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Structure and energetics of long-period tilt grain boundaries using an effective Hamiltonian
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We have investigated the atomic structures of 44^110& symmetric tilt grain boundaries~GB’s! with atomistic
simulations using an embedded-atom method~EAM! potential for aluminum. The focus has been on examin-
ing the efficacy of the structural unit model in the context of very long period boundaries. Our studies, which
have been carried out using two EAM potentials, of both the equilibrium and metastable structures of a number
of boundaries, reveal that geometric arguments inherent in the structural unit model must be supplemented by
energetic considerations. An effective Hamiltonian is introduced to this end which computes the energy of a
string of structural units using two-body potentials between individual units. The potentials are calculated via
a least-squares fit to the results of full atomistic represented by the effective Hamiltonian. Results based on as
few as 16 inputs are very encouraging and clearly demonstrate the effectiveness of this method. This scheme
lends itself to a straightforward extension to GB structure calculations at finite temperatures using Monte Carlo
techniques.
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I. INTRODUCTION

Grain boundaries~GB’s! are ubiquitous in polycrystals
and strongly affect their thermomechanical properties s
as fracture toughness1 and yield stress.2,3 Interfacial motion
via sliding4 and migration,5 which in turn are controlled by
diffusion,6 is an important mechanism which directly co
tributes to the macroscopic creep strain especially at elev
temperatures. These key properties become critical par
larly in high-technology applications such as thin films
microelectronic devices and structural ceramics and com
ites.

Indeed, the intimate connection between structure
properties in a given material is often played out at the
terfacial level. Ultimately, it is the atomic level structure of
boundary that will determine its motion and strength.7 The
study of atomic-level structure of grain boundaries has b
greatly encouraged by the use of high-resolution transm
sion electron microscopy from which detailed informati
about the grain boundary geometry, defects and local ato
arrangement can be obtained. While many atomistic stu
of GB structure have been performed,8–10 they have often
been confined to a number of special boundaries, suc
simple symmetric tilt or twist boundaries with a high degr
of symmetry and with a lowS number. This has been pr
marily because of the fact that such boundaries exhibit s
cial properties.11 Also, the computational demands~memory
and processor speed! involved in modeling such boundarie
are relatively modest. However, it has been found that G
which are not of this special type are also found in r
microstructures. In fact, statistical surveys of distributions
types of boundary planes such as Ref. 12 have shown
such boundaries are more common than special bounda
0163-1829/2001/63~21!/214105~14!/$20.00 63 2141
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These include those with mixed tilt-twist character, boun
aries for which no periodicity can be observed, boundar
which show steps and tiny facets with different misorien
tions, and those in which the GB plane wanders. In gene
such boundaries have low periodicity and symmetry. Whil
great deal has been learned about GB deformation from
study of the simpler boundaries, extension to the more g
eral configurations is essential to understanding how real
terials behave.

In this paper, an effort is made to move in the direction
modeling very long-period boundary structures. The aim
this paper is twofold, the first being to improve the techniq
used in simulating long period grain boundaries. We a
wish to address the problem of degeneracy of interface st
tures. In addition to the geometry of the misoriented cryst
which constitute the GB, rigid body translations betwe
them provide an important relaxation mechanism for mi
mizing the GB energy.8 This leads to a wide variety of struc
tures with different energies, often closely spaced, for
same misorientation angle and axis, which often exacerb
the task of picking out the equilibrium structure. The reso
tion of this thorny issue has been one of the major driv
forces behind this project. We study symmetric tilt boun
aries with^110& tilt axis since this class of boundaries is m
accessible to current high-resolution imaging techniqu
This allows for the possibility that our calculations can
verified by experiments. Particularly attention is focused
those boundaries with very highS numbers~long periods!.
All calculations are carried out in the bicrystal setting a
the structural unit model is used as a basis for our study. T
geometric framework posits that a given grain bound
structure can be decomposed into a string of structural u
as will be described in more detail below.
©2001 The American Physical Society05-1
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The remainder of the paper is organized as follows. S
tion II reviews ideas on GB geometry using the coincide
site lattice formalism. The necessary details of the struct
unit model are also presented in this section. We then exp
the computational procedure to perform the GB structure
culations in Sec. III. We have looked at 32 different miso
entations. Our calculations have revealed that in some c
the minimum energy structure does not jibe with expec
tions based on the structural unit model. This has been
cussed in Sec. IV. In order to work around this discrepan
we have proposed an effective Hamiltonian in Sec. V
which the energy of a GB is written as a cluster-expans
involving ‘‘interaction potentials’’ between different struc
tural units. The effective Hamiltonian concept is particula
useful where permutations and combinations of objects~at-
oms, phases, stacking faults! give rise to configurations with
different energies. Our calculations show that out of a giv
set of crystallographically equivalent grain boundary str
tures, the Hamiltonian can successfully pinpoint the mi
mum energy structure with a very high degree of accura
Section VI closes with a few reflections on both the me
and weaknesses of our approach.

