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Dynamics and thermodynamics of supercooled liquids and glasses from a model energy landsca
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The dynamics and thermodynamics of a model potential-energy surface are analyzed with regard to super-
cooling and glass formation. Relaxation is assumed to be mediated by pathways that connect groups of local
minima. The dynamics between these groups is treated via transition state theory using appropriate densities of
states consistent with the thermodynamics of the model, with a general expression for the free energy barrier.
Nonergodicity is admitted by successive disconnection of regions that no longer contribute to the partition
function as a function of the observation time scale. The model exhibits properties typical of supercooled
liquids and glasses spanning the whole range of ‘‘fragile’’ and ‘‘strong’’ behavior. Non-Arrhenius dynamics,
characteristic of ‘‘fragile’’ glass formers, are observed when the barriers to relaxation increase as the potential
energy decreases, but only if the observation time scale is long enough. For a fixed observation time, fragility
generally increases as the free energy barriers decrease and vibrational frequencies increase. We associate
higher vibrational frequencies with systems that have more local minima, and hence when the model exhibits
dynamic fragility we usually see a large change in the heat capacity at the glass transition. However, in some
regions of parameter space the expected correlations between dynamics and thermodynamics are not present.
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I. INTRODUCTION

Within the Born-Oppenheimer approximation, the stru
ture, dynamics, and thermodynamics of any given system
determined by the underlying potential-energy surface~PES!
or potential energy ‘‘landscape.’’ However, if the temper
ture is not too low the hydrodynamically based mod
coupling theory1–3 ~MCT! can provide a satisfactory accou
of the relaxation behavior in many glass formers. Here
focus upon the ‘‘activated’’ regime, where potential and fr
energy barriers significant compared tokT must be over-
come. The present PES-based approach should work
higher temperatures too, until the system ceases to sp
sufficient time in each minimum to establish equilibriu
properties.4

The most important features of the PES are station
points where the force vanishes. In particular, a local m
mum ~or ‘‘inherent structure’’5! is a stationary point with no
negative force constants~imaginary normal mode frequen
cies! whilst a true transition state has precisely one. T
number of stationary points probably grows exponentia
with the size of the system.6–8 Nevertheless, over the las
decade significant progress has been made in character
the global PES’s of increasingly complex systems.4,9–34

Some of the ideas have developed in parallel for finite s
tems, glasses and proteins, and it is from the latter biolog
viewpoint that the concept of a free-energy folding funn
originates.13,35–39 Studies of modelfree energy landscape
for proteins40–44 complement the present analysis of glob
potentialenergy surfaces.

Goldstein made an important contribution when he p
posed a connection between the properties of glasses an
PES.45 He distinguished two time scales: rapid vibratio
about local minima and less frequent jumps over signific
energy barriers. Johari and Goldstein subsequently obse
two different characteristic relaxation times in dielectric lo
spectra, naming the slower onea and the other oneb, and
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they associated thea relaxation peak with slower rearrange
ment mechanisms of some sort.46

Adam and Gibbs,47 building upon the model of Gibbs an
DiMarzio,48 made a heuristic connection between dynam
and thermodynamics by assuming that relaxation occurs
‘‘cooperatively rearranging regions’’ whose size increas
with decreasing temperature. However, modifications
needed to fit experimental data,49 and recent results for me
tallic glass formers suggest that two distinct sorts of mec
nisms contribute to transport processes.50 On the other hand,
several recent simulation studies support the origi
formulation.51–53 Xia and Wolynes have recently exploite
the near universality of the Lindemann ratio to provide
alternative connection based upon density functio
theory.54 In the present study we solve a model that is ba
on general properties of global potential-energy surfa
without reference to the details of the potential or to t
particular relaxation mechanisms. This model, which
tempts to reconcile nonergodic dynamics and thermodyn
ics in a consistent framework, is described in Sec. II. So
characteristic properties of the model are discussed in S
III, and numerical results are presented in Sec. IV. Conc
sions follow in Sec. V.

II. THE MODEL

The present model is in some ways an extension of
previous analysis that focused on relaxation to the glo
potential-energy minimum.13 Here we distinguish betwee
rearrangements that facilitate further relaxation to low
potential-energy regions of the PES from rearrangeme
within given sets of local minima that span a limited range
potential energy.

Master equation dynamics based on a biased rand
walk55 have previously reproduced the multiexponential
laxation observed for the binding kinetics of carbon mono
ide to heme proteins.56 Brawer’s kinetic model views diffu-
©2001 The American Physical Society04-1
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DAVID J. WALES AND JONATHAN P. K. DOYE PHYSICAL REVIEW B63 214204
sion as the cooperative motion of a number of atoms
high-energy transition states,57 but the results assume th
these ‘‘transition states’’ are equally accessible from a
higher density structure. In the present model no assumpt
are required about the nature of the rearrangements sinc
focus on the role of a given PES. However, the division
the system into regions corresponding to subsets of atom
common to a number of earlier theories,47,58–60 and more
recently to the frustration-limited domain model.61

Dyre recast Brawer’s model as an energy mas
equation.62 However, this formulation does not appear to a
mit the connectivity of the PES: at least one further ord
parameter is needed to distinguish states of the same en
that belong to different regions, otherwise there can be
barrier between them. This minimal two-order parame
picture, using energy and regions, is different, but proba
not incompatible, with that of Tanaka, who has sugges
that competition between density ordering and bond orde
can provide a universal description of the gla
transition.63,64

Bässler’s explanation for non-Arrhenius dynamics,65 in
terms of a decreasing mean energy that leads to an increa
mean activation energy with temperature, captures the s
basic physics as the present model. A more elaborate en
master equation study, based upon structural changes on
ferent energy scales, was used to distinguish strong and
ile glass formers,66 but again assumes global connectivity.
is this feature of the model that probably leads to some of
undesirable behavior noted by Dyre.67 Diezemann and co
workers have considered a locally connected version of
model68–70where transitions are only allowed between sta
that are sufficiently close in energy; however, there is ag
no concept of connectivity in configuration space.71 Analyti-
cal solutions exist for globally connected mas
equations,40,72 but unfortunately disappear when nontrivi
connectivity is introduced.

An illustration of the model PES considered in the pres
work is shown in Fig. 1. The lowest energy region cor
sponds to the crystal and also contains local minima w
predominantly crystalline order. These minima span the
ergy rangeEx6d/N per atom, so the region has depth 2d.
The remaining minima, which contribute to the liquid
glass configuration space, are divided intoN11 sets, accord-
ing to their potential energy. Seta contains the minima with
energies in the rangeEa6d, whereEa52Nd12(a21)d,
anda51,2,...,N11. The energy difference between adjace
sets is therefore 2d, independent ofN. A discrete number of
regions rather than a continuous distribution is used to ob
a more convenient formulation of the global dynamics.

Often, it is useful to be able to look at the thermodynam
properties of certain selected regions of configuration sp
by restricting the integral in the partition function. In th
current model we formulate a nonergodic canonical partit
function,Z(T,t), which depends on the time scale of obs
vation,t. Z(T,t) is the sum of the partition functions for th
crystalline ~x! and noncrystalline~nx! regions, weighted by
step functions to exclude those regions that are disconne
on the given time scale:
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Z~T,t!5Zx~T!U@ f x~T!21/t#1 (
a51

N11

Za~T!U@ f a~T!21/t#,

~1!

where U is the Heaviside step function andf a(T) is the
probability flux out of regiona at temperatureT. In fact, f a is
also a function oft because the flux depends upon whi
regions are connected. For eachT andt the nonergodic par-
tition function,Z(T,t), is calculated iteratively by removing
disconnected regions and recalculating the fluxes until s
consistency is achieved. Thermodynamic properties are
obtained on the assumption of equilibrium between the
maining connected regions with renormalized occupat
probabilities,

Pa~T,t!5Za~T!/Z~T,t!. ~2!

