Strong magnetic pair breaking and weak magnetic exchange interaction among R ions in $(Y,R)Pd_2B_2C$

G. Ghosh,¹ A. D. Chinchure,^{1,*} R. Nagarajan,¹ C. Godart,² and L. C. Gupta¹

Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research, Mumbai 400 005, India

²C.N.R.S., UPR209, ISCSA, F-94320 Thiais, France

(Received 1 December 2000; published 30 April 2001)

In multiphase material YPd₅B₃C_{0.35} of the Y-Pd-B-C system, YPd₂B₂C (space group *I4/mmm*) is believed to be the superconducting phase ($T_c \approx 23$ K). Despite the nonavailability of the superconducting phase YPd₂B₂C in pure form, we have been able to obtain crucial information on the magnetic pair breaking and magnetic exchange interaction among *R* ions in the *R*Pd₂B₂C (*R*=Y, rare-earth elements) system by studying multiphase Y(*R*)Pd₅B₃C_{0.35} materials. Strong pair-breaking effects are observed in Y_{0.9}*R*_{0.1}Pd₅B₃C_{0.35}; for instance, ΔT_c —the depression of the superconducting transition temperature T_c —is ≈ 8 K for R = Ge. $\Delta T_c(R)$, except for R = Ce, Eu, and Yb, nearly follows the de Gennes scaling $\Delta T_c \propto (g_J - 1)^2 J (J + 1)$, both for light as well as heavy rare-earth atoms. ΔT_c (≈ 8.5 K) is anomalously large for R = Ce. Magnetic exchange interaction among *R* ions is rather weak in *R*Pd₂B₂C as is inferred from our studies in DyPd₅B₃C_{0.35}, which does not exhibit a magnetic transition down to 1.7 K. Our present investigations bring out striking dissimilarities in the superconducting and magnetic properties of the materials of *R*Pd₂B₂C vis-à-vis those of *R*Ni₂B₂C.

DOI: 10.1103/PhysRevB.63.212505

PACS number(s): 74.70.Dd, 74.62.Dh, 75.20.En

I. INTRODUCTION

Immediately after the discovery of superconductivity at an elevated T_c (≈ 13 K) in the multiphase quaternary borocarbide system Y-Ni-B-C (Ref. 1) there has been continued and increasing interest in borocarbide quaternary superconducting materials. The superconducting phase YNi₂B₂C (Refs. 2 and 3) in the Y-Ni-B-C system belongs to a tetragonal structure related to the well-known ThCr₂Si₂ structure (*I4/mmm*). Tremendous progress has been made in the studies of *R*Ni₂B₂C, particularly on several aspects of interplay of the superconductivity and long-range magnetic order.⁴ This was possible essentially because *R*Ni₂B₂C materials are available as single phase in all three physical forms, namely, polycrystalline, single crystals, and thin films.

In sharp contrast, not much is known on the superconducting properties in the Pd-containing multiphase superconducting system YPd₅B₃C_{0.35} having a high $T_c \approx 23$ K (Ref. 5), the highest reported in bulk intermetallics. This is because it has not yet been possible to synthesize the superconducting phase in pure form though it has been shown⁶ that YPd₂B₂C with LuNi₂B₂C-type tetragonal structure is responsible for superconductivity. Single phase material YPd₂B₂C ($T_c = 22$ K) has been isolated only in micrograinsized samples.⁷ Nonavailability of bulk samples of YPd₂B₂C has been a rather serious obstacle in making progress towards a deeper understanding of the superconducting phase in the Y-Pd-B-C system.

Notwithstanding this difficulty, in our present work, we have obtained crucial information on the magnetic pairbreaking effects and superconducting and magnetic properties of RPd_2B_2C by investigating samples of $Y_{1-x}R_xPd_5B_3C_{0.35}$ (*R*=rare earth ions; *x*=0.1) and $DyPd_5B_3C_{0.35}$. In these investigations we make the assumption that the substitution of Y by *R* ions takes place proportionally in all the phases belonging to the multiphase sample $YPd_5B_3C_{0.35}$.⁸

II. EXPERIMENT

Samples of nominal compositions Y_{0.9}R_{0.1}Pd₅B₃C_{0.35} (R = La through Yb) and $RPd_5B_3C_{0.35}$ (R = Y, Dy), each \sim 500 mg, were prepared using a standard arc-melting technique. The samples were fast cooled by shutting off the arc abruptly, since it is known that annealing destroys superconductivity in YPd₅B₃C_{0.35}. Such as-cast samples were used in all the measurements. X-ray-diffraction measurements were made on powder samples using Siemens D-500 or Philips PW1510 automatic diffractometers. The superconducting transition temperature T_c was determined for all samples by measuring ac susceptibility $\chi_{ac}(T)$ (frequency = 313 Hz and rms field ≈ 1 G) as a function of temperature in the interval 4-35 K. Dc resistivity also was measured as a function of temperature in selected samples using a four-probe method in the same temperature interval. Dc magnetization was studied in a field of 5 kG as a function of temperature over the interval 1.7-300 K using a superconducting quantum interference device (SQUID) magnetometer (Quantum Design).