II. CONCEPTUAL BACKGROUND

A. Grain boundary geometry

The geometry of a planar interface formed between t
crystals can be uniquely described by five macroscopic
rameters, namely, the boundary plane normaln, the axis of
rotationa, and the rotation angleu. In addition to these five
degrees of freedom, three microscopic degrees of free
are also associated with a given interface, these being
positions of the two crystals with respect to each other al
the three coordinate axes. Ifa•n50, the GB is called a tilt
boundary and ifa3n50, it is called a twist boundary. In
addition, if n is the same in both grains, then the GB is sa
to be symmetric otherwise it is asymmetric. If the Mille
indices ofn are rational, the GB is said to be rational othe
wise it is an irrational interface. The coincident site lattice13

model describes the formation of a GB by rotating two cr
tals through each other about appropriate rotation axes
through discrete rotation angles which leads to some frac
of coincident sites between the two lattices. This implies t
the boundary thus formed is periodic. An irrational boun
ary, however, is periodic in at most one direction.14 The S
number is the inverse fraction of the individual lattice sit
which are common to the two adjoining grains and is used
quantify the degree of overlap. Since computer simulati
of GB’s almost always employ periodic boundary con
tions, it is very difficult to model irrational interfaces a
such. However, it is possible to approximate an irratio
interface by a long-period GB and thus carry out the requi
analysis. The misorientation angle of an irrational interfac
not a special angle which leads to a coincident lattice and
S of such a boundary is theoretically infinite. However, o
can find an angle corresponding to a coincident lattice a
trarily close to this ‘‘irrational angle’’ and hence aS number
that is arbitrarily high. This follows from the fact that on
can approximate an irrational number to any precision b
21410
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rational numberp/q where p and q are arbitrarily high
coprime integers.15 It is important to note the difference be
tween GBgeometry and structure. Geometry refers to the
macroscopic parameters which quantify the misorientation
the two abutting grains while by structure, a detailed spe
fication of the local arrangement of the atoms which con
tute the boundary is meant.

B. The structural unit model

As noted above, in addition to the macroscopic geome
parameters characterizing a boundary there are additi
questions concerning the atomic positions near the interf
The structural unit model is a powerful tool in understandi
the structure of pure tilt or twist grain boundaries. Accordi
to this model, the structure of a long period boundary can
described as a combination of structural units found in t
shorter period boundaries. This idea has been extensi
developed in Ref. 9. The model allows one to predict
structure of a boundary of any misorientation angle for
given tilt axis and boundary plane, provided that one kno
the structural details of two short period boundaries. Th
short period boundaries are also known asfavored bound-
aries because they are special low-energy boundaries wh
structure is a repeating string of short identical units. Th
boundaries are also calleddelimiting boundaries, as they de-
limit a range of misorientation angles. The contention of t
structural unit model is that any boundary whose misori
tation angle lies in this range will have a structure that is
predictable pattern~linear combination! of the structural
units found in the two delimiting boundaries. The algorith
according to which the minority units are separated as m
as possible, to determine the number and sequence of t
units is detailed in Ref. 14.

For example, consider the tilt boundaries shown in Fig
In frames ~a!, ~b!, and ~c! three delimiting boundaries ar
shown. The solid lines indicate the structural units labeled
A, B, andC. Figure 2 shows these units in greater detail. T
filled and empty circles represent theabab̄ stacking of
atomic layers along thê110& direction which is directed nor-
mal to the plane of the paper, with the different colors re
resenting different depths into the page. The boundary
frame~a! is in fact just a perfect crystal~0°!, but it is used to
illustrate the origins of theA unit. The B and C units are
seen in boundaries which have angles of tilt 31.59° a
50.48°, respectively. The indiceŝijk& in Fig. 2 show the
direction in which the arrow points. These indices are^110&,
^552&, and ^332& for the A, B, and C units, respectively.
Figure 3 shows a boundary whose misorientation an
~17.86°! lies between those of the delimiting boundariesA
andB. The boundary structure~AAB! is seen to be made u
of a mixture ofA andB units. Thus, it is theoretically pos
sible to predict the structure of any symmetric tilt bounda
and confirm it through a computer simulation. The gist of t
above discussion is that the structure of grain boundaries
the present purposes is reduced to the description of ma
scopic geometric parameters and atomic positions c
structed using the structural unit model. One of the key
jectives of our work was to critically examine the limits an
5-2
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validity of these structural ideas. To do so, we have und
taken a suite of structural relaxations on a number of diff
ent long period boundaries. These relaxations allow for
determination of a series of a structural competitors a

FIG. 1. Delimiting boundaries~a! S1(A), ~b! S27(B), and~c!
S11(C).
21410
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given misorientation, and for an examination of the exten
which the minimum energy candidates correspond to
structures suggested by the structural unit model.

III. COMPUTATIONAL PROCEDURE

In previous sections the necessity of studying the atom
tic structure of interfaces was emphasized. We now detail
method used to calculate energies of GB structures at
atomic level.

A. Computational cell and force laws

The computational cell consists of a bicrystal as shown
Fig. 4. The boundary planeXZ is at the center of the cell
The atomic positions within the cell are generated using
coincident site lattice model. The total energy of the config
ration is computed using the embedded atom met
~EAM!.16 The total energy is then given by

Etot5(
i

Fi~r i !1
1

2 (
i

(
j Þ i

F i j ~r i j !, ~1!

whereF i j is a short-ranged pairwise interaction function a
r i j is the distance between atomsi and j. The total host
electron densityr i at atomi is approximated as

FIG. 2. Individual structure units.

