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Acceleration theorem for Bloch oscillators
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In this paper, we give the Heisenberg position operator in the crystal momentum representation and we
prove the acceleration theorem for Bloch oscillators. As an application, we discuss the motion of well localized

states.
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In a previous researchyve have given the rigorous be- <k>t:<k+ft/ﬁ>0=<k>0+ft/ﬁ, (D)

havior of a generic Bloch oscillatdBO) in the crystal mo- _ ) i

mentum representatigl€MR). In particular, we have shown Wheref=eF, eis the electron charge arfdis the strength of

the existence of a phase factor, see E5).below, in the the electric field and

expression of an oscillator that does not undergo a simple ©

uniform translational motion in the crystal-momentum space. (kyt= 2 J' klan(k,t)|? dk

It was clear that this phase factor is essential in order to n=1J-bp2

obtain the correct behavior of the state in the position-
) ) . .denotes the mean value of the crystal momentuon the

coordinate space. In particular, it was shown the generlcsta,“_:‘a(k t). This CMV theorem implies thatk)! is a peri-

breathing mode motion as a consequence of the same phasg. S . o P L P

factor. adic function V\ilth perlodl'B—erﬁ/fd, but not the e_X|stence

of the BO's* Recent studies, both numeritaland

Now, we retum to the same problem in order to give theexperimentaﬁ have provided a more detailed description of

Heisenberg position operator and to prove the acceleratio . . .
theorem. Moreover, we show the existence of a class of OSBloch oscillators. In particular, it has been shown that Bloch

cillators uniformly localized in the crystal-momentum Spaceoscnlators breathe,” that is, the electron wave function

and relatively(with respect to the full region of oscillatiopn Yp(x.0) is Iocall_zed within an interval that perloo_llcally ex-
localized in the position coordinate space. pands and shrinks. Let us recall that the breathing behavior

In order to understand the new results, let us recall the fulr'as been previously computed in the case of tght-binding

problem and the existing results. One of the basic tools in th odels. As pointed out in Ref. 8 we note that B3, while

solid state physics is the so-called acceleration theorenpredicting the existence of Bloch oscillators, does not afford

which concerns the motion of a single electron in a regulanﬁ) ftlriled;:irlﬂg??hg gﬁi/etfhae%?érﬁis) \i’;ec\l'é'grfh?nv(\;’ethésnéseg?e
crystal subjected to a steady and uniform electric ffelleht y P

¥(x,t) be the electron wave function and let of the p.hase factofs). . . .
In this paper we consider the asymptotic expression of

BO's in the limit of weak electric field from which the the-
oretical explanation of the breathing behavior in the general
case follows: As a result, we give the asymptotic expression
of the position’s time-dependent operator with its expecta-
o ) o tion value [see EQq.(9) below] and its variance for weak
be the wave function in the CMR3 is the Brillouin zone,  gyternal field. Moreover, we prove the acceleration theorem
e, it is the torus9/b represented by the interval  giing the expression of the acceleratieralled also “the
(—b/2,b/2], k, the crystal momentum variable, is an elementggfecive inverse masy operator in terms of the second de-
of B, b=2mx/d is the period of the reciprocal lattice adds rivatives of the band functionsee formula12) below.

the period of the crystal. _ o To this end, we consider the time-dependent Sdimger
Let us point out the existence of different definitions for gquation in the crystal momentum representation

the acceleration theorem. In the Kittel textb8ake hypoth-

esis of the uniform translational motion in the crystal mo- ! 9

mentum space of the states is defined as the acceleration ih—-=Ha, Hi=—if - +E-fX, 2
theorem. Thus, the validity of this kind of acceleration theo-

rem should be equivalent to the existence of Bloch oscillawhere E=diagE,(k)), En(k) are the periodic band func-
tors restricted to one band and moving following the equations andX=[X; n(K)lnmen is the coupling term between
tion: a,(k,t)=a,(k—ft/%,0). Actually, there is a rigorous the bands. Let us ignore the coupling terfX for the
version of this theorem given by Callowayereafter called present; in such a case, the operatgrdefined on the Hil-
the theorem “of the crystal momentum velocit(CMV), bert space{ admits a sequence of ladders of real eigenval-
which is expressed by the following equation: ues

a(k,t)=(ap(k,t))pene H= é L2(B,dk)

n=1
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Enj=Enotidf, jeZz, (3 i fblz
X,t)= an(k,t k,x)dk, 6
where E,, o= (1/b) [*2,E,(k)dk with associated eigenvec- yx) i=1 J b (ki en(kix) ©

