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Ion transport in glass: Influence of glassy structure on spatial extent of nonrandom ion hopping
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On short time scales, the diffusion of mobile ions in glasses is nonrandom, i.e., the ions perform correlated
forward-backward motions. By using linear response theory, we show in detail how typical distances charac-
terizing the spatial extent of the nonrandom ionic diffusion can be derived from frequency-dependent conduc-
tivity data when the Haven ratio is known. We compare the dependence of these typical distances on the alkali
content in germanate, borate, and silicate glasses. In all glasses, the typical distances decrease with increasing
alkali oxide content. In the germanate and silicate glasses, the decrease is, however, more pronounced than in
the borates. This network former effect points to the influence of the network structure on the spatial extent of
the nonrandom diffusion.
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I. INTRODUCTION

Ion transport in glass is a thermally activated proce
Therefore it is believed that the diffusion of the mobile io
occurs via hopping motions between well-defined poten
minima in the glassy network. Information about these m
tions on different time and length scales can be obtained
using spectroscopic techniques, such as electrical condu
ity spectroscopy, mechanical loss spectroscopy, and spin
tice relaxation spectroscopy.

For a given temperatureT, the real part of the complex
electrical conductivity of an ion conducting glass,s8(n), is
independent of frequency and identical to the dc conducti
sdc when the frequency is lower than a characteristic f
quencyn* (T). n* (T) is thermally activated with the sam
activation energy assdc. When the frequency exceed
n* (T), s8(n) increases with frequency. This dispersion i
dicates that on time scales shorter than 1/@2pn* (T)#, the
ionic diffusion is nonrandom, i.e., the ions perform corr
lated forward-backward motions.1–3 On the other hand, when
the time window of the experiment is larger tha
1/@2pn* (T)#, the ions behave like ‘‘random walkers,’’ i.e
the nonrandom motions on shorter time scales are not
solved anymore.

In the last decades, a large amount of frequen
dependent conductivity data of ion conducting glasses
been collected,1,4–11 and many theoretical approaches ha
been developed in order to explain these data.3,12–18Never-
theless, a generally accepted theory of ion transport in g
does not yet exist. In our opinion, one important quest
that has not yet been answered satisfactorily is: What ca
learned from frequency-dependent conductivity spec
about the role of~i! the disordered glassy network and~ii !
the interionic interactions play for the ion dynamics? T
disorder of the glassy network may lead to large fluctuati
of the depth of potential minima and to large fluctuations
the heights of the potential barriers between the minima.
well known that such static fluctuations can cause str
backward correlations in the ionic motions.18–23 In several
theoretical approaches, the importance of the interionic C
0163-1829/2001/63~21!/214203~9!/$20.00 63 2142
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lomb interactions for the ion dynamics is emphasized.1,15,24

As has been demonstrated by Maass and co-workers2,3 and
by Knödler et al.25 with the help of Computer simulations
the combination of disorder and interionic interactions lea
to an enhanced probability for correlated forward-backw
hopping processes.

On the other hand, Dyre and co-workers have shown
the frequency-dependent conductivity of glasses can be
sonably well described by a single particle motion in a p
tential landscape with spatially uncorrelated rando
barriers.18,19 i.e., it does not seem to be necessary to take i
account the interactions between the particles to reprod
the experimentally observed characteristic shape of the c
ductivity spectra.

In a recent paper, we have shown that information on
spatial extent of the nonrandom ionic diffusion can be o
tained from a combined analysis of frequency-depend
conductivity data and tracer diffusion data.26 Such kind of
information can be helpful to better assess the role of
network structure and of the interionic interactions. If t
interionic Coulomb interactions were mainly responsible
the forward-backward motions, then one would expect t
the spatial extent of the nonrandom diffusion is related to
interionic distances. On the other hand, if structural featu
were most important, one would expect correlations betw
the spatial extent of the nonrandom diffusion and structu
peculiarities of the glasses.

We have found that in glasses with low concentrations
network modifying alkali oxides, the spatial extent of th
nonrandom diffusion seems to be related to the interio
distances. On the other hand, in highly modified glasses,
dependence of the spatial extent on the alkali oxide con
is different in different glassy systems based on differ
network formers. The latter observation clearly points to
influence of the glassy structure on the forward-backw
motions of the mobile ions.