FIG. 3. Equilibrium structure ofS83(AAB).
5-3
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r i5(
j Þ i

r j~r i j !, ~2!

wherer i j is the contribution to the electronic density fro
atom j. Thus the energy is then a simple function of t
atomic coordinates. For a given element, the three funct
F, F, and r are fitted to experimental values or firs
principles results or some combination of them both. Sin
the electron density terms are assumed to be radially s
metric, EAM potentials are best suited to modeling eleme
whose bonding is primarily nondirectional, such as the fa
centered cubic~fcc! metals. Also, EAM potentials accoun
for ‘‘many body’’ effects hence they are well suited to mo
eling defects such as interfaces, dislocations and surf
where coordination effects are significant. EAM potenti
have been widely used in modeling defects in meta
microstructures.10 All calculations have been initially per
formed using the Ercolessi-Adams17 EAM potentials for alu-
minum. For comparison, we have also used
Voter-Chen18,19 potentials in some computations.

B. Boundary conditions

It should be clear from the context whether grain boun
ary or theboundaryof the simulation cell is meant when th
word boundary is used in this section. The simulation cel
periodic along theX and theZ axes in order to eliminate
surface effects. Here, theZ axis is parallel to the tilt axis and
theX axis lies in the grain boundary plane. In theY direction
~which is perpendicular to the grain boundary plane!, the cell
is divided into a ‘‘free’’ region and two ‘‘rigid slab’’ regions.
The atoms on either side of the GB are in the free region,
they are sandwiched between two rigid blocks of perf
crystal. The atoms in the free region are allowed to individ
ally move as a part of the relaxation process while th
within each fixed region move as a single unit. Hence, o
three translational degrees of freedom are associated
each rigid slab even though they contain on the order of 1
atoms. Because the rigid slabs are at least twice as thic

FIG. 4. Bicrystal computational cell.
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the range of the atomic potentials used, the atoms in the
region essentially behave as though they were surrounde
two semi-infinite perfect crystals. The usual technique is
use periodic boundary conditions along all three directio
In other studies,10 a simulation cell with two equivalent tilt
boundaries, one at the middle of the cell and one on
border in theY direction was built. Our method considerab
cuts down the computational cost by reducing the numbe
effective degrees of freedom. It also allows for modeli
asymmetric boundaries and ensures volumetric expansio
the direction perpendicular to the grain boundary plane. T
energy minimization is carried out using a conjugate gradi
algorithm, where the forces on the two rigid blocks we
computed as the derivatives of the total energy with resp
to each of the rigid block’s translational degrees of freedo
When using this method of relaxation, it is important that t
dimension of the simulation cell in theY direction be large
enough so that the strain in the crystal due to relaxation
the GB has essentially vanished at the interface with the
rigid blocks.

C. Rigid body translations

It is well known20,21 that lattice statics energy minimiza
tion of GB’s can lead to many different boundary structur
depending on the initial configuration of the two grains. Th
is due to the multiwelled nature of the energy function
configuration space. Thus, for each macroscopically defi
GB geometry, there are multiple microscopic GB structu
that correspond to a number of local minima on the ene
surface. The standard procedure to locate these minima
volves the introduction of a relative displacement betwe
the two grains along the boundary plane prior to relaxati
The global energy minimum and hence the associated st
ture is then chosen from the set of local minima by doing
exhaustive search. However, it is always possible to miss
true global minimum, as the approach takes a finite sam
of an infinite number of possible initial configurations. F
periodic boundaries, it has been shown9 that it is possible to
represent all possible initial configurations by the infinite
of points in the so-calledcell of nonidentical displacements.
The GB plane is periodic in the two mutually orthogon
directions~which lie in the plane!. Hence, the GB structure
repeats itself if one traverses a distance greater than the
riodic length in the GB plane. By taking a reasonably fi
grid of initial configurations from within this cell~of mini-
mal periodicity! one can be fairly confident of achieving th
global minimum energy structure. We have found that a g
spacing of about 1 Å in each direction~alonga anda3n! is
sufficient. However, such a fine spacing considerably
creases the computational time for highS boundaries since
the period scales asp;AS. The plane of such boundarie
has a very large area~on the order of 1000 Å2!. One way
around this problem is to approximate the cell of the lon
period boundary by that of an appropriate short period o
and then use the corresponding displacements of the s
period boundary as translations for the long period one.
propose an alternative method, which we refer to as thesmall
box technique—use the displacements of the long peri
5-4
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STRUCTURE AND ENERGETICS OF LONG-PERIOD . . . PHYSICAL REVIEW B63 214105
boundary but by using a computational cell only a few cut
radii thick and then use those displacements which yield
energies in this small unit cell as displacements for the or
nal unit cell. Hence two steps are involved in this proce
~1! use a cell with a smallY to find candidate initial guesse
and~2! recompute those candidates that exhibit low energ
using a cell with a largerY to remove edge effects. We foun
this approach to be very effective in quickly identifying th
translations which yield low energies. Since the length of
cell perpendicular to the GB plane is reduced in locating
low energy displacements, a considerable amount of com
tational time is saved. The origin of the plane containing
translations is shifted slightly above the boundary plane
order to break the initial symmetry of the bicrystal.

IV. EVALUATION OF LONG-PERIOD GRAIN BOUNDARY
STRUCTURES

One way to analyze the structure of an irrational
boundary is to approximate that misorientation by a ratio

TABLE I. Investigated misorientations.

