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Structure and energetics of long-period tilt grain boundaries using an effective Hamiltonian
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We have investigated the atomic structures of 440 symmetric tilt grain boundarig$B’s) with atomistic
simulations using an embedded-atom metfi®AM) potential for aluminum. The focus has been on examin-
ing the efficacy of the structural unit model in the context of very long period boundaries. Our studies, which
have been carried out using two EAM potentials, of both the equilibrium and metastable structures of a number
of boundaries, reveal that geometric arguments inherent in the structural unit model must be supplemented by
energetic considerations. An effective Hamiltonian is introduced to this end which computes the energy of a
string of structural units using two-body potentials between individual units. The potentials are calculated via
a least-squares fit to the results of full atomistic represented by the effective Hamiltonian. Results based on as
few as 16 inputs are very encouraging and clearly demonstrate the effectiveness of this method. This scheme
lends itself to a straightforward extension to GB structure calculations at finite temperatures using Monte Carlo

techniques.
DOI: 10.1103/PhysRevB.63.214105 PACS nunter61.72.Mm
I. INTRODUCTION These include those with mixed tilt-twist character, bound-

aries for which no periodicity can be observed, boundaries

Grain boundariegGB’s) are ubiquitous in polycrystals which show steps and tiny facets with different misorienta-
and strongly affect their thermomechanical properties suctions, and those in which the GB plane wanders. In general,
as fracture toughnessind yield stres&? Interfacial motion  such boundaries have low periodicity and symmetry. While a
via sliding* and migratior?, which in turn are controlled by great deal has been learned about GB deformation from the
diffusion® is an important mechanism which directly con- study of the simpler boundaries, extension to the more gen-
tributes to the macroscopic creep strain especially at elevategtal configurations is essential to understanding how real ma-
temperatures. These key properties become critical particuerials behave.
larly in high-technology applications such as thin films in  In this paper, an effort is made to move in the direction of
microelectronic devices and structural ceramics and composnodeling very long-period boundary structures. The aim of
ites. this paper is twofold, the first being to improve the technique

Indeed, the intimate connection between structure andsed in simulating long period grain boundaries. We also
properties in a given material is often played out at the in-wish to address the problem of degeneracy of interface struc-
terfacial level. Ultimately, it is the atomic level structure of a tures. In addition to the geometry of the misoriented crystals
boundary that will determine its motion and strengthe  which constitute the GB, rigid body translations between
study of atomic-level structure of grain boundaries has beethem provide an important relaxation mechanism for mini-
greatly encouraged by the use of high-resolution transmismizing the GB energ§.This leads to a wide variety of struc-
sion electron microscopy from which detailed informationtures with different energies, often closely spaced, for the
about the grain boundary geometry, defects and local atomisame misorientation angle and axis, which often exacerbates
arrangement can be obtained. While many atomistic studiethe task of picking out the equilibrium structure. The resolu-
of GB structure have been perform&d° they have often tion of this thorny issue has been one of the major driving
been confined to a number of special boundaries, such derces behind this project. We study symmetric tilt bound-
simple symmetric tilt or twist boundaries with a high degreearies with(110) tilt axis since this class of boundaries is mot
of symmetry and with a lov® number. This has been pri- accessible to current high-resolution imaging techniques.
marily because of the fact that such boundaries exhibit speFhis allows for the possibility that our calculations can be
cial properties® Also, the computational demanésemory  verified by experiments. Particularly attention is focused on
and processor speeihvolved in modeling such boundaries those boundaries with very high numbers(long periods.
are relatively modest. However, it has been found that GB'All calculations are carried out in the bicrystal setting and
which are not of this special type are also found in realthe structural unit model is used as a basis for our study. This
microstructures. In fact, statistical surveys of distributions ofgeometric framework posits that a given grain boundary
types of boundary planes such as Ref. 12 have shown thatructure can be decomposed into a string of structural units
such boundaries are more common than special boundariesgs will be described in more detail below.
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~ The remainder of the paper is organized as follows. Secrational numberp/q where p and g are arbitrarily high
tion Il reviews ideas on GB geometry using the coincidentcoprime integers® It is important to note the difference be-
site lattice formalism. The necessary details of the structurglyeen GBgeometry and structureGeometry refers to the
unit model are also presented in this section. We then explaimacroscopic parameters which quantify the misorientation of
the computational procedure to perform the GB structure cake two abutting grains while by structure, a detailed speci-

culations in Sec. lll. We have looked at 32 different misori- fication of the local arrangement of the atoms which consti-
entations. Our calculations have revealed that in some cas@ge the boundary is meant.

the minimum energy structure does not jibe with expecta-
tions based on the structural unit model. This has been dis- _
cussed in Sec. IV. In order to work around this discrepancy, B. The structural unit model

we have proposed an effective Hamiltonian in Sec. V in  As noted above, in addition to the macroscopic geometric
which the energy of a GB is written as a cluster-expansiorharameters characterizing a boundary there are additional
involving “interaction potentials™ between different struc- guestions concerning the atomic positions near the interface.
tural units. The effective Hamiltonian concept is particularly The structural unit model is a powerful tool in understanding
useful where permutations and combinations of objéats  the structure of pure tilt or twist grain boundaries. According
oms, phases, stacking faulgive rise to configurations with  to this model, the structure of a long period boundary can be
different energies. Our calculations show that out of a giveryescribed as a combination of structural units found in two
set of crystallographically equivalent grain boundary strucshorter period boundaries. This idea has been extensively
tures, the Hamiltonian can successfully pinpoint the mini-geveloped in Ref. 9. The model allows one to predict the
mum energy structure with a very high degree of accuracystrycture of a boundary of any misorientation angle for a
Section VI closes with a few reflections on both the merithiven tilt axis and boundary p|ane' provided that one knows

and weaknesses of our approach. the structural details of two short period boundaries. These
short period boundaries are also knownfagored bound-
Il. CONCEPTUAL BACKGROUND aries because they are special low-energy boundaries whose

