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Fano resonances in translationally invariant nonlinear chains
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We show that the Fano resonance, which has been actively studied in the context of mesoscopic transport in
systems with impurities or defects, also occurgranslationally invariantnonlinear chains. We find that the
phonon scattering with the intrinsic nonlinear localized excitation, called the discrete breather, in this system
produces a rich resonance structure involving the typical signatures of Fano resonance with both perfect
transmission and perfect reflection, and the anomalous resonance structures. Our system can serve as a simple
paradigm for understanding rich Fano-related phenomena in a wide class of nonlinear lattices, based on the
global structure of the localized modes and the perfect reflection.
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When a discrete energy level interferes with a continuum The scattering properties of the localized structures are
of states, a Fano resonance occurs leading to asymmetnielated to the structure of the internal modes of the localized
excitation spectra.After its first observation in the autoion- structure itself! In particular, it was shown that the perfect
ization of atomic physics, it has been found in many otheftransmission occurs at the localized mode threshold, which
physical problems including the asymmetric spectra of thenas been extended to a wide class of the nonlinear systems
Kondo resonance line shape in the tunneling experiment int@ith time-dependent localized structures such as discrete
a single magnetic impurity on a metallic substfet@nd  preatherd?3n the case of the phonon scattering with the
other mesoscopic transport problefrisThe electronic trans-  giaic localized mode for the nearest-neighbor chain, the per-
port in a ultrasmall semiconductor structure resembles Wavgyct reflection cannot be found since it involves only one
propagation in wave guides, where the transmission amp"écattering channel, whereas discrete breathers can admit in-
tude EXh'b'tS a rich structure related to resonance pheno initely many scattering channels displaying a rich transmis-
ena. In particular, quasibound states in resonantly couplegion structure involving perfect reflections.

cavities, called the stubs, give rise to the asymmetric trans- In our studv of the Fano resonance. we focus on the one-
mission which has been discussed in the context of the Fan . y ot X P X
ensional nonlinear Klein-Gordon chain in translationally

resonance. In the systems studied so far, one must introdu . . ; .
impurities or attached stub$to obtain the Fano resonance, 'nvariant lattices. This system proves to be a much simpler

which generate quasibound states that break the translation@radigm for studying rich Fano resonance related phenom-

invariance. ena than typical mesoscopic transport problems extending
In this report, we propose another scheme to produce thihe existing stut_:iies on the global structure of the localized

Fano resonanceithouta breakup of translational invariance Modes of the discrete breather. Our results can be general-

which is based on the discrete breathers, the time-periodi@ed to a wide class of translationally invariant nonlinear

and spatially localized excitations on the nonlinear latfite. chains supporting discrete breathers.

They are intrinsic modes of the nonlinear lattice with trans- L€t us consider a Klein-Gordon chain with on-site poten-

lational invariance, not imposed impurities, which requiretial and nearest-neighbor harmonic spring coupling with the

practically no activation energy in one dimension and thudtamiltonian

bridges the gap between the highly nonlinegar modes and the " 5

I|ne.ar phonon mode%_RecentIy Sphvyaret al._ reporte_d ex- b= 2 &+V(xn)+ Ee(xn—xn,l)z , )

perimental observation of intrinsic localized spin-wave el 2 2

modes in the anisotropic antiferromagnet, which may serve

as an experimental realization of the discrete breather in wherex;,p, are the coordinate and the momentum at the site

lattice of atomic dimension. n, respectively, and is the spring constant. The equation of
The discrete breathers can affect the energy transport byiotion for the system in Eq1) is given by

scattering phonons, playing the role of the scattering center )

similar to the intrinsic impurity in mesoscopic transport Xp(1)=—=V'[Xp(1) ]+ e(Xp 41— 2Xn+ X 1) - 2

problems. The time dependence of the discrete breather can

lead to rich phenomena associated with the phonon transport Let x3(t) be a discrete breather solution which is time

including the Fano resonance. For example, electron trangeriodic with periodT,. The linearized equation of E42)

port through a point barrier oscillating at frequenoywas  near the discrete breather fgy(t) = x,(t) —x3(t) is given by

shown to yield the transmission resonances including the

Fano resonance, similar. to those found in other muItipIQ ED=AEM) T e[ &n1() =280+ E,_1(D)], ()

guantum channel scattering problems such as the transmis-

sion through a donor impurity in a quasi-one-dimensionaiwhereA(t) = —V"[x3(t)]. By Floquet theorem, the solution

(1D) wire 1° for the linearized equation in E¢3) can be put intag,(t)
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=£,(he it where&,(t+T,) = &4(t). Since&,(t) and Ay(t)

are time periodic with period,=27/w,, they can be ex- 1.2 @ ]
panded in terms of Fourier series using the rotating wave §05 o\
approximation, 1.1 g ]
M M 0.0
En(t)= 2 bn,meiimwbta An(t): 2 an,meiimwbty @ 10
m=—-M m=-M X
@) °
X X

