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Comprehensive strain analysis in thin films based on high-resolution x-ray diffraction:
Application to implanted LiNbO 3

D. Shilo, E. Lakin, and E. Zolotoyabko
Department of Materials Engineering, Technion—Israel Institute of Technology, Haifa 32000, Israel

~Received 4 August 2000; published 3 May 2001!

Strain analysis of thin film heterostructures is expanded to noncubic crystalline symmetries with special
attention to the practically important hexagonal and rhombohedral systems. The developed formalism is rather
general and can be used to study systems with highly anisotropic lattice mismatches~even unknown! and strain
degrees. It is applied here to analyze complex structural modifications in the near-surface waveguide layers
produced by He-implantation inY-cut LiNbO3 wafers, which initially have the rhombohedral Bravais lattice.
Experimental results, obtained by x-ray mapping of reciprocal space in the vicinity of symmetric and asym-
metric reflections, showed a strong anisotropy of the layer-lattice mismatch in plane perpendicular to the
three-fold axis. This result unequivocally indicates that the initial rhombohedral symmetry of the unit cell is
broken as a result of ion implantation. Experimental findings are explained in terms of strain-induced ordering
of point defects, which is a well-known phenomenon in the field of physical metallurgy, but has never been
mentioned in the studies of thin film structures for microelectronics and optoelectronics. Since this phenom-
enon can be important to other layered structures, it is included into a general solution of the elasticity problem.

DOI: 10.1103/PhysRevB.63.205420 PACS number~s!: 61.10.Nz, 81.40.Jj, 68.55.Ln, 42.79.Gn
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I. INTRODUCTION

Modern microelectronic and optoelectronic devices
built on strained thin film heterostructures.1 The lattice strain
can appear during epitaxial growth of differently compos
layers or as a result of device processing, such as ion imp
tation, thermal treatment, oxidation, etc. Precise data
strain levels have crucial importance to device functioni
since lattice strain strongly affects such film characteris
as band-gap energy, carrier mobility, dielectric tensor, a
refractive index.

Strain field in thin films is determined by the spatial d
tribution of lattice parameters and, in principle, can be
duced from high-resolution x-ray diffraction measuremen
In order to relate the measured lattice parameter variation
strain values, an elasticity problem should be solved, wh
takes proper account of crystal symmetry. General solu
provides the relationship between the measured lattice
rameter changes; the structural characteristics, such as la
mismatches~and, hence, the epilayer composition!; and the
strain degrees that can be expressed via misfit disloca
densities.

An elasticity problem for a heterostructure, composed o
cubic film epitaxially deposited on a cubic substrate of ar
trary orientation, had been solved in Refs. 2–4. They
tained solutions that are based on an assumption that
in-plane strain field~i.e., that is confined in the plane o
film/substrate interface! is isotropic. Two conditions must b
fulfilled in order to validate this assumption.

~1! Densities of misfit dislocations along the coordina
axes in the interface plane should be equal.
~2! In-plane lattice mismatch should be isotropic.

However, experimental results5–8 show that in some Si-
and zinc-blende-based structures the misfit dislocation d
sities differ when measuring along@110# and @11̄0# direc-
tions. Hence, strictly speaking, the existing solution for cu
0163-1829/2001/63~20!/205420~13!/$20.00 63 2054
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heterostructures is only valid in fully strained situations w
no misfit dislocations.

In recent years there has been a growing interest to im
ment noncubic~mainly hexagonal and rhombohedral! single
crystals, such as GaN, AlN, SiC, Al2O3, LiNbO3, etc., into
modern device technology. Reduction of the unit cell sy
metry makes strain analysis much more complicated. If
crystal symmetry differs from the cubic one, the lattice m
match is no longer isotropic. For example, in a hexago
lattice, which will be considered below, a mismatch in theZ
direction~six-fold axis! is different from that in theX andY
directions. If theZ axis is situated in the interface plane, th
in-plane lattice mismatch will be anisotropic. However,
many cases the components of lattice mismatch continu
follow the Vegard rule, i.e., they are proportional to the lay
composition~although the proportionality factor may be di
ferent for theX, Y, andZ directions!, and, hence, are deter
mined by a single parameter: atomic concentration.9,10 For
such structures a solution, given in Ref. 2, has been gene
ized in Ref. 11 in order to describe lattice strains in cryst
with reduced symmetry. However, this solution only rema
valid for fully strained structures.

In Sec. II of this paper a general approach to solve
elasticity problem is developed that can be applied to a
crystalline system. This approach is free from the strain is
ropy assumption and, hence, it can be applied to parti
relaxed layered structures as well. Moreover, the propo
analysis can be used in complicated situations when an in
lattice mismatch is unknown or the Vegard rule is not val
A good example is a heterostructure fabricated by ion
plantation. The latter leads to the modification of lattice p
rameters due to implantation-induced lattice damage. A
shown below, such rather heavy treatment can even resu
the breaking of initial crystal symmetry, that should be tak
into account when analyzing experimental data.

Abilities of the developed formalism are illustrated b
experimental results obtained with He-implanted and
©2001 The American Physical Society20-1
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nealed LiNbO3 single crystals, having initial rhombohedr
symmetry~which often is represented in the hexagonal s
ting!. Implantation and subsequent heat treatments are
to fabricate waveguide layers for light propagation
LiNbO3-based optoelectronic devices.12 Structural modifica-
tions in the waveguide layer directly affect the refracti
index via electron density changes and strain-induced ph
elastic effect. It has been shown that the depth dependen
the changes of refractive index is similar to that of the i
plantation damage,13 and to the variation of the interplana
d-spacing along the ion trajectory.14 Nevertheless, we are
still far from a complete understanding of atomic mech
nisms that are responsible for modified optical characte
tics.