At least two batches of each sample were prepared and measured to check the reproducibility of T_c , which was found to be better than 1 K.

III. RESULTS AND DISCUSSION

A. X-ray diffraction

Figure 1 shows the powder x-ray-diffraction pattern of the sample YPd₅B₃C_{0.35} which, as reported by Cava *et al.*⁵ is multiphase. It contains YPd₂B₂C, the LuNi₂B₂C-type body-centered-tetragonal phase; the diffraction lines corresponding to YPd₂B₂C are marked in the figure with the corresponding indices. YPd₇B₄, having a centered orthorhombic structure,⁶ is the majority phase. Lattice parameters, calculated from the diffraction pattern, for the two phases are a = 3.757 and c = 10.739 Å for YPd₂B₂C and a = 8.481, b = 9.056, and c = 16.518 Å for YPd₇B₄. Values of the 1221 phase are con-

FIG. 1. X-ray-diffraction patterns of $RPd_5B_3C_{0.35}$; (a) R=Y and (b) R=Dy. The indexed lines correspond to the tetragonal phase RPd_2B_2C and open-circle-marked lines correspond to the orthorhombic RPd_7B_4 phase.

sistent with those reported in the single phase, micrograinsized sample.⁷ Figure 1 also shows the x-ray-diffraction pattern of DyPd₅B₃C_{0.35}. Just as in YPd₅B₃C_{0.35}, lines corresponding to the 1221 phase are easily discerned. We obtain the lattice constants of DyPd₂B₂C as a = 3.756 and c = 10.682 Å.

The lattice parameters of $Y_{0.9}R_{0.1}Pd_2B_2C$ as derived from the x-ray-diffraction data of $Y_{0.9}R_{0.1}Pd_5B_3C_{0.35}$ are shown in

TABLE I. Lattice parameters *a* and *c* of $Y_{0.9}R_{0.1}Pd_2B_2C$ (*R* = rare-earths elements) as inferred from x-ray-diffraction patterns of $Y_{0.9}R_{0.1}Pd_5B_3C_{0.35}$.

Rare-Earth	а	С
elements	(Å)	(Å)
La	3.788	10.724
Ce	3.779	10.687
Pr	3.769	10.687
Nd	3.771	10.689
Sm	3.765	10.712
Eu	3.756	10.689
Gd	3.763	10.735
Tb	3.763	10.745
Dy	3.753	10.691
Но	3.750	10.723
Er	3.748	10.754
Tm	3.748	10.709
Yb	3.750	10.721
Y	3.757	10.739

FIG. 2. (a) ac susceptibility χ_{ac} and (b) dc resistivity for $Y_{0.9}R_{0.1}Pd_5B_3C_{0.35}$ as a function of temperature; different symbols correspond to different *R* ions as indicated in figures. The lines are guides for the eye.

Table I. The *a* parameter (*R*-*R* distance) shows the trend of the lanthanide contraction as it is observed in the RNi_2B_2C series and in RPd_2B_2C [*R*=La, Ce(3+), and Y]. A trend is not discernible in the *c* parameter.

B. Strong magnetic pair breaking and large depression of T_c by magnetic impurity in YPd₂B₂C

 $T_c(R)$ was determined for the samples $Y_{0.9}R_{0.1}Pd_5B_3C_{0.35}$ (R = La, Ce, Pr, Sm, Eu, Gd, Tb, Dy, Er, Ho, Tm, and Yb)from $\chi_{ac}(T)$ measurements. Resistivity also was measured for selected samples (R = Y, Ce, Ho, Tb, and Sm). Figure 2(a) shows the $\chi_{ac}(T)$ of the samples with R = Y, Ce, Nd, Sm, Tb, and Ho (others are not shown for reasons of clarity) while Fig. 2(b) shows results of the dc-resistivity measurements. Figure 3 shows measured $\Delta T_c [= T_c(\mathbf{Y}) - T_c(\mathbf{R})]$ and also ΔT_c calculated on the basis of the de Gennes scaling $[G = (g_J - 1)^2 J(J + 1)]$ and normalized with respect to the experimentally observed ΔT_c in Y_{0.9}Gd_{0.1}Pd₅B₃C_{0.35}. These results do establish that the rare-earth ions are incorporated in the superconducting phase, which we take as $Y_{0.9}R_{0.1}Pd_2B_2C$ in these materials.