No. Group Q° S SUM pattern and other structures, if

1 I 0.000 1 A
2 II 12.417 171 AAAAB
3 14.652 123 AAAB
4 17.860 83 AAB
5 19.263 643 AABAABAB
6 20.050 33 AABAB
7 20.553 1571 ABAABABAABAB
8 20.903 507 ABAABAB
9 III 22.844 51 BAa

10 IV 24.549 177 BABBABA
11 25.175 379 BBABA
12 25.699 1011 BBABBABA
13 26.525 19 BBA
14 28.026 307 BBBAb

15 28.840 129 BBBBA
16 V 31.586 27 Ba

17 VI 34.179 579 BBBBCb

18 34.893 89 BBBCb

19 36.149 187 BBCb

20 36.810 321 BBCBBCBCb

21 37.219 491 BBCBCb

22 37.496 697 BCBBCBCBBCBCb

23 37.696 939 BCBBCBCb

24 VII 38.942 9 CBa

25 VIII 40.271 827 CBCCBCB
26 40.501 601 CBCCBCBCCBCB
27 40.827 411 CCBCB
28 41.325 257 CCBCCBCB
39 42.183 139 CCB
30 44.003 57 CCCB
31 45.169 339 CCCCB
32 IX 50.479 11 C

a
Other structures also obtained

b
SUM structure not the minimum energy structure.
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approximation with a very highS number. With this objec-
tive in mind, we have chosen to look at a wide range
misorientations shown in Table I. This selection is ma
such that a very broad range~1–1571! of S’s were available
and the majority of the boundaries were very long per
ones. Also, all the three kinds of structural units~A,B,C!
were present in the structures.

Figure 5 shows the variation of the grain boundary ene
versus the misorientation angle. Note that for some ang
there are two or more values of energy. This is a con
quence of finding more than one low-energy structure
some angles. The graph shows that for some angles, ther
deep cusps in the energy which confirms the findings in R
10. These minima in the energy correspond to a string
single unit structures as discussed earlier. However, we
find other cusps in the energy~both maxima and minima!,
which indicates local high- and low-energy structures as
ciated with those energies.

For the purpose of this investigation, the boundaries
be classified into nine groups on the basis of their structu
as predicted by the structural unit model. Each group repre-
sents a particular class of boundaries, the classification b
made on the basis of the kinds of units present in them
addition to providing taxonomical convenience, this class
cation is based upon the hypothesis that boundaries con
ing a characteristic structural string should exhibit spec
mechanical properties such as sliding strength or migra
mobility. The three types of groups are as follows.~1! Those
which contain only one type of structural unit, i.e., the
groups contain the delimiting boundaries discussed ear
Groups I, V, and IX fall into this category and they conta
only one boundary each.~2! Those which contain only two
types of structural units with equal numbers of each ty
Again, these groups, III and VII, contain one boundary ea
~2! Those which contain two different kinds of units but wi
an unequal number of the two units. All other groups oth
than the ones listed above can be categorized under
class. Since there is no limit to the number of structural un
which form the boundaries in these groups, these gro

FIG. 5. Variation of grain boundary energy versus misorien
tion angle.
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contain infinitely many GB’s. However, only a few examp
of long-period boundaries from these groups are shown
Table I.

All the sequences of the structural strings in each bou
ary have been worked out according to the algorithm giv
in Ref. 14. Figures 1, 3, and 6–13 show the detailed str
tural details of some of the representative boundaries f
each group. All dimensions shown are in Å.

A. Groups I –III

We now present a group-by-group investigation into
equilibrium and/or metastable structures obtained by m
mizing all configurations corresponding to each misorien
tion from Table I. Group I contains only one boundaryS1
consisting of theA unit. This is shown in Fig. 1~a!. The A
unit corresponds to a perfect crystal with ‘‘misorientation
0°. It is also a delimiting boundary. Group II contains stru
tures which, according to the structural unit model, containA
andB units with theA units serving as the majority unit. W
have shown two such long period structures in Fig.
namely,S643 andS1571 with structuresAABAABABand

FIG. 6. Equilibrium structures of group II boundaries~a!
S643(AABAABAB) and ~b! S1571(ABAABABAABAB).
21410
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ABAABABAABAB, respectively. No other low-energ
structures were obtained for any of these misorientatio
Figure 7 shows two structures~BA andAAC! for the sameS
number. However, the lower-energy structure is the str
tural unit model prediction~BA! as expected.

B. Groups IV –VI

Group IV contains those boundaries whose structural u
model structures have an excess ofB units compared toA
units. Figure 8~a! shows the equilibrium structure
~BBABBABA! of theS1011 boundary. However, in the cas
of the S307 boundary the minimum energy structure is n
that predicted by the structural unit model which isBBBA
@shown in Fig. 8~b!#. The structure which is obtaine
(BBACA! is shown in Fig. 8~c!. This violation of the struc-
tural unit model is important because according to the mo
a boundary whose misorientations lies between those o
delimiting boundaries has a structure consisting oftwo types
of units each belonging to the delimiting boundaries. T
implies that more than two types of units cannot appea

FIG. 7. Equilibrium structures of group III boundaries~a!
S51(BA) and ~b! S51(AAC).
5-6
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the structure of a GB per the structural unit model. It
important to note that for these two boundaries, the two c
flicting structures are crystal-lographically equivalent but e
ergetically different. Also, the energy difference between
observed minimum energy structure and that predicted
the structural unit model is quite small~less than 5%!. Group
V contains a single misorientation corresponding toS27 and

FIG. 8. Equilibrium structures of group IV boundaries~a!
S1011(BBABBABA), ~b! S307(BBBA), and ~c!
S307(BBACA).
21410
-
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y

FIG. 9. Equilibrium structure ofS27(AC) ~group V!.