In order to carry out a comprehensive strain analysis
the LiNbO3 waveguide layers, the changes of lattice para
eters were precisely measured by using x-ray mapping
reciprocal space. Experimental data are displayed in Sec

The obtained results are analyzed in Sec. IV. We sh
how equations derived in Sec. II can be used to deduce
components of lattice mismatches and strain degrees f
measured changes of lattice parameters. Comparison
tween different components of lattice mismatch allowed
to conclude that the initial rhombohedral symmetry is brok
as a result of ion implantation. The driving force of th
breakdown is the strain-induced ordering of point defects
an implanted layer. Analysis of experimental data taken fr
the annealed samples gave straightforward indication
heat treatment at elevated temperatures leads to lattice re
ery ~via annihilation and migration of postimplantation poi
defects! rather than to the misfit dislocation formation.

II. THEORETICAL ANALYSIS

A general solution of the elasticity problem in layere
structures results in complex expressions that are difficu
analyze and to adopt to real situations. On the other ha
most of the potentially used heterostructures have spe
lattice symmetry and orientation that greatly simplify the
retical analysis. Keeping this in mind, we introduce here
general routine for the solution of the elasticity proble
~which can be applied to the arbitrary lattice symmetry a
orientation! without developing the explicit general expre
sions.

Instead, the important steps are explained that have t
performed to solve the elasticity problem. Following the
steps, the reader will be able to derive explicit expressi
for layered structures of particular symmetry. In this pape
complete set of equations is derived for the rhombohe
Y-oriented LiNbO3 layers, in which anisotropic lattice mis
match~unknown! is introduced by ion implantation. Takin
this sufficiently complicated situation as an example,
show a way in which the detailed strain analysis can be
ried out.

A. Definitions

Let us consider a single-crystalline thin film that is grow
or fabricated on the top of a substrate having the same la
symmetry and orientation, but slightly different lattice p
rameters.
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The lattice mismatch describes the differences betw
respective lattice parameters of the substrate and the laye
its hypothetical free-standing state. Generally, the latt
mismatch is given by a second-rank tensormi j whose diag-
onal components

mii 5
aR,i2aS,i

aR,i
~1!

are equal to the relative differences in lattice constants al
the i axis (i 5X,Y,Z) of the substrateaS,i and the relaxed
film aR,i , respectively.

The further analysis is formally valid for systems
which mii !1. Most of the thin film structures satisfy thi
criterion.

The mismatch tensormi j has a diagonal form in all crysta
classes in which angles between the Bravais lattice vec
are fixed by symmetry constrains. Nondiagonal~shear! com-
ponents appear only in the monoclinic and triclinic classes
which one or three angles, respectively, are independent
tice parameters. In these cases, the nondiagonal compo
are defined as the differences between corresponding an
in the substrate and the free-standing layer.

The number of essential mismatch components depe
on the crystal symmetry. For example, in cubic crystals th
is only one such mismatch since themi j tensor is diagonal
andmxx5myy5mzz.

In general, the lattice parameter differences between
substrate and the layer, which are measured by x-ray diff
tion, differ from the mismatchesmi j due to the elastic strain
in the layer that are produced by the forces acting at
layer/substrate interface. The lattice parameter differen
are completely described by the second-rank tensorj i j ,

j i j 5
]ui

]xj
, ~2!

which is common in the theory of elasticity15 and is defined
via the deformation vectoru that describes the displacemen
of the layer’s atoms from their hypothetical positions acco
ing to the order of the substrate’s lattice.

Another definition that is often used in thin film studies16

j i i 5
aL,i2aS,i

aS,i
, ~3!

is based on the comparison between the actual lattice
stants of the layeraL,i and the substrate,aS,i , along thei
axis. Note, that Eq.~3! defines only diagonal elements of th
tensorj i j . So, in order to take into account the shear stra
in the layer, Eq.~2! should generally be used. It is als
worthwhile to emphasize that the origin of the shear def
mation is not necessarily the ‘‘intrinsically’’ nondiagona
mismatch components~as in monoclinic or triclinic crystals!.
As will be shown in Sec. II D, shear strains can appea
there are nonzero components of the stiffness tensor
connect between in-plane axial stresses and shear strain

The difference between the free-standing lattice~de-
scribed by tensormi j ! and the strained lattice of the laye
~described by tensorj i j ! is defined via the equation:
0-2
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COMPREHENSIVE STRAIN ANALYSIS IN THIN FILMS . . . PHYSICAL REVIEW B 63 205420
j i j 5mi j 1ei j . ~4!

In general case, the tensorei j is not symmetric and can b
divided into a symmetric part« i j ,

« i j 5~ei j 1eji !/2, ~5!

which describes lattice strains, and an antisymmetric p
v i j ,

v i j 5~ei j 2eji !/2, ~6!

which describes lattice rotations. Substituting Eqs.~1!, ~3!,
and~4! into Eq.~5! and neglecting second-order terms ofmii
andj i i @i.e., replacingaS,i by aR,i in the denominator of Eq
~3!# yields the well-known definition of the diagonal stra
components:

« i i 5
aL,i2aR,i

aR,i
. ~7!