From the data shown in Fig. 3, it is clear that there is an appreciable depression of T_c due to nonmagnetic effects (ex-

FIG. 3. $\Delta T_c [=T_c(\mathbf{Y})-T_c(R)]$ vs the rare-earth atoms. $T_c(\mathbf{Y})=T_c$ in $\mathbf{YPd}_5\mathbf{B}_3\mathbf{C}_{0.35}$ and $T_c(R)=T_c$ in $\mathbf{Y}_{0.9}R_{0.1}\mathbf{Pd}_5\mathbf{B}_3\mathbf{C}_{0.35}$. The filled squares are experimental values. The open circles are theoretical values obtained using de Gennes scaling factor (*G*, see text). The inset shows the comparison of $\Delta T_c(R)/T_c(\mathbf{Y})$ in $\mathbf{Y}_{0.9}R_{0.1}\mathbf{Pd}_5\mathbf{B}_3\mathbf{C}_{0.35}$ (open triangles, this work) and $\mathbf{Y}_{0.9}R_{0.1}\mathbf{Ni}_2\mathbf{B}_2\mathbf{C}$ (filled triangles, Ref. 10). The lines are guides for the eye. The dashed line represents the depression due to nonmagnetic effects (see text).

emplified by ΔT_c measured for nonmagnetic La ions) such as a mismatch of the size of the dopant rare-earth ion and the resulting variation of lattice constants and band structure. Such effects have been observed, for example, in LuRh₄B₄.⁹ In Fig. 3, the line drawn between the data points of La and Tm (Yb is not considered as its T_c is rather anomalous) gives an estimate of the depression of T_c due to the nonmagnetic effect for different *R* ions.

In order to bring out the difference of magnetic pair breaking in YPd₂B₂C and YNi₂B₂C, we show in Fig. 3 $\Delta T_c(R)/T_c(Y)$ for Y_{0.9} $R_{0.1}$ Pd₂B₂C as measured in our present studies and in Y_{0.9} $R_{0.1}$ Ni₂B₂C as reported in Ref. 10. There is a number of striking dissimilarities between the two cases [we abbreviate Y(Pd) and Y(Ni), respectively for brevity].

(i) ΔT_c due to magnetic *R* ions (estimated with respect to the line representing nonmagnetic effect in Fig. 3) introduced as impurity ions in YPd₂B₂C nearly follows de Gennes scaling. The trend of pair breaking by magnetic light rare-earth elements Pr, Nd, and Sm in Y(Pd) is consistent with the de Gennes scaling. However, as shown in the inset of Fig. 3, these elements show strong deviation from de Gennes scaling in Y(Ni).

(ii) $\Delta T_c(\text{Ce})/T_c(\text{Y})$ is nearly the same in the two cases. However, if the proper allowance is made for the nonmag-

FIG. 4. dc magnetization versus temperature for DyPd₅B₃C_{0.35}. The inset shows the inverse of dc susceptibility $(1/\chi_{dc})$ versus temperature for the two materials.

netic effect, it is clear that pair breaking effect of Ce ions is much stronger in Y(Pd) than in Y(Ni).

(iii) Gd causes stronger pair breaking in Y(Pd) than in Y(Ni). This has implications with respect to the difference in band structure and density of states at the Fermi level E_F in the two cases.

(iv) The effect of Yb in Y(Pd) is higher than that expected from de Gennes scaling. This may be suggestive of a hybridization effect of the Yb ion. However, the observed effect is much smaller than in Y(Ni).

(v) Eu ions lead to a depression that is somewhat more than that expected from de Gennes scaling (taking Eu to be trivalent, J=0 in a nonmagnetic state). Considering the anomalous behavior of substitutions of Ce and Yb, it is possible that some effect of hybridization is present in this case also. It will be interesting to investigate the valence of Eu in this material by ¹⁵¹Eu Mössbauer spectroscopy.

C. Low T_N in RPd_2B_2C

In order to infer about magnetic and superconducting (possible) properties of RPd_2B_2C (R=magnetic rare-earths metals), we investigated the material DyPd₅B₃C_{0.35}. This material was chosen considering that DyNi₂B₂C has the highest T_N among the magnetic superconducting Nicontaining materials RNi_2B_2C (R=Dy, Ho, Er, and Tm).