The necessity to include such ergodicity breaking in b
structural and spin glasses73–76 is well known,77,78 and the
importance of the observation time scale has been discu
by Palmer71 and Ma.79

The formulation leading to the partition function in equ
tion ~1! is an example of a restricted ensemble,71 and is best
regarded as a postulate. In Palmer’s nomenclature71 the re-
gions are the smallest ‘‘components’’ considered in t
present model, since we do not treat the individual lo
minima explicitly but subsume their contribution into th

FIG. 1. A schematic depiction of the model potential-ener
surface forN55. The distribution of minima in each region i
represented by a set of horizontal lines, and the uphill and down
barriers are marked between regions 3 and 4.
4-2
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DYNAMICS AND THERMODYNAMICS OF SUPERCOOLED . . . PHYSICAL REVIEW B63 214204
regional partition functionZa(T) ~Sec. II A!. Properties of
the model are calculated using the restricted partition fu
tion Z(T,t), which should correspond to an individual e
perimental measurement. The appropriateZ(T,t) is deter-
mined using a stochastic dynamical approach~Sec. II B!.

It is important to note that the present ‘‘regions’’ of co
figuration space do not involve a restriction of the coor
nates to a subset of atoms. The model therefore make
assumptions about the existence of ‘‘cooperative rearran
ments’’ in subclusters, for example. The issue of how
given PES arises from the detailed interatomic potential
been separated from the question of how the PES determ
the thermodynamic and dynamical properties.

For a givent we start from a high temperatureTmax and
calculate the required thermodynamic and dynamic prop
ties at progressively lower temperatures,Tmax2dT, Tmax
22dT, etc.Z(T,t) is computed iteratively at each point, wit
the proviso that regions above the highest-energy-conne
region at the previous temperature cannot be reconnec
This rule expresses our intuition that probability dens
should not be able to climb back up the PES to regions
were frozen out at a higher temperature.

Freezing to a particular region occurs either when l
than two regions remain kinetically connected, or stocha
cally when a region is disconnected that is associated w
sufficient probability. Specifically, the occupation probab
ity, Pa(T1dT,t), of a regiona that is disconnected at tem
peratureT but connected at the previous temperatureT
1dT, is compared with a random number sampled from@0,
1#. Freezing is deemed to occur to regiona if Pa(T
1dT,t).0.5 and exceeds the random number, otherw
the region is simply disconnected and the iterative calcu
tion of Z(T,t) continues. Further relaxation and loss of co
figurational entropy within each region is described by
model partition functionZa

r (T) defined in Sec. II A. The tem
perature at which freezing to a single region occurs can
used as a definition ofTg , andTg increases as the observ
tion time scale decreases, as expected.80 After freezing the
total partition function simply becomes that of the region
question,Z(T,t)5Za(T). Freezing to the crystal is certai
to occur if it is connected atTm2dT, since below the melt-
ing point Tm , the occupation probability of the crystal
almost unity if it is accessible. With a suitable choice
parameters the model will freeze reliably to the crystal
Tm2dT, which can be made arbitrarily close toTm . How-
ever, we will concentrate on parameters that render the
tem a good glass former, where freezing to the equilibri
global free-energy minimum does not occur on the ti
scales of interest. Crystallization is avoided by choosing
rameters that decrease the probability flux between the c
talline and noncrystalline regions. For example, loweringEx
or decreasingd inhibits crystallization. In terms of the nucle
ation and growth view of this first-order phase transitio
reliable glass formation is ensured when minima that sup
critical nuclei are kinetically inaccessible.

The determination of freezing introduces a stochastic
ment into our calculations. In practice the system may fre
into a few different neighboring regions for different rando
number sequences. However, in the present model the p
21420
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erties of these regions are very similar, and so there is
need to average the calculated properties over different r

A. Thermodynamics

We must now specify the regional partition functionZa .
We consider a constant-volume supercell that is periodic
repeated to produce the bulk material. The numerical res
presented in Sec. IV are all forN5400, which is large
enough to produce a sharp~but not quite discontinuous! first-
order phase transition atTm when crystallization actually oc
curs. It should always be possible to describe the system
this way so long as there are no diverging correlations. T
results forN5400 are almost converged to theN→` limit
within the present model.

For each region the partition function is taken to be

Za~T!5(
i Pa

Zi
vib~T!e2Ei /kT ~3!

'Za
vib~T!e2~Ea2d!/kT(

i Pa
exp$2@Ei2~Ea2d!#/KT%

5Za
vib~T!e2~Ea2d!/kTZa

r ~T!. ~4!

The first line assumes the usual superposit
approximation4,81–86for the densities of states of all the loc
minima i within regiona. In the second line we assume fo
convenience that each local minimum in this region has
same vibrational partition functionZa

vib(T). The third line
defines the regional configurational partition functionZa

r (T),
relative to an energy origin atEa2d, the bottom of regiona.
Za

r (T) depends upon the detailed distribution of loc
minima, and should also depend upon the time scale of
servation. Here we adopt a simple ansatz forZa

r (T) that has
the expected limits forT→0 andT→`. We have found that
partition sums corresponding to energy densities of lo
minima that increase exponentially or geometrically with e
ergy from the ground state can be accurately fitted by

Za
r ~T!5expF NsaT

T1T3/4
G , ~5!

which has limits

lim
T→0

Za
r ~T!51 and lim

T→`

Za
r ~T!5exp~Nsa!. ~6!

For the crystalline region we take

Zx
r ~T!5expF NsxT

T1T3/4
G ,

and forsa we assume
4-3
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sa5sx1sshift1snxF12S Ea

Nd D 2G . ~7!

At T50 only the lowest energy minimum in the regio
contributes toZa

r , while in theT→` limit Za
r is just the total

number of minima in the region, exp(Nsa). The empirically
observed87 and theoretically justified6–8 exponential scaling
of the number of minima with system size is therefore e
sured. The entropy of a glass that solidifies from any reg
also tends smoothly to zero asT→0, as expected by othe
authors.84,88 This limit is further discussed in Sec. III C. I
fact, Za

r should be a function of the observation time sc
too, but we have neglected this dependence since the
perature variation ofZa

r is of secondary importance here~see
Sec. II B!. The ansatz forZa

r adopted in Eq.~5! also sub-
sumes the nonergodicity required to obtain a smoothly v
ishing entropy in theT50 limit from the continuous Gauss
ian distribution of minima.

The total number of minima in the crystalline and no
crystalline regions can vary independently via the parame
sx , sshift , andsnx , and a Gaussian dependence is assum
for the number of minima as a function of the energy. T
latter form is suggested by the central limit theorem a
supported by previous results for a number of differe
model systems.26,27,52,89–91The variation ofsa in Eq. ~5! is
therefore designed to sample a Gaussian distribution
minima at evenly spaced, nonextensive energy intervals.
ignore the permutation-inversion factor of 2N! in the parti-
tion function since it cancels out of the final expressions

The value ofT3/4 determines how quicklyZa
r reaches its

high-temperature limiting value, and must be positive to p
vent Za

r from diverging; the closerT3/4 is to zero the more
rapidly Za

r increases withT. WhenT5T3/4 the regional con-
figurational entropy achieves34 of its limiting value. The av-
erage potential energy of regionaI relative to the bottom of
the regionUa

r is

Ua
r ~T!5kT2

] ln Za
r

]T
5saNkT3/4S T

T1T3/4
D 2

. ~8!

The maximum value ofUa
r is saNkT3/4 and this must always

be less than or equal to 2d, the energy of the highest-lying
minima in the region relative to the lowest, soT3/4
<2d/Nksa . The largest possible value ofsa is smax5sx

1sshift1snx , and so we takeT3/4<T3/4
max, where T3/4

max

52d/Nksmax. At T5T3/4 we find Ua
r (T3/4)5Ua

r (`)/4.
In the present work we have taken the vibrational pa

tion functions to be

Za
vib~T!5~za

vib!3N235F e2hna/2kT

12e2hna /kTG3N23

,

Zx
vib~T!5~zx

vib!3N235F e2hnx/2kT

12e2hnx /kTG3N23

, ~9!
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g~Ea /N1d!

2d
. ~10!