In this paper, we present a detailed theoretical derivat
of typical distances characterizing the spatial extent of
nonrandom ion hopping. We explain in what way these ty
cal distances can be calculated from experimental conduc
©2001 The American Physical Society03-1
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ity data when the Haven ratio is known. Furthermore,
present new experimental results on lithium borate glas
and on a sodium germanate glass. These results confirm
the composition dependence of the spatial extent of the n
random ion hopping is different in highly modified borat
germanate, and silicate glasses. We try to interprete th
results in more detail than in Ref. 26 by taking into accou
the structural peculiarities of these glasses. It is well kno
that the structure of germanate glasses is characterized b
so-called ‘‘germanate anomaly.’’27–31 The structure of bo-
rate glasses exhibits a corresponding ‘‘borate anomaly.’’32,33

These anomalies seem to have a strong influence on the
tial extent of the nonrandom ion hopping in these gla
systems.

II. EXPERIMENT

Borate glasses of compositionsx Li2O•(12x) B2O3 with
x50.128, 0.226, and 0.333 and a germanate glass of com
sition 0.4 Na2O•0.6 GeO2 were prepared by using the me
quenching technique. For the preparation of the bor
glasses, Li2CO3 and B2O3 were dried at 170 °C for 1 day an
then ground to fine powder using a mortar. The raw mater
were melted in a platinum crucible at 1000 °C for 40 min a
then cast onto a platinum plate.

For the preparation of the germanate glass, Na2CO3 and
GeO2 were dried in a platinum crucible at 500 °C for 30 mi
In order to ensure a complete evaporation of carbon diox
the raw materials were held at 1000 °C for approximatel
h. They were then melted at 1300 °C for 90 min. The m
was cast onto a platinum plate. This casting process
done in the furnace. Afterwards, the platinum plate was
mediately removed from the furnace and cooled down
room temperature.

All glasses were annealed 30 K below their respect
glass transition temperatures for 2 h and then cooled down t
room temperature with a rate of 1 K/min. The surfaces of
samples were ground and polished, and metal electro
were sputtered onto the sample surfaces. Frequency-
temperature-dependent conductivitiesŝ(n,T) were mea-
sured using the LF impedance analyzer HP 4192 A.

III. RESULTS

It is well known that the conductivity spectra of glass
follow the time-temperature superposition principle, i.e.,
conductivity isotherms of a given glass can be superimpo
onto a master curve upon appropriate scaling of the cond
tivity and of the frequency axis.6,7,10,11,34–36A simple possi-
bility to produce master curves of the real part of the co
ductivity without using arbitrary scaling parameters is to p
s8/sdc vs n/(sdc•T).11,36 In Fig. 1, we present such mast
curves for lithium borate glasses containing differe
amounts of lithium oxide. As seen from Fig. 1, the individu
master curves are similar in shape. However, the ma
curves are shifted to higher values on the scaled freque
axis as the lithium oxide contentx decreases. This has als
been observed for sodium borate glasses of compositiox
21420
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Na2O•(12x)B2O3 with 0.1<x<0.3. In that case, the posi
tion of the master curves on then/(sdc•T) axis was found to
scale with 1/x.36,37 In the case of the lithium borate glasse
the position of the master curves on then/(sdc•T) axis does
not exactly scale with 1/x.

In Fig. 2, conductivity master curves for sodium ge
manate glasses of compositionsx Na2O•(12x)GeO2 with
x50.005, 0.0099, 0.09, 0.213, and 0.40 are shown. As s
from the figure, the scaling behavior of these master cur
is clearly distinct from that of the borate glasses. The ma
curves do not simply shift to higher values on then/
(sdc•T) axis as the sodium oxide content decreases, but
value ofn/(sdc•T) where the conductivity becomes dispe
sive is minimal for the glass withx50.09.

In the following sections we will show that the differ
ences between the borate and the germanate glasses re
ing the scaling behavior of the conductivity master curv

FIG. 1. Conductivity master curves ofx Li2O•(12x) B2O3

glasses.

FIG. 2. Conductivity master curves ofx Na2O•(12x) GeO2

glasses.
3-2
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are related to different composition dependences of the
tial extent of the nonrandom ionic diffusion in these glass

IV. CALCULATION OF TYPICAL DISTANCES
CHARACTERIZING THE SPATIAL EXTENT OF THE

NONRANDOM IONIC DIFFUSION

A. Important functions and relations

• According to linear response theory, the frequen
dependent complex electrical conductivityŝ~n! is propor-
tional to the Fourier transform of the current density au
correlation function̂ J(0)•J(t)&:38

ŝ~n!5
V

3kBT E0

`

^J~0!•J~ t !&e2 i2pntdt. ~1!