Before starting to solve the elasticity problem, attenti
should be paid to an appropriate choice of the coordin
system. It is suitable to choose a coordinate system with
axes located in the plane of the layer/substrate interface
the third axis being perpendicular to it. In order to be able
use Eqs.~1!, ~3!, and~7!, the coordinate axes should be som
linear combinations of the translation vectors, but it is n
obligatory that they coincide with the basis of Bravais lattic
It is much easier to operate with strain tensor component
the orthogonal coordinate system, which is a natural cho
for cubic, tetragonal, and orthorhombic crystalline system
In the cases of rhombohedral and hexagonal symme
which are of main interest here, the suitable orthogonal
ordinate system is depicted in Fig. 1. In this system, thZ
axis coincides with the three-fold or six-fold axis, theX axis
is parallel to the triangle or hexagon side, and theY axis is
perpendicular to both theZ andX axes. This coordinate sys
tem is also routinely used to describe elastic properties
hexagonal and rhombohedral crystals.17

Tensormi j , describing the mismatch between lattice p
rameters of the layer and the substrate, both of hexagon
rhombohedral symmetry, does not contain the nondiago

FIG. 1. Unit cell of LiNbO3 ~in hexagonal setting! and a suitable
choice of Cartesian coordinate system~X, Y, Z! within it.
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terms. Moreover, two of the three diagonal componentsmxx ,
myy , andmzz are equal, viz.,mxx5myy , owing to the trigo-
nal symmetry of translation vectors in theXY plane. How-
ever, ion implantation produces unpredictable structu
changes in the near surface layer due to formation of a la
amount of point defects. Under implantation conditions n
only are the mismatch values unknown, but also the relati
between the mismatch components. It is even possible
the implantation procedure leads to the breakdown of
initial symmetry of the layer, and further analysis of expe
mental data gives us evidence that this is the case.

B. In-plane strains and misfit dislocations

Interatomic forces, acting on the layer/substrate interfa
compel the layer’s atoms to fit into the in-plane arrangem
of the substrate lattice. Since the layer thickness is m
smaller than that of the substrate, one can neglect the
strate strains. For very thin films with the thickness less th
some critical value, the system energy is minimized if t
interface is fully coherent and the layer is fully strained. Th
means that the in-plane lattice parameters of the layer,aL,i ,
exactly match those of the substrate,aS,i , and, hence,j i i
50 for both coordinate axes located in the interface plan

For thicker layers there is a thermodynamically dictat
driving force to form misfit dislocations in order to accom
modate lattice mismatch and to diminish elastic strain
ergy. Despite the dislocation-strain field being nonuniform
is possible to define effective~or averaged! lattice param-
eters, which can be put into Eqs.~3! and~7!, instead ofaL,i .
This simplification is good enough for layered structur
with low dislocation densities, when dislocation-induc
modification of lattice parameters is small,Da/a!1.

In this case, the effective in-plane lattice parameters of
layer are related to the linear misfit dislocation densitiesni as
follows:18

aL,i5aS,i~16nibi !, ~8!

wherebi is the component of Burgers vector along thei axis.
The sign@1# in Eq. ~8! corresponds toaR,i.aS,i , while the
sign @2# corresponds toaR,i,aS,i .

Substituting Eq.~8! into Eqs.~3! and ~7!, yields the fol-
lowing expressions for the in-plane components of tens
j i j and« i j :

j i i 56nibi , ~9!

« i i 52mii 6nibi . ~10!

In Eq. ~10! we again neglected second-order terms ofmii and
j i i sincemii !1 andj i i !1.

Another way to describe the effect of misfit dislocatio
formation consists of the introduction of the strain degr
0<Si<1, which characterizes the strain relaxation proces
~see, e.g., Ref. 19!. Since the misfit dislocation densityni is
generally anisotropic, the strain degreeSi should also be de-
fined separately for each of two in-plane coordinate axes
the following expression:

« i i 52mii Si . ~11!
0-3



tie

xi
rs

y

le
m
-

n
m
s

ri-
sfi

lv
th
th

ud
um
h

c

an

n
r

s
ra

or

.

i-
e
try
-
en-

s a

if
hes
i-
ice
-

d
r
e

a

tion

e to
ally

by

D. SHILO, E. LAKIN, AND E. ZOLOTOYABKO PHYSICAL REVIEW B 63 205420
Setting Eq.~10! equal to Eq.~11!, gives the relation be-
tween the strain degrees and the misfit dislocation densi

Si512unibi u/mii , ~12!

wheremii Þ0. Substituting Eq.~12! into Eq. ~9! yields

j i i 5mii ~12Si ! ~13!

for two i axes, which are located in the interface plane.
In fully strained stateSi51, and the misfit dislocation

density isni50. Thus, the in-plane strains reach the ma
mum value of« i i 52mii , and the in-plane lattice paramete
of the layer match those of the substrate, i.e.,j i i 50. In the
fully relaxed stateSi50, and the misfit dislocation densit
reaches the maximum value ofni

max5umiiu/bi . At the same
time the in-plane strains equal« i i 50, and the in-plane lattice
parameters of the layer reach their relaxed values, i.e.,aL,i
5aR,i andj i i 5mii .

In further analysis we will take into account the possib
formation of the misfit dislocations via strain degree para
eters@Eqs. ~11!–~13!#. In this description the relations be
tween intrinsic lattice characteristics~mii andSi! and the two
axial strain components along the in-plane axes are give
Eq. ~11!. As was already mentioned, the in-plane shear co
ponent only appears in the monoclinic and triclinic system
Thus, in our case of theY-cut LiNbO3 crystals,

«xx52mxxSx , «zz52mzzSz , «xz50. ~14!

The situation is more complex in the monoclinic and t
clinic crystals, especially because of an influence of mi
dislocations on the in-plane shear strain components.

C. Plane stress assumption

The boundary conditions, which should be imposed so
ing the elasticity problem for a layered structure, assume
there are no forces acting on a free surface of the layer in
perpendicular direction.

Because the layer thickness is a few orders of magnit
less than its lateral dimensions, it is reasonable to ass
that the layer stresses act only in the interface plane. T
assumption provides the three stress componentss i j with at
least one of the indices indicating the normal to the interfa
equal to zero.

