
wave function isAp(↑) and is close to 1. The correspondin
probability 12p(↑)5p(kW ,n,↓) @or p(↓) for short# that the
spin state is down, is nonzero for two reasons. First,
spin-orbit interaction is not small and mixes spin states. S
ond,f spins on Gd atoms may deviate from perfect alignm
by quantum and thermal fluctuations, and the conduc
states are locally locked by Hund’s rule in the same s
orientation as thef spins. The second process is a renorm
ization of electron bands by magnon processes. A comb
tion of the two effects is seen experimentally1 as a small
minority-spin component in the photoemitted electron. T
component is sometimes referred to as a ‘‘shadow ba
and has received recent theoretical treatments.12

An elementary derivation of the ‘‘Migdal’’ result follows
from the standard ‘‘Golden-rule’’ rate equations of Bolt
mann theory. Suppose the down-spin component of statekWn

has populationp(↓)F(kW ,n,↓). If this deviates from the equi
librium Fermi-Dirac populationp(↓) f (kW ,n,↓), then it will
evolve back toward equilibrium according to

dp~↓ !F~kW ,n,↓ !

dt
52

2p

\ (
QW n8b

uMb~kWn↓,kW1QW n8↑ !u2

3$L~emission!1L~absorption!%. ~2!

L~emission!5d~e2e82v8!

3@~N811!F~12F8!2N8F8~12F !#,

~3!

L~absorption!5d~e2e81v!

3@NF~12F8!2~N11!F8~12F !#.

~4!

HereMb()5J@(2S/2N)p(↓)p8(↑)#1/2 is the matrix element
for the process (kW ,n,↓) scattering to (kW1QW n8↑) by emission
of the magnon (2QW b) or absorption of the magnon (QW b).
The factor 1/A2N, whereN is the number of unit cells and
2N the number of atoms in the sample, comes from norm
ization of the spin-wave eigenvector. There are two branc
of spin waves, with amplitude61/A2 on each atom. This is

FIG. 1. Feynman graph for electron self-energy from electr
magnon coupling. The double solid line is the renormalized elec
Green’s function; the wavy line is the renormalized magn
Green’s function; circles are the effective electron-magnon inte
tion matrix element.
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discussed in the Appendix. A shorthand is used thate and
p(↓)F stand for the energy and occupancy of the quasip
ticle state (kWn↓), e8 and p(↑)F8 stand for the energy and
occupancy of the quasiparticle state (kW1QW n8↑), v and N
stand for the energy and occupancy of the magnon s
(QW b), andv8 andN8 stand for the energy and occupancy
the magnon state (2QW b). At temperatureT.0, depletion of
an excess population toward equilibrium occurs both
emission and absorption of thermal magnons. Each pro
~emission or absorption! has a time-reversed process that e
hances the population, the ‘‘scattering-in’’ terms with opp
site sign. In thermal equilibrium, scattering out and in occ
at equal rates. This ‘‘principle of detailed balance’’ guara
tees that the two parts ofL~emission! cancel each other whe
the distributionsN and F become the equilibrium distribu
tions n and f, and similarly forL~absorption!.

Now make the assumption that all quasiparticles are
equilibrium except for a particular state (kWn↓) of interest,
whose population~F! deviates from equilibrium~ f ! by
dF(kWn↓). Then the rate equation~2! takes the form

dF~kW ,n,↓ !

dt
52dF~kWn↓ !/t~kW ,n,↓ !, ~5!

1/t~kW ,n,↓ !5
2p

\N (
QW n8b

J2Sp8~↑ !

3$d~e2e82v!@n112 f 8#

1d~e2e81v!@n1 f 8#%. ~6!

Except for the factorp8(↑)5p(kW1QW n8↑), this magnon-
limited scattering rate is a perfect analog of the us
phonon-limited quasiparticle relaxation rate from Migd
theory. Equation~6! can equally well be derived by evalua
tion of the Feynman diagram Fig. 1, analytic continuation
Matsubara frequenciesivn to complex frequencyz, and use
of 1/t522 ImS(z→e1 id). The energiese andv used to
evaluate Eq.~6! are the experimental quasiparticle and ma
non energies, which is mandated by the occurrence of
full, not bare, Green’s functions in the self-energy graph
Fig. 1.