Hence we have used 3N26 independent quantum-harmon
oscillators in an Einstein-type approximation where all t
vibrational modes have the same frequency. For the cry
this frequency isnx , while for the noncrystalline regions th
frequency varies fromn0 , for region one withE152Nd, to
n01g for regionN11 with EN115Nd. n0 , nx , andg are
further parameters of the model. Choosingg,0 means that
the higher energy non-crystalline minima exhibit lower fr
quencies, which is the behavior that we have found for fin
clusters bound by a wide variety of different empirical p
tentials. However, bulk systems may be different: Sastr52

has reported results for a binary Lennard-Jones system
constant volume that correspond tog.0 behavior. The da-
tabases that we have generated for several bulk model at
glass formers agree with Sastry’s results and further indic
thatg,0 for Stillinger-Weber silicon,92 while g;0 for two
one-component Lennard-Jones systems,32 again at constan
volume. ForgÞ0 the total partition function cannot be fac
torized into configurational and vibrational parts.

All thermodynamic properties were calculated using a
lytical derivatives of the appropriate partition function,71

namely,Zx(T) for the crystal andSa connectedZa(T) for the
liquid or glass. All the derivatives were checked numerica

Variation of harmonic frequencies with the energy of t
minimum is admitted via the parameterg. Following the
approach of Haarhoff93 an anharmonic vibrational partition
function can be written as94

Zanharm
vib ~ i !5S kT~11aikT!

hn̄ D 3N23

, ~11!

where Ei is the potential energy of minimumi, n̄ is the
geometric mean vibrational frequency and all the modes
assumed to have the same anharmonicity parameterai . The
classical harmonic vibrational partition function is recover
if ai50. Zanharm

vib is incorrect in the low-temperature limit
because it is a classical expression. However, anharm
effects are most likely to be important at high temperatu
and the vibrational contribution to the entropy difference b
tween the liquid and the crystal is then

DSvib5k~3N23!ln
n̄x~11anxkT!

n̄nx~11axkT!
→k~3N23!ln

n̄xanx

n̄nxax
,

~12!

wherex and nx label the crystalline and noncrystalline p
rameters, respectively. Hence, in this high-temperature li
some allowance for anharmonicity can be made by chang
the harmonic frequencies of the noncrystalline minima re
tive to nx . We will adopt this view rather than introduce an
further parameters into the model. This approach does
mean that we believe anharmonicity is unimportant, b
4-4
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rather that it can be incorporated in a first approximation
shifting the harmonic frequencies. In fact, the vibrational d
grees of freedom play a key role in our interpretation
strong/fragile behavior, as for previous models.52,95–98

B. Dynamics

When combined with the thermodynamics of Sec. II A t
model dynamics must satisfy the principle of detailed b
ance. Since we assume that rearrangements between re
are responsible for dynamical relaxation and transport pr
erties we need only specify the transition ratesKa←b be-
tween them. This assumption is justified if there is a sepa
tion of time scales for transitions between regions compa
to local equilibration. BecauseT3/4

max is of order 1/N, Za
r

'exp(Nsa) above Tg . Hence the regional configurationa
partition functions are only weak functions of temperatu
above the glass transition, which is why we have neglec
the dependence ofZa

r upon the time scale. To simplify th
analysis nonzero rates will only be admitted for regions t
are ‘‘adjacent’’ in energy. We have checked that the inc
sion of rearrangements between nonadjacent regions
little effect on the results. We therefore consider only

K1←x , Kx←1 , K2←1 , K1←2 ,...,

Ka21←a , Ka11←a ,..., KNr21←Nr
. ~13!

In the following derivation we continue to denote the r
gions asa, b, c, etc. and distinguish individual minim
within a region by the subscriptsi, j , etc. The rate of chang
of occupation probability for minimumi in regiona is then

]Pi

]t
5 (

j Þ i Pa
ki← j Pj2Pi (

j Þ i Pa
kj← i

1(
j ¹a

ki← j Pj2Pi (
j ¹a

kj← i , ~14!

and the rate of change of probability of occupation for reg
a is
th

s

u
ity
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]Pa

]t
5(

i Pa

]Pi

]t
,

5(
i Pa

(
j Þ i Pa

ki← j Pj2(
i Pa

Pi (
j ÞPa

kj← i

1(
i Pa

(
j ¹a

ki← j Pj2(
i Pa

Pi (
j ¹a

kj← i ,

5(
i Pa

(
j ¹a

ki← j Pj2(
i Pa

Pi (
j ¹a

kj← i ,

[ (
bÞa

Ka←bPb2Pa(
bÞa

Kb←a , ~15!

where the last line definesKa←b :

Ka←b5

(
i Pa

(
j Pb

ki← j Pj

(
j Pb

Pj

5

(
i Pa

(
j Pb

ki← j Pj

Pb
. ~16!

Ka←b therefore depends explicitly upon the connectivity
the PES. We now factorKa←b into an average vibrationa
contribution for transitions between individual connect
minima in regionsa and b, ka←b , and an exponential term
containing the mean effective-free-energy barrier,DA ~Fig.
1!. For ka←b we adopt a simple transition state theory form

ka←b5
kT

h

Zab
vib‡

Zb
vib ,

with

Zab
vib‡5H ~za

vib!3N24, Ea.Eb ,

~zb
vib!3N24, Eb.Ea .

~17!

The transition state is therefore assumed to have the s
vibrational parameters as the minima in the higher ene
region. Finally,
Ka←b55
kT

h

~za
vib!3N24

Zb
vib expFNT

2 S sa2sb

T1T3/4
D2

~DA1Ea2Eb!

kT G , Ea.Eb

kT

h

1

zb
vib expFNT

2 S sa2sb

T1T3/4
D2

DA

kT G , Eb.Ea .

~18!
The first term in the exponential is included to ensure that
detailed balance conditionKa←bPb5Kb←aPa is satisfied. In
the limit of large N,sb2sa is of order 1/N, and so the
argument of the exponential is intensive, not extensive, a
should be. After the self-consistent calculation ofZ(T,t) we
obtain the thermodynamic properties by applying the us
relations of equilibrium thermodynamics. The probabil
e

it

al

flux out of regiona is

f a~T!5Pa~T! (
bÞa

Kb←aU@ f b~T!21/t#

5 (
bÞa

KasbPb~T!U@ f b~T!21/t#, ~19!
4-5
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where the fluxes and probabilities are also implicit functio
of the observation time scale,t. In all the above derivations
analogous expressions apply to the crystalline region w
the appropriate parameters.

For the free-energy barrier between regionsa and a21
we take

DAa5DAmax2~DAmax2DAmin!S 2a

N D a

, ~20!

For a.0 the free-energy barrier therefore increases aa
decreases, and varies betweenDAmax as a→1 at low tem-
perature toDAmin as a→N/2 at high temperature. We ne
glect any explicit dependence ofDA upon temperature fo
simplicity. DA subsumes the connectivity of the PES, allo
ing for larger potential or entropic barriers in lower-ener
regions. Such a structure results when the PES is organ
into multiple ‘‘funnels,’’ by which we mean sets of kineti
cally convergent pathways36 terminating at different minima
Funnels that are deep in terms of potential energy will p
duce increasing effective activation barriers as the temp
ture falls, because the occupation probability shifts to low
lying minima. Such topology probably also carries with
increasing entropic activation barriers, although entropic b
riers could arise without large potential barriers. We ha
previously illustrated potential energy landscapes for a nu
ber of finite systems,4,99 and future refinements of the prese
model will require further guidance from such calculation

III. PROPERTIES OF THE MODEL

Nonexponential relaxation, a commonly observed pr
erty of glasses, is the expected behavior of a complex P
because the analytical master equation solution of the
namics is a sum of exponentials.100,101Nonexponential relax-
ation has already been demonstrated for at least two sor
hierarchical model,102,103 and observed in finite systems.24

We will therefore concentrate on the temperature dep
dence of relaxation in the present work, along with the th
modynamic properties of our model. Even in other fiel
where nonexponential relaxation is considered ‘‘strang
new experiments that probe shorter time scales have reve
such properties.104 Exponential relaxation is recovered in th
master equation solution if all the exponents save one h
decayed on the time scale in question.