FIG. 10. Structural degeneracy in group VI boundaries~a!
S491(BBCBC) and ~b! S491(ACBCBC).
5-7
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FIG. 11. Structural degeneracy in group VI boundaries~a!
S697(BCBBCBCBBCBC) and ~b!
S697(CBCBCACBCBCBCA).

FIG. 12. Equilibrium structures ofS9(CB) ~group VII!.
21410
the minimum energy structure isB which was already shown
in Fig. 9. For this tilt angle, there is another structureAC
~Fig. 9! which has higher energy than theB unit. Conse-
quently, theB unit is a delimiting boundary as describe
earlier. For reasons which will be clear later, it was necess
to obtain the energy of theAC boundary.

Group VI is the most interesting case in this study.
contains misorientations whose structural unit model str
tures contain onlyB and C units, theB units being in a
majority. Our simulations show thatnoneof the boundaries
in this group had an equilibrium structure according to th
predicted by the structural unit model. In fact, the minimu
energy structures obtained for these GB’s show a violation
the structural unit model because they contain three diffe
kinds of units. As examples of these occurrences we h
shown two such structurally degenerate cases, namely,S491
~Fig. 10! andS697~Fig. 11!. The expected structure ofS491
boundary isBBCBCbut the structure obtained isACBCBC.
Similarly, the conflicting structures of theS697 boundary are
BCBBCBCBBCBC and CBCBCACBCBCBCBCA. In all
these cases, it is aB unit in the structural unit model struc

FIG. 13. Equilibrium structures of group VIII boundaries~a!
S827(CBCCBCB) and ~b! S601(CBCCBCBCCBCB).
5-8
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ture that is replaced by theCA unit. It is worthwhile to note
here that the tilt angle corresponding to theB unit is the
same as that which corresponds to theCA unit. This discrep-
ancy calls for a need to revise some of the details, energe
in particular, of the structural unit model. In general, o
results justify the necessity of developing a scheme wh
can unambiguously predict the structure of a GB.

Our interpretation of the breakdown of the structural u
model is based on the ideal choice of delimiting boundar
What this means is that if we choose the delimiting bou
aries as those short-period boundaries which contain o
one kind of structural unit~i.e., favored boundaries!, the
structural unit model is violated for some cases as show
this paper. However, such a stringent choice of delimit
boundaries is not necessary according to Sutton.14 If nonfa-
vored boundaries are chosen, then the structural unit m
may not be violated. Consider the boundaryS307 listed in
Table II. Its structure as predicted by the structural u
model isBBBA. However, the lower-energy structure whic
we have obtained isBBACA. Now, if we chooseS1 ~A! and
S27 ~B! as its delimiting boundaries the obtained structu
BBACAdoes not obey the rules of the structural unit mo
and hence we claim a failure of the structural unit mod
However if we chooseS51 ~AAC! andS27 ~B! or S51 ~BA!
andS27 ~B! as its delimiting boundaries the obtained stru
ture BBACA does conform to the rules of the model. Th
the success or failure of the model depends to a large ex
on the choice of delimiting boundaries. Of course, suc
choice is not entirely arbitrary and is governed by the
quirement that the structure of all boundaries in the mis
entation range spanned by the delimiting boundaries is
pable of being described as a linear combination of u
found in the delimiting boundaries. This stipulation allow
for some freedom in the choice of delimiting boundar
which may vary from group to group as well as for differe
boundaries within a group. Such a choice is also complica
by the requirement that the delimiting boundaries must
necessarily low-energy ones which implies that, in case
conflict, one needs to know the energies of such bounda
in advance. In order to avoid such inconsistencies, we h
sidelined these alternatives and applied a universal rule in
choice of delimiting boundaries—only those boundar
which contain one and only one kind of structural unit w
be selected as delimiting boundaries. As we have seen
lier, the structural unit model is seen to fail in this fram
work. It is important to note that the effective Hamiltonia
technique, presented later in the paper, is equally applic
to any choice~s! of delimiting boundaries and is thus a pow
erful method which can be used to predict interface struct

C. Groups VII –IX

S9 is the sole member of group VII. Its structural un
model prediction is a structureCB which is also the mini-
mum energy structure, as shown in Fig. 12. Group VIII co
tains boundaries with a majority of C units among B’s. A
the equilibrium structures in this class correctly follow t
structural unit model rules. As an illustration, Fig. 13 sho
two such structures S827 ~CBCCBCB! and S601
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~CBCCBCBCCBCB!. The last group~group IX! hasS11
as its member and this structure~C! was already shown in
Fig. 1

D. Effect of empirical potentials on grain boundary structures

The empirical potentials used in atomistic simulations c
greatly influence the final results. For instance, the use o

TABLE II. Investigated structures.