For theY-cut LiNbO3 this assumption yields

syy5sxy5szy50. ~15!

D. Strain tensor

The three strain components acting in the interface pl
have already been found in Sec. II B@see Eq.~14!#. Using
plane-stress assumption@Eq. ~15!# and Hooke’s law,s i j
5Ci jkl «kl ~where Ci jkl is the stiffness tensor for a give
point-group symmetry! yields three equations for the othe
three strain components« i j with at least one of the indexe
indicating the normal to the interface. For the rhombohed
Y-cut LiNbO3 crystals ~point group 3m!, this procedure
yields
20542
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«yy52
~C44C121C14

2 !«xx1C44C13«zz

C44C112C14
2 ,

«yz52C14

~C111C12!«xx1C13«zz

C44C112C14
2 ,

«xy50. ~16!

In Eq. ~16! the standard form of the elastic stiffness tens
with reduced indices~from 4 to 2! is used. The nonzero
stiffness constants20 of LiNbO3 crystals are given in Table I

The shear strain«yz appears in Eq.~16! due to the pres-
ence ofC14 component in the stiffness tensor. This is a typ
cal situation for lattices with low symmetry or when th
normal to the interface does not coincide with the symme
axis.21 As will be shown in the following sections, the mea
surement of shear strain is very important to the compreh
sive strain analysis.

Note that settingC1450, C125C13, and«xx5«zz in Eq.
~16! yields the well-known results for cubic crystals:

«yy522~C12/C11!«xx and «yz50. ~17!

Finally, the substitution of Eq.~14! into Eq. ~16! enables
us to express all the components of the strain tensor a
function of mi j andSi .

E. Relationship between the intrinsic lattice characteristicsmij

and Si , and the measured lattice parameter changesj i j

The strain state of the layer will be completely defined
the intrinsic lattice characteristics, such as lattice mismatc
mi j and strain degreesSi , are known. However, the quant
ties measured by means of x-ray diffraction are the latt
parameter changesj i j . In order to find the relationship re
quired, let us substitute Eqs.~5! and ~6! into Eq. ~4!. This
yields

j i j 5mi j 1« i j 1v i j . ~18!

The only term in Eq.~18! which still has not been expresse
via mi j and Si , is the antisymmetric lattice rotation tenso
v i j . As was explained in Sec. II A, it contributes to th
nondiagonal components of tensorj i j .

Tensorv i j may appear due to the tendency to form
coherent interface. Analysis of shear strains in LiNbO3 layers
shows that the coherent interface results in the deforma
of a typejzy52«yz , while jyz50 ~see Fig. 2!. Misfit dislo-
cations at the substrate/layer interface can also contribut
the rotation tensor and change the situation schematic
illustrated in Fig. 2.

The rotation tensor components can be determined
measuring two nondiagonal termsj i j andj j i :

TABLE I. LiNbO3 stiffness constants~GPa!, taken from Ref.
20.

C11 C12 C13 C14 C33 C44

203 55 75 8.8 244 60
0-4
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COMPREHENSIVE STRAIN ANALYSIS IN THIN FILMS . . . PHYSICAL REVIEW B 63 205420
v i j 5~j i j 2j j i !/2. ~19!

Using Eq.~19!, the measured values ofv i j can be substituted
into Eq. ~18! in order to obtain a final relationship betwee
the intrinsic lattice characteristics,mi j andSi , and the mea-
sured lattice parameter changesj i j .

In case of theY-cut LiNbO3, Eqs. ~14!, ~16!, and ~18!,
together with numerical values of elastic stiffness coe
cients~see Table I!, finally yield

jxx5mxx~12Sx!, ~20!

jyy50.279mxxSx1myy10.372mzzSz ,

jzz5mzz~12Sz!,

2«yz5jzy1jyz50.375mxxSx10.109mzzSz .

Thus, we have four equations~according to four measur
able lattice parameter changes! that connect five variables
three mismatch parameters and two strain degrees. The
tem of Eqs.~20! permits an interval of structural paramete
which can be extracted from the experimental data, ra
than the unique solution. This is a typical situation in t
strain analysis of heterostructures, which is not frequen
mentioned in the research reports. Instead, some additi
assumptions based on the Vegard rule or on the alleg
known crystal symmetry of strained layer are used, wh
allow us to avoid the uncertainty mentioned. These assu
tions are often considered as self-evident without care
testing of their compatibility to experimental data.

In case of theY-cut LiNbO3, an excessive degree of free
dom can be removed by assumingmxx5myy , that reflects an
initial rhombohedral symmetry. However, it cannot be do
a priori. By using Eq.~20!, one can compose a differenc
A5(myy2mxx), as a function of the measured lattice para
eter changes:

myy2mxx5A5jyy2jxx23.454~2«yz!. ~21!

FIG. 2. Schematic illustration of shear deformation in fu
strainedY-cut LiNbO3.
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Equation ~21! provides a straightforward way to check a
equality,myy5mxx , on the basis of measured data and, if
turns out thatAÞ0, to detect possible symmetry breakin
induced by ion implantation or other reasons.

III. EXPERIMENT

Y-cut LiNbO3 wafers, 3 in. in diameter, 0.5 mm thick
with one polished face, were subjected to He implantation
order to produce waveguide layers near the wafer surfa
He-ions, of an energy of 320 keV, were implanted at roo
temperature through the polished face of the wafers at a d
of 231016 ions/cm2. After implantation a part of the sample
were subjected to 30-min heat treatments in a furnace un
a flow of forming gas, at temperatures ranging between
and 470 °C in order to anneal the implantation dama
Structural modifications were measured by high-resolut
x-ray diffraction ~HRXRD!.