Here, V is the volume of the sample, andkB denotes
Boltzmann’s constant. In the following, we consider exc
sively the contributions of ionic hops to the conductivit
In this case, we can relate the current density autocorr
tion function to the chargesqi and the velocitiesvi of the
mobile ions:

^J~0!•J~ t !&5
1

V2 K (
i , j

1¯N

qivi~0!•qjvj~ t !L . ~2!

Here,N is the number of mobile ions. In a material with on
one mobile ionic species with chargeq, the combination of
Eqs.~1! and ~2! results in

ŝ~n!5
q2

3VkBT E0

`K (
i,j

1¯N

vi~0!•vj~ t !L e2 i2pntdt. ~3!

^( i , j
1¯Nvi(0)•vj (t)& is the velocity correlation function of the

hopping ions.

• The frequency-dependent complex coefficient of se
diffusion of the mobile ions is proportional to the Fouri
transform of the velocity autocorrelation function of th
mobile ions^v(0)•v(t)&:39

D̂~n!5
1

3 E0

`

^v~0!•v~ t !&e2 i2pntdt. ~4!

• Electrical conductivity and coefficient of self-diffusio
may be related via a generalized Nernst-Einst
equation:3

ŝ~n!5
NVq2

kBT

1

ĤR~n!
D̂~n! ~5!

with ĤR~n→0!5HR .

Here,NV is the number density of the mobile ions, whi
ĤR(n) denotes a frequency-dependent complex Ha
ratio.3 The low-frequency limit of the complex Haven rat
HR can be obtained from measurement of the dc cond
tivity sdc and of the low-frequency limit of the coefficien
of self-diffusion D5D̂(n→0). Often, D is obtained by
using radio tracer techniques.
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• When correlations between the velocities of different io
can be neglected, the velocity correlation function is p
portional to the velocity autocorrelation function.1

K (
i,j

1¯N

vi~0!•vj~ t !L 5N^v~0!•v~ t !&. ~6!

In this case, the Haven ratio is frequency independent
unity. When cross correlations cannot be neglected,
Haven ratio is a complex function of the frequency.3

• Furthermore, we will use the following functions:

~i! the velocity-space correlation functions

K (
i,j

1¯N

vi~0!•r j~ t !L 5E
0

tK (
i , j

1¯N

vi~0!•vj~ t8!L dt8

~7!
and

^v~0!•r ~ t !&5E
0

t

^v~0!•v~ t8!&dt8, ~8!

~ii ! the mean-square displacement of the mobile ions:

^r2~t!&5
1

N K(
i51

N

Dr i
2~ t !L

52E
0

t

^v~0!•r ~ t8!&dt8

52E
0

tE
0

t8
^v~0!•v~ t9!&dt9dt8, ~9!

~iii ! the function ^R2(t)& which is proportional to the
mean-square displacement of the center of charge
the mobile ions:

^R2~t!&5
1

N KS(
i51

N

Dr i~ t !D 2L
5

2

N E
0

tK (
i , j

1¯N

vi~0!•r j~ t8!L dt8

5
2

N E
0

tE
0

t8K (
i , j

1¯N

vi~0!•vj~ t9!L dt9dt8,

~10!
~iv! the conductivity diffusion coefficient of the mobil

ions:

D̂s~n!5ŝ~n!
kBT

NVq2

5
1

3N E
0

`K (
i,j

1¯N

vi~0!•vj~ t !L e2 i2pntdt,

~11!
~v! and the frequency-dependent complex dielectric fu

tion:
ê~n!5@ŝ~n!2sdc#/~ i2pne0!. ~12!

Here,e0 is the permittivity of free space.

• In the following, the symmetry of different correlatio
functions will play an important role:
3-3
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^( i , j
1¯Nvi(0)•vj (t)& and^v(0)•v(t)& are even functions o

time,
^( i , j

1¯Nvi(0)•r j (t)& and ^v(0)•r (t)& are odd functions of
time,
D8(n) andDs8 (n) are even functions of frequency,
D9(n) andDs9 (n) are odd functions of frequency.

