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lon transport in glass: Influence of glassy structure on spatial extent of nonrandom ion hopping
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On short time scales, the diffusion of mobile ions in glasses is nonrandom, i.e., the ions perform correlated
forward-backward motions. By using linear response theory, we show in detail how typical distances charac-
terizing the spatial extent of the nonrandom ionic diffusion can be derived from frequency-dependent conduc-
tivity data when the Haven ratio is known. We compare the dependence of these typical distances on the alkali
content in germanate, borate, and silicate glasses. In all glasses, the typical distances decrease with increasing
alkali oxide content. In the germanate and silicate glasses, the decrease is, however, more pronounced than in
the borates. This network former effect points to the influence of the network structure on the spatial extent of
the nonrandom diffusion.
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. INTRODUCTION lomb interactions for the ion dynamics is emphasiz&t*
As has been demonstrated by Maass and co-wdrRensd
lon transport in glass is a thermally activated processby Knadler et al?® with the help of Computer simulations,
Therefore it is believed that the diffusion of the mobile ionsthe combination of disorder and interionic interactions leads
occurs via hopping motions between well-defined potentiato an enhanced probability for correlated forward-backward
minima in the glassy network. Information about these mo-opping processes.
tions on different time and length scales can be obtained by On the other hand, Dyre and co-workers have shown that
using spectroscopic techniques, such as electrical conductihe frequency-dependent conductivity of glasses can be rea-
ity spectroscopy, mechanical loss spectroscopy, and spin latonably well described by a single particle motion in a po-
tice relaxation spectroscopy. tential landscape with spatially uncorrelated random
For a given temperatur&, the real part of the complex barriers!®!°i.e., it does not seem to be necessary to take into
electrical conductivity of an ion conducting glass,(»), is  account the interactions between the particles to reproduce
independent of frequency and identical to the dc conductivitythe experimentally observed characteristic shape of the con-
o4c When the frequency is lower than a characteristic fre-ductivity spectra.
quencyv* (T). v*(T) is thermally activated with the same In a recent paper, we have shown that information on the
activation energy asoyq.. When the frequency exceeds spatial extent of the nonrandom ionic diffusion can be ob-
v*(T), o’(v) increases with frequency. This dispersion in-tained from a combined analysis of frequency-dependent
dicates that on time scales shorter thafi2kfv* (T)], the  conductivity data and tracer diffusion d&faSuch kind of
ionic diffusion is nonrandom, i.e., the ions perform corre-information can be helpful to better assess the role of the
lated forward-backward motiorts3 On the other hand, when network structure and of the interionic interactions. If the
the time window of the experiment is larger than interionic Coulomb interactions were mainly responsible for
1[27v*(T)], the ions behave like “random walkers,” i.e., the forward-backward motions, then one would expect that
the nonrandom motions on shorter time scales are not rahe spatial extent of the nonrandom diffusion is related to the
solved anymore. interionic distances. On the other hand, if structural features
In the last decades, a large amount of frequencywere most important, one would expect correlations between
dependent conductivity data of ion conducting glasses hathe spatial extent of the nonrandom diffusion and structural
been collected*~*!* and many theoretical approaches havepeculiarities of the glasses.
been developed in order to explain these ddta'®Never- We have found that in glasses with low concentrations of
theless, a generally accepted theory of ion transport in glagsetwork modifying alkali oxides, the spatial extent of the
does not yet exist. In our opinion, one important questiomonrandom diffusion seems to be related to the interionic
that has not yet been answered satisfactorily is: What can bdistances. On the other hand, in highly modified glasses, the
learned from frequency-dependent conductivity spectralependence of the spatial extent on the alkali oxide content
about the role of(i) the disordered glassy network afid) is different in different glassy systems based on different
the interionic interactions play for the ion dynamics? Thenetwork formers. The latter observation clearly points to the
disorder of the glassy network may lead to large fluctuationsnfluence of the glassy structure on the forward-backward
of the depth of potential minima and to large fluctuations ofmotions of the mobile ions.
the heights of the potential barriers between the minima. Itis In this paper, we present a detailed theoretical derivation
well known that such static fluctuations can cause stron@f typical distances characterizing the spatial extent of the
backward correlations in the ionic motioffs2% In several nonrandom ion hopping. We explain in what way these typi-
theoretical approaches, the importance of the interionic Coueal distances can be calculated from experimental conductiv-
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ity data when the Haven ratio is known. Furthermore, we ' { ' { ' }

