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Fano resonances in translationally invariant nonlinear chains
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We show that the Fano resonance, which has been actively studied in the context of mesoscopic transport in
systems with impurities or defects, also occurs intranslationally invariantnonlinear chains. We find that the
phonon scattering with the intrinsic nonlinear localized excitation, called the discrete breather, in this system
produces a rich resonance structure involving the typical signatures of Fano resonance with both perfect
transmission and perfect reflection, and the anomalous resonance structures. Our system can serve as a simple
paradigm for understanding rich Fano-related phenomena in a wide class of nonlinear lattices, based on the
global structure of the localized modes and the perfect reflection.
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When a discrete energy level interferes with a continu
of states, a Fano resonance occurs leading to asymm
excitation spectra.1 After its first observation in the autoion
ization of atomic physics, it has been found in many oth
physical problems including the asymmetric spectra of
Kondo resonance line shape in the tunneling experiment
a single magnetic impurity on a metallic substrate2,3 and
other mesoscopic transport problems.4,5 The electronic trans-
port in a ultrasmall semiconductor structure resembles w
propagation in wave guides, where the transmission am
tude exhibits a rich structure related to resonance phen
ena. In particular, quasibound states in resonantly cou
cavities, called the stubs, give rise to the asymmetric tra
mission which has been discussed in the context of the F
resonance. In the systems studied so far, one must intro
impurities or attached stubs4,5 to obtain the Fano resonanc
which generate quasibound states that break the translat
invariance.

In this report, we propose another scheme to produce
Fano resonancewithouta breakup of translational invarianc
which is based on the discrete breathers, the time-peri
and spatially localized excitations on the nonlinear lattice6,7

They are intrinsic modes of the nonlinear lattice with tran
lational invariance, not imposed impurities, which requ
practically no activation energy in one dimension and th
bridges the gap between the highly nonlinear modes and
linear phonon modes.8 Recently Schwarzet al.9 reported ex-
perimental observation of intrinsic localized spin-wa
modes in the anisotropic antiferromagnet, which may se
as an experimental realization of the discrete breather
lattice of atomic dimension.

The discrete breathers can affect the energy transpor
scattering phonons, playing the role of the scattering ce
similar to the intrinsic impurity in mesoscopic transpo
problems. The time dependence of the discrete breather
lead to rich phenomena associated with the phonon trans
including the Fano resonance. For example, electron tr
port through a point barrier oscillating at frequencyv was
shown to yield the transmission resonances including
Fano resonance, similar to those found in other multi
quantum channel scattering problems such as the trans
sion through a donor impurity in a quasi-one-dimensio
~1D! wire.10
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The scattering properties of the localized structures
related to the structure of the internal modes of the locali
structure itself.11 In particular, it was shown that the perfe
transmission occurs at the localized mode threshold, wh
has been extended to a wide class of the nonlinear sys
with time-dependent localized structures such as disc
breathers.12,13 In the case of the phonon scattering with t
static localized mode for the nearest-neighbor chain, the
fect reflection cannot be found since it involves only o
scattering channel, whereas discrete breathers can adm
finitely many scattering channels displaying a rich transm
sion structure involving perfect reflections.

In our study of the Fano resonance, we focus on the o
dimensional nonlinear Klein-Gordon chain in translationa
invariant lattices. This system proves to be a much simp
paradigm for studying rich Fano resonance related phen
ena than typical mesoscopic transport problems extend
the existing studies on the global structure of the localiz
modes of the discrete breather. Our results can be gen
ized to a wide class of translationally invariant nonline
chains supporting discrete breathers.

Let us consider a Klein-Gordon chain with on-site pote
tial and nearest-neighbor harmonic spring coupling with
Hamiltonian

H5 (
n52`

` Fpn
2

2
1V~xn!1

1

2
e~xn2xn21!2G , ~1!

wherexn ,pn are the coordinate and the momentum at the
n, respectively, ande is the spring constant. The equation
motion for the system in Eq.~1! is given by

ẍn~ t !52V8@xn~ t !#1e~xn1122xn1xn21!. ~2!

Let xn
0(t) be a discrete breather solution which is tim

periodic with periodTb . The linearized equation of Eq.~2!
near the discrete breather forjn(t)5xn(t)2xn

0(t) is given by

j̈n~ t !5An~ t !jn~ t !1e@jn11~ t !22jn~ t !1jn21~ t !#, ~3!

whereAn(t)52V9@xn
0(t)#. By Floquet theorem, the solutio

for the linearized equation in Eq.~3! can be put intojn(t)
©2001 The American Physical Society01-1
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5j̄n(t)e
2ivt, wherej̄n(t1Tb)5 j̄n(t). Sincej̄n(t) andAn(t)

are time periodic with periodTb52p/vb , they can be ex-
panded in terms of Fourier series using the rotating w
approximation,

j̄n~ t !5 (
m52M

M

bn,me2 imvbt, An~ t !5 (
m52M

M

an,me2 imvbt,

~4!

wherean,m and bn,m are Fourier coefficients, andM is the
cutoff. Then the linearized equation can be expressed as
linear relations between Fourier coefficients:

S 22
~v1mvb!2

e Dbn,m2
1

e (
k52M1m

M2m

bn,kam,2k2bn11,m

5bn21,m , ~5!

which can be put into a transfer matrix form forbW n
5(bn,2M ,bn,2M11 , . . . ,bn,M)T:

S bW n

bW n21
D 5MnS bW n11

bW n
D . ~6!