B. Calculation of a characteristic distanceAŠr 2
„tp…‹ from the

real and the imaginary part of the conductivity

From Eq.~4! it follows for the real part of the complex
coefficient of self-diffusion:

D8~n!5
1

3 E0

`

^v~0!•v~ t !&cos~2pnt !dt. ~13!

Since^v(0)•v(t)& is an even function of time, we may writ

D8~n!5
1

6 E2`

`

^v~0!•v~ t !&e2 i2pntdt. ~14!

When we now perform an inverse Fourier transformation,
obtain the following expression for the velocity autocorre
tion function:

^v~0!•v~ t !&56E
2`

`

D8~n!ei2pntdn. ~15!

Integration of this equation in the limits from 0 tot results in
~see the Appendix, Sec. 1!:

^v~0!•r ~ t !&5E
0

t

^v~0!•v~ t8!&dt8

56E
2`

` D8~n!

i2pn
~ei2pnt21!dn

56S E
2`

` D8~n!

i2pn
ei2pntdn2E

2`

` D8~n!

i2pn
dn D .

~16!

SinceD8(n)/n is an odd function of frequency, the secon
term in the brackets is zero. It follows for the velocity spa
correlation function:

^v~0!•r ~ t !&5
6

2p E
2`

` D8~n!

n
sin~2pnt !dn

5
6

p E
0

` D8~n!

n
sin~2pnt !dn. ~17!

Integration in the limits from 0 tot and multiplication by a
factor of 2 on both sides of this equation results in the f
lowing expression for the mean-square displacement of
mobile ions:
21420
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^r 2~ t !&5
12

p E
0

t

dt8E
0

` D8~n!

n
sin~2pnt8!dn. ~18!

With the Nernst-Einstein Eq.~5! we may write

^r 2~ t !&5
12kBT

NVq2p E
0

t

dt8E
0

` Re@ŝ~n!ĤR~n!#

n
sin~2pnt8!dn.

~19!

Here, Re denotes the real part of a complex function.
For ion conducting glasses with low alkali oxide conten

~1 mol % and below!, the low-frequency limiting value of the
complex Haven ratioHR is close to unity.40–42 In highly
modified glasses,HR is usually around 0.3.40,42,43In the limit
of high frequencies,ĤR(n) is expected to approach unity
independent of the ionic concentrations. This is because
very short time scales the ionic hops should
independent.1,3 ThereforeĤR(n) should be a weak function
of frequency. The real part of the Haven ratio,HR8 (n),
should increase fromHR at frequencies below the onset fre
quency of the conductivity dispersion to unity at high fr
quencies. Maasset al. have shown with the help of Monte
Carlo simulations that this is, indeed, the case for the h
ping motions of interacting particles in disordered poten
landscapes.3

In the case of our low-frequency conductivity spect
ĤR(n)'HR should therefore be a good approximation. T
mean-square displacement of the mobile ions can then
approximated by

^r 2~ t !&5
12kBT HR

NVq2p E
0

t

dt8E
0

` s8~n!

n
sin~2pnt8!dn.

~20!

This equation is used to calculate^r 2(t)& curves for our
glasses. Values forHR are taken from the literature.40,42,43

The temperature dependence of these values is negle
since it has been found that the temperature dependenc
the Haven ratio is usually very small. Some authors obser
that HR increases slightly with temperature,44–46 while other
authors found no consistent trend with temperature.47,48Even
if our glasses showed a slight increase ofHR with tempera-
ture, this would not qualitatively affect our results for th
composition dependence of the spatial extent of the non
dom ion hopping.

In Fig. 3 we present exemplarily a master curve of t
mean-square displacement of the lithium ions,^r 2(t)&, in a
0.333 Li2O•0.667 B2O3 glass. Note that this mean-squa
displacement is exclusively due to hopping motions of
lithium ions. As seen from the figure,^r 2& is a function of
t•sdc•T, independent of temperature. This implies that t
position of the mean-square displacement curves on the
scale depends on temperature, while the value of^r 2& at
characteristic points of the curves is independent of temp
ture. In the limit of long times,̂ r 2(t)& is proportional to
time, while at short times the diffusion is nonrandom, i.
the mean-square displacement depends on time in a subl
fashion. From the scaling properties of the mean-square
placement curves, it follows that the typical value of^r 2(t)&
3-4
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where the nonrandom diffusion passes over into a rand
diffusion does not depend on temperature. The only prob
is to define one characteristic crossover point and thus
characteristic value of the mean-square displacement.