present new experimental results on lithium borate glasses 2° ""’"""T"}ff;{“

and on a sodium germanate glass. These results confirm tha OO}X 2

the composition dependence of the spatial extent of the non- 29 og | re D]

random ion hopping is different in highly modified borate, | £X L

germanate, and silicate glasses. We try to interprete these__ OOfxf &

results in more detail than in Ref. 26 by taking into account & L ;ofx‘}f ”””” T

the structural peculiarities of these glasses. It is well known E - OOXXAAA}

that the structure of germanate glasses is characterized by th 5 1.0 A |

so-called “germanate anomaly®*~3! The structure of bo- 2 1

rate glasses exhibits a corresponding “borate anomafy*?

These anomalies seem to have a strong influence on the spe 0.5 I T

tial extent of the nonrandom ion hopping in these glassy

systems. 0.0 ko RO ‘

12 14
IIl. EXPERIMENT log,o((v/Hz)/(o,, T 2 em/K))
Borate glasses of compositiors.i,O- (1—x) B,03 with FIG. 1. Conductivity master curves of Li,O-(1-X) B,O3

x=0.128, 0.226, and 0.333 and a germanate glass of compglasses.
sition 0.4 NaO- 0.6 GeQ were prepared by using the melt
quenching technique. For the preparation of the boratqa,0.(1-x)B,0; with 0.1<x<0.3. In that case, the posi-
glasses, LiCO; and B,O; were dried at 170°C for 1 day and ton of the master curves on thé( o T) axis was found to
then ground to fine powder using a mortar. The raw materialgcale with 1%.3%37 In the case of the lithium borate glasses,
were melted in a platinum crucible at 1000 °C for 40 min andine position of the master curves on théo .- T) axis does
then cast onto a platinum plate. not exactly scale with ¥/

For the preparation of the germanate glass,0@ and |5 Fig." 2, conductivity master curves for sodium ger-
GeQ, were dried in a platinum crucible at 500 °C for 30 min. manate glasses of compositiordNa,0- (1—x)GeO, with
In order to ensure a complete evaporation of carbon diOXidex=0.005, 0.0099, 0.09, 0.213, and 0.40 are shown. As seen
the raw materials were held at 1000 °C for approximately lom the figure, the scaling behavior of these master curves
h. They were then melted at 1300 °C for 90 min. The meltis cjearly distinct from that of the borate glasses. The master
was cast onto a platinum plate. This casting process Wag,ves do not simply shift to higher values on thé
done_ in the furnace. Afterwards, the platinum plate was im-(odc, T) axis as the sodium oxide content decreases, but the
mediately removed from the furnace and cooled down tQ,4 e of vl (4o T) Where the conductivity becomes disper-
room temperature. _ _sive is minimal for the glass witk=0.09.

All glasses were annealed 30 K below their respective |, the following sections we will show that the differ-
glass transition temperatures ®h and then cooled down {0 gpceq petween the borate and the germanate glasses regard-

room temperature with a rate of 1 K/min. The surfaces of a"ing the scaling behavior of the conductivity master curves
samples were ground and polished, and metal electrodes

were sputtered onto the sample surfaces. Frequency- and

temperature-dependent conductivitiég v,T) were mea- 8.0 ' [ { {
sured using the LF impedance analyzer HP 4192 A. i ‘ | |
0B b +x=040 L o
°ox=0.213 ! ! 0**
i « x = 0.090 ! L ogk
[ll. RESULTS 20 - -~ ox=00099 [ __.__________, o oo
v x = 0.0051 1 S
It is well known that the conductivity spectra of glasses 3 |
follow the time-temperature superposition principle, i.e., the % 1.5 ‘
conductivity isotherms of a given glass can be superimposed—z
onto a master curve upon appropriate scaling of the conduc-3 19
tivity and of the frequency axi&/1%1134-3€A simple possi-  ~
bility to produce master curves of the real part of the con- 05
ductivity without using arbitrary scaling parameters is to plot ’
o' loge Vs vl(oge T). 2% Fig. 1, we present such master
curves for lithium borate glasses containing different 0.0
amounts of lithium oxide. As seen from Fig. 1, the individual 6 ' 8 — 10 12
master curves are similar in shape. However, the master log, ,((VH2)/(c,, T Q cn/K))
[