structure is a repeating string of short identical units. These
boundaries are also callelimiting boundariesas they de-
The geometry of a planar interface formed between twdimit a range of misorientation angles. The contention of the
crystals can be uniquely described by five macroscopic pastructural unit model is that any boundary whose misorien-
rameters, namely, the boundary plane normathe axis of tation angle lies in this range will have a structure that is a
rotationa, and the rotation anglé. In addition to these five predictable pattern(linear combination of the structural
degrees of freedom, three microscopic degrees of freedomnits found in the two delimiting boundaries. The algorithm,
are also associated with a given interface, these being theccording to which the minority units are separated as much
positions of the two crystals with respect to each other alon@s possible, to determine the number and sequence of these
the three coordinate axes.dfn=0, the GB is called a tilt units is detailed in Ref. 14.
boundary and ifaxn=0, it is called a twist boundary. In For example, consider the tilt boundaries shown in Fig. 1.
addition, if n is the same in both grains, then the GB is saidIn frames(a), (b), and (c) three delimiting boundaries are
to be symmetric otherwise it is asymmetric. If the Miller shown. The solid lines indicate the structural units labeled as
indices ofn are rational, the GB is said to be rational other-A, B, andC. Figure 2 shows these units in greater detail. The
wise it is an irrational interface. The coincident site lattice filled and empty circles represent tlébab -- stacking of
model describes the formation of a GB by rotating two crys-atomic layers along th€l10 direction which is directed nor-
tals through each other about appropriate rotation axes aral to the plane of the paper, with the different colors rep-
through discrete rotation angles which leads to some fractioresenting different depths into the page. The boundary in
of coincident sites between the two lattices. This implies thaframe(a) is in fact just a perfect cryst&D°), but it is used to
the boundary thus formed is periodic. An irrational bound-illustrate the origins of théA unit. The B and C units are
ary, however, is periodic in at most one directiériThe 3 seen in boundaries which have angles of tilt 31.59° and
number is the inverse fraction of the individual lattice sites50.48°, respectively. The indicggk) in Fig. 2 show the
which are common to the two adjoining grains and is used talirection in which the arrow points. These indices @r&0),
quantify the degree of overlap. Since computer simulationg552, and (332 for the A, B, and C units, respectively.
of GB’s almost always employ periodic boundary condi-Figure 3 shows a boundary whose misorientation angle
tions, it is very difficult to model irrational interfaces as (17.869 lies between those of the delimiting boundaries
such. However, it is possible to approximate an irrationalandB. The boundary structuréAAB) is seen to be made up
interface by a long-period GB and thus carry out the require@f a mixture of A andB units. Thus, it is theoretically pos-
analysis. The misorientation angle of an irrational interface issible to predict the structure of any symmetric tilt boundary
not a special angle which leads to a coincident lattice and thand confirm it through a computer simulation. The gist of the
3 of such a boundary is theoretically infinite. However, oneabove discussion is that the structure of grain boundaries for
can find an angle corresponding to a coincident lattice arbithe present purposes is reduced to the description of macro-
trarily close to this “irrational angle” and henceXanumber  scopic geometric parameters and atomic positions con-
that is arbitrarily high. This follows from the fact that one structed using the structural unit model. One of the key ob-
can approximate an irrational number to any precision by gectives of our work was to critically examine the limits and

A. Grain boundary geometry

214105-2



STRUCTURE AND ENERGETICS OF LONG-PERIOD. ..

(a)

PHYSICAL REVIEW@S 214105

<ijk>
109 - 2 - “ ~ -~ ~
—_—
8 e o o e o e o
e © o o o O o o0 O
4 ®© © e o o e o @0 .<:>8
40 o o o O o ©
01 e o e o o
2o o o o o o o A B C
-4 ° ® ° ® ° [ ® FIG. 2. Individual structure units.
- . L : o
© © © © © © © © given misorientation, and for an examination of the extent to
-8 ° ° ° ] ® ° ] which the minimum energy candidates correspond to the
structures suggested by the structural unit model.
-10 ; , y
5 10 15 20
), ] ] ] IIl. COMPUTATIONAL PROCEDURE
® o ®
o © ® ® o © In previous sections the necessity of studying the atomis-
O ° ® o O ® tic structure of interfaces was emphasized. We now detail the
® . O @ method used to calculate energies of GB structures at the
P & = o ° o atomic level.
o) o)
> ® ® ¢ .
o o A. Computational cell and force laws
0- Q . . - .
I S— ® o © The computational cell consists of a bicrystal as shown in
® . © 4 ® & Fig. 4. The boundary plan¥Z is at the center of the cell.
e} o ® o o o The atomic positions within the cell are generated using the
o ® o coincident site lattice model. The total energy of the configu-
® . © 4 ® . ration is computed using the embedded atom method
D o ® . o o (EAM).1® The total energy is then given by
o) ® o)
1012 o ® . 1
70 20 30
Eor= 2 Filp)+ 52 2 @iy, (1)
i 2 Ed
(c)
"o e "o e . L . .
© L ® %, %, where®;; is a short-ranged pairwise interaction function and
® %, %, 0%, rij is the distance between atomsandj. The total host
o e o e electron density; at atomi is approximated as
104 ) o ® o
° [e] © [ ] * [e] © [ ]
[V} ~ L 4
o . o o] o [ o o o] e ® o ® 5 o ©
o . o [ . °
o ° o ° o O © ° hd
° ° o e ® ° o o ©
01 . e<z> o e ® "L, 00 °% Tg e
0% e 0® e° 107 o ©° e ® " o
o ° o 'y e ¢ ® o ©
) o} ° o o o ©
'y o ° o o © © e ® ®
o ° o ° e ¢ ® o ©
° . o o [} o o o ® o 0 © P
107 o e o e o 00 7
o e o e 01 e o O
° [ ] © [¢] ° [ ] © e} o o©
o ° e} ° ° °© o o ° ®
O e o e o ° © o 4
[ 10 20 30 Ooooo‘o...
A ° o
FIG. 1. Delimiting boundariea) S1(A), (b) 27(B), and(c) W 5 % e g 00
° o L
311(C). ® e 6% %0 00"
o ® o
validity of these structural ideas. To do so, we have under- o o O. °© o o o ¢ o
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ent long period boundaries. These relaxations allow for the
determination of a series of a structural competitors at a
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A the range of the atomic potentials used, the atoms in the free
M region essentially behave as though they were surrounded by
two semi-infinite perfect crystals. The usual technique is to
use periodic boundary conditions along all three directions.
In other studies® a simulation cell with two equivalent tilt
|_Grain1 boundaries, one at the middle of the cell and one on the
border in theY direction was built. Our method considerably
Free cuts down the computational cost by reducing the number of
X effective degrees of freedom. It also allows for modeling
o asymmetric boundaries and ensures volumetric expansion in
/“—’ the direction perpendicular to the grain boundary plane. The
. energy minimization is carried out using a conjugate gradient
Grgin Boundary . ..
x2 » Plahe algorithm, where the forces on the two rigid blocks were
\/ Free ~ s computed as the_derlvatlves of theT total energy with respect
z * to each of the rigid block’s translational degrees of freedom.
v When using this method of relaxation, it is important that the
dimension of the simulation cell in th¥é direction be large
Rigid Slab enough so that the strain in the crystal due to relaxation at
the GB has essentially vanished at the interface with the two
FIG. 4. Bicrystal computational cell. rigid blocks.