n,j — aljdkyyn —(sh n_1
tors (k) =€ w(K)€", wheree'=(dn)men, op=1 if where ¢,(k,x) are the Bloch functions ¢,(k,x)

n=mand 0 otherwise, and — ey (k,x), where u,(k,x)=u,(kx+d) are periodic
i [k functions.
W”(k):exr{?ﬁ,[En,O_ En(q)]dq}. If we assume, for the present, that the state is initially

prepared in one band, for instance the first one, then the
Therefore, if the coupling term is absent, we can write tha@cceleration theorem in the forfd) demonstrates that for

the solution of Eq(2) is formally given by any timet<T, the electron stays in the same band and that
by introducing the new variables=ft/4 and ¢=fx, the
alk)=> ¢, e Enitihyni(k) leading term of the right-hand side of E®) takes the form
1T 4 n.j ’
e b2 i K
k— k, | ké— E.(g)dq||dk
.S Wn(k)e_iEn,Ot/h[z .. jeidj(k_mh)}en. ffblzal( nuy(k,x)exp ¢ ( & J'kir 1(a) CI)
neN jeZ '

which can be evaluated, within the limit of a sméllby
means of the stationary-phase theorem. Stationary phase
points are the real solutions, belonging to the Brillouin zone

1 _ 1 (b2 o _
C”*j:5<aO’Wn'J>H:Bf,b,zag(k)eildjkwn(k)dk’ B, of the equation

The coefficient, ; are given by

wherea®(k) =a(k,0) is the initial state in the crystal momen- Ei(k=7)—E1(k)+£=0. (@)

tum representation and" denotes the complex conjugation Let

of w"; that is, they are the Fourier coefficients of the function

a’(k)w"(k). Hence, the above sum, with respect to the index n(7)=max{Ey(k—7)—Ey(k)] (8)
j, is the Fourier series GiﬂW“ at k— ft/A. Combining the keb

termse 'End/"  wh(k—ft/4), andw"(k) in a single term be a periodic function with periodz=|f|Tg/A=b with

@ ,(k,t), we obtain the final equation maximum value at=b/2 equal to the widtiB, of the first
o band and minimum value at=0 equal to zero. By defini-
an(k,t) =@ (k,t)a,(k—ft/fi), (4)  tion, Eq. (7) has real solutions belonging #8 when ¢e

[—#n(7),n(7)], otherwise it has complex solutions with an
imaginary part different from zero. Therefore, in the limit of
_ 1(k a small electric field and for times that are not too great, the
Dk, )y=en®D g (k)= — ?f En(a)da, (5  amplitude of the electron wave functid®) is, generically, of
k-fuh the order\/f for any ée[— 5(7),5(7)] and it is exponen-

where® (k,t) is a phase factor given by

and it is such that tially small outside this interval. Hence, we conclude that the
Bloch oscillator wave functionyg(x,t), initially prepared
On(k,t)= O(k+b,t) = O,(K,t+Tg) +DE, o/ f. in one band, is localized within the interval

[— n(7)/f,n(7)/f] with amplitude of the order 1/ which

eigenvalues3) become ladders of resonances, the so-calle eriodically expands and shrinks, i.e., we replicate the
'genvalu ! reathing behavior of the Bloch oscillator. The maximum

Wannier-Stark resonanc8ahus it follows that.formula(4) amplitude of this interval is given byR, /f according to the
must be corrected by means of a slow damping term due 9 ener tilted band picturt?

:met L,:Qgte Iw(;g Settf)e;:(ta rgeiwi?eg ttgit—:-brzgdssinigdth(gsz gi';?:'crjder In order to give a more detailed description of the dynam-
g Y ' ics of Bloch oscillators we now consider the time behavior of

tions can be ignored for_an_y t'TE‘E [0.T], where typically the position’s expectation valuealled alsocenter of mags
T;>Tjg for a small electric field! we can conclude that Eq. defined as

(4) is (asymptotically correct for times that are not too great
and for a small electric field even if a coupling term is o
present. <X)t=J X (x,1)]? dx.