curves are shifted to higher values on the scaled frequency
axis as the lithium oxide contemtdecreases. This has also  FIG. 2. Conductivity master curves of Na,O-(1—x) GeO,
been observed for sodium borate glasses of composikons glasses.
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are related to different composition dependences of the spa-When correlations between the velocities of different ions

tial extent of the nonrandom ionic diffusion in these glasses. can be neglected, the velocity correlation function is pro-

portional to the velocity autocorrelation function.

IV. CALCULATION OF TYPICAL DISTANCES
CHARACTERIZING THE SPATIAL EXTENT OF THE
NONRANDOM IONIC DIFFUSION

1N
<E Vi(o)'Vj(t)>:N<V(O)’V(t)>- (6)

i

In this case, the Haven ratio is frequency independent and

A. Important functions and relations

unity. When cross correlations cannot be neglected, the
Haven ratio is a complex function of the frequericy.

* According to linear response theory, the frequency- Furthermore, we will use the following functions:

dependent complex electrical conductivityv) is propor- .
tional to the Fourier transform of the current density auto-(')
correlation function(J(0)- J(t)):%®

Vo ,
&(V)=ﬁjo<3(0)-3(t)>e'Z”tht- @

Here, V is the volume of the sample, arkl, denotes
Boltzmann’s constant. In the following, we consider exclu-
sively the contributions of ionic hops to the conductivity.
In this case, we can relate the current density autocorreldii)
tion function to the chargeg; and the velocitiey; of the
mobile ions:

1N

1
(3(0)-3(1))= \7< > qivi<0>-q;vj<t>>. @

Here,N is the number of mobile ions. In a material with only
one mobile ionic species with chargge the combination of
Egs.(1) and(2) results in

1N

0 q2 ) —i2mi
"(”):3VkBTL<§Vi<0>~VJ<t>>e g (3

(=F7M;(0)-v;(1)) is the velocity correlation function of the
hopping ions.

(iii)

e The frequency-dependent complex coefficient of self-
diffusion of the mobile ions is proportional to the Fourier
transform of the velocity autocorrelation function of the
mobile ions(v(0)-v(t)):%°

A 1 :
D(V)=§L(V(O)N(t))e"zwtdt. (4)

 Electrical conductivity and coefficient of self-diffusion
may be related via a generalized Nernst-Einsteir(V)
equation®

D(v) (5)

with  Hgr(r—0)=Hg.

Here,Ny is the number density of the mobile ions, while
I:|R(v) denotes a frequency-dependent complex Havelglv)
ratio® The low-frequency limit of the complex Haven ratio

Hg can be obtained from measurement of the dc conduc-
tivity o 4. and of the low-frequency limit of the coefficient
of self-diffusion D=D(»—0). Often, D is obtained by
using radio tracer techniques.
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the velocity-space correlation functions

1N (/LN
<Z vi(O)-rJ(t)>=f < > vi(O)-v]-(t’)>dt’
i) 0 i,
(7)
and
t
<V(0)-r(t)>=fO<V(0)-V(t’)>dt’, (8)

the mean-square displacement of the mobile ions:

1 N
<r2(t>>=ﬁ<§ Ar$<t>>
=2ft<v(0) -r(t)))dt’
0

t t, 4 " !
=2f0 Jo (v(0)-v(t"))dt"dt’, (9)

the function (R?(t)) which is proportional to the
mean-square displacement of the center of charge of
the mobile ions:

1 N 2
<R2<t)>=N<(i=ElAri(t)) >
o (N

2 ¢ v 1---N
_Nfofo < EJ vi(0)-vj(t )>dt dt’,

(10)
the conductivity diffusion coefficient of the mobile
ions:

n T
Dg@):a(y)N"quz

1 e/l
= 0<E vi<0>~v,-<t>>ei2”“dt,

1)

11
and the frequency-dependent complex dielectric func-
tion:
e(v)=[a(v)—oqgc)/(I2mveg). (12)