Rigid Slab Bl

yi

Pi:;i Pi(rij), ) C. Rigid body translations

where p;; is the contribution to the electronic density from Itis well knowr?>* that lattice statics energy minimiza-
Pij Y tion of GB’s can lead to many different boundary structures

atom J. Thus_the energy 1s then a simple function of t.hedependlng on the initial configuration of the two grains. This
atomic coordinates. For a given element, the three functions . Co

. : . is due to the multiwelled nature of the energy function in
F, ®, and p are fitted to experimental values or first-

principles results or some combination of them both. Sinc configuration space. Thus, for each macroscopically defined

the electron density terms are assumed to be radially synef—;B geometry, there are multiple microscopic GB structures

metric, EAM potentials are best suited to modelin elementshat correspond to a number of local minima on the energy
' _potentials ar S 9 Surface. The standard procedure to locate these minima in-
whose bonding is primarily nondirectional, such as the face

. : volves the introduction of a relative displacement between
centered cubidfcc) metals. Also, EAM potentials account . ; .
. " : the two grains along the boundary plane prior to relaxation.
for “many body” effects hence they are well suited to mod-

. : : . The global energy minimum and hence the associated struc-
eling defects such as interfaces, dislocations and surfac?are is then chosen from the set of local minima by doing an

}’WV:\?ere b(:e%%rdwiztéclm Sg:gtsinarriOﬂglr;:'cag;feifsminportfgtgiziexhaustive search. However, it is always possible to miss the
. 0 y . 9 . true global minimum, as the approach takes a finite sample
microstructures? All calculations have been initially per-

formed using the Ercolessi-Adahi$AM potentials for alu- of an [nf|n|te ”“”.‘ber. of possible initial cqnﬂguratpns. For
. i eriodic boundaries, it has been shdvimat it is possible to
minum. For comparison, we have also used the?

8.19 o ; represent all possible initial configurations by the infinite set
Voter-Chen®™ potentials in some computations. of points in the so-calledell of nonidentical displacements
" The GB plane is periodic in the two mutually orthogonal

B. Boundary conditions directions(which lie in the plang Hence, the GB structure
It should be clear from the context whether grain bound~epeats itself if one traverses a distance greater than the pe-

ary or theboundaryof the simulation cell is meant when the riodic length in the GB plane. By taking a reasonably fine
word boundary is used in this section. The simulation cell isgrid of initial configurations from within this celof mini-
periodic along theX and theZ axes in order to eliminate mal periodicity one can be fairly confident of achieving the
surface effects. Here, th@axis is parallel to the tilt axis and global minimum energy structure. We have found that a grid
the X axis lies in the grain boundary plane. In tiielirection ~ spacing of aboul A in each directior(alonga andaxn) is
(which is perpendicular to the grain boundary platiee cell ~ sufficient. However, such a fine spacing considerably in-
is divided into a “free” region and two ‘“rigid slab” regions. creases the computational time for highboundaries since
The atoms on either side of the GB are in the free region, anthe period scales as~ . The plane of such boundaries
they are sandwiched between two rigid blocks of perfechas a very large are@n the order of 1000 A. One way
crystal. The atoms in the free region are allowed to individu-around this problem is to approximate the cell of the long-
ally move as a part of the relaxation process while thoseeriod boundary by that of an appropriate short period one
within each fixed region move as a single unit. Hence, onlyand then use the corresponding displacements of the short
three translational degrees of freedom are associated witheriod boundary as translations for the long period one. We
each rigid slab even though they contain on the order of 100@ropose an alternative method, which we refer to asthall
atoms. Because the rigid slabs are at least twice as thick d&ox technique-use the displacements of the long period
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TABLE I. Investigated misorientations.