Formula(4) represents the actual behavior of BO'’s. Let us -
notice the presence.of the phase fad@rwhose motion Is It is a matter of simple computation to find, within the limit
not simply a translation on the torus. We emphasize that the o :

) N of a small electric field, that from the time-dependent Sehro

phase factor does not contribute(td', hence Eq(4) can be . S . 5
seen as a new version of the CMV theorem that implies EqJiNger equation in the fornfix= _Kiﬂ"'(p 2m)y+Vi,
(1). In order to study the time behavior of the Bloch oscilla- from Eq. (6), from the fact thatfZ¢n(x,k) @m(X,k")dx
tors we go back to the electron wave function in the position= 8(k—k’) sy, and from the CMV theorem in the for(d) it
coordinate spacé follows that the leading term is given by

When we restore the coupling teri, the ladders of real
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FIG. 1. This picture shows the time evolution of the absolute FIG. 2. This picture shows the time evolution of the absolute
value|#(x,t)| of the electron wave function for different values of value of anoptimal electron wave function that initially is not
7 wherer=ft/f (Ref. 15. The wave function, initially prepared in sharply localized on one site; in such a case we observe an asym-
an exact Wannier state localized on the zeroth site of the superlatnetrical breathing behavior and, in particular, the center of the
tice, symmetrically spreads in space and returns to its initial shapaave function oscillates in space too, in agreement with (E4).
after a Bloch periodTg. As appears from the picture, the wave The variance appears almost constant and the wave packet moves
function is localized inside the interval »(7)/f,+ n(7)/f] and  with no marked changes in shape.
the position’s expectation value remains fixed. Circle points denote
the valuest (7)/f and diamond points denote the valueB, /f.  the second derivative of the band functions, computeki at
+ft/h, defines the effective inverse mass operator in the
b/2 - Heisenberg picture.
<X>tw2n: fﬁb/2|aﬂ(k)|2:$1(k)dk+ X2, ©) Regarding the computation of the varian@=([x
—(x)'1%)!, the same arguments give that

where

1 s~ f " K PIELRT? dk— ()7 +S° (12
Eﬁ,(k):?[En(k+ft/ﬁ)—En(k)] (10) noJobl2

within the limit of a small electric field, where®

is the multiplicative term of the Heisenberg position operator=y, E’f)/2| aﬁ(k)’|2 dk and where we assume, for the sake

acting on thenth band space. We point out tH&f,(k) peri-  of definiteness, that arg® is a real-value function.

odically depends on. The termx® is independent of time e conclude by considering the time evolution for two
and it represents the mean value of the differential pdak  different wave packets. In the first case, let us suppose that
of the Heisenberg's position operator. In particult=0 if  the electron has been initially prepared in an exact Wannier
al are real-value functions, i.ea=al for anyn. Moreover, state, for instanca®(k)=1/\b anda’(k)=0 for anyn>1,

it follows that (x)'=(x)"' if a° are even functions, i.e., that is, the electron wave function is initially localized on
a’(—k)=a%k) for anyn. As a result of Eq(9), there im-  one site of the superlattidsee Fig. 1 at=0). The electron
mediately follows the acceleration theorem in the coordinatavave function given by Eq4), (5), and(6) exhibits a sym-

space within the limit of a small electric field metrical motion(see Fig. 1 in particular, the center of the
wave function remains fixed, i.€x)'=0 and the variance is

b2 a time-dependent function of the ordef?/
E f |a°(k)|2[E”(k+ft/ﬁ)]dk; (11) In the second case, let us suppose that the initial wave
n Job2 " " function is not sharply localized on one site, for instance,

d?(x)t f
dt? 4?2
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tion. Therefore, the center of mass represents the position of
_ _ the particle with a reasonable error; in such a case, as ex-
for somek, ando>0 small enoughisee Fig. 2 at=0 with  plained in Ref. 14, it is expected that by means of an inelas-
o=0.1andky=0), periodically arranged on the torisThe  tjc scattering process, the center of mass of this Bloch oscil-
electron wave function now exhibits an asymmetrical breathtator shifts in the field direction contributing to the current.
ing behavior and, in particular, the center of mass oscillates |y conclusion. in this paper we have put on solid bases the
in space todsee Fig. 2 In particular, foro- small enough, it ;5| definition of the effective mass in the case of periodic
follows that potential. We have shown the origin of the acceleration theo-
(X)~EL (ko) [1+0O(a)], rem from the correct expression of the BQ s and the pos!non
operator. As a consequence, we have given the behavior of
that is, the center of the wave packet oscillates in an intervahe center of mass and of the spread of a BO. The analytical
with amplitudeB, /f. It is also clear that the state is very and numerical applications regard, in particular, well local-

well localized in the crystal momentum space. Moreover, thgzed states that can be of some experimental interest.
square root of the variance giving the spread of the wave

packet in the position coordinate space is of oraéf, that This work was partially supported by the Italian MURST,
is, it is uniformly small with respect to the range of oscilla- INDAM-GNFM, and INFN.

a‘l)(k):e‘(k‘ko)z/zozl[waz]ﬂ“ (13)

14
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