Here, ¢q is the permittivity of free space.

e In the following, the symmetry of different correlation
functions will play an important role:
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1Ny, (0)-vi(t)) and(v(0)-v(t)) are even functions of 12t (=D’

fim'g 1(0)-¥;(t)) and{v(0)-(t)) <r2(t)):—fdt'f (V)sin(Zﬂ-vt’)dv. (18

1Ny (0)-ri(t)) and (v(0)-r(t)) are odd functions of

§imlé, (0)-rity W0)r(0) With the Nernst-Einstein Eq5) we may write

D’(v) andD/(v) are even functions of frequency,

D”(v) andD”(») are odd functions of frequency. (rt ;Z;B;j J Re o ( v)H )]Slrl(27r1/t’)dv.
\Y

B. Calculation of a characteristic distance\/<r2(tp)) from the (19
real and the imaginary part of the conductivity Here, Re denotes the real part of a complex function.
For ion conducting glasses with low alkali oxide contents
(1 mol % and below the low-frequency limiting value of the
complex Haven ratidHg is close to unity’®=*? In highly
1 modified glassed is usually around 0.3%42*3|n the limit
D'(v)= §J (v(0)-v(t))cog 2mut)dt. (13 of high frequenciesHg(») is expected to approach unity,
0 independent of the ionic concentrations. This is because on
very short time scales the ionic hops should be
Since(v(0)-v(t)) is an even function of time, we may write independen’c:3 ThereforeH r(?v) should be a weak function
of frequency. The real part of the Haven ratidi(v),
N it should increase frorl at frequencies below the onset fre-
D'(v)= gf_x(v(O)-v(t))e dt. (14 guency of the conductivity dispersion to unity at high fre-
quencies. Maasst al. have shown with the help of Monte
When we now perform an inverse Fourier transformation, weCarlo simulations that this is, indeed, the case for the hop-
obtain the following expression for the velocity autocorrela-Ping motions of interacting particles in disordered potential
tion function: landscapes.
In the case of our low-frequency conductivity spectra,
o 4 Hg(»)~Hg should therefore be a good approximation. The
<V(0)'V(t)>:Gf_wD'(V)e'ZWdV- (19 mean-square displacement of the mobile ions can then be
approximated by

From Eq.(4) it follows for the real part of the complex
coefficient of self-diffusion:

Integration of this equation in the limits from O t@esults in

. TH
(see the Appendix, Sec):1 (r2(t)) = N—qu_Rf J Sln(27ﬂ/t’)dv.
t (20)
(v(O)-r(t)>=f0<v(O)-v(t )t This equation is used to calculate?(t)) curves for our
glasses. Values foHy are taken from the literatuf@:4243
= D'(v) The temperature dependence of these values is neglected,
= J T( e'?™—1)dv since it has been found that the temperature dependence of
—o0 av

the Haven ratio is usually very small. Some authors observed
that Hg increases slightly with temperatut®;*® while other

6( fx D'(v) ai2mitg f“ D'(v) ) authors found no consistent trend with temperaf(ifé Even
- -7 v

if our glasses showed a slight increaseHyf with tempera-
ture, this would not qualitatively affect our results for the
(16) composition dependence of the spatial extent of the nonran-
dom ion hopping.
n Fig. 3 we present exemplarily a master curve of the
mean-square displacement of the lithium iofr<(t)), in a

wi2mY wi2mY

SinceD’(v)/v is an odd function of frequency, the second
term in the brackets is zero. It follows for the velocity space

correlation function: 0.333 LbO-0.667 BO; glass. Note that this mean-square
6 D' (») displacement is exclusively due to hopping motions of the
_ - V) lithium ions. As seen from the figurér?) is a function of
. = 2
{v(0)-r(t) ﬁ v sin(2rvt)dv t-o4e T, independent of temperature. This implies that the

position of the mean-square displacement curves on the time

:Efm D'(v) sin(2mvt)dw (17) scale depends on temperature, while the valudréj at

' characteristic points of the curves is independent of tempera-

ture. In the limit of long times{r?(t)) is proportional to
Integration in the limits from 0 td and multiplication by a time, while at short times the diffusion is nonrandom, i.e.,
factor of 2 on both sides of this equation results in the fol-the mean-square displacement depends on time in a sublinear
lowing expression for the mean-square displacement of thé&ashion. From the scaling properties of the mean-square dis-
mobile ions: placement curves, it follows that the typical value(of(t))
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! value, \/(rz(tp)>, is taken as a distance characterizing the
| crossover from nonrandom diffusion to random diffusion.