No. Group ©O° 3 SUM pattern and other structures, if any 1001

4
1 1 0000 1 A £
2 I 12417 171 AAAAB E
3 14.652 123 AAAB ?300.
4 17.860 83 AAB g
5 19.263 643 AABAABAB 2
6 20.050 33 AABAB S0
7 20.553 1571 ABAABABAABAB 3
8 20.903 507 ABAABAB e
9 I 22844 51 BA? 3100-
10 IV 24549 177 BABBABA
11 25.175 379 BBABA
12 25.699 1011 BBABBABA % T 0 % 0
13 26.525 19 BBA <110> Tilt angle (deg)
14 28.026 307 BBBA o , o
15 28.840 129 BBBBA _ FIG. 5. Variation of grain boundary energy versus misorienta-
16V 31586 27 B2 tion angle.
17 VI 34179 579 BBBBC approximation with a very higlt number. With this objec-
18 34.893 89 BBBC’ tive in mind, we have chosen to look at a wide range of
19 36.149 187 BBC® misorientations shown in Table I. This selection is made
20 36.810 321 BBCBBCBC such that a very broad rangé—1572 of X's were available
21 37.219 491 BBCBC and the majority of the boundaries were very long period
22 37.496 697 BCBBCBCBBCBE ones. Also, all the three kinds of structural uni#s,B,C)
23 37.696 939 BCBBCBC were present in the structures.
24 VIl 38.942 9 ce? Figure 5 shows the variation of the grain boundary energy
25 VI 40.271 827 CBCCBCB versus the misorientation angle. Note that for some angles,
26 40.501 601 CBCCBCBCCBCB there are two or more values of energy. This is a conse-
27 40.827 411 CCBCB quence of finding more than one low-energy structure for
28 41.325 257 CCBCCBCB some angles. The graph shows that for some angles, there are
39 42.183 139 CCB deep cusps in the energy which confirms the findings in Ref.
30 44.003 57 CCCB 1_0. Thesg minima in the energy corre.spond to a string of
31 45169 339 CCCCB smgle unit structures as discussed earllgr. Howevefr,l we also
32 IX 50479 11 C find other cusps in the energpoth maxima and minima

“Other structures also obtained

°SUM structure not the minimum energy structure.

PHYSICAL REVIEW@S 214105

which indicates local high- and low-energy structures asso-
ciated with those energies.

For the purpose of this investigation, the boundaries can
be classified into nine groups on the basis of their structures

boundary but by using a computational cell only a few cutoffas predicted by the structural unit mod&ach group repre-
radii thick and then use those displacements which yield lovsents g particular class of boundaries, the classification being

energies in this small unit cell as displacements for the origi
nal unit cell. Hence two steps are involved in this process
(1) use a cell with a smal to find candidate initial guesses

and(2) recompute those candidates that exhibit low energie
using a cell with a largeY to remove edge effects. We found
this approach to be very effective in quickly identifying the
translations which yield low energies. Since the length of th
cell perpendicular to the GB plane is reduced in locating th

made on the basis of the kinds of units present in them. In
addition to providing taxonomical convenience, this classifi-
cation is based upon the hypothesis that boundaries contain-
ﬁ1g a characteristic structural string should exhibit special

mechanical properties such as sliding strength or migration

é'nobility. The three types of groups are as follods. Those
avhich contain only one type of structural unit, i.e., these

low energy displacements, a considerable amount of comp&roUPs contain the delir_niting Iboundaries discussed earl_ier.
tational time is saved. The origin of the plane containing théroups |, V, and IX fall into this category and they contain
translations is shifted slightly above the boundary plane irfPnly one boundary eacli2) Those which contain only two

order to break the initial symmetry of the bicrystal.

IV. EVALUATION OF LONG-PERIOD GRAIN BOUNDARY

STRUCTURES

types of structural units with equal numbers of each type.
Again, these groups, Il and VII, contain one boundary each.
(2) Those which contain two different kinds of units but with
an unequal number of the two units. All other groups other
than the ones listed above can be categorized under this

One way to analyze the structure of an irrational tilt class. Since there is no limit to the number of structural units
boundary is to approximate that misorientation by a rationalvhich form the boundaries in these groups, these groups

214105-5
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(a)

(b) ) (b)

104 ®

10 20
FIG. 6. Equilibrium structures of group Il boundarig€s)

S643(AABAABAB and(b) 31571(ABAABABAABAR FIG. 7. Equilibrium structures of group Il boundarids)

351(BA) and(b) S51(AAC).

contain infinitely many GB’s. However, only a few examples

of long-period boundaries from these groups are shown iftBAABABAABARB respectively. No other low-energy
Table 1. structures were obtained for any of these misorientations.

All the sequences of the structural strings in each boundEigure 7 shows two structuréB A andAAC) for the samex
ary have been worked out according to the algorithm giverffumber. However, the lower-energy structure is the struc-
in Ref. 14. Figures 1, 3, and 6—13 show the detailed structural unit model predictionBA) as expected.
tural details of some of the representative boundaries from
each group. All dimensions shown are in A. B. Groups IV-VI

Group IV contains those boundaries whose structural unit
model structures have an excessBolinits compared ta\

We now present a group-by-group investigation into theunits. Figure ®) shows the equilibrium structure
equilibrium and/or metastable structures obtained by mini{BBABBABA of theX1011 boundary. However, in the case
mizing all configurations corresponding to each misorientaof the %307 boundary the minimum energy structure is not
tion from Table I. Group | contains only one bound&§ that predicted by the structural unit model whichB8BA
consisting of theA unit. This is shown in Fig. (). The A [shown in Fig. 8)]. The structure which is obtained
unit corresponds to a perfect crystal with “misorientation” (BBACA) is shown in Fig. &). This violation of the struc-
0°. It is also a delimiting boundary. Group Il contains struc-tural unit model is important because according to the model
tures which, according to the structural unit model, confain a boundary whose misorientations lies between those of its
andB units with theA units serving as the majority unit. We delimiting boundaries has a structure consistingwad types
have shown two such long period structures in Fig. 6,0f units each belonging to the delimiting boundaries. This
namely,2643 andX1571 with structureAABAABABand implies that more than two types of units cannot appear in

A. Groups |-l
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FIG. 8. Equilibrium structures of group IV boundari¢a)
>1011BBABBABA, (b) >307(BBBA), and (o)
3307(BBACA.