We suggest the following. For ion conducting glasses,
imaginary part of the dielectric function, with«̂(n) as de-
fined in Eq.~12!, exhibits a peak. The peak frequencynp is
in the crossover range from the dc conductivity to the d
persive conductivity. This is shown exemplarily in Fig. 4 f
a 0.333 Li2O•0.667 B2O3 glass. Note that we did not calcu
late «9(n) from the real part of the conductivity after sub
traction of the dc conductivity but by a Kramers-Kron
transformation of«8(n). This procedure avoids large erro
due to the subtraction of similar numbers. Now, we calcul
the mean-square displacement of the mobile ions at the c
acteristic time tp51/(2•p•np). The square root of this

FIG. 3. Master curve of the mean-square displacement of
lithium ions in a 0.333 Li2O•0.667 B2O3 glass.

FIG. 4. Conductivity and dielectric loss master curves for
0.333 Li2O•0.667 B2O3 glass.
21420
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value, A^r 2(tp)&, is taken as a distance characterizing t
crossover from nonrandom diffusion to random diffusion.

C. Calculation of a characteristic distanceAŠR̃2
„`…‹ from the

imaginary part of the conductivity

From Eq. ~11! it follows for the imaginary part of the
conductivity diffusion coefficient:

Ds9 ~n!52
1

3N E
0

`K (
i , j

1¯N

vi~0!•vj~ t !L sin~2pnt !dt.

~21!

Using the function

A~ t !51 for t.0,

50 for t50,

521 for t,0, ~22!

we may write for the conductivity diffusion coefficient

Ds9 ~n!52
1

6N E
2`

` K (
i , j

1¯N

vi~0!•vj~ t !L A~ t !sin~2pnt !dt

5
1

6Ni E2`

` K (
i , j

1¯N

vi~0!•vj~ t !L A~ t !e2 i2pntdt. ~23!

An inverse Fourier transformation results in

K (
i , j

1¯N

vi~0!•vj~ t !L A~ t !56NiE
2`

`

Ds9 ~n!ei2pntdn.

~24!

When we integrate this equation in the limits from 0 bist,
we obtain~see the Appendix, Sec. 1!:

E
0

tK (
i , j

1¯N

vi~0!•vj~ t8!L A(t8)dt8

56NiE
2`

` Ds9 ~n!

i2pn
~e i2pnt21!dn. ~25!

Therefore

K (
i , j

1¯N

vi~0!•r j~ t !L 56NE
2`

` Ds9 ~n!

2pn
ei2pntdn

26NE
2`

` Ds9 ~n!

2pn
dn. ~26!

As shown in the Appendix, Sec. 2, the second term on
right-hand side of the equation is equal to23NDs8 (0). Thus
we obtain

e

3-5
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K (
i , j

1¯N

vi~0!•~0!•r j~ t !L 23NDs8 ~0!

5
6N

p E
0

` Ds9 ~n!

n
cos~2pnt !dn. ~27!

Integration of this equation in the limits from 0 bist and
multiplication by a factor of 2/N results in the following
expression for̂ R2(t)&:

^R2~ t !&26Ds8 ~0!t5
12

p E
0

t

dt8 E
0

` Ds9 ~n!

n
cos~2pnt8!dn.

~28!

In the following, we replacêR2(t)&26Ds8 (0)t by ^R̃2(t)&.
Taking into account Eq.~11! we may write

^R̃2~ t !&5
12kBT

NVq2p E
0

t

dt8E
0

` s9~n!

n
cos~2pnt8!dn.

~29!

When we finally replace the imaginary part of the condu
tivity by the real part of the dielectric function@see Eq.~12!#,
we arrive at

^R̃2~ t !&5
24kBTe0

NVq2 E
0

t

dt8E
0

`

@e8~n!2e8~`!#

3cos~2pnt8!dn. ~30!

In this equation, the high-frequency limiting valuee8~`! was
subtracted from the dielectric function because this valu
due to vibrational and electronic polarizations.

In ion conducting glasses, the dielectric function a
proaches a limiting value,e8~0!, in the limit of low frequen-
cies. Accordingly, the long-time limiting value of the func
tion ^R̃2(t)& is given by

^R̃2~`!&5
6kBTe0

NVq2 @e8~0!2e8~`!#. ~31!

It would also be interesting to derive the correspond
single-particle quantity

^ r̃ 2~`!&5 lim
t→`

^r 2~ t !&26D8~0!t. ~32!