No. S Structure

1 1 A
2 171 AAAAB
3 123 AAAB
4 83 AAB
5 643 AABAABAB
6 33 AABAB
7 1571 ABAABABAABAB
8 507 ABAABAB
9 51 BAa

10 AAC
11 177 BABBABA
12 379 BBABA
13 1011 BBABBABA
14 19 BBA
15 307 BBBAb

16 BBACA
17 129 BBBBA
18 27 Ba

19 AC
20 579 BBBBCb

21 ACDDDC
22 BACBBCBBBBC
23 89 BBBCb

24 ACBBC
25 187 BBCb

26 ACBC
27 321 BBCBBCBCb

28 ACBCACBCBC
29 491 BBCBCb

30 ACBCBC
31 697 BCBBCBCBBCBCb

32 CBCBCACBCBCBCBCA
33 939 BCBBCBCb

34 ACBCBCBC
35 9 CBa

36 ACC
37 827 CBCCBCB
38 601 CBCCBCBCCBCB
39 411 CCBCB
40 257 CCBCCBCB
41 139 CCB
42 57 CCCB
43 339 CCCCB
44 11 C

a
Other structures obtained.

b
SUM structure not the minimum energy structure.
5-9
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simple pair-potential returns no stacking fault energy in
aluminum. To begin to assess the role of our potentials
dictating the nature of our results, we have also used ano
EAM potential: the Voter-Chen potential as mentioned in
earlier section. In this context, we have addressed the foll
ing important questions.

~1! Does the use of a new EAM potential give rise to ne
~other thanA, B, andC! structural units?

~2! If new structural units are not to be found, does t
structural unit model break down in the same way as it did
the Ercolessi-Adams case?

~3! Are the actual energies of the relaxed structures cl
to those obtained by the Ercolessi-Adams potential?

First, we examine those boundaries which follow t
structural unit model rules in the Ercolessi-Adams case. O
representative boundaries from each group are chosen
this purpose:S83, S11, S27, andS411. It is found that the
relaxed structures~type of units and their combining se
quence! of these boundaries are exactly the same as th
obtained earlier. It should be pointed out here that the dim
sions of the individual structural units do not match the e
lier ones. This is because the Voter-Chen potential uses
Å as its lattice parameter for aluminum whereas that for
Ercolessi-Adams potential is 4.032 Å.

Next, we test five cases where structural unit model p
dictions did not hold earlier. Four out of the five such boun
aries tested are from group VI since all the boundaries in
group fail the structural unit model. The only boundary n
in group VI and which disobeys the structural unit model
the S307. Here, the minimum energy structure isBBBA as
expected and this is the structural unit model prediction.
the boundaries from group VI, we find that the structural u
model breaks down in exactly the same way as in
Ercolessi-Adams case forS491, S697, andS939. The high
S numbers of these boundaries should be noted here. H
ever, the structural unit model prediction holds in theS187
case. These results are summarized in Table III.

We find that when the structural unit model predicti
holds in the Ercolessi-Adams case, it also holds in the Vo
Chen case. The breakdown of the structural unit mode
quite robust for both the potentials. This observation u

TABLE III. Effect of potentials on the failure of the structura
unit model.

Agreement with structural unit model
No. S Ercolessi-Adams Voter-Chen

1 83 Yes Yes
2 11 Yes Yes
3 27 Yes Yes
4 139 Yes Yes
5 187 No Yes
6 491 No No
7 307 No No
8 697 No No
9 939 No No
21410
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doubtedly reinforces our case and calls for informing t
structural units of their energetic roles. The next section
scribes how this is achieved by an effective Hamiltonian.

V. EFFECTIVE GRAIN BOUNDARY HAMILTONIAN

In the previous section we motivated the conception o
scheme to predict the minimum energy structure of gr
boundaries. This involves augmenting the structural u
mode with requisite energetics in the present framewo
One of the most powerful as well as popular techniques
compute energies of configurations involving permutatio
of their constituent elements is the use of cluster expansi
The ability of this method to describe the energetics a
thermodynamics at finite temperatures when coupled w
Monte Carlo techniques has been demonstrated in Refs.
24. The crux of the effective Hamiltonian method is to pe
form the computations over a reduced set of degrees of f
dom associated with the system under investigation. For
GB’s under consideration in the present study, the effec
Hamiltonian assumes that the only effective degrees of fr
dom for the various GB structures are the structural un
along the GB plane. The atomic coordinates of all other
oms are tacitly neglected. This results in a massive reduc
in computational cost since now one does not have to tr
the other atoms which are not contained in the structu
units. Their effects on the GB structure are accounted for
the interaction potentials between the structural units. Thu
it possible to determine the relaxed energies without hav
to determine the relaxed geometries, unlike traditional lar
scale simulation methods such as molecular dynamics. T
cal successful applications include but are not limited
stacking fault energies in aluminum25 decoration in
quasicrystals,26 band structure and stability of semiconduct
polytypes,27 phase transitions in intermetallic soli
solutions,28 and oxygen ordering in YBCO
superconductors.29 Our idea is to assign energies to ea
structural sequence based upon the number of pairs of
type. To make this scheme useful, it it necessary to const
an effective Hamiltonian first.