the structure of a GB per the structural unit model. It is 199
important to note that for these two boundaries, the two con-

flicting structures are crystal-lographically equivalent but en-
ergetically different. Also, the energy difference between the
observed minimum energy structure and that predicted by

the structural unit model is quite sméliess than 5% Group FIG. 10. Structural degeneracy in group VI boundaries
V contains a single misorientation corresponding® and  3491BBCBCQC and(b) S491(ACBCBQ.
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(b)

(b)

FIG. 13. Equilibrium structures of group VIII boundari¢s)

2,827(CBCCBCB and(b) 2601(CBCCBCBCCBCB

(b)

and

FIG. 11. Structural degeneracy in group VI boundaries

3697(BCBBCBCBBCB(T

s show a violation of

the structural unit model because they contain three different
kinds of units. As examples of these occurrences we have
shown two such structurally degenerate cases, narkdl

In fact, the minimum
(Fig. 10 andX697 (Fig. 11). The expected structure 2491

’

theB units being in a

Group VI is the most interesting case in this study. It
contains misorientations whose structural unit model struc-

the minimum energy structure Bwhich was already shown
tures contain onlyB and C units

in Fig. 9. For this tilt angle, there is another struct&€

(Fig. 9 which has higher energy than th unit. Conse-
quently, theB unit is a delimiting boundary as described

earlier. For reasons which will be clear later, it was necessary

to obtain the energy of thAC boundary.
in this group had an equilibrium structure according to that

majority. Our simulations show thatone of the boundaries

boundary iISBBCBCbut the structure obtained ACBCBC

predicted by the structural unit model.
energy structures obtained for these GB
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[ ] [ ] [ ] [ J
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the conflicting structures of tH€697 boundary are

BCBBCBCBBCBCand CBCBCACBCBCBCBCAIn all

Similarly,

30

20

10

3,697(CBCBCACBCBCBCA

o

]
o
o

.
o
0

these cases, it is B unit in the structural unit model struc-

FIG. 12. Equilibrium structures at 9(CB) (group VII).
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ture that is replaced by th@A unit. It is worthwhile to note
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TABLE II. Investigated structures.

here that the tilt angle corresponding to tBeunit is the

same as that which corresponds to @ unit. This discrep-  No- % Structure
ancy calls for a need to revise some of the details, energetics 1 A
in particular, of the structural unit model. In general, our 171 AAAAB
results justify the necessity of developing a scheme which
. . 3 123 AAAB

can unambiguously predict the structure of a GB. 4 83 AAB

Our interpretation of the breakdown of the structural unit
model is based on the ideal choice of delimiting boundaries. 643 AABAABAB
What this means is that if we choose the delimiting bound- 33 AABAB
aries as those short-period boundaries which contain only7 1571 ABAABABAABAB
one kind of structural unifi.e., favored boundarigs the 507 ABAABAB
structural unit model is violated for some cases as shown in® 51 BA®
this paper. However, such a stringent choice of delimiting10 AAC
boundaries is not necessary according to Suttdhnonfa- 11 177 BABBABA
vored boundaries are chosen, then the structural unit model2 379 BBABA
may not be violated. Consider the bound&$07 listed in 13 1011 BBABBABA
Table IlI. Its structure as predicted by the structural unit14 19 BBA
model isBBBA However, the lower-energy structure which 15 307 BBBA
we have obtained iBBACA Now, if we choose 1 (A) and 16 BBACA
327 (B) as its delimiting boundaries the obtained structure,17 129 BBBBA
BBACAdoes not obey the rules of the structural unit model 18 27 Ba
and hence we claim a failure of the structural unit model. 19 AC
However if we choos&51 (AAC) andX27 (B) or 251 (BA) 20 579 BBBBC
and327 (B) as its delimiting boundaries the obtained struc- o1 ACDDDC
ture BBACAdoes_ conform to the rules of the model. Thus 2o BACBBCBBBBC
the success or failure of the model depends to a large extents 89 BBBC®
on the choice of delimiting boundaries. Of course, such ay, ACBBC
choice is not entirely arbitrary and is governed by the re-,g 187 BBCP
quirement that the structure of all boundaries in the misori—2 ACBC
entation range spanned by the delimiting boundaries is cas 321 BBCBBCBE
pable of being described as a linear combination of units ACBCACBCBC
found in the delimiting boundaries. This stipulation allows 29 491 BBCBE®
for some freedom in the choice of delimiting boundaries
which may vary from group to group as well as for different 30 ACBCBC
boundaries within a group. Such a choice is also complicate 697 BCBBCBCBBCBE
by the requirement that the delimiting boundaries must be32 CBCBCACBCBCBCBCA
necessarily low-energy ones which implies that, in case of a3 939 BCBBCBC
conflict, one needs to know the energies of such boundaried4 ACBCBCBC
in advance. In order to avoid such inconsistencies, we havé> 9 ce?
sidelined these alternatives and applied a universal rule in th86 ACC
choice of delimiting boundaries—only those boundaries37 827 CBCCBCB
which contain one and only one kind of structural unit will 38 601 CBCCBCBCCBCB
be selected as delimiting boundaries. As we have seen eaB9 411 CCBCB
lier, the structural unit model is seen to fail in this frame- 40 257 CCBCCBCB
work. It is important to note that the effective Hamiltonian 41 139 CCB
technique, presented later in the paper, is equally applicabla2 57 CCCB
to any choicés) of delimiting boundaries and is thus a pow- 43 339 CCCCB
erful method which can be used to predict interface structuregg4 11 C

°Other structures obtained.