In the previous study14 the HRXRD profiles were taken in
the vicinity of the symmetric (030)LiNbO3 reflection, pro-
viding diffraction intensity from atomic planes parallel to th
crystal surface. Based on successful fittings between m
sured and simulated diffraction profiles, the out-of-pla
~normal to the surface! changes of the interplanar~030!
d-spacingDd/d as a function of crystal depthy were de-
duced. These dependences~see typical example in Fig. 3!
showed that in the first approximation the damaged reg
which for the given He-ion energy spans up to 1mm in
depth, consists of two distinct layers. The first layer, whi
we will call the ‘‘low-damage layer’’~LD!, is situated be-
tween 0.1 and 0.85mm beneath the surface. Within this laye
the energy lossesdE/dy and the respective implantatio
damage are moderate and weaklyy dependent because of th
relatively high velocity of implanted species. Correspon
ingly, theDd/d(y) function is nearly constant here.

The second layer is confined between 0.85 and 1mm in
depth and is characterized by sharpDd/d variation. At this
point the ion velocity is close to zero, and the implant
species are effectively stopped by the nuclear stopp
mechanism, producing a large amount of point defects.
will call this layer the ‘‘high-damage layer’’~HD!. Due to
the lattice swelling in this layer the electron density an
correspondingly, the refractive index are reduced and, he
an optical barrier to light propagation into the crystal bulk

FIG. 3. Typical changes of the out-of-plane~030! d-spacing in
as-implantedY-cut LiNbO3, as a function of the crystal depth. Th
separation to ‘‘low damage layer’’~LD! and ‘‘high damage layer’’
~HD! is indicated.
0-5
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created.14 The presence of the optical barrier leads to lig
confinement near the crystal surface, i.e., provides wa
guide properties.

Beyond the HD layer, a nondamaged crystal reg
~‘‘substrate’’! is located, since implanted species do not p
etrate there. Implantation-induced lattice mismatch~un-
known! at the HD/substrate interface is a driving force f
lattice strains there, which can produce additional change
refractive index via photoelastic effect. Thus, the comp
hensive analysis of this complicated problem requires
components of strain tensor to be measured by HRXRD.
measurement procedures are described in the next sect

A. HRXRD technique

HRXRD is based on the measurements of diffraction p
files in the close vicinity of the Bragg angleuB , and on
subsequent fittings of the measured intensity distribution
those simulated by means of the dynamical diffract
theory22,23 or in the framework of the extended kinematic
approach.24 In fact, the latter is well suited for implantatio
and diffusion problems in thin films.25,26 As a result of this
fitting, the depth-resolved changes in lattice parameters
extracted, providing information that is unattainable by a
other technique.

In case of spatially well-defined layers it is possible
stay within the more simple routine, viz, measuring an an
lar distanceDv between diffraction peaks originated in th
layer and in the substrate21 ~see Fig. 4!. Angular distanceDv
can be split into two components,Du andDf. The first con-
tribution Du appears due to the difference between latticd
spacingsd in the layer and in the substrate:

Du52tanuB

Dd

d
. ~22!

The second termDf is a tilt angle between the~hkl!-atomic
planes in the substrate and in the layer, arising due to
respective differences in lattice parameters. To describe
strain state of the layer we need to knowDu andDf values

FIG. 4. ~220!LiNbO3 diffraction profiles taken from an as
implanted sample~1! as well as from the sample implanted an
annealed at 250 °C~2!. Inset shows the scattering geometry f
asymmetric reflection.
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separately. A corresponding routine, based on diffract
measurements with symmetric and asymmetric reflection
well established for cubic crystals21 and allows us to deduce
the lattice parameter differences between the layer and
substrate, along, (Da/a) i , and perpendicular, (Da/a)' , to
the layer/substrate interface from measuredDu andDf val-
ues. For noncubic crystals, the corresponding relations
should be found in accordance with the specific crystal sy
metry and orientation. In the next section these relations
be developed for theY-cut LiNbO3 under a method that ca
also be used in a general case.

B. Strain components inY-cut LiNbO 3: diffraction profile
analysis

As was mentioned in Sec. II, comprehensive strain ana
sis is based on the tensorj i j , which in the case ofY-cut
LiNbO3 is given by

j i j 5F jxx 0 0

0 jyy 0

0 2«yz jzz

G . ~23!

Tensor j i j has this form in Cartesian coordinate syste
~X,Y,Z! depicted in Fig. 1. However, the measured angu
values,Du and Df, are related to the axial strain and th
shear strain, respectively, in another coordinate system,
in which the atomic planes~hkl! are indexed. Therefore, to
express the axial and shear strain components via the c
ponents of the deformation tensorj i j , some rotation of the
tensorj i j to the new coordinate system should be perform
Below, a corresponding procedure is introduced for refl
tions of a type of (hk0) and (0kl), which were used in this
research.

For the (hk0) reflection a rotation of the deformation ten
sorj i j should be made around theZ axis, in order to express
it in a new coordinate system (X8,Y8,Z8) in which theY8
axis is perpendicular to the reflecting planes and theX8 axis
is parallel to them. In this coordinate systemDd/d(hk0) is
equal tojyy8 , and Df (hk0) is equal tojyx8 . Using standard
rotation transformation for the second-rank tensor,15 the fol-
lowing expressions can be derived:

S Dd

d D
~hk0!

5sin2 fjxx1cos2 fjyy ~24!

Df~hk0!5sinf cosf•~jyy2jxx!,

wheref is an angle between the reflecting plane (hk0) and
the interface.

A similar procedure should be performed for (0kl) reflec-
tion, but this time the rotation is around theX axis, thus, the
Y8 axis is perpendicular to the reflecting plane (0kl) and the
Z8 axis is parallel to it. In this coordinate system the expr
sions forDd/d(0kl) andDf (0kl) are
0-6
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S Dd

d D
~0kl !

