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Acceleration theorem for Bloch oscillators
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In this paper, we give the Heisenberg position operator in the crystal momentum representation and we
prove the acceleration theorem for Bloch oscillators. As an application, we discuss the motion of well localized
states.
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In a previous research,1 we have given the rigorous be
havior of a generic Bloch oscillator~BO! in the crystal mo-
mentum representation~CMR!. In particular, we have shown
the existence of a phase factor, see Eq.~5! below, in the
expression of an oscillator that does not undergo a sim
uniform translational motion in the crystal-momentum spa
It was clear that this phase factor is essential in order
obtain the correct behavior of the state in the positio
coordinate space. In particular, it was shown the gen
breathing mode motion as a consequence of the same p
factor.

Now, we return to the same problem in order to give t
Heisenberg position operator and to prove the accelera
theorem. Moreover, we show the existence of a class of
cillators uniformly localized in the crystal-momentum spa
and relatively~with respect to the full region of oscillation!
localized in the position coordinate space.

In order to understand the new results, let us recall the
problem and the existing results. One of the basic tools in
solid state physics is the so-called acceleration theor
which concerns the motion of a single electron in a regu
crystal subjected to a steady and uniform electric field.2 Let
c(x,t) be the electron wave function and let

a~k,t !5„an~k,t !…nPNPH5Š
n51

`

L2~B,dk!

be the wave function in the CMR;B is the Brillouin zone,
i.e., it is the torus R/b represented by the interval
(2b/2,b/2#, k, the crystal momentum variable, is an eleme
of B, b52p/d is the period of the reciprocal lattice andd is
the period of the crystal.

Let us point out the existence of different definitions f
the acceleration theorem. In the Kittel textbook2 the hypoth-
esis of the uniform translational motion in the crystal m
mentum space of the states is defined as the acceler
theorem. Thus, the validity of this kind of acceleration the
rem should be equivalent to the existence of Bloch osci
tors restricted to one band and moving following the eq
tion: an(k,t)5an(k2 f t/\,0). Actually, there is a rigorous
version of this theorem given by Calloway,3 hereafter called
the theorem ‘‘of the crystal momentum velocity’’~CMV!,
which is expressed by the following equation:
0163-1829/2001/63~21!/212303~4!/$20.00 63 2123
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^k& t5^k1 f t/\&05^k&01 f t/\, ~1!

wheref 5eF, e is the electron charge andF is the strength of
the electric field and

^k& t5 (
n51

` E
2b/2

b/2

kuan~k,t !u2 dk

denotes the mean value of the crystal momentumk on the
statea(k,t). This CMV theorem implies that̂k& t is a peri-
odic function with periodTB52p\/ f d, but not the existence
of the BO’s.4 Recent studies, both numerical5 and
experimental,6 have provided a more detailed description
Bloch oscillators. In particular, it has been shown that Blo
oscillators ‘‘breathe,’’ that is, the electron wave functio
c(x,t) is localized within an interval that periodically ex
pands and shrinks. Let us recall that the breathing beha
has been previously computed in the case of tight-bind
models.7 As pointed out in Ref. 8 we note that Eq.~1!, while
predicting the existence of Bloch oscillators, does not affo
a full description of these facts. As we will show, this is d
to the fact that the CMV theorem~1! is clearly independen
of the phase factor~5!.

In this paper we consider the asymptotic expression
BO’s in the limit of weak electric field from which the the
oretical explanation of the breathing behavior in the gene
case follows.1 As a result, we give the asymptotic expressi
of the position’s time-dependent operator with its expec
tion value @see Eq.~9! below# and its variance for weak
external field. Moreover, we prove the acceleration theor
giving the expression of the acceleration~called also ‘‘the
effective inverse mass’’! operator in terms of the second d
rivatives of the band functions@see formula~12! below#.

To this end, we consider the time-dependent Schro¨dinger
equation in the crystal momentum representation

i\
]a

]t
5H fa, H f52 i f

]

]k
1E2 f X, ~2!

where E5diag„En(k)…, En(k) are the periodic band func
tions andX5@Xn,m(k)#n,mPN is the coupling term between
the bands. Let us ignore the coupling termf X for the
present; in such a case, the operatorH f defined on the Hil-
bert spaceH admits a sequence of ladders of real eigenv
ues
©2001 The American Physical Society03-1
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En, j5En,01 j d f , j PZ, ~3!

where En,05(1/b)*2b/2
b/2 En(k)dk with associated eigenvec

tors wn, j (k)5ei jdkwn(k)en, whereen5(dm
n )mPN , dm

n 51 if
n5m and 0 otherwise, and

wn~k!5expF i

f E0

k

@En,02En~q!#dqG .
Therefore, if the coupling term is absent, we can write t
the solution of Eq.~2! is formally given by

a~k,t !5(
j ,n

cn, je
2 iEn, j t/\wn, j~k!