C. Groups VII —IX SUM structure not the minimum energy structure.

29 is the sole member of group VII. Its structural unit (CBCCBCBCCBCR The last groupgroup IX) has=11
model prediction is a structur€B which is also the mini- as its member and this structuf€) was already shown in
mum energy structure, as shown in Fig. 12. Group VIII con-Fig. 1
tains boundaries with a majority of C units among B’s. All
the equilibrium structures in this class correctly follow the D- Effect of empirical potentials on grain boundary structures
structural unit model rules. As an illustration, Fig. 13 shows The empirical potentials used in atomistic simulations can
two such structures>827 (CBCCBCB and 2601 greatly influence the final results. For instance, the use of a
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TABLE lIl. Effect of potentials on the failure of the structural doubtedly reinforces our case and calls for informing the
unit model. structural units of their energetic roles. The next section de-
scribes how this is achieved by an effective Hamiltonian.

Agreement with structural unit model

No. z Ercolessi-Adams Voter-Chen V. EFFECTIVE GRAIN BOUNDARY HAMILTONIAN
1 83 Yes Yes In the previous section we motivated the conception of a
2 11 Yes Yes scheme to predict the minimum energy structure of grain
3 27 Yes Yes boundaries. This involves augmenting the structural unit
4 139 Yes Yes mode with requisite energetics in the present framework.
5 187 No Yes One of the most powerful as well as popular techniques to
6 491 No No compute energies of configurations involving permutations
7 307 No No of their constituent elements is the use of cluster expansions.
8 697 No No The ability of this method to describe the energetics and
9 939 No No thermodynamics at finite temperatures when coupled with

Monte Carlo techniques has been demonstrated in Refs. 21—
24. The crux of the effective Hamiltonian method is to per-
simple pair-potential returns no stacking fault energy in fccform the computations over a reduced set of degrees of free-
aluminum. To begin to assess the role of our potentials inlom associated with the system under investigation. For the
dictating the nature of our results, we have also used anoth@B’s under consideration in the present study, the effective
EAM potential: the Voter-Chen potential as mentioned in anHamiltonian assumes that the only effective degrees of free-
earlier section. In this context, we have addressed the followdom for the various GB structures are the structural units
ing important questions. along the GB plane. The atomic coordinates of all other at-
S oms are tacitly neglected. This results in a massive reduction
(1) Does the use of a new EAM potential give rise to newin computational cost since now one does not have to track
(other thanA, B, andC) structural units? the other atoms which are not contained in the structural
(2) If new structural units are not to be found, does theyjts. Their effects on the GB structure are accounted for by
structural unit model break down in the same way as it did inhe interaction potentials between the structural units. Thus it

the Ercolessi-Adams case? it possible to determine the relaxed energies without having
(3) Are the actual energies of the relaxed structures closgy determine the relaxed geometries, unlike traditional large-
to those obtained by the Ercolessi-Adams potential? scale simulation methods such as molecular dynamics. Typi-

First ine th boundari hich foll th cal successful applications include but are not limited to
Irst, we examine those bounadaries which 1ollow estacking fault energies in alumindt decoration in

structural ur_lit model rulgs in the Ercolessi-Adams case. Onl)é]uasicrystaléf3 band structure and stability of semiconductor
representative boundaries from each group are chosen f?)rolytypesz,7 phase transitons in intermetallic solid
this purpose83, 211, 227, and2411. It is found that the soluions® and oxygen ordering in  YBCO

relaxed sftr&ctureﬁtyped Of. units and ttrllelzhcombmlng Stﬁ superconductor®, Our idea is to assign energies to each
quence of these boundaries are exactly the same as thos ructural sequence based upon the number of pairs of each

o_btame:ltﬁar_lle(;_. It dshclnultd bEt’ po:nteqtl ogt herte thit thhd'mentype. To make this scheme useful, it it necessary to construct
sions of the individual structural units do not match the ear-} " ctactive Hamiltonian first.

lier ones. This is because the Voter-Chen potential uses 4.Oeg1
A as its lattice parameter for aluminum whereas that for the
Ercolessi-Adams potential is 4.032 A.

Next, we test five cases where structural unit model pre- In this approach, we write the energy of a given boundary
dictions did not hold earlier. Four out of the five such bound-as the sum of the interaction energies of its constituent struc-
aries tested are from group VI since all the boundaries in thisural units. Thus,
group fail the structural unit model. The only boundary not
in group VI and which disobeys the structural unit model is 18 "
the 2307. Here, the minimum energy structureB8BA as E=Eo+ 521 ].Zz_m V(s ,Si4), ©)
expected and this is the structural unit model prediction. For
the boundaries from group VI, we find that the structural unitvhereE andE, are the energies of the simulation box with
model breaks down in exactly the same way as in théind without the GB, respectively is the total number of
Ercolessi-Adams case f&491, 3697, and2939. The high  structural units in a given boundanyis the maximum num-
> numbers of these boundaries should be noted here. Hover of neighbors that participate in the energy interaction
ever, the structural unit model prediction holds in ®#87  VU)(s; ,Si+j) is the two-bodyjth near-neighbor interaction
case. These results are summarized in Table IlI. between species; ands;, ; at sitesi andi + |, respectively.

We find that when the structural unit model prediction The grain boundary energy is then given by
holds in the Ercolessi-Adams case, it also holds in the Voter-

Chen case. The breakdown of the structural unit model is _ E—EO: AE )
quite robust for both the potentials. This observation un- Y A A’

A. The model
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TABLE IV. Interaction types.
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NFIT =6

Interaction

» atomistic

o Hamiltonian

A-A
A-B
A-C
B-B
B-C
Cc-C

OOk WNPEFE|QO

Energy of Structural String (eV)
w
1
Ca
%

whereA is the area of the GB plane. .
If the ¥’s are known, the energy of any configuration can 000 . 3

be obtained simply by carrying out the above summation. | o

One can then use this technique to determine the ground 10

state energy of a given structural string. The parameiers

are to be determined from a givepreferably as small as FIG. 14. Energy comparison using a direct fit using first near

possible set of configurations whose energy is directly avail- neighbor.

able from atomistic simulations. W is to be computed to

the mth near neighbor, this set should contain at least one (3)_N(3) (3) (3)

structure which contains all interactions upto timh near € Naadaat Nagdast Negdes.