C. Calculation of a characteristic distanceV(R2(x)) from the
imaginary part of the conductivity

B I

< From Eq.(11) it follows for the imaginary part of the
NV conductivity diffusion coefficient:
gof | | R |
. ‘ DU(V)=——J’ > vi(0)-v(t) ) sin(2mwt)dt.
: | 3N Jo | 7]
| | | (2D
Using the function
=2 L L L L
-12 -10 -8 -6
log,((t's)-(c,, T © cn/K)) A()=1 for t>0,
FIG. 3. Master curve of the mean-square displacement of the =0 for t=0,
lithium ions in a 0.333 LjO-0.667 BO;3 glass.
=—1 for t<0, (22

where the nonrandom diffusion passes over into a random _ S N
diffusion does not depend on temperature. The only probleriwe may write for the conductivity diffusion coefficient
is to define one characteristic crossover point and thus one

characteristic value of the mean-square displacement. 1 (= <1”'N

> Vi(o)'Vj(t)>A(l‘)sin(Zﬂ'vt)dt

1)

We suggest the following. For ion conducting glasses, the Dy(v)= 6N | ..
imaginary part of the dielectric function, with(») as de-
fined in Eq.(12), exhibits a peak. The peak frequengy is 1 [ LN o
in the crossover range from the dc conductivity to the dis- NI | . .ZJ vi(0)-vj(t) JA(t) e <™ dt. (23)
persive conductivity. This is shown exemplarily in Fig. 4 for '
a 0.333 LyO- 0.667 BO;3 glass. Note that we did not calcu- ap, inverse Fourier transformation results in
late £”(v) from the real part of the conductivity after sub-
traction of the dc conductivity but by a Kramers-Kronig 1N .
transformation ofe’(v). This procedure avoids large errors < z vi(O)-vj(t)>A(t)=6Nif D( v)e2mdy,
due to the subtraction of similar numbers. Now, we calculate i —
the mean-square displacement of the mobile ions at the char- (24

acteristic timet,=1/(2-7-v,). The square root of this . . L . .
When we integrate this equation in the limits from 0 bjs

we obtain(see the Appendix, Sec):1

1N

| ° 1 t
oo Lo °log(olo,) | 09000 _____ | f0< IEJ vi(O).vj(t’)>A(t/)dt/
. n |Og10(€”/€”max) ;bo ,

4
(o8

= D .
=6Nif ﬂ(e'zﬂT"f—l)oly. (25)

e l2mY

Therefore

LN 0 D" .
<2 Vi(o)-rj(t)>=6Nf %euzmdy

1] —

log,,(0’/c,,) and log,,(e"/€” .,)

n

= D7 (v)
—GNI dv. (26)
—w 2TV

6 8 10 12 14
log, ((v/Hz)/(c, T ©Q cm/K
Guoll MOu ) As shown in the Appendix, Sec. 2, the second term on the

FIG. 4. Conductivity and dielectric loss master curves for aright-hand side of the equation is equaH@ND,(0). Thus
0.333 L0-0.667 B0, glass. we obtain

214203-5



B. ROLING, C. MARTINY, AND S. BRUCKNER

1N
< % vi(O)-(O)-r,-(t)>—3ND;,(0)
6N [=D.(v)
= cog2mvt)dv. (27)
m™ Jo

Integration of this equation in the limits from O kisand
multiplication by a factor of 20 results in the following
expression foR(t)):

5 12 rt = D" (v)
(R (t))—GD(’r(O)tZ—f dt'f ———cog2mvt)dv.
T Jo 0 14
(28)
In the following, we replacéR?(t))— 6D/ (0)t by (R(t)).
Taking into account Eq(11) we may write

O
Nyam Jo 0

(T"( V)

14

cog2mvt')dw.
(29)

When we finally replace the imaginary part of the conduc-
tivity by the real part of the dielectric functidisee Eq(12)],
we arrive at

~ 24kgT t ®
<R2(t>>=ﬁf°fodt' fo [€'(v)—€'(=)]

xXcog2mvt')dv. (30

In this equation, the high-frequency limiting valed~) was

PHYSICAL REVIEW B63 214203

\Y

Percolation

energy

X

FIG. 5. lllustration of correlated forward-backward hops in a
simple potential landscape.

exclusively results for the many particle quant@z(oo)}
which was calculated by using E(1).