To this end, we have to replaceDs9 (n) by D9(n) on the
right-hand side of Eq.~28!. From this it follows that

^ r̃ 2~`!&5
3

p
lim

n→0

D9~n!

n
. ~33!

Thus in order to calculatêr̃ 2(`)&, one needs information on
the frequency dependence of the imaginary part of the Ha
ratio,HR9 (n), which is not accessible experimentally. Only
very low ionic concentrations whereHR'1, HR9 (n) should
be close to zero for all frequencies, so that^ r̃ 2(`)& should be
virtually identical to ^R̃2(`)&. In the following, we show
21420
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exclusively results for the many particle quantity^R̃2(`)&
which was calculated by using Eq.~31!.

V. DISCUSSION

Before we present results for the composition depende

of the characteristic distancesA^r 2(tp)& and A^R̃2(`)& in
our glasses, we would first like to discuss the physical me
ing of these quantities. As seen from Fig. 4 the dielectric l
peak frequencynp occurs in the crossover regime from th
dc to the dispersive conductivity. This means that in the c
responding time window of the order oftp51/(2pnp), the
nonrandom ionic diffusion passes over into a random dif
sion. Therefore we can considerA^r 2(tp)& as a typical dis-
tance the mobile ions have to cover to overcome
backward-driving forces causing the correlated forwa
backward motions of the mobile ions. This is illustrate
schematically in Fig. 5 for an ion moving in a potential lan
scape where the potential energy of the ion differs from s
to site. The figure shows a one-dimensional illustration,
let us imagine the ion moves in a three-dimensional la
scape. Of course, the ion will prefer to be on low-ener
sites. When the ion now performs a hop to a higher-ene
site, the probability for a backward jump will be higher tha
the probability for jumps into other directions simply b
cause of the small barrier for the backward jump. That me
that on short time scales, the ion dynamics will be charac
ized by correlated forward-backward hops. In order to p
form a long-range diffusion, the ion has to overcome t
percolation barriers. These are the highest barriers on pe
lation paths through the system. When the time becom
longer than the average time required for hopping proces
over the percolation barriers, the ion is able to move betw
low-energy sites separated by the percolation barriers.
these time scales, the ion behaves like a random walker,
the ion seems to move randomly from one low-energy site
the next, and the forward-backward hops on short time sc
are not resolved anymore. Consequently, the character
distanceA^r 2(tp)& should be roughly the average distan
the ion has to cover to overcome one of the nearest perc
tion barriers.

FIG. 5. Illustration of correlated forward-backward hops in
simple potential landscape.
3-6
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Note that there will be no generally valid relation betwe
the distanceA^r 2(tp)& and the elementary hopping distan
between two neighboring sitesa. For a given value ofa, the
distanceA^r 2(tp)& will depend on the shape of the potenti
landscape, e.g., on the degree of spatial correlations betw
the site energies and between the barrier heights.

Let us now imagine that we ‘‘switch off’’ the long-rang
ionic diffusion by introducing periodic boundary condition
at the percolation barriers. When the ion overcomes on
the percolation barriers and moves into a neighboring ‘‘v
ley,’’ we put it back into the original ‘‘valley.’’ In this case
we observe exclusively forward-backward hops of the m
bile ion. Therefore the introduction of periodic bounda
conditions corresponds to the substraction of 6Dt from the
mean-square displacement of the ion,^r 2(t)&. In other
words, the function^ r̃ 2(t)&5^r 2(t)&26Dt describes the
forward-backward hops in regions limited by the percolat
barriers. Since this is a localized kind of motion,^ r̃ 2(t)&
tends towards a limiting valuêr̃ 2(`)& in the limit of long
times. This limiting value characterizes the spatial exten
the localized motions.

It is important to realize that also the relation between
distanceA^ r̃ 2(`)& and the elementary hopping distancea
depends on the shape of the potential landscape. Note
A^ r̃ 2(`)& can be even smaller thana. This is the case, if the
site energies in the valleys differ enormously, so that the
mainly occupies the lowest-energy site and stays only
very short time intervals on sites with higher energies.

Experimentally, one cannot determineA^ r̃ 2(`)& but only

the many particle quantityA^R̃2(`)&. For the calculation of
A^R̃2(`)& in a model potential landscape, one has to ad
tionally take into account cross correlations between
movements of different ions.