5jyy8 5sin2 fjzz1cos2 fjyy6sinf cosf~2«yz!,

~25!

Df~0kl !5jyz8 5sinf cosf~jyy2jzz!6sin2 f~2«yz!.

In Eqs.~25! the sign@6# relates to the sign of the index 1 o
the chosen reflection (0kl).

Equations~24! and ~25! allow us to deduce the compo
nents of tensorj i j as a function of the measured paramet
Dd/d andDf. Since we used the specific asymmetric refle
tions ~220! and ~036! in this experiment, one can specify:

jyy5S Dd

d D
~220!

1tanf~220!Df~220!, ~26!

jxx5S Dd

d D
~220!

2cotf~220!Df~220! , ~27!

jzz5S Dd

d D
~036!

2cotf~036!Df~036! , ~28!

2«yz5cotf~036!S D

d D
~036!

1Df~036!2cotf~036!jyy .

~29!

For LiNbO3 lattice the anglesf (220) andf (036) are equal to
30° and 32.76°, respectively. Note that formal changing
the Miller indices (0kl)→(0k l̄ ) leads to changing the sig
of 2«yz . However, it does not influence the further analy
of the experimental data, because only the absolute value
2«yz make sense.

By using the symmetric~030! reflection it is possible to
directly obtain thejyy term of the deformation tensor, sinc
it is defined via the out-of-plane~030! d-spacing difference:

jyy5S Dd

d D
~030!

. ~30!

Equation~30! provides a higher precision for particular ter
jyy than a usage of asymmetric reflection~220! and Eq.~26!.

However, it is known27 that despite all precautions th
diffraction profile measurements are not accurate eno
when the subtle modifications of the in-plane lattice para
eters are of the main interest. Generally, this is due to
overlapping of the substrate and the layer diffraction pe
measured in the vicinity of asymmetric reflections. The p
cision of HRXRD is analyzed in more detail in our paper28

In case ofY-LiNbO3 we estimated an accuracy of this mo
of measurement as 1024. Due to the limited accuracy a
analysis of experimental profiles based on Eqs.~26!–~30!
gave small ('1024) but negative in-plane components
tensorj i j . This is unreasonable from the physical point
view, since ion implantation, in general, leads to the swell
of the lattice. Reliable experimental data of significantly e
hanced precision ('1025) were obtained by means of x-ra
mapping in reciprocal space~RSM!.
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C. Strain components in theY-cut LiNbO 3: X-ray
mapping in reciprocal space

RSM measurements were performed with a setup
combined a 18 kW Rigaku rotating anode generator wit
Bede D3 diffractometer. The primary beam~CuKa1 line!
was prepared by two channel-cut~220!Si crystals. The dif-
fracted beam, before entering the detector, passed thro
the additional channel-cut~220!Si crystal analyzer. In orde
to afford high-precision measurements of lattice parame
differences between the layers and the substrate, RSM
performed in the vicinity of symmetric (030)LiNbO3 reflec-
tion and two asymmetric LiNbO3 reflections, ~036! and
~220!.

Details on RSM technique can be found in Refs. 27 a
29 and an analysis of its enhanced precision in Ref.
Briefly speaking, in the mapping mode the two-dimensio
intensity distribution in the scattering plane is collected
performingv/2Q scans at different offsetv angles. In the
reciprocal space thev/2Q movement takes place along th
vector of reciprocal lattice,H, while the v offset is repre-
sented in the perpendicular direction~see Fig. 5!. Therefore,
RSM enables the straightforward separation between the
ferences ind-spacing~which are revealed on the map alon
the vectorH!, and an angleDf between the reflecting plane
in the substrate and in the layer~which is revealed along the
perpendicular axis!.

However, if one is interested in the subtle changes of
in-plane strains a map will be more representative in ano
coordinate system, viz, with one axis being parallel to
substrate/layer interface~the X or the Z axis in our specific
case!, and the second one being perpendicular to it~the Y
axis for theY-cut LiNbO3! ~see Fig. 5!. In this coordinate
system the vector of reciprocal space,DH, which connects
the nodesH of the substrate~S! and of the layer (L), is
projected to theDH' andDH i components. The relationshi
between the deformation vectoru in real space and the vec
tor DH in reciprocal space is given by the expression30

DH52grad~H•u!52grad~H'u'1H iui!. ~31!

FIG. 5. Schematic drawing of the mapping area in recipro
space in the vicinity of the nodeH. Points of reciprocal lattice,
originated in the substrate and in the layer, are indicated by letteS
andL, respectively.
0-7
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Substituting Eq.~2! into Eq. ~31! yields

DH i52j',iH'2j i ,iH i ~32!

DH'52j','H'2j i ,'H i . ~33!

If a symmetric reflection is used for RSM measuremen
the reciprocal lattice vectorH has no components parallel t
the interface (H i50). Hence, determination of theDH' and
DH i magnitudes from the RSM directly yields thej',i and
j',' values@the first terms in Eqs.~32! and ~33!#.

For asymmetric reflections the reciprocal lattice vectorH
has both componentsH' and H i . Therefore, both terms in
Eqs. ~32! and ~33! will contribute to the measurableDH
value taken from the map. Hence, RSM in the vicinity
symmetric and asymmetric reflections also allows us to
termine thej i ,i andj i ,' components. Using this method, it
possible to determine a complete set of lattice parameter
ferences, by choosing appropriate x-ray reflections.