neighbor. Since at most three kinds of structural unitswhere 1, 2, and 3 refer to the three GB&\, AB, andBB,

namely,A, B, andC are present in any of the boundaries respectively, and\lﬂ is the number of first-neighbor A-A

under consideration, only six kinds of interactions are posinteractions in GB 1, etc. The following linear system now

sible, namely,A-A, A-B, A-C, B-B, B-C, and C-C as needs to be solved:

shown in Table IV. The Hamiltonian can be split into sum-

o
'

20
Boundary #

mations over each number of neighbors to simplify the com- 2 0 0\ /g, 0.00
putation. The energy of a particular bound&rgan now be 0 2 O|| ¢ag|=|0.631],
rewritten as follows: 0 0 2\ dss 0.46
The solution of which is¢aa=0.000, ¢pg=0.3155, and

n
&= 2, Nicdi, ) pae=0.2325.
wheree,=(E—Eg)y, nis a multiple of 6, and=(p—1)6
+q for the pth near-neighbor interaction of trggh type,p
andq being integers[If i is given, this Diophantine equation ~ As a first step in determining the potentiglswe assume
has the solutiom=mod(—1,6), p=(i—q)/6+1]. Nj isa only a first near-neighbor interaction between the units in a
matrix whose entries are the numbers of first and secon@tructural sequence, which gives rise toa® linear system
near-neighbors of each kind of interaction. This expressior@s described by Eq6). Once the interactions have been
gives rise to a linear system of equations which is to beobtained, the energies of all the structures can then be calcu-
solved for the unknowns: lated using Eq(5) and compared with the energies of these
structures as obtained by atomistic calculations. Figure 14
shows a plot of these two energies. In order to be more
] ) quantitative about the quality of the fit, we have computed
. The following sample calpula’glon example should serve topree key errors;, £,, ande., which are the maximum
|Ilus'_[rate_ t.he effecyve Hamlltonllan procgdyre. For the Sakepositive percentage error, the root-mean-square percentage
of simplicity, consider boundaries containing ordys and  error and the maximum percentage error, respectively. The
B's. So there are only three interactiond-@, A-B, and  |apels 1, 2 correspond to the familiar,, L,, L.. norms.
B-B) involved. Assuming a first-near-neighbor model, we Also, as mentioned in an earlier section, one of goals of this
need to determine the three potentidiga, ¢as, ¢ss. ON€  project is to develop a generic scheme to identify a lower-
then needs to p|Ck three boundaries, which contain all theS€nergy structure out of a given set of Crysta”ographica”y
interactions. Say, we picRA, AB, and BB, the atomistic  equivalent misorientations. Often, the rankings of the ener-
energiesAE of which are 0.000, 0.631, and 0.465 eV. The gjes of different configurations is more important than the
energy of each of the three GB’s can then be expressed as th@merical values of the energies themselves since these val-
following effective Hamiltonian expansidiq. (5)]: ues may be functions of the particular EAM potential in use.
1 ) (1) (1) Thus, it is necessary to ensure that the fits return the same
&' =Nardant Nagdast Nggdes, rankings of energies of crystallographically equivalent struc-
tures. To this end, we define a quantifyr “goodness of a
fit” as the percentage of those boundaries with equal misori-

B. Results and discussion

No=e. (6)

_ N2 2 2
el?= N,(A/-)\d’AA"_ NYEdas+ NE%‘JSBB ,
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FIG. 15. Energy comparison using a second near-neighbor least-squares fit using different sets of 16 boundaries.

entations whose energy rankings have been preserved. Many The least-squares analysis is carried out using a set of
of these boundaries are those which disobey the rules of theoundaries selected at random from the 44 different misori-

structural unit model. For the first near-neighbor ¢t

entations. Figures 18—-15d) shows both the energies, ob-

=23% which calls for a significant improvement in the abil- tained via atomistics and computed using the Hamiltonian,
ity of the fit to (1) give energies very close to those alreadyfor all the boundaries using 18NFIT=16) boundaries in

obtained via atomistic simulations, i.

e., the errers ¢,

the least-squares procedure. Considering the simplicity of the

and ., should be minimized and2) preserve the energy Hamiltonian as well as the numbés low as 15 of bound-

rankings of GB’s with equal misorientations, i.g.should be

maximized.

aries used to compute
results are remarkably

its paramet€t$ in this casgthe
good. Figure 16 shows a similar fit

One way to ameliorate the fit is to increase the number ofvith 32 boundaries, respectively. It is expected that in the

parameters involved in the energy computation and the mosfecond case, the fits would be more accurate since one is
natural way to achieve this is to move to a second nearusing more datapoints to compute the parameters. In order to
neighbor model which gives a 12-parameter Hamiltonianquantitatively assess the accuracy of the fits, we refer to
The 12 parameterépotentialg are the solutions of the 12 Table V which tabulates the average errors for the available
X 12 system Eq(6). However, we have been unable to find fits. It can be seen that the averaggerror is almost equal

a set of 12 linearly independent equations, the coefficients dor both NFIT=16 andNFIT=32. As expected, the aver-
which are the numbers of a particular type of interaction. Weage ¢, and thee., errors are lower in the case ®fFIT
believe that this is due to the extreme sparsity of the coeffi=32. However, the average goodnesis higher forNFIT

cient matrixN. To overcome this problem we have deter- =16. This is seemingly contradictory to expectations. But
mined the 12 potentials by a least-squares fit instead of gecall that the goodneggis a measure of the rankings of the
direct fit. The least-squares equation is given by energies. The least-squares algorithm minimizes only the
overall error and is not required to maintain the rankings of
the energies. This extra information could be, in theory, pro-

NNT¢=Ne. (7)

214105-12



STRUCTURE AND ENERGETICS OF LONG-PERIOD. ..