In Fig. 6 the composition dependence of the characteri
distanceA^r 2(tp)& is shown for sodium germanate, lithium
borate, and sodium borate glasses. For all glasses,A^r 2(tp)&
decreases with increasing alkali oxide content. In the cas
the sodium germanate glass containing 0.5 mol %Na2O, we

FIG. 6. Plot of the characteristic lengthA^r 2(tp)& for sodium
germanate, lithium borate, and sodium borate glasses.
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find that A^r 2(tp)&58.7 Å. For the highly modified ger-
manate and borate glasses,A^r 2(tp)& is around 1 Å or even
smaller.

In the case of the germanate glasses with low sod
oxide contents,A^r 2(tp)& is roughly proportional tox21/3.

At sodium oxide contentsx>0.15, A^r 2(tp)& decreases
much faster with increasingx. By way of contrast, in the cas
of the highly modified borate glasses with 0.10<x<0.333,
A^r 2(tp)& decreases roughly withx21/3. Note that the values

of A^r 2(tp)& for the lithium borate glasses and for the s
dium borate glasses are very similar.

In Fig. 7 the characteristic distanceA^R̃2(`)& is plotted
versus the alkali oxide content for sodium germanate,
dium borate, and potassium silicate glasses. Values for
dielectric relaxation strengthe8(0)2e8(`) of the potassium
silicate glasses were taken from Ref. 49. In the case of
0.005 Na2O•0.995 GeO2 glass, the 0.4 Na2O•0.6 GeO2
glass, and the lithium borate glasses, the characteristic

tanceA^R̃2(`)& could not be calculated. The reason is th
owing to electrode polarization effects, ane8~0! plateau was
not detected. As seen from the figure, the composition

pendence ofA^R̃2(`)& is similar to that ofA^r 2(tp)&. At
alkali oxide contents above a few mol %, the compositi

dependence ofA^R̃2(`)& clearly depends on the nature o
the network former. For the germanate and silicate glas
A^R̃2(`)& decays much faster with increasingx than for the
borate glasses. This network former effect points to the
fluence of the glassy structure on the spatial extent of
nonrandom ionic diffusion.

In order to see whether there are correlations between

composition dependence ofA^r 2(tp)& and A^R̃2(`)& and
structural peculiarities of the glasses, let us now conside
what way the addition of alkali oxide changes the netwo
structure of borate, germanate, and silicate glasses.

Glassy B2O3 consists of trigonal BO3 units. A part of
these units forms boroxol rings.50–52On the addition of alkali

FIG. 7. Plot of the characteristic lengthA^R̃2(`)& for sodium
germanate, sodium borate, and potassium silicate glasses.
3-7
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B. ROLING, C. MARTINY, AND S. BRÜCKNER PHYSICAL REVIEW B63 214203
oxides trigonally coordinated boron is converted into tet
hedrally coordinated boron. The degree of polymerization
the network is thereby enhanced, and a variety of differ
structural units~diborate, tetraborate, etc.! is produced.32

When the alkali oxide content exceeds about 25–30 mo
B–O–B bonds are broken and nonbridging oxygens
formed,33 i.e., the network depolymerizes with increasing
kali oxide content. The maximum alkali oxide content of t
glasses studied here is 33.3 mol %. Therefore even
highly modified borate glasses are highly polymerized a
contain no or only few nonbridging oxygens.

Glassy GeO2 consists of GeO4 tetrahedra. At modifier
contents below 15 mol %, the addition of a network modifi
leads mainly to a conversion of GeO4 tetrahedra into GeO6
octahedra and thereby to an enhanced degree
polymerization.27–31 When more than 15 mol % modifier i
added, nonbridging oxygens are formed and the network
polymerizes with increasing modifier content.

Glassy SiO2 consists of SiO4 tetrahedra. The addition o
alkali oxide always leads to a breaking ofS–O–Sibonds and
to the formation of nonbridging oxygens.53–55

These structural features suggest that the depolyme
tion of the network due to the formation of nonbridging ox
gens plays an important role for the spatial extent of
nonrandom ionic diffusion. In the highly polymerized bora
glasses containing no or only few nonbridging oxygens,

characteristic distancesA^r 2(tp)& andA^R̃2(`)& are roughly
proportional tox21/3. A similar composition dependence
observed for the germanate glasses withx,0.15 which do
not contain nonbridging oxygens. At alkali oxide conten
above 15 mol %, the network depolymerizes due to the
mation of nonbridging oxygens, and we observe t
A^r 2(tp)& and A^R̃2(`)& decrease much faster than wi
x21/3. In the case of the potassium silicate glasses where
addition of alkali oxide always leads to the formation

nonbridging oxygens, the fast decay ofA^R̃2(`)& with in-
creasingx is already observed at very low alkali oxide co
tents.