III. EVALUATION OF RELAXATION RATE

Reasonable simplifying assumptions yield a ‘‘zer
parameter’’ estimate of Eq.~6! for 1/t. First, we specialize to
a state (kW ,n) that is in an occupied surface band. This state
low T is dominantly spin up, but as seen experimentally
has a spin-down component,p(↓)'0.13. The Green’s func-
tion G and self-energy are 232 matrices in spin space
Eigenstates of the 23 2 matrix G21 are the spin-split qua-
siparticles, of which only the lower~primarily majority spin!
state is relevant. The energy of this state will be denotedek ,
with no band or spin index needed, and only a tw
dimensional wave vectork rather than a three-dimensionalkW .
Spin-resolved photoemission selectively depopulates
single-spin component of this state. When the photoemi

-
n

c-
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ELECTRON SPIN-FLIP RELAXATION BY ONE MAGNON . . . PHYSICAL REVIEW B63 214410
electron has spin down, there is a hole in the down-s
component of the majority-spin hole band. This compon
@with distribution function F(k↓)# decays to equilibrium
with rate 1/t(k,↓). We assume thatp(k↓)5p(↓) is indepen-
dent ofk, and similarlyp(k1Q↑)5p8(↑)512p(↓). Then
we have

\/t~kW ,↓ !5
pp8~↑ !

2S
~2JS!2D, ~7!

where D is the relevant density of decay channels. AtT
50, D is

D5
1

N (
QW

$%5
A3a2c/2

~2p!3 E d2QdQz

3$d„ek2ek1Q2v~Q,Qz!…u~1ek1Q!

1d„ek2ek1Q1v~Q,Qz!…u~2ek1Q!%. ~8!

We assume that the spin waves retain their bulk charac
Therefore, although electron energies depend only on
two-componentk, the spin-wave energyv(Q,Qz) depends
on all three components of wave vector, thez direction being
normal to the surface. The first delta function in Eq.~8! is a
process where an empty statek1Q lying above the Fermi
surface is filled from a statek that scatters into it by spin
wave emission. In other words, it refers to decay of an e
tron lying in a statek that is above the Fermi energy by
least a spin-wave energy. The second delta function is a
cess where the filled statek1Q lying below the Fermi sur-
face scatters into an empty statek by spin-wave emission; in
other words, it describes decay of a hole in the statek ~below
the Fermi energy by at least a spin-wave energy!. It is only
this second process that is seen in the photoemission
Let us also assume that the photohole statek lies below the
Fermi energy by at least 25 meV, the maximum spin-wa
energy, in which caseu(2ek1Q) is guaranteed to be 1. Th
Qz integration then gives

c

2pE2p/c

p/c

dQzd„ek2ek1Q1v~Q,Qz!…5n~k,k1Q!/s~Q!

~9!

wheres(Q) is the normalized spin-wave slope

s~Q!5
2p

c U ]v

]Qz
U

v*
~10!

and n(Q) is the number of spin-wave states (Q,Qz) with
fixed Q, but any value ofQz , which conserve energy, i.e
which satisfy v(Q,Qz)5v* 5ek1Q2ek . Examining the
measured dispersion curves,8 the normalized slope can li
between 0 and a maximum that is not very different fro
vmax525 meV. If ek1Q2ek is not greater thanvmax, then
there is a fairly good chance~something like 50% probabil
ity! that there are two values,6uQzu, such that the spin-wave
state (Q,Qz) obeys energy conservation. In other word
n(Q) can be expected to take the value 2 or 0 with ab
equal probability provided 0,ek1Q2ek,vmax, and is defi-
nitely 0 elsewhere.
21441
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The remaining integral is

D5
A3a2/2

~2p!2 E d2Qn~k,k1Q!/s~Q!. ~11!

This integral should be evaluated using the correct disper
relations for the surface-electron state and for the spin-w
states, with allowance for boundary conditions and wa
function amplitudes altering the matrix elements. Howev
this requires a large ‘‘first-principles’’ calculation of unce
tain reliability. Therefore, a slightly cavalier estimate is
order. Assume that the surface state has parabolic dispe
ek52e02\2k2/2m* . Experimentally this state is seen1 to
disperse downwards in energy with effective massm*
;1.2m, wherem is the electron mass.