5 (
nPN

wn~k!e2 iEn,0t/\F (
j PZ

cn, je
id j (k2 f t/\)Gen.

The coefficientscn, j are given by

cn, j5
1

b
^a0,wn, j&H5

1

bE2b/2

b/2

an
0~k!e2 id jkw̄n~k!dk,

wherea0(k)5a(k,0) is the initial state in the crystal momen
tum representation andw̄n denotes the complex conjugatio
of wn; that is, they are the Fourier coefficients of the functi
an

0(k)w̄n(k). Hence, the above sum, with respect to the ind

j, is the Fourier series ofan
0w̄n at k2 f t/\. Combining the

terms e2 iEn,0t/\, w̄n(k2 f t/\), and wn(k) in a single term
Fn(k,t), we obtain the final equation

an~k,t !5Fn~k,t !an
0~k2 f t/\!, ~4!

whereFn(k,t) is a phase factor given by

Fn~k,t !5eiun(k,t), un~k,t !52
1

f Ek2 f t/\

k

En~q!dq, ~5!

and it is such that

un~k,t !5un~k1b,t !5un~k,t1TB!1bEn,0 / f .

When we restore the coupling termf X, the ladders of rea
eigenvalues~3! become ladders of resonances, the so-ca
Wannier-Stark resonances.9 Thus it follows that formula~4!
must be corrected by means of a slow damping term du
the tunneling effect between the bands and of a remain
term that goes to zero asf goes to zero.10 Since these correc
tions can be ignored for any timetP@0,Tt#, where typically
Tt@TB for a small electric field,11 we can conclude that Eq
~4! is ~asymptotically! correct for times that are not too gre
and for a small electric field even if a coupling term
present.

Formula~4! represents the actual behavior of BO’s. Let
notice the presence of the phase factor~5! whose motion is
not simply a translation on the torus. We emphasize that
phase factor does not contribute to^k& t, hence Eq.~4! can be
seen as a new version of the CMV theorem that implies
~1!. In order to study the time behavior of the Bloch oscill
tors we go back to the electron wave function in the posit
coordinate space12
21230
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an~k,t !wn~k,x!dk, ~6!

where wn(k,x) are the Bloch functions wn(k,x)
5eikxun(k,x), where un(k,x)5un(k,x1d) are periodic
functions.

If we assume, for the present, that the state is initia
prepared in one band, for instance the first one, then
acceleration theorem in the form~4! demonstrates that fo
any timet<Tt the electron stays in the same band and t
by introducing the new variablest5 f t/\ and j5 f x, the
leading term of the right-hand side of Eq.~6! takes the form

E
2b/2

b/2

a1
0~k2t!u1~k,x!expF i

f S kj2E
k2t

k

E1~q!dqD Gdk

which can be evaluated, within the limit of a smallf, by
means of the stationary-phase theorem. Stationary ph
points are the real solutions, belonging to the Brillouin zo
B, of the equation

E1~k2t!2E1~k!1j50. ~7!

Let

h~t!5max
kPB

@E1~k2t!2E1~k!# ~8!

be a periodic function with periodtB5u f uTB /\5b with
maximum value att5b/2 equal to the widthB1 of the first
band and minimum value att50 equal to zero. By defini-
tion, Eq. ~7! has real solutions belonging toB when jP
@2h(t),h(t)#, otherwise it has complex solutions with a
imaginary part different from zero. Therefore, in the limit
a small electric field and for times that are not too great,
amplitude of the electron wave function~6! is, generically, of
the orderAf for any jP@2h(t),h(t)# and it is exponen-
tially small outside this interval. Hence, we conclude that
Bloch oscillator wave functionc(x,t), initially prepared
in one band, is localized within the interva
@2h(t)/ f ,h(t)/ f # with amplitude of the order 1/f , which
periodically expands and shrinks, i.e., we replicate
breathing behavior of the Bloch oscillator. The maximu
amplitude of this interval is given by 2B1 / f according to the
Zener tilted band picture.13

In order to give a more detailed description of the dyna
ics of Bloch oscillators we now consider the time behavior
the position’s expectation value~called alsocenter of mass!
defined as

^x& t5E
2`

1`

xuc~x,t !u2 dx.