A. Thermodynamics

Angell’s classification of glass formers from ‘‘strong’’ t
‘‘fragile’’ 95,105,106has now become standard notation. D
namically, fragility is manifested by departure from Arrhe
ius kinetics in relaxation times, diffusion constants or v
cosities and is fitted with the empirical Vogel-Tamman
Fulcher ~VTF! equation107–109 or other forms.110

Thermodynamically, fragility is signalled by a large heat c
pacity difference between liquid and glass that leads to
Kauzmann ‘‘paradox,’’ where the extrapolated entropy of t
supercooled liquid becomes equal to that of the crystal at
Kauzmann temperatureTK.0.111 The kinetic glass transition
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prevents this violation of the third law of thermodynamic
of course. In his influential paper, Kauzmann plots

@Sliquid~T!2Scrystal~T!#/@Sliquid~Tm!2Scrystal~Tm!#

[DS~T!/DS~Tm!

againstT/Tm , and this is the form we will refer to as a ‘‘Km
plot.’’ Fragile and strong systems exhibit slopes greater
less than one in this plot, respectively, and a quantita
measure may be obtained from the initial slope atTm :

S ]DS~T!/DS~Tm!

]T/Tm
D

T5Tm

5
Tm

DS~Tm! S ]DS~T!

]T D
T5Tm

5
Tm

DS~Tm!

DC~Tm!

Tm
5

DC~Tm!

DS~Tm!

[
DC~Tm!Tm

DU~Tm!
, ~21!

whereU is the internal energy andC the heat capacity.@For
a system at constant pressure the enthalpyH rather the inter-
nal energyU appears in Eq.~21!.# We immediately conclude
that, by this definition, thermodynamically fragile system
have some combination of a larger heat capacity or sma
internal energy difference between liquid and crystal o
higher melting point. Within the present model, parame
changes that affectDC(Tm) or DU(Tm) can be more than
compensated for by a change inTm . Hence some caution is
needed in making predictions from Eq.~21!. An alternative
definition of thermodynamic fragility, which usesTg rather
thanTm as a reference point,112 will be discussed below.

To explain the relations between thermodynamic prop
ties and changes in parameter values it is helpful to cons
the behavior ofDSeq(T), the entropy difference between th
hypothetical ergodic noncrystalline phase space and tha
the crystal. Snx

eq is calculated from Znx
eq(T)

5 limt→` Znx(T,t):

Znx
eq5 (

a51

Nr

Za~T!. ~22!

For the present model the general appearance ofDSeq(T),
neglecting vibration, is shown in Fig. 2.DSeq/Nk decreases
from its high-temperature limit ofsshift1snx and starts to
fall rapidly aroundTf s , because the regions where the e
ergy density of minima~andsa) is largest have decreasin
occupation probabilities. When only the lowest-energy
gion has a significant occupation probability,DSeq(T)/Nk
decreases slowly from a plateau value ofsshift until T ap-
proaches absolute zero, whereZa

r (T) finally tends to unity. It
is only in this limit, whereT approachesT3/4, that the tem-
perature dependence ofZa

r (T) is significant. Hence, the
Kauzmann paradox is naturally avoided even without erg
icity breaking in the noncrystalline phase space.

If hn0 andhnx are large compared tokTm then the vibra-
tional contribution toDSeq(T) decays to zero aboveTm and
has little effect. On the other hand, in the low-frequen
limit the plateau value ofDSeq(T)/Nk is shifted to
4-6
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3 lnnx /n01sshift . In fact, vibrational properties are not ex
pected to vary strongly between crystalline and noncrys
line minima,84 although we will argue below that they shou
be correlated with the number of minima, and play an i
portant role in determining the kinetic fragility.

The results in Sec. IV show that the main effect of inclu
ing kinetic disconnection of regions is to shift the plateau
Fig. 2 above the limit ofsshift for the ‘‘equilibrium’’ glass as
the observation time scale decreases. The shift simply re
from freezing into a higher-energy region with 0,sa2sx
2sshift,snx and lower vibrational frequencies~for g,0).

The key temperatures in Fig. 2 areTs f and Tf s , where
DSeq satisfies

]DSeq/]T5DSeq/T. ~23!

If Ts f,Tm,Tf s the system is thermodynamically fragile
whereas ifTm,Ts f or Tm.Tf s then the system is thermody
namically strong, according to theKm-plot definition. We
expect real strong liquids to correspond to the categoryTm
.Tf s becauseTm,Ts f corresponds to a situation where th
system has reached the bottom of the noncrystalline confi
ration space atTm . Therefore,Tm /Tf s is a key quantity in
determining the position of the system with respect to
physically realistic zone of thermodynamically strong beh
ior, and, if we ignore the parameter space withTm,Ts f , we
can say that the thermodynamic strength of the liquid
creases asTm /Tf s increases, by theKm-slope definition.

For largerT3/4 the final steep decay ofDSeq to zero in Fig.
2 occurs at higher temperature, but the upper bound toT3/4
imposed by internal consistency of the model prevents
ues ofT3/4 that would give qualitatively different behavio
sx and Ex do not affect the plot at all. In contrast,Ts f and
Tf s scale roughly asd/snx , with kTs f;d/2snx and kTf s
;d/snx . The effect of the vibrational entropy is discussed
Sec. IV for parameters appropriate to two different syste

FIG. 2. Generic form forDSeq(T) excluding vibration~solid
line! to illustrate how the thermodynamic strength or fragility d
fined by theKm-plot (Kg-plot! slope depends on the position ofTm

(Tg) with respect toTs f andTf s . The dashed lines touch theDSeq

curve at the points where]DSeq/]DT5DSeq/T. If Tm (Tg) lies
within the shaded region the system is thermodynamically frag
by the Km-plot (Kg-plot! definition, because the slope is great
than unity.
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The above analysis enables us to predict how the form
a Km plot, where the horizontal axis isT/Tm rather thanT,
will change with the model parameters. Neglecting vibratio
and using the maximum term approximation described in
Appendix,

kTm5
2Ex1AEx

22d2

2snx
, ~24!

if sshift50, so movingEx to lower energy increasesTm al-
most linearly. Hence decreasingEx can shiftTm aboveTf s
and change fragile thermodynamics to strong. In the sa
approximation the equilibrium glass temperatureTg

eq can be
estimated from the condition P1(Tg

eq)5P2(Tg
eq),

giving kTg
eq5d/2snx'kTs f .

In Sec. IV we will illustrate how theKm slope of one
parameter set can be changed from fragile to strong sim
by decreasingEx . Ito, Moynihan, and Angell112 have sug-
gested that a more useful indication of thermodynamic f
gility might be obtained from plottingDS(Tg)/DS(T)
againstTg /T, and we will refer to this representation as aKg
plot. The slope of this plot atTg is DC(Tg)/DS(Tg), and the
strong/fragile character is now determined by comparingTg
with the solutions of Eq.~23!, instead ofTm . The correlation
between dynamics and thermodynamics is preserved w
the Kg-plot definition is used for the parameter sets that
have considered withg,0 ~Sec. IV!. Another possibility
would be to use the crossover temperature from Arrheniu
super-Arrhenius behavior, as discussed by Tarjus, Kivels
and Viot.113 This crossover temperature might be less a
biguous than the kinetically definedTg , but we have not
considered it here.

Accurate analytical expressions for thermodynamic fu
tions corresponding to the hypothetical equilibrium noncr
talline phase space are presented in the Appendix. Th
results help to explain how the thermodynamics of the mo
vary with the parameters. For example, we find that the ju
in the heat capacity atTg is proportional to the number o
noncrystalline minima.

B. Dynamics

In addition to theK plots defined above we will also
present plots of the liquid/glass entropy and heat capacity
atom againstT/Tm ~‘‘ S plot’’ and ‘‘ C plot,’’ respectively!,
along with a plot of log10 ~relaxation time! againstTg /T
~‘‘ t plot’’ !. A proper calculation of a relaxation time or dif
fusion constant would require detailed assumptions about
possible rearrangements that the system can undergo. In
we proceed on the basis that intra-region dynamics do
contribute to the relaxation times in question, or to diffusio
and use

t;1Y (
a

f a . ~25!

We therefore take the relaxation time to be inversely prop
tional to the sum of probability fluxes out of~or into! each
region.