The inequality 0,ek1Q2ek,vmax is obeyed in an annu
lar region shown in Fig. 2. The area of this region isp(k2

2k82) and (\2/2m* )(k22k82 )5vmax. Inside this region we
assumen has an average value of 1 and the normalized sl
has an average valuevmax/2. Then the density of decay chan
nels is

D5
A3a2/2

~2p!2
p

2m*

\2
vmax

2

vmax
5

A3

2p

m* a2

\2
;0.57 ~eV!21.

~12!

This is e independent because of the two-dimensionality
the surface band. A more careful treatment, yielding exa
the same result, is in the Appendix.

Finally we evaluate the decay rate Eq.~7! by choosing
2JS to be the spin splitting of the surface state,;0.65 eV,13

S to be 7/2, and the fractional up-spin probabilityp8;0.87.1

These assumptions yield\/t;0.10 eV for all photohole
statesk that are not too much closer than 25 meV to the t
of the surface-state band. For states closer to the top,
decay rate should diminish because of reduction of the n
ber of decay channelsD. It is also assumed thatT is fairly
low. At higherT, the rate is enhanced by thermal spin-wa
population, but diminished by diminishing fractional up-sp
probability p8(↑). The estimate\/t;0.10 eV agrees with

FIG. 2. For a given hole statek, the annular region shows pos
sible lower-energy holes~higher-energy filled states! that the hole
can scatter into by spin-wave emission. The outer circle den
states with energy2e02\2k2/2m* , and the inner circle denote
states higher in energy byvmax.
0-3
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PHILIP B. ALLEN PHYSICAL REVIEW B 63 214410
experiment1 to greater precision than the uncertainties of
model. The calculation supports the interpretation that
source of minority-spin line broadening is spin-flip decay
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APPENDIX

Here I try to illuminate some of the approximations in t
model and also to demonstrate the surprising reliability
the estimate

\/t5
A3

4

p8~↑ !m*

S S 2JSa

\ D 2

, ~A1!

which comes from combining Eqs.~7! and~12!. Spin waves
in Gd have been fitted14 with the model

S V11~QW ! V12~QW !

V12~QW ! V11~QW !
D S 1/A2

61/A2
D 5v6~QW !S 1/A2

61/A2
D ,

~A2!

where the spin-wave eigenfrequencies arev6(QW )5V11(QW )
6V12(QW ). The elements of the matrix are defined by

V11~QW !5S@J11~0!2J11~QW !1J12~0!#,

V12~QW !52SJ12~QW !, ~A3!

J11~QW !5Re(
RW

J~RW !eiQW •RW ,

J12~QW !5Re(
RW

J~RW 1tW !eiQW •(RW 1tW ), ~A4!

whereJ(RW ) are fitted exchange coupling constants,RW runs
over the translation vectors of the hexagonal lattice, antW
with z-componentc/2 gives the position of the second ato
in the two-atom basis of the hcp crystal structure. The f
quencies and density of states calculated from this mode
experiment8 well, and are shown in Fig. 3.

FIG. 3. Spin-wave dispersion in Gd, calculated from Lindgar
parameters~Ref. 7!. The magnon density of states is shown in p
~b! of the panel. The thin line represents the dispersion curve
tained by truncating farther than first neighbors in thez direction.
21441
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Notice that the two branchesv6 are degenerate at the to
of the Brillouin zoneQz5p/c ~directionsA→H→L→A in
Fig. 3!. These branches can be ‘‘unfolded’’ into a zone twi
as large in thez direction;v1 is the extension ofv2 under
the mappingv1(Qx ,Qy ,Qz)5v2(Qx ,Qy,2p/c2Qz).

An accurate analytic approximation for Eq.~11! is pos-
sible provided Lindgard’s fitting parameters, Eqs.~A4! are
slightly simplified by truncating off farther than first
neighbor planes in thez direction. The alteration ofv(QW )
caused by this approximation is shown in Fig. 3. The cha
is fairly small, and could be largely compensated by a furt
tuning of the nearer-neighbor couplings. With this appro
mation, the one-extended magnon branchv5v2 has fre-
quency given by

v~QW !5a~Qx ,Qy!1b~Qx ,Qy!cos~Qzc/2!. ~A5!