V. DISCUSSION

Before we present results for the composition dependence

of the characteristic distanceﬁrz(tp» and V(R?()) in

our glasses, we would first like to discuss the physical mean-
ing of these quantities. As seen from Fig. 4 the dielectric loss
peak frequency, occurs in the crossover regime from the
dc to the dispersive conductivity. This means that in the cor-
responding time window of the order of=1/(27v,), the
nonrandom ionic diffusion passes over into a random diffu-

subtracted from the dielectric function because this value isjon. Therefore we can considd(rz(tp)) as a typical dis-

due to vibrational and electronic polarizations.

In ion conducting glasses, the dielectric function ap-
proaches a limiting values'(0), in the limit of low frequen-
cies. Accordingly, the long-time limiting value of the func-

tion (R?(t)) is given by

6kBTE
Nyg°

0

(R¥(0))= [€'(0)—€'(=)]. (31

tance the mobile ions have to cover to overcome the
backward-driving forces causing the correlated forward-
backward motions of the mobile ions. This is illustrated

schematically in Fig. 5 for an ion moving in a potential land-

scape where the potential energy of the ion differs from site
to site. The figure shows a one-dimensional illustration, but
let us imagine the ion moves in a three-dimensional land-
scape. Of course, the ion will prefer to be on low-energy
sites. When the ion now performs a hop to a higher-energy

It would also be interesting to derive the correspondingsite, the probability for a backward jump will be higher than

single-particle quantity

(T?(=))=1im(r%(t))— 6D’ (0)t. (32
t—oo

—

To this end, we have to replad®”(v) by D"(v) on the
right-hand side of Eq(28). From this it follows that

(33

Thus in order to calculat@?(=)), one needs information on

the frequency dependence of the imaginary part of the Have

ratio, Hx(v), which is not accessible experimentally. Only at
very low ionic concentrations whetdg~1, H;(v) should
be close to zero for all frequencies, so tt#(=)) should be
virtually identical to (R?(=)). In the following, we show

the probability for jumps into other directions simply be-
cause of the small barrier for the backward jump. That means
that on short time scales, the ion dynamics will be character-
ized by correlated forward-backward hops. In order to per-
form a long-range diffusion, the ion has to overcome the
percolation barriers. These are the highest barriers on perco-
lation paths through the system. When the time becomes
longer than the average time required for hopping processes
over the percolation barriers, the ion is able to move between
low-energy sites separated by the percolation barriers. On
these time scales, the ion behaves like a random walker, i.e.,
the ion seems to move randomly from one low-energy site to
the next, and the forward-backward hops on short time scales
are not resolved anymore. Consequently, the characteristic
distance\/<r2(tp)> should be roughly the average distance
the ion has to cover to overcome one of the nearest percola-
tion barriers.
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[ 10 —
10 | 1 |
[ O~ ! | :
"o, | |
<L | o |
~ | ~ |
EN : |
- | 8 | |
o | N : >‘K\
v : Y e
| ! A
©0 x Na,0 - (1-x) GeO, e x Na,0 - (1-x) GeO, 3 Koy
1 -+ x NIaZO - (1-x) B,O, ] *x x Na,0 - (1-x) B,O, !
| >*x xLi,O - (1-x) B,O, ** x K,0 - (1-x) SiO, |
0.01 0.01 0.10 1.00
X X
FIG. 6. Plot of the characteristic Iengaﬁ(rz(tp» for sodium FIG. 7. Plot of the characteristic lengt(R?(>)) for sodium
germanate, lithium borate, and sodium borate glasses. germanate, sodium borate, and potassium silicate glasses.