,

4-7
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In previous work we have investigated relaxation~of the
total energy! in a number of atomic and molecular cluste
using a master equation approach100,101following Kunz and
co-workers.9–12 Non-Arrhenius relaxation of the total poten
tial energy has been observed for systems with multifun
energy landscapes.4,24,25We have suggested that the appar
increasing activation energy with decreasing temperatur
due to the system occupying lower-energy states within
ferent funnels that can only transfer probability via th
higher energy members. In other words, the transition st
in question do not change, but the occupation probab
shifts to lower potential energy within each funnel. This si
ation is subsumed here in the general form adopted for
effective free-energy barrier in Eq.~20!. The shift of popu-
lation density to the bottom of deep kinetic traps would pro
ably entail both larger potential and entropic barriers. Eq
tion ~20! can also model the situation where the barriers
principally entropic, and caused by a scarcity of relaxat
pathways as the energy density of minima decreases.
details of the relaxation mechanisms, such as the degre
cooperativity, need not be known in the present analysis

A simple analytical expression for the relaxation timet
can again be obtained, as described in the Appendix. We
that the t-plots should have intercept2 log10n0 and initial
slope (DAmin1d)Tg log10e/k.

C. Residual entropy

By construction, the entropy of the present model alwa
tends to zero asT→0, whether the system freezes to a cry
talline or a noncrystalline region. The number of connec
regions decreases with temperature, and then, after free
to one region, the system settles into a single local minim
as the temperature is further reduced. The internal ene
tends toEa2d asT→0, and so the system always relaxes
the bottom of a region in this model, which we have assum
to consist of a single minimum~aside from trivial permuta-
tional isomerism!. There is no residual entropy because
these calculations we can track the relaxation of the sys
down to its final resting place and calculate the thermo
namic properties directly from the partition function.

Residual entropy must be included for equilibria whe
one phase is dynamically interconverted into any one o
number of different possible glasses. Bowles and Spe
have analyzed this situation in detail for the vapor press
of a glassy crystal composed of rigid dimers.114 The entropy
corresponding to the number of different glasses in equi
rium with the vapor must be included to produce the corr
vapor pressure.115,116 In the classic experiment of Eastma
and Milner117 the thermodynamic properties of substitutio
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ally disordered AgCl/AgBr crystal ‘‘solutions’’ were com
pared using electrochemical and heat capacity meas
ments. The results are only consistent if the permutatio
near degeneracy of the different crystals is added to the
tropy obtained from calorimetry. The difference arises b
cause the electrochemical measurements involve a dyn
cal equilibrium in which the effects of ergodicity breakin
are undone, whereas the heat capacity measurements a
a particular realization of the mixed crystal.

Standard thermodynamics can be applied to calculate
change in entropy of a glass with temperature so long
ergodicity is not restored.117–119Choosing the reference sta
at T50 with zero entropy is consistent with the statistic
entropy of the accessible phase space corresponding
single local minimum.114 The third law may then be ex
pressed as ‘‘the entropy of any body tends to zero at
absolute zero of temperature.’’114 This is the view that we
have adopted in the present work. The alternative ‘‘therm
dynamic’’ approach is to define the entropy experimenta
from an ideal gas reference state, but then the entropy of
glass is finite atT50.

IV. RESULTS

Our initial choice of parameter values was guided by
sults for supercell calculations on a system containing 2
silicon atoms modeled by the Stillinger-Weber potentia92

The calculations employed reduced units withh5k51 and
energies ine, wheree corresponds to the pair well depth
Frequency parameters are therefore in units ofe/h and en-
ergy parameters are ine. To convert from reduced units w
have takene53.473 92310219J, the value for Stillinger-
Weber silicon.92 For the latter systemhn/e'0.019 for the
geometric mean normal mode frequency of minima w
crystalline character, while the variation ofn̄, the geometric
mean frequency, for the noncrystalline minima can be rep
sented byn050.017 andg520.0011 to a first approxima
tion. The crystal hasEx /e522 while the noncrystalline
minima have energies per atom in the range21.83 to
21.89e. With an energy origin in the middle of the noncry
talline minima, these results correspond tod50.03 andEx
520.08. We have also considered parameters deduced
a sample of stationary points obtained for a binary Lenna
Jones system,32 and we will comment on the results below
Empirically, the binding energy lost on melting in a wid
range of materials varies from around 4–10%,120 suggesting
bounds for physically reasonable values ofEx . Alterna-
tively, Stillinger has noted that the change in potential e
ergy on melting accounts for around 80% of the latent hea
TABLE I. Variable parameters for the results discussed in Sec. IV.

Sample Fig. snx d nmax nx Ex DAmax DAmin

F 3 2.00 0.0375 0.017 0.020 20.05 0.5 0.0
S 4 0.15 0.0100 0.010 0.011 20.03 1.5 1.0
FS 5 2.00 0.0375 0.017 0.020 20.08 0.5 0.0
SF 6 0.15 0.0100 0.010 0.011 20.03 2.0 0.1
4-8
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FIG. 3. Results for parameter setF ~see
Table I!.
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models of bulk Lennard-Jonesium and water.6,84,121

Although the number of minima is not an experimen
observable we can deduce sensible values for thes param-
eters from heat capacity data. Despite the fact that vibratio
and configurational contributions are not strictly separab
the magnitude of the heat capacity peak atTg implies that
snx is of order unity. We held the following parameters fixe
for all runs: N5400, a50.25, sshift50, sx50, and T3/4

5T3/4
max. The results do not change significantly ifT3/450 is

used instead ofT3/4
max.

The effect on the dynamics of systematically varying
single parameter while keeping the others fixed was first
vestigated. A necessary condition for non-Arrhenius dyna
ics in the present model is thatDA increases with decreasin
potential energy. We were not able to obtain significant n
Arrhenius character without this condition, as discussed
low. For non-Arrhenius dynamics to be observed on a giv
time scale it is also necessary for the system to reach
regions where the barriers increase significantly, before
netic arrest occurs. Largesnx and smalld produce a lower
Tg

eq, and from Eq.~A2! we see that this effect is coupled
a slower decrease ina* as the temperature falls, wherea* is
the most probable region~see the Appendix!. However, Eqs.
~A4! and ~A5! for the relaxation time also contain the rat
d/snx . The effect of varyingsnx on its own is unambiguous
The system freezes into a higher-potential-energy region
largersnx because only the smaller non-Arrhenius terms
the flux are affected@equation~A5!#, while a* varies more
21420
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slowly with T @Eq. ~A2!#. The effect of varyingd can depend
upon the fixed values of the other parameters. Decreasind
decreases the relaxation time@Eq. ~A5!#, and soTg de-
creases. However, decreasingd also means thata* varies
more slowly with temperature. Usually we find that decre
ing d produces stronger dynamics since the latter eff
dominates.

Increasingn0 can change strong dynamics to fragile b
decreasing the relaxation time@Eqs. ~A4! and ~A5!#, en-
abling the system to relax further down the PES before fre
ing. IncreasingDAmin has the opposite effect, since the r
laxation time increases. The dynamics are less sensitiv
the value ofDAmax, and increasingDAmax for fixed DAmin
can produce more fragile behavior because the differe
DAmax2DAmin appears in the leading non-Arrhenius term
Eq. ~A5! and determines the variation in barrier height witha
in Eq. ~20!.

TABLE II. Properties of the data sets in Table 1. TheKm and
Kg slopes are the slopes of theKm and Kg plots atT5Tm and T
5Tg

eq, respectively, for the equilibrium liquid.T3/4
max5Tg

eq/100 in
each case.