. . . 0.9
wherea, , and b, ,, are Fourier coefficients, anill is the

cutoff. Then the linearized equation can be expressed as th

linear relations between Fourier coefficients: 0.8 I .
‘I " i Ie 0.3.0 " 1 1 1 i 1
(w+Mawy)? 1 M-m 005 010 015 020 025 0.30
- bn,m_z 2 bn,kam,fk_anrl,m €
k=—M+m

FIG. 1. Two phonon bands fan=0 andm= —3 are shown in
=bn-1m, 5 the parameter space of the input phonon frequen@nd the cou-
pling strengthe in the nearest-neighbor Klein-Gordon chain with

which can be put into a transfer matrix form fdy, cubic on-site potential fow,= 0.75. The perfect transmissions, the

= (bﬂ,—M ’bn,—M+l' T 'bn,M)T: perfect reflections, and the localized modes are denoted by,
N N & (symmetric modg and[d (antisymmetric mode respectively.
by _ Brs1 Inset (a): one channel phonon transmission through the discrete
b —n b ©) breather fore=0.25. Inse{b): the linewidthI" of the Fano peak due
n-1 : to the symmetric localized mode verses
Note thatM,, is the transfer matrix which maps the set of
Fourier coefficients at site+1 to one at siten. Now we consider the phonon scattering by the discrete

We consider the scattering setup with the discrete breathgjreather with w,=0.75 for the nearest-neighbor Klein-
at the center of the chain. Since the superposition of thesordon chain with a cubic on-site potential(x) = x2/2
traveling phonons and the decaying solutions of the linear-_x3/3 Figure 1 shows the locus of the localized modes, the
ized equation in the absence of the discrete breather is thearfect transmission, and the perfect reflection in the param-
solution of the linearized equation with the discrete breathepter space of the frequenay, and the coupling strength It
at sites far from the center, we require is now well established that the perfect transmission occurs
at the threshold for the symmetric localized mode;0.05
and terminates at the threshold for the antisymmetric local-
ton - ized modee~0.1 form=0 channel scattering. Note that in
bom=BmAmt BmAm~ @S N—e, (") Fig. 1 the branch of the localized mode penetrates the pho-

where the decay exponents,,, satisfy)\m+)\;11—2+[(w non band withm= —3, producing the perfect transmission.

2_ 021/ .— — Ay This phenomenon has been previously studied and inter-
imf)b()m* (i)sO]tLEe s?:aEt(el;)ing Xh;ggj]elgggsliggliigl tkfg nrgn- preted as the true breather instability which is not connected

/ > . ; : with the finite-size effect*!® In the following, we provide
Imear !attlcg with N+ 1 sites with the asympiotic boundary an explanation of these perfect transmissions in the context
conditions in Eq(7), we get

of Fano resonance.
( - ) (6 ) We show in inset(a) of Fig. 1 the transmittance of the
N+1

bnm=a@mAm+ amhy”  as n——co,

by (8) m= —3 scattering channel versus the input phonon fre-
quency for the coupling strengte=0.25, where a clear
asymmetric Fano resonance is visiblasat 0.96. It is due to
whereM =M _\-M _y.q---My. _ the interplay betweem= —3 phonon band, i.e., the con-
In the case of one channel scattering, the frequengy  tinyum of states, and the antisymmetric localized mode, i.e.,
= w+mwy, for m#m* does not belong to the phonon band 5 quasibound state in the phonon band, which originates
of the scattering channem®, for example, defined by fom them=0 scattering channel. Another Fano resonance
[Q0,VQ5+4e] for m*=0. In this casero=e™* with the  due to the symmetric localized mode @t=0.91 has a dif-
real wave vectok, ¢y =r(k), the reflection coefficient, and ferent resonance structure with a broader line width and no
Bo =t(K), the transmission coefficient, fixingg =1. To  perfect reflection. In the mesoscopic transport problem, the
satisfy the boundary condition, the solution on one siddinewidth I' corresponds to the imaginary part of a pole of
should be obtained after repeatedly multiplying transfer mathe transmission amplitude in the complex energy plane, and
trices to the solution on the other side, which leads to thas related to the life time of a quasibound state. It also cor-
solution matching condition. In the case of the localizedresponds to the instability exponent in the dynamical sense.
modes |\ | <1 for all m, where the solutions can be simply The instability of the discrete breather caused by the colli-
found by solving the secular E8). sion between the localized mode and the phonon band has

bon-1 by
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wp=0.6. FIG. 3. The phonon transmissidunits on the righty axis)

. . . 15 . through the discrete breather as in Fig. 2 éer0.067 (units on the
been extens[vely studied by Maret al. Inset(b_) of Fig. 1 right y axis) and the phase shift of the outgoing phon@mits on
shows the width of the Fano peak corresponding to the synmy, o lefty axis).