A. The model

In this approach, we write the energy of a given bound
as the sum of the interaction energies of its constituent st
tural units. Thus,

E5E01
1

2 (
i 51

n

(
j 52m

m

C~ j !~si ,si 1 j !, ~3!

whereE andE0 are the energies of the simulation box wi
and without the GB, respectively.n is the total number of
structural units in a given boundary,m is the maximum num-
ber of neighbors that participate in the energy interact
C ( j )(si ,si 1 j ) is the two-bodyj th near-neighbor interaction
between speciessi andsi 1 j at sitesi and i 1 j , respectively.
The grain boundary energyg is then given by

g5
E2E0

A
5

DE

A
, ~4!
5-10
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whereA is the area of the GB plane.
If the C’s are known, the energy of any configuration c

be obtained simply by carrying out the above summati
One can then use this technique to determine the grou
state energy of a given structural string. The parameterC
are to be determined from a given~preferably as small as
possible! set of configurations whose energy is directly ava
able from atomistic simulations. IfC is to be computed to
the mth near neighbor, this set should contain at least
structure which contains all interactions upto themth near
neighbor. Since at most three kinds of structural un
namely,A, B, and C are present in any of the boundari
under consideration, only six kinds of interactions are p
sible, namely,A-A, A-B, A-C, B-B, B-C, and C-C as
shown in Table IV. The Hamiltonian can be split into sum
mations over each number of neighbors to simplify the co
putation. The energy of a particular boundaryk can now be
rewritten as follows:

ek5(
i 51

n

Nikf i , ~5!

whereek5(E2E0)k , n is a multiple of 6, andi 5(p21)6
1q for the pth near-neighbor interaction of theqth type,p
andq being integers.@If i is given, this Diophantine equatio
has the solutionq5mod(i 21,6), p5( i 2q)/611#. Nik is a
matrix whose entries are the numbers of first and sec
near-neighbors of each kind of interaction. This express
gives rise to a linear system of equations which is to
solved for the unknownsf:

Nf5e. ~6!

The following sample calculation example should serve
illustrate the effective Hamiltonian procedure. For the sa
of simplicity, consider boundaries containing onlyA’s and
B’s. So there are only three interactions (A-A, A-B, and
B-B) involved. Assuming a first-near-neighbor model, w
need to determine the three potentialsfAA , fAB , fBB . One
then needs to pick three boundaries, which contain all th
interactions. Say, we pickAA, AB, and BB, the atomistic
energiesDE of which are 0.000, 0.631, and 0.465 eV. T
energy of each of the three GB’s can then be expressed a
following effective Hamiltonian expansion@Eq. ~5!#:

e~1!5NAA
~1!fAA1NAB

~1!fAB1NBB
~1!fBB ,

e~2!5NAA
~2!fAA1NAB

~2!fAB1NBB
~2!fBB ,

TABLE IV. Interaction types.

Interaction q

A-A 1
A-B 2
A-C 3
B-B 4
B-C 5
C-C 6
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e~3!5NAA
~3!fAA1NAB

~3!fAB1NBB
~3!fBB ,

where 1, 2, and 3 refer to the three GB’sAA, AB, andBB,
respectively, andNAA

(1) is the number of first-neighbor A-A
interactions in GB 1, etc. The following linear system no
needs to be solved:

S 2 0 0

0 2 0

0 0 2
D S fAA

fAB

fBB

D 5S 0.000
0.631
0.465

D .

The solution of which isfAA50.000, fAB50.3155, and
fBB50.2325.

B. Results and discussion

As a first step in determining the potentialsf, we assume
only a first near-neighbor interaction between the units i
structural sequence, which gives rise to a 636 linear system
as described by Eq.~6!. Once the interactions have bee
obtained, the energies of all the structures can then be ca
lated using Eq.~5! and compared with the energies of the
structures as obtained by atomistic calculations. Figure
shows a plot of these two energies. In order to be m
quantitative about the quality of the fit, we have comput
three key errors«1 , «2 , and «` which are the maximum
positive percentage error, the root-mean-square percen
error and the maximum percentage error, respectively.
labels 1, 2,̀ correspond to the familiarL1 , L2 , L` norms.
Also, as mentioned in an earlier section, one of goals of
project is to develop a generic scheme to identify a low
energy structure out of a given set of crystallographica
equivalent misorientations. Often, the rankings of the en
gies of different configurations is more important than t
numerical values of the energies themselves since these
ues may be functions of the particular EAM potential in us
Thus, it is necessary to ensure that the fits return the s
rankings of energies of crystallographically equivalent str
tures. To this end, we define a quantityg or ‘‘goodness of a
fit’’ as the percentage of those boundaries with equal mis

FIG. 14. Energy comparison using a direct fit using first ne
neighbor.
5-11
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FIG. 15. Energy comparison using a second near-neighbor least-squares fit using different sets of 16 boundaries.
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entations whose energy rankings have been preserved. M
of these boundaries are those which disobey the rules o
structural unit model. For the first near-neighbor fitg
523% which calls for a significant improvement in the ab
ity of the fit to ~1! give energies very close to those alrea
obtained via atomistic simulations, i.e., the errors«1 , «2 ,
and «` should be minimized and~2! preserve the energ
rankings of GB’s with equal misorientations, i.e.,g should be
maximized.