Sample Tm Tg
eq Km slope Kg slope

F 0.0150 0.0094 1.02 3.62
S 0.0612 0.0333 0.23 0.36
FS 0.0296 0.0094 0.19 4.74
SF 0.0613 0.0333 0.23 0.36
4-9
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FIG. 4. Results for parameter setS ~see
Table I!.
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At first sight, the stronger dynamics observed for larg
snx seem to break the correlation between dynamics
thermodynamics, because increasingsnx should produce a
larger heat capacity peak atTg , making the system thermo
dynamically more fragile. In reality, variations ofsnx should
probably be strongly correlated with variations inn0 . For
example, in a series of 13-atom clusters bound by a varia
range potential the geometric mean frequency, averaged
minima, increases almost linearly with the number
minima.22 The total entropy is therefore expected todecrease
as the number of minima increases: the loss of access
configuration space associated with a shorter range pote
produces a larger number ofnarrowerpotential wells. When
n0 is varied withsnx in this manner, fragile dynamics ar
found to be associated with largersnx . Significant thermo-
dynamic features in the heat capacity and entropy atTg are
then correlated with non-Arrhenius dynamics, but it is s
possible to break this correlation, as discussed below.

The Adam-Gibbs result47 that lnt should be inversely cor
related with the product of temperature and configuratio
entropy, is only meaningful in the present model ifg50,
when the vibrational contribution can be factored out. Ev
in this case the relation does not hold very well, because
configurational entropy does not tend to zero atTg , but in-
stead we find a strong correlation between lnt and 1/TS for
the total entropy. We therefore include such plots in the
sults discussed below. It is interesting to contrast this re
with the scaling law connecting diffusion with entrop
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which holds quite well for a variety of liquids above th
melting point.122 Several recent simulation studies sugg
that the original Adam-Gibbs formulation deserves furth
consideration,51–53 but we leave further analysis for futur
work.

The results for four specific parameter sets will now
discussed in more detail. The variable parameters are sp
fied in Table I~see Figs. 3–6!, and some of the thermody
namic properties are listed in Table II. We ran calculatio
for observation times corresponding to regular intervals o
log10 scale covering more than ten decades. The longest
servation time was chosen to be 100 s for comparison w
previous work.106 For each choice of parameters the melti
temperatureTm was first determined, and the calculations
thermodynamic properties and rates were then started f
T53Tm , decreasingT in steps of order 0.01Tm . Tm was
calculated by numerical solution of the condition for equ
Helmholtz free energy:

Zx~T!5 (
a51

N11

Za~T!. ~26!

In fact, this scheme givesTm for the hypothetical ergodic
noncrystalline phase space. For consistency we should
haps recomputeTm for each time scale considered using t
nonergodic partition functions. This procedure would
more time consuming, since it would require a calculation
the fluxes for each increment in the continuous tempera
4-10
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FIG. 5. Results for parameter setFS ~see
Table I!.
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variable. Fortunately, however, it is not necessary, beca
the ergodic and nonergodic values of the free energy
practically identical atTm for the present model. The large
deviations occur for the shortest time scales, and amoun
just 0.3% for the worst case. The dependence ofTm on the
observation time scale is therefore negligible.

In each figure are superimposed the results for up to
observation time scales. In each caseTg , the entropy of the
noncrystalline state, and the temperature of the heat-cap
peak increase smoothly, and the maximum relaxation t
decreases smoothly, as the observation time scale decre
In the Km and Kg plots the curves shift smoothly up th
vertical axis as the observation time increases, while
plots of log10 t against 1/TS are relatively insensitive tot. If
the Tg scaling of the horizontal axis is omitted in thet-plots
then the curves for different observation time scales lie
top of one another. It is noteworthy that log10 t correlates
quite well with 1/TS, since this relation was not explicitly
built into the model.

In theS-plots we include the entropy of the crystalSx for
reference. We also indicate the infinite time scale limit
the noncrystalline phase space by a bold line in theS, C, Km ,
andKg plots. A straight dashed line is drawn from the orig
to the point~1, 1! in the K plots to divide strong and fragile
behavior according to theKm- or Kg-plot definition. For the
t andKg plots we assignedTg as the temperature of the he
capacity maximum, which lies systematically above the te
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perature at which freezing to a single region occurs. He
the Tg /T scale extends beyond unity in thet-plots.

In eachKm and Kg plot there is a gap between the bo
curves corresponding to equilibrium within the noncryst
line phase space, and the longest time scale results. Th
because, even on the longest observation time scale of 1
the system fails to reach the lowest-energy liquid region,
instead freezes into a higher-energy region@Fig. 7~b!#. For
systemsF, S, FS, and SF the lowest-energy regions froze
into are 7, 39, 10, and 38, respectively. The free ener
internal energy and entropy have almost their equilibriu
values untilTg is reached. At this point the system freezes
one region, and changes to the partition function caused
shifts in the probability distribution between regions are lo

Parameter setF produces fragile behavior, with a larg
peak in the heat capacity atTg , an obvious change of slop
in the entropy atTg , Km-plot andKg-plot slopes greater than
one, and non-Arrhenius variation of the estimated relaxat
time ~Fig. 3!. In contrast, parameter setS produces strong
behavior, with small features in the heat capacity and
tropy atTg , Km-plot andKg-plot slopes closer to zero, an
an essentially Arrhenius relaxation time. As anticipated
Sec. III A, decreasingEx from parameter setF can change
the appearance of theKm plot to strong~systemFS, Fig. 5!,
but hardly changes the other plots. These results show
the Km plot is probably not a useful diagnostic, and that t
Kg plot suggested by Ito, Moynihan, and Angell112 may be
4-11
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FIG. 6. Results for parameter setSF ~see
Table I!.
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better because it remains fragile for system FS. However
note that theKg-plot slope also depends upon the time sc
of observation,t, and decreases with decreasingt.

Lowering the free energy barriers from parameter seS
enables that system to access lower regions of the PES
fore kinetic arrest, and produces non-Arrhenius behavio
the t plot ~systemSF, Fig. 6!. Hence, in the present mode
strong behavior in the relaxation dynamics properties a
requires either activation barriers that do not increase w
decreasing potential energy, or sufficiently high barriers
the system not to access lower parts of the surface be
freezing. It is possible that these properties may be lin
with a smaller number of minima, but further exploration
bulk potential-energy surfaces is needed to analyze this
fect.

Sastry, Debenedetti, and Stillinger studied the aver
energy of the occupied minima as a function of tempe
ture and cooling rate123 for a binary Lennard-Jones glas
The corresponding quantity as a function of observation t
scale is easy to calculate in our model and is given
Emin(T,t)5Sa(Ea2d1Ua

r )Pa /N, where the energy is pe
atom. Two such plots are given in Fig. 7.123 As expected, we
find that the lowest energy achieved increases as the ob
vation time decreases. Similar results have also been fo
for another binary Lennard-Jones system124 and for silica.125

Emin
eq , the average minimum energy for the ergodic noncr

talline phase space, is plotted in Fig. 8 for each param
set. For parameter setF, which is the only one to exhibit a
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fragile Km plot, Emin
eq /d is significantly lower atTm than for

the other examples. The extent to whichEmin
eq has relaxed at

Tm correlates with the entropy differenceDS(Tm) in Eq.
~21!, and with theKm-plot slope, ifDC(Tm) is constant. We
also expect it to correlate with the degree of non-Arrhen
behavior, when increasing barriers are present.

Sastry, Debenedetti, and Stillinger inferred an increase
barrier height as the system relaxed to lower regions of
PES from their simulations.123 The activation energy derived
from the a-relaxation time for this system shows a corr
sponding increase.123 It is likely that these barriers and act
vation energies correspond to the effective activation en
gies for transitions between regions, rather than barriers
transitions between individual minima. This interpretation
supported by detailed calculations of minima, true transit
states, and rearrangement pathways for the same syste32

and by recent simulations where the dynamics of transiti
between minima are followed closely.126

In another contribution, Sastry has suggested an exp
sion for fragility, which depends upon the number of loc
minima, their distribution, and the change in their vibration
properties as a function of energy.52 In his model the free-
energy barrier for diffusion is assumed to be inversely p
portional to the configurational entropy, and therefore
creases with decreasing temperature. Our results for a l
database of minima corresponding to the same system
gest thatn050.061,g50.0017,d50.06 are reasonable pa
4-12
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rameters in this case, if we use the same mass ande as for
Stillinger-Weber silicon. The frequencies are therefore s
nificantly larger for the same binding energye and increase
rather than decrease as the energy of the minima rises.
energy range spanned by the minima is also significa
larger, in terms of reduced units. When such parameters
used in the present model we first observed that the la
frequencies lead to relaxation to the bottom of the noncr
talline minima unless the observation time scale is lowe
or the free energy barriers are increased. We setnx5n0 and
adjustedEx to obtain heat capacity maxima at about t
same values ofT/Tm as for the parameter setsF, S, FS, and
SF. We found that theS, C, and t plots were largely unaf-
fected, but that theKm andKg plots changed from strong t
fragile in character forS and SF. The plots of 1/TS versus
log10 t become less straight for the adjustedF andFS.