Note thatMn is the transfer matrix which maps the set
Fourier coefficients at siten11 to one at siten.

We consider the scattering setup with the discrete brea
at the center of the chain. Since the superposition of
traveling phonons and the decaying solutions of the line
ized equation in the absence of the discrete breather is
solution of the linearized equation with the discrete breat
at sites far from the center, we require

bn,m5am
2lm

n 1am
1lm

2n as n→2`,

bn,m5bm
1lm

n 1bm
2lm

2n as n→`, ~7!

where the decay exponents,lm , satisfylm1lm
21221@(v

1mvb)22V0
2#/e50 @V05AV9(0)# and ulmu,1 for m

Þm* (m* is the scattering channel!. Considering the non-
linear lattice with 2N11 sites with the asymptotic boundar
conditions in Eq.~7!, we get

S bW 2N

bW 2N21
D 5 M S bW N11

bW N
D , ~8!

whereM5M 2N•M 2N11•••MN .
In the case of one channel scattering, the frequencyvm

5v1mvb for mÞm* does not belong to the phonon ban
of the scattering channelm* , for example, defined by
@V0 ,AV0

214e# for m* 50. In this case,l05eik with the
real wave vectork, a0

25r (k), the reflection coefficient, and
b0

15t(k), the transmission coefficient, fixinga0
151. To

satisfy the boundary condition, the solution on one s
should be obtained after repeatedly multiplying transfer m
trices to the solution on the other side, which leads to
solution matching condition. In the case of the localiz
modes,ulmu,1 for all m, where the solutions can be simp
found by solving the secular Eq.~8!.
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Now we consider the phonon scattering by the discr
breather with vb50.75 for the nearest-neighbor Klein
Gordon chain with a cubic on-site potential,V(x)5x2/2
2x3/3. Figure 1 shows the locus of the localized modes,
perfect transmission, and the perfect reflection in the par
eter space of the frequencyv, and the coupling strengthe. It
is now well established that the perfect transmission occ
at the threshold for the symmetric localized mode,e'0.05
and terminates at the threshold for the antisymmetric loc
ized mode,e'0.1 for m50 channel scattering. Note that i
Fig. 1 the branch of the localized mode penetrates the p
non band withm523, producing the perfect transmissio
This phenomenon has been previously studied and in
preted as the true breather instability which is not connec
with the finite-size effect.14,15 In the following, we provide
an explanation of these perfect transmissions in the con
of Fano resonance.

We show in inset~a! of Fig. 1 the transmittance of the
m523 scattering channel versus the input phonon f
quency for the coupling strengthe50.25, where a clear
asymmetric Fano resonance is visible atv'0.96. It is due to
the interplay betweenm523 phonon band, i.e., the con
tinuum of states, and the antisymmetric localized mode,
a quasibound state in the phonon band, which origina
from the m50 scattering channel. Another Fano resonan
due to the symmetric localized mode atv'0.91 has a dif-
ferent resonance structure with a broader line width and
perfect reflection. In the mesoscopic transport problem,
linewidth G corresponds to the imaginary part of a pole
the transmission amplitude in the complex energy plane,
is related to the life time of a quasibound state. It also c
responds to the instability exponent in the dynamical sen
The instability of the discrete breather caused by the co
sion between the localized mode and the phonon band

FIG. 1. Two phonon bands form50 andm523 are shown in
the parameter space of the input phonon frequencyv and the cou-
pling strengthe in the nearest-neighbor Klein-Gordon chain wi
cubic on-site potential forvb50.75. The perfect transmissions, th
perfect reflections, and the localized modes are denoted by3, 1,
L ~symmetric mode!, andh ~antisymmetric mode!, respectively.
Inset ~a!: one channel phonon transmission through the disc
breather fore50.25. Inset~b!: the linewidthG of the Fano peak due
to the symmetric localized mode versuse.
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BRIEF REPORTS PHYSICAL REVIEW B 63 212301
been extensively studied by Marinet al.15 Inset~b! of Fig. 1
shows the width of the Fano peak corresponding to the s
metric localized mode as a function ofe. This is in agree-
ment with the behavior of the modulus of the eigenvalues
Fig. 3 of Ref. 15, in which the modulus of one of the eige
values starts to considerably deviate from one at the loca
of the collision between the symmetric localized mode a
the phonon band,C'0.18. In general, Fano resonances sh
the asymmetric line shape including the perfect transmiss
and the perfect reflection. In the case of the Fano peak
responding to the symmetric localized mode the perfect
flection accompanies the perfect transmission in most t
channel scattering regions. Note that the anomal
resonances without either the perfect transmission or the
fect reflection may occur in a very small parameter rang