Then the normalized slopes(Q) is given by

s~Qx ,Qy!5pAb22~v2a!2. ~A6!

The remaining integral Eq.~11! can be considered an in
tegral overd2k8 running over the annulus of Fig. 2,

D5
A3a2/2

~2p!2 Ek1

k2
dfk8dk8

2

pAb22~v2a!2
, ~A7!

wherev5e(k)2e(k8) is the energy of the spin wave wit
wave vector (kx2kx8 ,ky2ky8 ,Qz) that scatters the hole out o
statek into statek8. For a given two-vector (Qx ,Qy)5k
2k8, one searches overQz to find whether there is an energ
conserving solution. Either there are no energy-conserv
spin-wave states, or else there aren52 such solutions at
6Qz . Consider a path ink8 space at fixed azimuthf shown
as a dotted line in Fig. 2. The outer circle is statesk8 that are
degenerate in energy with the starting statek. Unlessk8 is
the same ask, there is no zero-energy spin wave that c
couple these states. Moving down the dotted line to high
energy electron states that can fall into the hole atk by mag-
non emission, one finds the state labeled 1 that has
enough energy difference that an energy-conserving mag
transition is found. The magnon hasQz50 because it is the
least-energy magnon allowed to couple on the dotted l
Moving farther down the dotted line, one comes eventua
to the state labeled 2 that is the highest-energy electron s
that can fall into the hole in statek by magnon emission. The
magnon hasQz52p/c because it is the highest-energy ma
non. For both these extreme states,v5a6b, the slopes is
zero ~the magnon energy is quadratic inQz nearQz50 and
2p/c). The integrand of Eq.~A7! diverges at the two end
points. However, it is an integrable divergence, and in fa
almost exactly independent of the variablesa and b. We
observe that in going from states 1 to 2 along the dotted l
the componentsQx and Qy are not changing much, which
allows us to seta(Qx ,Qy) andb(Qx ,Qy) to constants dur-
ing thek8 integration. Then we have

t
b-
0-4
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D5
A3a2/2

~2p!

m*

\2 Ee2a2b

e2a1b

de8
2/p

Ab22~e2e82a!2
,

5
A3a2

~2p!

m*

\2
. ~A8!

This is exactly Eq.~12!.
Finally it is appropriate to mention the hidden assum

tions about surface and bulk states. It is implicitly assum
that the electron-surface state has a wave function of
amplitude on the surface layer and zero amplitude elsewh
This kind of state will be absolutely insensitive to thez com-
ponent of the magnon wave vector, and the electron-mag
matrix element will beJ@(2S/2N)p(↑)p(↓)#1/2 for all k and
k8. Suppose instead a surface-electron wave function of
plitude 1/A2 on each of the top two layers. This state w
couple to thev2 branch of magnons with the full-matri
elementJ(2S/2N)1/2, but will not see thev1 branch. Con-
versely, a surface wave function that has amplitude61/A2
on the top two layers, with a sign change, will couple only
thev1 branch and not to thev2 branch. It is not reasonabl
d

tt.

a,

et

.
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that the net coupling to magnons should depend much on
depth or details of the surface-electron wave function; the
fore we should ask where has the missing-magnon coup
gone when the electron wave function extends two lay
down instead of one. The answer is in the orthogonal e
tron wave function on the top two layers, with oppos
phase relation between layer 1 and 2. Since by assump
there is only one surface state, the orthogonal state is no
eigenstate but a superposition of bulk states. The miss
magnon coupling is from the surface state into these b
states. For the actual Gd-surface state, how much of
magnon-induced scattering is to bulk and how much is
surface states is an unknown element. The extreme m
used here hides this problem. The justification is belief t
the net-scattering probability should have a tendency to
conserved, i.e., to be weakly dependent on depth. Simila
we have not asked what is the nature of the magnon st
near the surface, but instead assumed that we can use
magnon states. Instead, it might be that a surface ban
magnon states grabs all the spectral weight. Then de
would be quite different, but over-all coupling streng
should be similar.
-

s.

tt.
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