An important particular situation arises if the in-plane la
tice parameters of the layer and the substrate exactly m
each other. Zero-mismatch value or fully strained state of
layer are good examples. In this casej i ,i50 and j',i50,
i.e., DH i50. This means, that on a map taken in the vicin
of an asymmetric reflection, the diffraction intensity will b
distributed symmetrically around a straight line that conne
the reciprocal lattice pointsS andL and is perpendicular to
the interface~i.e., parallel to theDH'!. We will call this a
‘‘fully strained line’’: FSL. The angle between the FSL an
the reciprocal vectorH for asymmetric reflection used i
equal to the anglef between the reflecting planes and t
interface.

An example of the maps taken in the vicinity of the~030!
symmetric reflection from an as-implanted sample, as we
from the sample implanted and annealed at 250 °C, is sh
in Fig. 6. For an as-implanted sample@Fig. 6~a!# the intensity
distribution is concentrated along the line that is parallel
DH' , because the reciprocal vectorH(030) has no projection
onto the interface plane. Equations~32! and ~33! are con-
verted toDH'52jyyH (030) , providing jyy57.331023 for
HD layer andjyy53.731023 for LD layer. Annealing at
250 °C results in some additional diffraction intensity alo
DH i @Fig. 6~b!#, due to diffuse scattering induced by poi
defects and their aggregates.14 Fortunately, the diffuse scat
tering affects mostly the tails of diffraction profiles an
practically, it does not reduce the accuracy of RSM. Ho
ever, Fig. 6~b! also shows that the diffraction peaks becom
blurred alongDH' . Previous research14 has shown that in
samples annealed at elevated temperatures~.200 °C! the
out-of-plane componentjyy varies much more graduall
with the crystal depth than in the as-implanted samples
this situation, the implanted region can hardly be separa
into the HD and LD sublayers with certain lattice paramete

RSM’s taken from an as-implanted sample in the vicin
of the asymmetric~036! and ~220! reflections are shown in
Fig. 7. It is clearly visible that for both reflections the di
fracted intensity is concentrated around straight line wit
slope that corresponds exactly to FSL. The intensity dis
bution is very narrow~close to the theoretically predicte
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width28! along directions situated in the interface plane, i.
the Z and X directions, respectively. As a result, the defo
mation tensor components,jxx and jzz, were found to be
jxx5jzz50 with a precision of 231025.

Strain relaxation due to heat treatments is illustrated
Fig. 8, which shows the RSM taken in the vicinity of th
asymmetric~220! reflection from the sample implanted an
annealed at 250 °C. It can be seen that despite the broade
of the distribution of diffraction intensity along theY axis
~perpendicular to interface!, the distribution width along the
X and theZ directions~situated in the interface plane! re-
mains very narrow. Due to this circumstance we were abl
determine thejxx andjzz values with the same precision a
in an as-implanted sample.

The zoomed image@Fig. 8~b!# demonstrates that the entir
intensity distribution is concentrated along the line that
slightly shifted from the FSL by a vectorDHx . By measur-
ing these shifts in reciprocal lattice regions that correspo
to HD and LD layers, the values ofjxx583102562
31025 andjxx56310256231025, respectively, were de
duced.

A complete set of the precisely determinedj i j compo-

FIG. 6. Reciprocal space maps@symmetric ~030! reflection#
taken from LiNbO3 samples:~a! as-implanted;~b! implanted and
annealed at 250 °C. Inset in panel~a! shows rocking curve~one-
dimensional map cross-section atDH i50! with peaks from the
substrate~S!, high-damaged~HD!, and low-damaged~LD! regions.
0-8



th
e

lu

b

ed
he

pl
e

e
a
p

ms
he
efi-
in-
be

no-

nit
o-
al
rs.
le,

an-
ni-
de-

s
es

te

tric
d at

COMPREHENSIVE STRAIN ANALYSIS IN THIN FILMS . . . PHYSICAL REVIEW B 63 205420
nents is given in Table II. Due to enhanced precision,
results obtained by RSM can serve as a reliable databas
strain analysis, utilizing equations developed in Sec. II.

IV. DISCUSSION

A. Strain state of implanted and annealedY-LiNbO 3

As mentioned in Sec. II, the assumption,myy5mxx ,
which implies that the unit cell of implanted LiNbO3 keeps
its initial rhombohedral symmetry, provides a unique so
tion for lattice mismatches and strain degrees@see Eq.~20!#.
However, this equality cannot be asserted in advance,
should be checked by using Eq.~21!. The differences,A
5myy2mxx , calculated by means of the measuredj i j values
are also given in Table II.

Table II provides direct evidence that in all measur
samples theA values are positive and much larger than t
measurements errors ('1025). For example,A5631023

was determined in the HD layer of an as-implanted sam
Therefore, it can be concluded that the swelling along thY
direction in an implanted layer~in its hypothetical free-
standing state! is much larger than that along theX direction.
This means that the initial rhombohedral symmetry is brok
due to the implantation processing. If we follow a rule th
the reduced symmetry should be described by a subgrou

FIG. 7. Reciprocal space maps taken from an as-implan
sample in the vicinity of asymmetric reflections:~a! ~036!; ~b!
~220!.
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the initial point group 3m, the modified unit cell presumably
belongs to the monoclinic symmetry. This conclusion ste
from the following considerations: the breakdown of t
rhombohedral symmetry implies that the three-fold axis d
nitely disappears as a result of ion implantation; the rema
ing second symmetry element, the mirror plane, may
found as the unique symmetry element only in the mo
clinic system, viz, in the point groupm. This result can be
made more visual in the hexagonal setting of the initial u
cell. Implantation-induced symmetry reduction to mon
clinic can be driven by small deviations from the initi
angle,a5120°, between corresponding translation vecto
Simple geometric considerations yield the deviation ang
Da, linearly proportional toA value, viz,Da52A). The
latter expression, for example, providesDa51.2° for the
HD layer of an as-implanted sample. Post-implantation
nealing results in the partial lattice recovery toward the i
tial rhombohedral symmetry and, correspondingly, to a
crease of the deviation angleDa ~see Table II!.