(@)

Energy of Structural String (eV)

—
(1]
—

Energy of Structural String (eV)

NFIT = 32 isti (b)
= 32 (Set 1) « atomistic

o Hamiltonian

i 3
| (o} Ch
g 2
o 3
- ]
[ s g
B LT} ]
L] fo) (72}
% . g =9 . ° & 4
| . ° e € 8 s 8
L e s 959 E
@ @ -
N ® e )
— T N 1. ®
10 20 30 40
Boundary #
-, (d)
NFIT = 32 (Set 3) =« atomistic

o Hamiltonian

i 3
. E
- fe) E
) 8 «
[ [
- 1~} QI 1:3
a @ ° ma @ ;,,E'
- e Wg SO 5
- ®
[ . * L) 8 s 8
® Ll a¥ H
- » 8 @ w
L <® a®
- 65
1 ®
10 20 30 40
Boundary #

NFIT = 32 (Set 2)

PHYSICAL REVIEW@S 214105

» atomistic

o Hamiltonian

| o
] &
4
s © 8
3F 0-
° 8 ®
L ® -
Lt o o ° &
e
L, o L 8 s
@
118, hd e QO
® a®
Lo}
Py T 1 N ST B T
10 20 30 40
Boundary #
NFIT = 32 (Set4) » atomistic
6
L © Hamiltonian
5 -
i - 8
4l o
| 8 8
3 .,
e}
- . L] Su ®
ol ) e 9 °© 8
e} ) o
- Q e. 6
®
1le e s QO
° ® ®
) 8
od— 1 T B P BRSO S |
10 20 30 40
Boundary #

FIG. 16. Energy comparison using a second near-neighbor least-squares fit using different sets of 32 boundaries.

grammed into the least-squares method. This, however, isffective Hamiltonian and then compute the energies of other
pointless because typically one does aopriori know the  GB'’s.
energy rankings.

An important issue that presents itself during the imple-
mentation of this method is which grain boundaries to use
when computing the potentials. One has to decide whether to We have investigated 44110 symmetric tilt grain
choose only simple structures, or the compllexg) ones, or  boundaries from the 0°-50.48° misorientation range with
a combination of both. Either way, there is a large degree o@tomistic simulations using the embedded atom method. We
arbitrariness involved in making this choice. We have used &ave also carried out a detailed study of the resulting struc-
random selection of a particular number of grain boundariegures in the light of the structural unit model. The large num-
in order to address this question. Figures 15 and 16 and
Table VI show for a fixed number of boundaries, the fits are
pretty robust as far as the errors are concerned. This is &

VI. CONCLUSION

TABLE VI. Error analysis.

positive feature because now the arbitrariness associatddf- NO-  NFIT ~ SetNo. e, % e, % e.% g%
Wlthdthe Ich0|ce of G_B’s is rbemO\;et()d to (Ejl c_ertaln e_xtent. Oni 1 16 1 363 8.92 5063  76.90
need select a certain number of boundaries as inputs to the 16 5 161 1334 8087 8461
3 16 3 3.53 6.24 23.60 76.92
TABLE V. Average errors. 4 16 4 8.24 2151 132.90 8461
5 32 1 5.92 10.23 55.07 76.92

NFIT % % L) % %

(e1) % {e2) % (&) % (9) % 6 32 2 527 1126 6569 6154
16 5.00 12.50 72.00 80.76 7 32 3 539 10.90 63.60 61.54
32 5.48 10.54 59.00 69.23 8 32 4 536 976 53.16 76.92
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ber of possible rigid body translations in the GB plane givescalculations with both the Ercolessi-Adams and the Voter-
rise to different structures even for boundaries with the sam&€hen EAM potentials have confirmed this observation.

misorientation. We have also suggested two methods to re- (6) We have proposed an effective Hamiltonian as a
duce the computational time where the number of initial concomplement to the existing structural unit model framework.
figurations is very large. The following conclusions haveThe energy is computed using two-body interaction poten-

been reached as a result of this study. tials between the individual units. The interaction potentials
(1) The large number of initial configuratioriggid body  are determined by a least-squares fit.
translations in the GB plananake it very difficult to com- (7) With energy inputs from as few as 16 boundaries, the

pute the structuie) with a global energy minimum. How- Hamiltonian is able to reproduce the grain boundary energies
ever, this process may be simplified by implementing soméo considerable accuracy. Also, it is capable of giving the
of the techniques we have suggested. correct rankings of the energies of competing structures. This

(2) The competing structures for a given misorientationfeature is indispensable in picking out the minimum energy
have their energies closely spaced—the energy differencgtructure out of many low-energy configurations, of a par-
being no more than 5%. Hence any model intended to predidtcular grain boundary.
the minimum energy structure should be sophisticated (8) The accuracy of the fits can be improved by incorpo-
enough to pick out these small differences in energies. rating more neighbors into the interactions and also by intro-

(3) The structural unit model is a powerful tool for pre- ducing many(3+) body terms in the Hamiltonian. Also, it is
dicting the structures of even long-period boundaries. Irfairly straightforward to extend the current investigation to
many cases, nevertheless, our investigations have revealédite temperatures by the use of Monte Carlo methods. The
the presence of structures with lower energies than thoseffect of applied stress on the evolution of GB structure can
predicted by the structural unit model. also be studied in this way.

(4) In the instances where there is a multiplicity of struc-
tures for a particular boundar§misorientation the lower-
energy structures still consist of the structural uriis B,
C), however, in many cases their sequence violates the rules We thank M. Daw and S. Foiles for use of theirnamo
laid down by the structural unit model. code. We also thank C. Briant and A. Schwartzman for many

(5) The break-down of the structural unit model rules isuseful discussions. This work was supported by the United
seen particularly in higlt boundaries. Also, it is reasonably States Department of Energy through Grant No. DE-FG02-
insensitive to the particular type of EAM potential used. Our96ER45578. This support is gratefully acknowledged.
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