We show in Fig. 2 another example of Fano resonance
phonon scattering by the discrete breather for the nea
neighbor Klein-Gordon chain with an on-site Morse pote
tial, V(x)5@12exp(2x)#/2 with vb50.6. It displays a more
complex structure, but still the Fano resonances are ea
identified from the perfect transmissions and the neighbo
perfect reflections. Figure 3 fore50.067 represents clea
asymmetric resonance line shapes in transmittance. A
rather smaller value ofe below the coupling strength of th
band-band crossing, the Fano resonance occurs, which
pends on the characteristic of the nonlinear on-site poten
considered. In Fig. 3 the phase shifts of the outgoing w
are also shown. Note that at the perfect reflection the ph
jumps sharply by the amount ofp, while at the perfect trans
mission the phase drops monotonically by the amount ofp.
This phenomenon can be clearly understood by using a s
metry argument only.16 It must be noted that in some region
only the perfect transmission is found, while in other regio
only the perfect reflection is found. For example, in Fig.
the region with 0.060<e<0.062 exhibits only the perfec
reflection, while the regions with 0.064<e<0.066 and
0.097<e, only the perfect transmission. Theseanomalous
Fano resonances occur due to the existence of the forbid
regions of the phonon transport in the phonon band struc
arising from the discrete translational symmetry. Note t
the perfect reflection in the region with 0.031<e<0.035 has
nothing to do with Fano resonance.

FIG. 2. The same as in Fig. 1 for the Morse on-site potential
vb50.6.
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Based on the zero-pole pair nature of Fano resonan
the transmission amplitude in the vicinity of each qua
bound state can be written byt;(z2E0)/@z2(EP2 iG)#,
wherez, E0, andEP are the complex energy, the positions
the perfect reflection and the pole, respectively.17 The life-
time of the quasibound state is given byt5\/(2G). From
this it can be shown that the transmission probability is giv
by

T~E!5
G2

~EP2E0!21G2

~E2E0!2

~E2EP!21G2
. ~9!

With the known energies for the perfect reflectionE0 and
perfect transmissionE1, we can derive the energy of the po
asEP5(E01E1)/26A(E02E1)224G2/2. WhenG is much
smaller than the difference betweenE0 and E1 , EP can be

FIG. 4. Fitted line shapes of the Fano resonance:~a! the same as
in Fig. 1 with e50.063 and~b! the same as in Fig. 2 withe
50.17. The fitted values using the formula~9! are shown in solid
lines, and the data from numerical computation of the phonon s
tering with the discrete breather in circles.

r

FIG. 3. The phonon transmission~units on the righty axis!
through the discrete breather as in Fig. 2 fore50.067~units on the
right y axis! and the phase shift of the outgoing phonon~units on
the left y axis!.
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BRIEF REPORTS PHYSICAL REVIEW B 63 212301
simply approximated asE1. Using this and Eq.~9! transmit-
tance curves can be fitted with a single fitting parameteG
very well. Figure 4 shows the fitted line shapes of the Fa
resonance with the sharp peak in the case of smallG, which
is in excellent agreements with one from the formula~9! for
small G.

To gain more physical intuition on the existence of Fa
resonance in translationally invariant nonlinear chains,
rewrite Eq.~5! as a discrete Schro¨dinger equation of coupled
channels for one-dimensional electron transport:

~2e¹n
21Un,m!bn,m5 (

k52M1m

M2m

am,2kbn,k , ~10!

where ¹n
2 is the discrete Laplacian,¹n

2bn,m[bn21,m

1bn11,m22bn,m andUn,m is the effective potential energy
Un,m[2(v1mvb)2. Each channelm ~originally Fourier in-
dex! has the kinetic energy,2e¹n

2 and the effective potentia
energyUn,m , and the terms on the right-hand side deno
the coupling. In the case of one channel scattering, the e
tron state in the propagating channel is extended over
entire sites, while the electron states in other channels
. S

ett
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strongly localized. Thus this situation is essentially identi
to a one-dimensional wave guide coupled with multiple stu
in a typical mesoscopic transport problem, which has b
studied actively in the context of the Fano resonance.

In summary, we find the Fano resonance in phonon tra
mission through the discrete breather in a translationally
variant nonlinear chain, which is explained based on the g
bal structure of the localized modes and perfect reflectio
In addition, our system reveals more complex resonance
havior involving anomalous Fano resonances without eit
perfect transmission or perfect reflection. The observed F
resonance in nonlinear chains is closely related to one in
quasi-1D mesoscopic transport problem with impurities
stubs. Our results can be generalized to a wide class of n
linear lattices that support discrete breathers. Our sys
should serve as a simple paradigm for studying rich Fa
resonance related phenomena.
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