Note that there will be no generally valid relation between
the distance/(rz(tp)) and the elementary hopping distance
between two neighboring sites For a given value o, the smaller
distanced(rz(tp)) will depend on the shape of the potential '

landscape, e.g., on the degree of spatial correlations between.ln the case Ol—z—f the ggrmanate glasses .W'th Iovxi f,fd'um
the site energies and between the barrier heights. oxide contentsy{r*(t,)) is roughly proportional to<™™=.

Let us now imagine that we “switch off’ the long-range At sodium oxide contentsx=0.15, \(r<(t,)) decreases
ionic diffusion by introducing periodic boundary conditions Much faster with increasing By way of contrast, in the case
at the percolation barriers. When the ion overcomes one of the highly modified borate glasses with 0s10<0.333,
the percolation barriers and moves into a neighboring “val-V{r*(t,)) decreases roughly witk *. Note that the values
ley,” we put it back into the original “valley.” In this case, of \(r?(t,)) for the lithium borate glasses and for the so-
we observe exclusively forward-backward hops of the mo-dium borate glasses are very similar.
bile ion. Therefore the introduction of periodic boundary | Fig. 7 the characteristic distanc&R2(<)) is plotted
conditions corresponds to the substraction Ditérom the  yergs the alkali oxide content for sodium germanate, so-
mean-square displacement of the io(t)). In other — giym porate, and potassium silicate glasses. Values for the
words, the function(F*(t))=(r*(t))—6Dt describes the jectric relaxation strength’ (0)— €’ (=) of the potassium
forward-backward hops in regions limited by the percolationgjjicate glasses were taken from Ref. 49. In the case of the
barriers. Since this is a localized kind of motioff*(t))  ( gps NaO-0.995 GeQ glass, the 0.4 N®-0.6 GeQ
tends towards a limiting valug(>)) in the limit of long tglass, and the lithium borate glasses, the characteristic dis-

tan

times. This limiting value characterizes the spatial extent o = .
the localized motigns P ance/(R?(=)) could not be calculated. The reason is that

It is important to realize that also the relation between thegwtIn dg :O ?I%ctrpc\)de por|1a1[|rz?rt1lotrr]1 efffiectrs, at%r(]O) pl?;eaui;/ivans d
distance (f?(=)) and the elementary hopping distanae ot detected. 5’2 see ) 0. ) € figure, the composition de-
depends on the shape of the potential landscape. Note th@gndence ofy(R*(«)) is similar to that of y(r (t)). At

[(F%(=)) can be even smaller than This is the case, if the alkali oxide contents above a few mol %, the composition
site energies in the valleys differ enormously, so that the iordependence ot/(ﬁz(w)) clearly depends on the nature of
mainly occupies the lowest-energy site and stays only fothe network former. For the germanate and silicate glasses,
very short time intervals on sites with.higher energies. V(R?()) decays much faster with increasirghan for the

Experimentally, one cannot determigér“(c«)) but only  porate glasses. This network former effect points to the in-
the many particle quantit <ﬁ2(w)>, For the calculation of fluence of the glassy structure on the spatial extent of the

V(R2(=¢)) in a model potential landscape, one has to addionrandom ionic diffusion. ,
tionally take into account cross correlations between the N Order to see whether there are correlations between the
movements of different ions. composition dependence af(r?(t,)) and V(R?*(»)) and

In Fig. 6 the composition dependence of the characteristiétructural peculiarities of the glasses, let us now consider in
distanceJ(rz(tp)) is shown for sodium germanate, lithium What way the addition of alkali oxide.c':hanges the network
borate, and sodium borate glasses. For all glas@(t_p)) structure of borate, germanate, and S|I|cat§: glasses.
decreases with increasing alkali oxide content. In the case of Glassy BOj consists of trigonal B@ units. A part of
the sodium germanate glass containing 0.5mol ¥&Nave  these units forms boroxol ring§->20On the addition of alkali