metric localized mode as a function ef This is in agree-
ment with the behavior of the modulus of the eigenvalues in
Fig. 3 of Ref. 15, in which the modulus of one of the eigen-
values starts to considerably deviate from one at the locatio ound state can be written ky-(z— Eq)/[z— (Ep—iT')],

of the collision between the symmetric localized mode an lvherez E~ andE- are the complex enerav. the positions of
the phonon band;~0.18. In general, Fano resonances show o P P 9y P

o . ) > "the perfect reflection and the pole, respectivVélirhe life-
the asymmetric line shape including the perfect transmlssmﬂme of the quasibound state is given by-#/(2T). From
and the perfect reflection. In the case of the Fano peak co q 9 > '

responding to the symmetric localized mode the perfect reE_hls it can be shown that the transmission probability is given

flection accompanies the perfect transmission in most two-
channel scattering regions. Note that the anomalous
resonances without either the perfect transmission or the per- r2 (E—Eg)?
fect reflection may occur in a very small parameter range. T(E)= (Eo—Eg)?+ T2 (E—Ep)2+ T2
We show in Fig. 2 another example of Fano resonances in P =0 P
phonon scattering by the discrete breather for the nearest-
neighbor Klein-Gordon chain with an on-site Morse poten-With the known energies for the perfect reflectig and
tial, V(x) =[ 1 —exp(—x)]/2 with w,=0.6. It displays a more perfect transmissiok;, we can derive the energy of the pole
complex structure, but still the Fano resonances are easi§sEp=(Eo+E;)/2+ V(Eo—E;)?—4I'%/2. WhenT is much
identified from the perfect transmissions and the neighboringmaller than the difference betwe&g andE,, Ep can be
perfect reflections. Figure 3 fo¢e=0.067 represents clear
asymmetric resonance line shapes in transmittance. At ¢ o
rather smaller value of below the coupling strength of the
band-band crossing, the Fano resonance occurs, which de
pends on the characteristic of the nonlinear on-site potentials
considered. In Fig. 3 the phase shifts of the outgoing Wave§>
are also shown. Note that at the perfect reflection the phas¢y
jumps sharply by the amount af, while at the perfect trans-
mission the phase drops monotonically by the amount.of
This phenomenon can be clearly understood by using a sym
metry argument only® It must be noted that in some regions
only the perfect transmission is found, while in other regions = |
only the perfect reflection is found. For example, in Fig. 2,
the region with 0.06& e<0.062 exhibits only the perfect

FIG. 2. The same as in Fig. 1 for the Morse on-site potential for

Based on the zero-pole pair nature of Fano resonances,
the transmission amplitude in the vicinity of each quasi-

C)

ransmittanc

L S S . -7
reflection, while the regions with 0.084¢<0.066 and 1.02 1.05 108 0991 0902 0993  0.994

0.09=¢€, only the perfect transmission. Theaaomalous o ©

Fano resonances occur due to the existence of the forbidden FiG. 4. Fitted line shapes of the Fano resonafi@ethe same as
regions of the phonon transport in the phonon band structurg Fig. 1 with e=0.063 and(b) the same as in Fig. 2 witle
arising from the discrete translational symmetry. Note that=0.17. The fitted values using the formu@) are shown in solid
the perfect reflection in the region with 0.08(=<0.035 has lines, and the data from numerical computation of the phonon scat-
nothing to do with Fano resonance. tering with the discrete breather in circles.
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simply approximated ag;. Using this and Eq(9) transmit-  strongly localized. Thus this situation is essentially identical
tance curves can be fitted with a single fitting paramé&ter to a one-dimensional wave guide coupled with multiple stubs
very well. Figure 4 shows the fitted line shapes of the Fanan a typical mesoscopic transport problem, which has been
resonance with the sharp peak in the case of sihalthich  studied actively in the context of the Fano resonance.
is in excellent agreements with one from the form(@afor In summary, we find the Fano resonance in phonon trans-
smallT'. mission through the discrete breather in a translationally in-
To gain more physical intuition on the existence of Fanoyariant nonlinear chain, which is explained based on the glo-
resonance in translationally invariant nonlinear chains, wea| structure of the localized modes and perfect reflections.
rewrite Eq.(5) as a discrete Schdinger equation of coupled | aqdition, our system reveals more complex resonance be-
channels for one-dimensional electron transport: havior involving anomalous Fano resonances without either
M—m perfect transmission or perfect reflection. The observed Fano
(—eV2+ U mbnm= > am bk (100  resonance in nonlinear chains is closely related to one in the
k=-M+m quasi-1D mesoscopic transport problem with impurities or
stubs. Our results can be generalized to a wide class of non-
linear lattices that support discrete breathers. Our system
should serve as a simple paradigm for studying rich Fano
resonance related phenomena.

where V2 is the discrete Laplacian,V2b, n=bn_1m
+bny1m—2b,m andU,, o, is the effective potential energy,
Uym=—(o+ mwy,) 2. Each channah (originally Fourier in-
dex has the kinetic energy; eVﬁ and the effective potential
energyU, ,, and the terms on the right-hand side denotes We thank Sam Young Joe, Hyun-Woo Lee, and Chang
the coupling. In the case of one channel scattering, the eleGSub Kim for helpful discussions. We acknowledge support
tron state in the propagating channel is extended over thisom the Korean Ministry of Science and Technology and
entire sites, while the electron states in other channels arie Korea Science and Engineering Foundation.
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