When g.0 the vibrational entropy favors lower-lyin
minima, and so it is not surprising that the rate of entro
loss from the supercooled liquid is faster, and that theKm ,
andKg plots appear more fragile. For the adjusted param
setsS andSF the fragileKm andKg plots become inconsis
tent with the appearance of theS andC plots, which remain
strong in character due to the low energy density of minim

FIG. 7. Emin(T,t) for parameter sets~a! F and ~b! S in Table I.
The series of lines correspond to different values oft, and the bold
line is for the equilibrium liquid.
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We were unable to obtain non-Arrhenius behavior for t
dynamics without allowing the free-energy barriers to
crease with decreasing potential energy: the sign ofg does
not play a crucial role in our model.

V. CONCLUSIONS

The dynamics and thermodynamics of a simple but n
trivial potential energy surface~PES! support a rich variety
of behavior with a clear physical basis. Although the mo
recent definition of a fragility metric considers only data th
are readily obtained by simple differential therm
analysis,106 and the classification of some commonly us
systems may still be controversial,113 there are still associ-
ated expectations of the thermodynamics correspondin
strong and fragile dynamics. The present results suggest
fragility is associated with a larger number of local minim
lower effective potential energy barriers, and higher vib
tional frequencies, in good agreement with Angell’s previo
interpretation.95

A necessary condition for non-Arrhenius dynamics is th
the free-energy barrier to relaxation increases as the pote
energy decreases, which is the expected behavior for a m
tifunnel potential energy surface that becomes increasin
underconnected at low energy.4 However, for non-Arrhenius
dynamics to be observed it is also necessary for the syste
sample regions with increasing barriers on the given ob
vation time scale. Lower free-energy barriers and higher
quencies can therefore lead to more fragile dynamics sim
because the system relaxes to deeper regions of the PES
given time scale. Increasing the energy density of mini
alone produces more fragile thermodynamics but stron
more Arrhenius, dynamics. However, systems with mo
minima are expected to have higher vibrational frequenc
and this effect can make the dynamics more fragile by
creasing transition rates and lowering the relaxation time

Increasing pressure~or density! is expected to reduce th
number of local minima,127,128 and should also increase v
brational frequencies. The present model therefore pred

FIG. 8. Emin
eq (T)/d for the four parameter sets listed in Table

as labeled.Emin
eq 52d(111/N) corresponds to the bottom of th

liquid/glass configuration space.
4-13
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that higher pressure or density will lead to more fragile d
namics, since the system can then access lower-energ
gions of the PES associated with deeper kinetic traps. T
prediction is in agreement with experimental data for silic95

and simulation results for the binary Lennard-Jones syste52

However, the model also suggests that the magnitude of
heat capacity peak associated with the glass transition sh
decrease.

The alternative calibration of thermodynamic propert
usingTg , suggested by Ito, Moynihan, and Angell,112 corre-
lates better with dynamical properties than the usual sca
based onTm . However, it is still possible to obtain system
with strong thermodynamic characteristics but fragile d
namics if the free-energy barriers are small enough for
system to access low-lying regions of the potential-ene
surface. Future surveys of potential energy surfaces will h
to guide further development of the model, and may a
help to distinguish between different theories.63,64,129–131
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APPENDIX: ANALYTICAL RESULTS FOR
THERMODYNAMIC AND DYNAMIC PROPERTIES

OF THE MODEL

Accurate analytical expressions can be derived for the
pothetical equilibrium noncrystalline phase space simply
replacing all the sums over regions with the term correspo
ing to regiona* , which is defined as the maximum term
the partition function sum. This maximum term approxim
tion is appropriate in the limit of largeN, where the product
of the Boltzmann factor and the number of minima is shar
peaked. Forg50, where the vibrational and configuration
contributions are separable:

Anx
eq

N
5

3hn0

2
13kT lnS 12

1

j D
3H 2smaxkT2

d2

4snxkT
, T.Tg

eq

2~sshift1sx!kT2d, T,Tg
eq,

~A1!

Snx
eq

N
5

3hn0

T~j21!
23k lnS 12

1

j D
3H 1smaxk2

d2

4snxkT2 , T.Tg
eq

1~sshift1sx!k, T,Tg
eq,

Unx
eq

N
5

3hn0

2
1

3hn0

j21 H 2
d2

2snxkT
, T.Tg

eq

2d, T,Tg
eq,
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Cnx
eq

N
5

3~hn0!2j

kT2~j21!2 H 1
d2

2snxkT2 , T.Tg
eq

10, T,Tg
eq,

where j5exp(hn0 /kT). The value ofa* as a function of
temperature, forg50, is

a*

N
5

1

2
2

d

4snxkT S 11
T3/4

T D , ~A2!

and soa* varies more slowly with temperature whensnx is
large andd is small. The expressions in Eq.~A1! were de-
rived by taking the limit of largeN and settingT3/4 to zero.
They are valid except in theT→0 limit, where terms in
T3/4/T can contribute. The correct expression for the co
figurational entropy for T,Tg is k(sshift1sx)@T(T
12T3/4)/(T1T3/4)

2#, and vanishes forT→0 for any large
but finite N. The configurational contribution toCeq/N is
actually 2k(sshift1sx)@TT3/4

2 /(T1T3/4)
3#, which has a

maximum value of 8k(sshift1sx)/27 at T5T3/4/2. If freez-
ing occurs to regiona then the corresponding maximum
value is 8kNsa/27, and again occurs atT5T3/4/2. This
maximum can just be discerned as a small low-tempera
feature in some of the heat capacity plots in Sec. IV; a fir
order-like transition occurs within each region.

The analytical result forCeq/N in Eq. ~A1! is not accurate
near the discontinuity atTg

eq, where the maximum value o
2ksnx is an upper limit to the peak in the configuration
entropy. However, it still provides a useful measure of t
size of the heat capacity feature.

The results in Eq.~A1! can be used to analyze the natu
of the underlying equilibrium phase transition in the no
crystalline phase space in the limit ofN→`. The continuity
of the free energy and its first derivativeS at Tg

eq, and the
jump in the heat capacity of 2ksnx per atom, indicate a
second-order transition according to the Ehrenfest schem132

Gibbs and DiMarzio48 also obtained a second-order res
from their approximate lattice theory for polymer melts, b
our result is different because the configurational entro
does not vanish atTg

eq. In fact, Stillinger has previously
shown that freezing to a single minimum at finite tempe
ture, as observed in the Gibbs-DiMarzio model,48 should not
occur because the energy density of local minima is likely
be singular at a crystalline or amorphous lower bound.84 In
the present model the system continues to explore an e
nentially large number of minima belowTg

eq, and the en-
tropy only tends to zero asT→0. This behavior is explicitly
built into the model through the form assumed forZa

r , and is
based upon separate calculations of rearrangement path
for model glass formers.32 In these calculations we hav
found numerous low-energy processes that do not co
spond to diffusion, and we therefore expect transitions
tween local minima to continue belowTg

eq. The second-
order behavior of the model arises from the change in sl
of the entropy as a function ofT when the regional occupa
tion probabilities become fixed. The contribution to the e
tropy from changes in the regional occupations then dis
pears.
4-14
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If Tg5zTg
eq, wherez increases from unity as the obse

vation time scale decreases, we find

DC

N
5

2ksnx

z2 <2ksnx , ~A3!

whereDC is the step in the heat capacity atTg under the
same conditions as for Eq.~A1!. The glass transition is there
fore accompanied by a larger heat-capacity peak and ch
in slope of the entropy when the number of noncrystall
minima is larger, as anticipated by Angell.95 These features
are also larger the closerTg is to Tg

eq, as expected, and ca
clearly be seen in the results presented in Sec. IV.