find that \/<r2(tp))=8.7A. For the highly modified ger-
manate and borate glassejgrz(tp» is arourd 1 A or even
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oxides trigonally coordinated boron is converted into tetra-germanate and silicate glasses as compared to the borates.
hedrally coordinated boron. The degree of polymerization ofThis network former effect points to the influence of the
the network is thereby enhanced, and a variety of differenhetwork structure on the microscopic dynamics of the mobile
structural units(diborate, tetraborate, elcis produced® ions. The analysis of our results in relation to the structural
When the alkali oxide content exceeds about 25—-30 mol %peculiarities of the glasses suggests that the depolymeriza-
B—O-B bonds are broken and nonbridging oxygens ardion of the network due to the formation of nonbridging oxy-
formed33i.e., the network depolymerizes with increasing al-gens leads to a strong decrease of the spatial extent of the
kali oxide content. The maximum alkali oxide content of thenonrandom ion hopping. Further experimental studies will be
glasses studied here is 33.3 mol%. Therefore even oyserformed to test this hypothesis.
highly modified borate glasses are highly polymerized and
contain no or only few nonbridging oxygens. ACKNOWLEDGMENTS

Glassy Ge® consists of GeQ tetrahedra. At modifier
contents below 15 mol %, the addition of a network modifier Ve are grateful to J. C. Dyre, K. Funke, A. Heuer, and D.

leads mainly to a conversion of Gg@trahedra into Ge L. Sidebottom for many helpful discussions. This work was
octahedra and thereby to an enhanced degree Supported by the Deutsche Forschungs?gemelnschaft in the
polymerizatior?’ 3 When more than 15 mol % modifier is framework of the Sonderforschungsbereich 458.

added, nonbridging oxygens are formed and the network de-

polymerizes with increasing modifier content. APPENDIX
Glassy SiQ consists of SiQ tetrahedra. The addition of 1
alkali oxide always leads to a breaking®+O-Sibonds and ) ) _ _
to the formation of nonbridging oxygerni&:® Consider the following pair of Fourier transforms:
These structural features suggest that the depolymeriza- "
tion of the network due to the formation of nonbridging oxy- f(t)= f F(v)el2m™dy. (A1)
gens plays an important role for the spatial extent of the —o

nonrandom lonic diffusion. In the highly polymerlzed borateIntegration off (t) in the limits fromt, to t, results in
glasses containing no or only few nonbridging oxygens, the

characteristic distance§r?(t,)) and(R?(=)) are roughly t2 I I P
proportional tox 3 A similar composition dependence is o f(t)dt= ftl dtffx':(”)e dv
observed for the germanate glasses with0.15 which do

not contain nonbridging oxygens. At alkali oxide contents _f“ ftz 2etg| B ()
above 15 mol %, the network depolymerizes due to the for- I 4 € (v)dv
mation of nonbridging oxygens, and we observe that

(r2(t,)) and V(R*(=)) decrease much faster than with _(” F(v) (627 izt g
x~ 13, In the case of the potassium silicate glasses where the 02wy '
addition of alkali oxide always leads to the formation of

nonbridging oxygens, the fast decay d(NRZ(oo» with in- 2.

creasingx is already observed at very low alkali oxide con-

tents. Consider the integrdl which is given by
In order to check whether the spatial extent of the non-

random ion hopping and the degree of depolymerization of = Di(v)

the glassy network are generally correlated, we plan further I =6NJ’700 2y

experimental studies. In particular, studies on aluminosilicate

glasses seem to be promising. In these glasses, the amountl@#king into account Eg(21) we obtain

nonbridging oxygens can be varied at constant alkali oxide

content by varying the ratio of the AD; content to the SiQ | = 6_N - VE ( _ i)

content. 2w )~V 3-N

(A2)

dv. (A3)

N

> vi(O)~v]-(t)>sin(27wt)dt)dt

|
VI. SUMMARY y J’w<
(]

From the electrical conductivity spectra of ion conducting 0

glasses, we have derived the characteristic distances 1 /!N w 1

V(r?(ty)) and V(R?(=)), which contain information on the ~ =~ — f < > Vi(O)-Vj(t)> (f dV;Sin(Zvat))dt-
spatial extent of the nonrandom ion hopping. The composi- 0 h o

tion dependences of(r?(t,)) and V(R%*(=)) have been (A4)
analyzed for sodium germanate, sodium borate, lithium boThe integral in the brackets is equal to Taking into ac-
rate and potassium silicate glasses. We find tﬁa?(tp» count Eq.(11) we arrive at

and \/(~R2(oc)> decrease with increasing alkali oxide content. ,
However, the decrease is clearly more pronounced in the I=—3ND,(0). (A5)
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