It is a matter of simple computation to find, within the lim
of a small electric field, that from the time-dependent Sch¨-
dinger equation in the formf xc52 i\ċ1(p2/2m)c1Vc,
from Eq. ~6!, from the fact that*2`

1`w̄n(x,k)wm(x,k8)dx
5d(k2k8)dn

m, and from the CMV theorem in the form~4! it
follows that the leading term is given by
3-2
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^x& t;(
n
E

2b/2

b/2

uan
0~k!u2Jn

t ~k!dk1x0, ~9!

where

Jn
t ~k!5

1

f
@En~k1 f t/\!2En~k!# ~10!

is the multiplicative term of the Heisenberg position opera
acting on thenth band space. We point out thatJn

t (k) peri-
odically depends ont. The termx0 is independent of time
and it represents the mean value of the differential parti ]/]k
of the Heisenberg’s position operator. In particular,x050 if
an

0 are real-value functions, i.e.,an
05ān

0 for anyn. Moreover,
it follows that ^x& t5^x&2t if an

0 are even functions, i.e.
an

0(2k)5an
0(k) for any n. As a result of Eq.~9!, there im-

mediately follows the acceleration theorem in the coordin
space within the limit of a small electric field

d2^x& t

dt2
;

f

\2 (
n
E

2b/2

b/2

uan
0~k!u2@En9~k1 f t/\!#dk; ~11!

FIG. 1. This picture shows the time evolution of the absolu
value uc(x,t)u of the electron wave function for different values o
t wheret5 f t/\ ~Ref. 15!. The wave function, initially prepared in
an exact Wannier state localized on the zeroth site of the supe
tice, symmetrically spreads in space and returns to its initial sh
after a Bloch periodTB . As appears from the picture, the wav
function is localized inside the interval@2h(t)/ f ,1h(t)/ f # and
the position’s expectation value remains fixed. Circle points den
the values6h(t)/ f and diamond points denote the values6B1 / f .
21230
r

e

the second derivative of the band functions, computed ak
1 f t/\, defines the effective inverse mass operator in
Heisenberg picture.

Regarding the computation of the varianceSt5^@x
2^x& t#2& t, the same arguments give that

St;(
n
E

2b/2

b/2

uan
0~k!u2@Jn

t ~k!#2 dk2~^x& t!21S0 ~12!

within the limit of a small electric field, whereS0

5(n*2b/2
b/2 uan

0(k)8u2 dk and where we assume, for the sak
of definiteness, that anyan

0 is a real-value function.
We conclude by considering the time evolution for tw

different wave packets. In the first case, let us suppose
the electron has been initially prepared in an exact Wann
state, for instancea1

0(k)[1/Ab andan
0(k)[0 for anyn.1,

that is, the electron wave function is initially localized o
one site of the superlattice~see Fig. 1 att50). The electron
wave function given by Eq.~4!, ~5!, and~6! exhibits a sym-
metrical motion~see Fig. 1!; in particular, the center of the
wave function remains fixed, i.e.,^x& t[0 and the variance is
a time-dependent function of the order 1/f 2.

In the second case, let us suppose that the initial w
function is not sharply localized on one site, for instance,

at-
e

te

FIG. 2. This picture shows the time evolution of the absolu
value of anoptimal electron wave function that initially is not
sharply localized on one site; in such a case we observe an as
metrical breathing behavior and, in particular, the center of
wave function oscillates in space too, in agreement with Eq.~14!.
The variance appears almost constant and the wave packet m
with no marked changes in shape.
3-3
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a1
0~k!5e2(k2k0)2/2s2

/@ps2#1/4 ~13!

for somek0 ands.0 small enough~see Fig. 2 att50 with
s50.1 andk050), periodically arranged on the torusB. The
electron wave function now exhibits an asymmetrical brea
ing behavior and, in particular, the center of mass oscilla
in space too~see Fig. 2!. In particular, fors small enough, it
follows that

^x& t;J1
t ~k0!@11O~s!#, ~14!

that is, the center of the wave packet oscillates in an inte
with amplitudeB1 / f . It is also clear that the state is ve
well localized in the crystal momentum space. Moreover,
square root of the variance giving the spread of the w
packet in the position coordinate space is of orders/ f , that
is, it is uniformly small with respect to the range of oscill
h

s

21230
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tion. Therefore, the center of mass represents the positio
the particle with a reasonable error; in such a case, as
plained in Ref. 14, it is expected that by means of an inel
tic scattering process, the center of mass of this Bloch os
lator shifts in the field direction contributing to the curren

In conclusion, in this paper we have put on solid bases
usual definition of the effective mass in the case of perio
potential. We have shown the origin of the acceleration th
rem from the correct expression of the BO’s and the posit
operator. As a consequence, we have given the behavio
the center of mass and of the spread of a BO. The analyt
and numerical applications regard, in particular, well loc
ized states that can be of some experimental interest.
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