In order to check whether the spatial extent of the n
random ion hopping and the degree of depolymerization
the glassy network are generally correlated, we plan furt
experimental studies. In particular, studies on aluminosilic
glasses seem to be promising. In these glasses, the amou
nonbridging oxygens can be varied at constant alkali ox
content by varying the ratio of the Al2O3 content to the SiO2
content.

VI. SUMMARY

From the electrical conductivity spectra of ion conducti
glasses, we have derived the characteristic distan
A^r 2(tp)& andA^R̃2(`)&, which contain information on the
spatial extent of the nonrandom ion hopping. The compo

tion dependences ofA^r 2(tp)& and A^R̃2(`)& have been
analyzed for sodium germanate, sodium borate, lithium
rate and potassium silicate glasses. We find thatA^r 2(tp)&
andA^R̃2(`)& decrease with increasing alkali oxide conte
However, the decrease is clearly more pronounced in
21420
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germanate and silicate glasses as compared to the bor
This network former effect points to the influence of th
network structure on the microscopic dynamics of the mob
ions. The analysis of our results in relation to the structu
peculiarities of the glasses suggests that the depolyme
tion of the network due to the formation of nonbridging ox
gens leads to a strong decrease of the spatial extent o
nonrandom ion hopping. Further experimental studies will
performed to test this hypothesis.
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APPENDIX

1.

Consider the following pair of Fourier transforms:

f ~ t !5E
2`

`

F̂~n!ei2pntdn. ~A1!

Integration off (t) in the limits from t1 to t2 results in

E
t1

t2
f ~ t !dt5E

t1

t2
dtE

2`

`

F̂~n!ei2pntdn

5E
2`

` S E
t1

t2
ei2pntdtD F̂~n!dn

5E
2`

` F̂~n!

i2pn
~ei2pnt22ei2pnt1!dn. ~A2!

2.

Consider the integralI which is given by

I 56NE
2`

` Ds9 ~n!

2pn
dn. ~A3!

Taking into account Eq.~21! we obtain

I 5
6N

2p E
2`

`

dn
1

n
•S 2

1

3•ND
3E

0

`K (
i , j

l¯N

vi~0!•vj~ t !L sin~2pnt !dt)dt

52
1

p
•E

0

`K (
i , j

l¯N

vi~0!•vj~ t !L S E
2`

`

dn
1

n
sin~2pnt ! D dt.

~A4!

The integral in the brackets is equal top. Taking into ac-
count Eq.~11! we arrive at

I 523NDs8 ~0!. ~A5!
3-8



a

id

ics

ro
h,

on

lid

s
s

ids

st.

v.

st.

m.

st.

ION TRANSPORT IN GLASS: INFLUENCE OF . . . PHYSICAL REVIEW B 63 214203
1K. Funke, Prog. Solid State Chem.22, 111 ~1993!.
2P. Maass, J. Petersen, A. Bunde, W. Dieterich, and H. E. Rom

Phys. Rev. Lett.66, 52 ~1991!.
3P. Maass, M. Meyer, and A. Bunde, Phys. Rev. B51, 8164

~1995!.
4A. K. Jonscher, Nature~London! 267, 673 ~1977!.
5K. L. Ngai and S. W. Martin, Phys. Rev. B40, 10 550~1989!.
6C. A. Angell, Chem. Rev.90, 523 ~1990!.
7H. Kahnt, Ber. Bunsenges. Phys. Chem.95, 1021~1991!.
8C. T. Moynihan, J. Non-Cryst. Solids172–174, 1395~1994!.
9H. Jain and X. Lu, J. Am. Ceram. Soc.80, 517 ~1997!.

10D. L. Sidebottom, Phys. Rev. Lett.82, 3653~1999!.
11B. Roling and C. Martiny, Phys. Rev. Lett.85, 1274~2000!.
12S. R. Elliott and A. P. Owens, Ber. Bunsenges. Phys. Chem.95,

987 ~1991!.
13A. Bunde, M. D. Ingram, and P. Maass, J. Non-Cryst. Sol

172–174, 1222~1994!.
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