A simple analytical expression for the relaxation timet
can also be obtained usinga* . For g50 we find

ln t5
1

kT S DAmax2
hn0

2
1d2~DAmax2DAmin!

3F1

2 S 12
Tg

eq

T D GaD 1 ln
h

kT~121/j!
, ~A4!
D

d

J

ys

v

21420
ge
e

where j5exp(hn0 /kT), as above. The above expression
accurate so long as the value ofa corresponding to the larg
est contribution to the flux is not too different froma* ,
which corresponds to the maximum term in the partiti
function. In practice, Eq.~A4! loses accuracy as the syste
approachesTg , but is still useful for understanding th
trends observed. For high temperature,

ln t52 ln n01S 1

kTD ~DAmin1d!

1S 1

kTD 2S ad~DAmax2DAmin!

2snx
2

h2n0
2

24 D
1S 1

kTD 3 ~12a!a~DAmax2DAmin!d
2

8snx
2 1¯ .

~A5!

Equation~A5! shows that thet plots should have intercep
2 log10n0 and initial slope (DAmin1d)Tg log10e/k.
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66V. I. Arkhipov and H. Bässler, J. Phys. Chem.98, 662 ~1994!.
67J. C. Dyre, Phys. Rev. B51, 12 276~1995!.
68G. Diezemann, J. Chem. Phys.107, 10 112~1997!.
69G. Diezemann, H. Sillescu, G. Hinze, and R. Bohmer, Ph

Rev. E57, 4398~1998!.
70G. Diezemann and K. Nelson, J. Phys. Chem. B103, 4089

~1999!.
71R. G. Palmer, Adv. Phys.31, 669 ~1982!.
72R. Zwanzig, J. Chem. Phys.103, 9397~1995!.
73K. H. Fischer and J. A. Hertz,Spin Glasses~Cambridge Univer-

sity Press, Cambridge, 1991!.
74T. R. Kirkpatrick and P. G. Wolynes, Phys. Rev. B36, 8552

~1987!.
75T. R. Kirkpatrick and P. G. Wolynes, Phys. Rev. A35, 3072

~1987!.
76T. R. Kirkpatrick, D. Thirumalai, and P. G. Wolynes, Phys. Re

A 40, 1045~1989!.
77M. Dzugutov, J. Phys.: Condens. Matter11, A253 ~1999!.
78R. J. Speedy, J. Mol. Struct.485-486, 537 ~1999!.
79S. K. Ma, Statistical Mechanics~World Scientific, Singapore

1985!.
80C. T. Moynihan, A. J. Easteal, and J. Wilder, J. Phys. Chem.78,

2673 ~1974!.
81D. J. McGinty, J. Chem. Phys.55, 580 ~1971!.
21420
,

-

.

.

.

.

82J. J. Burton, J. Chem. Phys.56, 3133~1972!.
83M. R. Hoare, Adv. Chem. Phys.40, 49 ~1979!.
84F. H. Stillinger, J. Chem. Phys.88, 7818~1988!.
85G. Franke, E. R. Hilf, and P. Borrmann, J. Chem. Phys.98, 3496

~1993!.
86D. J. Wales, Mol. Phys.78, 151 ~1993!.
87C. J. Tsai and K. D. Jordan, J. Phys. Chem.97, 11 227~1993!.
88G. P. Johari, J. Chem. Phys.112, 7518~2000!.
89D. J. Wales, Chem. Phys. Lett.285, 330 ~1998!.
90D. J. Wales, Chem. Phys. Lett.294, 262 ~1998!.
91A. Heuer and S. Bu¨chner, J. Phys.: Condens. Matter12, 6535

~2000!.
92F. H. Stillinger and T. A. Weber, Phys. Rev. B31, 5262~1985!.
93P. C. Haarhoff, Mol. Phys.7, 101 ~1963!.
94J. P. K. Doye and D. J. Wales, J. Chem. Phys.102, 9659~1995!.
95C. A. Angell, Science267, 1924~1995!.
96G. P. Johari, Philos. Mag.41, 41 ~1981!.
97A. P. Sokolov, A. Kisliuk, M. Soltwisch, and D. Quitmann

Phys. Rev. Lett.69, 1540~1992!.
98C. A. Angell, J. Phys.: Condens. Matter12, 6463~2000!.
99D. Wales, M. Miller, and T. Walsh, Nature~London! 394, 758

~1998!.
100N. G. van Kampen,Stochastic Processes in Physics and Che

istry ~North-Holland, Amsterdam, 1981!.
101R. E. Kunz, Dynamics of First-Order Phase Transition

~Deutsch, Thun, 1995!.
102R. G. Palmer, D. L. Stein, E. Abrahams, and P. W. Anders

Phys. Rev. Lett.53, 958 ~1984!.
103B. A. Huberman and M. Kerszberg, J. Phys. A18, L331 ~1985!.
104J. Sabelko, J. Ervin, and M. Gruebele, Proc. Natl. Acad. S

U.S.A. 96, 6031~1999!.
105C. A. Angell, Prog. Theor. Phys. Suppl.126, 1 ~1997!.
106J. L. Green, K. Ito, K. Xu, and C. A. Angell, J. Phys. Chem.

103, 3991~1999!.
107G. Fulcher, J. Am. Ceram. Soc.8, 339 ~1925!.
108H. Vogel, Z. Phys.22, 645 ~1921!.
109G. Tammann and W. Hesse, Z. Anorg. Allg. Chem.156, 245

~1926!.
110J. D. Ferry, L. D. Grandine, and E. R. Fitzgerald, J. Appl. Ph

24, 911 ~1953!.
111W. Kauzmann, Chem. Rev.43, 219 ~1948!.
112K. Ito, C. T. Moynihan, and C. A. Angell, Nature~London! 398,

492 ~1999!.
113G. Tarjus, D. Kivelson, and P. Viot, J. Phys.: Condens. Mat

12, 6497~2000!.
114R. K. Bowles and R. J. Speedy, Mol. Phys.87, 1349~1996!.
115K. W. Wojciechowski, D. Frenkel, and A. C. Branka, Phys. Re

Lett. 66, 3168~1991!.
116K. W. Wojciechowski, A. C. Branka, and D. Frenkel, Physica

196, 519 ~1993!.
117E. D. Eastman and R. T. Milner, J. Chem. Phys.1, 444 ~1933!.
118F. Simon, Physica~Amsterdam! IV , 1089~1937!.
119R. H. Fowler and E. A. Guggenheim,Statistical Thermodynam-

ics, 3rd ed.~Cambridge University Press, Cambridge, 1952!.
120M. S. Westwell, M. S. Searle, D. J. Wales, and D. H. William

J. Am. Chem. Soc.117, 5013~1995!.
121F. H. Stillinger and T. A. Weber, Phys. Rev. A28, 2408~1983!.
122M. Dzugutov, Nature~London! 381, 137 ~1996!.
4-16



em

DYNAMICS AND THERMODYNAMICS OF SUPERCOOLED . . . PHYSICAL REVIEW B63 214204
123S. Sastry, P. G. Debenedetti, and F. H. Stillinger, Nature~Lon-
don! 393, 554 ~1998!.

124H. Jonsson and H. C. Andersen, Phys. Rev. Lett.60, 2295
~1988!.

125P. Jund and R. Jullien, Phys. Rev. Lett.83, 2210~1999!.
126T. B. Schroder, S. Sastry, J. C. Dyre, and S. C. Glotzer, J. Ch

Phys.112, 9834~2000!.
127D. J. Lacks, Phys. Rev. Lett.80, 5385~1998!.
21420
.

128D. L. Malandro and D. J. Lacks, J. Chem. Phys.107, 5804
~1997!.

129T. M. Nieuwenhuizen, Phys. Rev. Lett.78, 3491~1997!.
130D. C. Wallace, Phys. Rev. E60, 7049~1999!.
131M. Mezard and G. Parisi, J. Chem. Phys.111, 1076~1999!.
132P. Ehrenfest, inCollected Scientific Papers, edited by M. J.

Klein ~North-Holland, Amsterdam, 1959!.
4-17