One way to ameliorate the fit is to increase the numbe
parameters involved in the energy computation and the m
natural way to achieve this is to move to a second ne
neighbor model which gives a 12-parameter Hamiltoni
The 12 parameters~potentials! are the solutions of the 12
312 system Eq.~6!. However, we have been unable to fin
a set of 12 linearly independent equations, the coefficient
which are the numbers of a particular type of interaction. W
believe that this is due to the extreme sparsity of the coe
cient matrix N. To overcome this problem we have dete
mined the 12 potentials by a least-squares fit instead
direct fit. The least-squares equation is given by

NNTf5Ne. ~7!
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The least-squares analysis is carried out using a se
boundaries selected at random from the 44 different mis
entations. Figures 15~a!–15~d! shows both the energies, ob
tained via atomistics and computed using the Hamiltoni
for all the boundaries using 16 (NFIT516) boundaries in
the least-squares procedure. Considering the simplicity of
Hamiltonian as well as the number~as low as 16! of bound-
aries used to compute its parameters~16 in this case! the
results are remarkably good. Figure 16 shows a similar
with 32 boundaries, respectively. It is expected that in
second case, the fits would be more accurate since on
using more datapoints to compute the parameters. In orde
quantitatively assess the accuracy of the fits, we refer
Table V which tabulates the average errors for the availa
fits. It can be seen that the average«1 error is almost equa
for both NFIT516 andNFIT532. As expected, the aver
age «2 and the«` errors are lower in the case ofNFIT
532. However, the average goodnessg is higher forNFIT
516. This is seemingly contradictory to expectations. B
recall that the goodnessg is a measure of the rankings of th
energies. The least-squares algorithm minimizes only
overall error and is not required to maintain the rankings
the energies. This extra information could be, in theory, p
5-12
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FIG. 16. Energy comparison using a second near-neighbor least-squares fit using different sets of 32 boundaries.
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grammed into the least-squares method. This, howeve
pointless because typically one does nota priori know the
energy rankings.

An important issue that presents itself during the imp
mentation of this method is which grain boundaries to u
when computing the potentials. One has to decide whethe
choose only simple structures, or the complex~long! ones, or
a combination of both. Either way, there is a large degree
arbitrariness involved in making this choice. We have use
random selection of a particular number of grain bounda
in order to address this question. Figures 15 and 16
Table VI show for a fixed number of boundaries, the fits a
pretty robust as far as the errors are concerned. This
positive feature because now the arbitrariness assoc
with the choice of GB’s is removed to a certain extent. O
need select a certain number of boundaries as inputs to

TABLE V. Average errors.

NFIT ^«1& % ^«2& % ^«`& % ^g& %

16 5.00 12.50 72.00 80.76
32 5.48 10.54 59.00 69.23
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effective Hamiltonian and then compute the energies of ot
GB’s.

VI. CONCLUSION

We have investigated 44̂110& symmetric tilt grain
boundaries from the 0° – 50.48° misorientation range w
atomistic simulations using the embedded atom method.
have also carried out a detailed study of the resulting str
tures in the light of the structural unit model. The large nu

TABLE VI. Error analysis.

Fit. No. NFIT Set No. «1 % «2 % «` % g %

1 16 1 3.63 8.92 50.63 76.90
2 16 2 4.61 13.34 80.87 84.6
3 16 3 3.53 6.24 23.60 76.92
4 16 4 8.24 21.51 132.90 84.6
5 32 1 5.92 10.23 55.07 76.9
6 32 2 5.27 11.26 65.69 61.5
7 32 3 5.39 10.90 63.60 61.5
8 32 4 5.36 9.76 53.16 76.92
5-13
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ber of possible rigid body translations in the GB plane giv
rise to different structures even for boundaries with the sa
misorientation. We have also suggested two methods to
duce the computational time where the number of initial c
figurations is very large. The following conclusions ha
been reached as a result of this study.

~1! The large number of initial configurations~rigid body
translations in the GB plane! make it very difficult to com-
pute the structure~s! with a global energy minimum. How
ever, this process may be simplified by implementing so
of the techniques we have suggested.

~2! The competing structures for a given misorientati
have their energies closely spaced—the energy differe
being no more than 5%. Hence any model intended to pre
the minimum energy structure should be sophistica
enough to pick out these small differences in energies.

~3! The structural unit model is a powerful tool for pre
dicting the structures of even long-period boundaries.
many cases, nevertheless, our investigations have reve
the presence of structures with lower energies than th
predicted by the structural unit model.

~4! In the instances where there is a multiplicity of stru
tures for a particular boundary~misorientation! the lower-
energy structures still consist of the structural units~A, B,
C!, however, in many cases their sequence violates the r
laid down by the structural unit model.

~5! The break-down of the structural unit model rules
seen particularly in highS boundaries. Also, it is reasonab
insensitive to the particular type of EAM potential used. O
t.

g
1
l

. A

l
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calculations with both the Ercolessi-Adams and the Vot
Chen EAM potentials have confirmed this observation.

~6! We have proposed an effective Hamiltonian as
complement to the existing structural unit model framewo
The energy is computed using two-body interaction pot
tials between the individual units. The interaction potenti
are determined by a least-squares fit.

~7! With energy inputs from as few as 16 boundaries,
Hamiltonian is able to reproduce the grain boundary energ
to considerable accuracy. Also, it is capable of giving t
correct rankings of the energies of competing structures. T
feature is indispensable in picking out the minimum ene
structure out of many low-energy configurations, of a p
ticular grain boundary.

~8! The accuracy of the fits can be improved by incorp
rating more neighbors into the interactions and also by in
ducing many~31! body terms in the Hamiltonian. Also, it is
fairly straightforward to extend the current investigation
finite temperatures by the use of Monte Carlo methods. T
effect of applied stress on the evolution of GB structure c
also be studied in this way.
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