As mentioned earlier, the multiphase sample of DyPd₅B₃C_{0.35} does contain a 1221 tetragonal phase (Fig. 1). We measured the dc magnetic susceptibility (χ_{dc}) of this sample in the temperature interval 1.7–300 K in an applied field of 5 kG (in zero-field-cooled mode). No magnetic transition was observed in this sample down to 1.7 K (Fig. 4). It, therefore, follows that none of the phases, including

DyPd₂B₂C, which is relevant with respect to the present investigations, undergoes a magnetic transition at T < 2 K. Further, the plot of $1/\chi_{dc}$ versus temperature (see the inset, Fig. 4) is a straight line with θ_P , the paramagnetic Curie temperature nearly zero. μ_{eff} is estimated to be $\approx 9.9\mu_B$, which is close to the free-ion value of Dy ions. Much reduced T_N (<2 K) and $\theta_P \approx 0$ in DyPd₂B₂C clearly suggests that indirect exchange interaction [Ruderman-Kittel-Kasuya-Yosida (RKKY)] among *R* ions is much weaker in *R*Pd₂B₂C than in *R*Ni₂B₂C. There seems to be a drastic modification of the conduction-electron polarization at the rare-earth sites in the Pd system compared to the Ni-containing materials *R*Ni₂B₂C.

Further, no diamagnetic response is seen down to 1.7 K in zero-field-cooled state low dc-field magnetic susceptibility (applied magnetic field $\approx 10-20$ G), suggesting absence of superconductivity down to 1.7 K in DyPd₂B₂C. This must be compared with $T_c \approx 6$ K in DyNi₂B₂C.

IV. CONCLUSION

We have investigated superconductivity in $Y_{0.9}R_{0.1}Pd_5B_3C_{0.35}$ and have looked for magnetic and super-

- *Present address: Kammerlingh Onnes Laboratory, Leiden University, 2300 RA Leiden, The Netherlands.
- ¹R. Nagarajan, C. Mazumdar, Z. Hossain, S. K. Dhar, K. V. Gopalakrishnan, L. C. Gupta, C. Godart, B. D. Padalia, and R. Vijayaraghavan, Phys. Rev. Lett. **72**, 274 (1994).
- ²R. J. Cava, H. Takagi, H. W. Zandbergen, J. J. Krajewski, W. F. Peck, T. Siegrist, B. Batlogg, R. B. Van Dover, R. J. Felder, K. Mizuhashi, J. O. Lee, H. Eisaki, and S. Uchida, Nature (London) **367**, 252 (1994).
- ³T. Siegrist, H. W. Zanbergen, R. J. Cava, J. J. Krajewski, and W. F. Peck, Nature (London) **367**, 254 (1994).
- ⁴Quaternary borocarbides/nitrides were exclusively discussed in a NATO Advanced Research Workshop on Quaternary Borocarbides (Nitrides), Dresden, Germany, June 14, 2000 (to be published).

conducting transitions in DyPd5B3C0.35, studied as a typical magnetic RPd₂B₂C material. Even though the samples are multiphase, we have argued and shown that it is possible to get useful results. We find that ΔT_c in YPd₂B₂C due to light and heavy rare-earth elements introduced as impurities follows nearly de Gennes scaling. T_c and T_N are less than 1.7 K in any of the phases in DyPd₅B₃C_{0.35}. These results reveal strong magnetic pair breaking and rather weak RKKY interaction among R ions in RPd_2B_2C . This important result brings in focus the basic difference in magnetic and superconducting properties of the two series RNi_2B_2C and RPd_2B_2C . The present work provides a strong motivation to synthesize RPd₂B₂C in pure bulk form. Because of strong pair breaking and weak RKKY interaction, these materials may reveal certain new aspects of interplay of superconductivity and magnetism.

ACKNOWLEDGMENTS

We thank S.K. Paghdar for his help with our acsusceptibility and dc-resistivity measurements and K. V. Gopalakrishnan for SQUID measurements. Part of this work has been done under the Indo-French Project Grant No. IFCPAR-1808-1, New Delhi, India.

- ⁵ R. J. Cava, H. Takagi, B. Batlogg, H. W. Zanbergen, J. J. Krajewski, W. F. Peck, R. B. Van Dover, R. J. Felder, T. Siegrist, K. Mizuhashi, J. O. Lee, H. Eisaki, and S. Uchida, Nature (London) **367**, 146 (1994).
- ⁶Y. Y. Sun, I. Rusakova, R. L. Meng, Y. Cao, P. Gautier-Picard, and C. W. Chu, Physica C **230**, 435 (1994); E. Tominez, E. Alleno, P. Berger, M. Bohn, C. Mazumdar, and C. Godart, J. Solid State Chem. **154**, 114 (2000).
- ⁷L. M. Dezaneti, Y. Y. Xue, Y. Y. Sun, K. Ross, and C. W. Chu, Physica C **334**, 123 (2000).
- ⁸LuPd₅B₃C_{0.35} is an exception that not only does not superconduct but also does not contain LuPd₂B₂C [C. Godart (unpublished)].
- ⁹Superconductivity in Ternary Compounds, edited by Ø. Fisher (Springer-Verlag, Berlin, 1982), Vols. 32 and 34.
- ¹⁰Md. Zakir Hossain, Ph.D. thesis, Bombay University, 1996.