Anisotropy of lattice mismatch can be explained in term
of strain-induced ordering of point defects, which reduc

d

FIG. 8. Reciprocal space map in the vicinity of the asymme
~220! reflection taken from the sample, implanted and anneale
250 °C. ~a! Entire mapping area;~b! Enlargement of the layer’s
peak region.
0-9
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TABLE II. Summary of the RSM results.

Sample Layer jxx (3104) jyy (3104) jzz (3104) 2«yz (3104) A (3104) Da ~deg!

As impl. HD 0 73 0 3.8 60 1.2
LD 0 37 0 1.9 30 0.6

Annealed
200 °C

HD ,0.2 56 ,0.2 2.4 48 0.95
LD 0.4 20 ,0.2 1.2 15 0.3

Annealed
250 °C

HD 0.8 26 0.4 1 22 0.44
LD 0.6 16 0.4 0.6 13 0.25

Annealed
350 °C

LD ,0.2 9.6 ,0.2 ,0.4 8 0.15
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the strain energy of the system by decreasing the in-p
mismatch. Such ordering is a well-known phenomenon in
field of physical metallurgy,31–34 and interstitial carbon in
bcc iron is an example. However, to the best of our kno
edge such ordering has not been observed in single cry
used for modern microelectronics and optoelectronics.

Strain-induced defect ordering can take place if defe
introduce a local strain field having a symmetry lower th
that of the initial lattice, i.e., they cause a local anisotro
deformation of the crystal. An ordering mechanism of su
defects is schematically illustrated in Fig. 9.

During an ordering process the point defects jump to
neighboring sites, and the new defect states can be desc
in terms of orientation changing due to the anisotropy m
tioned. The characteristic time of this jumping is mu
shorter as compared to other creep mechanisms, which c
a plastic deformation due to dislocation gliding or the lon
range diffusion.

For further analysis, it is worthwhile to recall Sec. II
order to include the strain-induced ordering in the gene
elasticity problem. It will be helpful to split the lattice mis
match tensormi j given by Eq.~1! into two terms:

mi j 5 f i j 1gi j . ~34!

The first tensorf i j reflects the symmetry of the initial un
cell and describes a hypothetical situation of lattice mod
cation, with no elastic strains and ordering effects. The co
ponents of tensorf i j linearly follow the atomic concentration
in case of epitaxially grown layers~via Vegard rule!, or the
point-defect concentration in case of an implanted crys

FIG. 9. Schematic illustration of point-defect influence on t
lattice mismatch:~a! Random defect distribution,~b! Defect order-
ing along the direction of preferred orientation.
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The second tensorgi j describes anisotropic deformatio
caused by strain-induced ordering. In case of implantedY-cut
LiNbO3,

f i j 5F mxx1myy

2
0 0

0
mxx1myy

2
0

0 0 mzz

G , ~35!

gi j 5F 2
myy2mxx

2
0 0

0
myy2mxx

2
0

0 0 0

G . ~36!

A degree of lattice mismatch anisotropy can be described
a parameter 0<p<1:

p5
myy2mxx

myy1mxx
, ~37!

which gives the ratio between the deformation caused
strain-induced ordering and the isotropic lattice swelling
the X-Y plane. The valuep51 relates to the fully aniso-
tropic unit cell (mxx50), while p50 describes the fully
isotropic state withmxx5myy .

Although the mismatch components and strain degree
our samples cannot be found in terms of the unique solu
of Eq. ~20!, it is possible to pinpoint the intervals of param
eters that fit experimental data. These intervals can be
pressed via a single variablep by substituting its definition
~37! into Eq. ~20!:

mxx5
A

2 S 1

p
21D , ~38!

myy5
A

2 S 1

p
11D ,

mzz5jzz1
1

0.372Fjyy10.279jxx2
A

2 S 1.279
1

p
10.721D G ,
0-10
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Sx512jxx

2p

A~12p!
,

Sz512
jzz

jzz1
1

0.372Fjyy10.279jxx2
A

2 S 1.279
1

p
10.721D G .

According to Eqs.~12! and~13!, the following conditions
must be fulfilled:

mxx>jxx and mzz>jzz. ~39!

Substitutingmxx andmzz from Eq. ~38! into Eq. ~39! yields
an interval of possible values for the anisotropy parametep:

A

jyy1jxx11.947~2«yz!
<p<

A

A12jxx
. ~40!

Equation ~40! together with the numerical data from
Table II leads to the conclusion that in all waveguide lay
the anisotropy degreep.0.7. According to the definition
~37!, this means that the implantation-induced misma
along theY direction is at least six times larger than th
along the X direction. In samples annealed at 200 a
250 °C, a similar analysis also revealed an upper limit for
anisotropy degree,p,0.93, which stems from the fact tha
jxxÞ0.

By substituting the measured data from Table II in E
~38!, the permitted values of the mismatch components
be represented as a function of the parameterp. Examples of
the plots calculated for the HD layer in an as-implant
sample, as well as for the LD layer in sample implanted a
annealed at 250 °C, are shown in Fig. 10.

The accomplished strain analysis allowed us to draw
important conclusion, that due to the strain-induced order
of point defects the in-plane lattice mismatches and rela
strain components in the waveguide layers are close to
in the absolute scale. This means that the main contribu
to the modification of refractive index comes from the simp
implantation-induced lattice swelling, leading to the prop
tional reductions in the electron density and refraction ind
Dn/n'jyy . The role of the photoelastic effect is negligibl

B. Relaxation mechanism of the implanted layer

Strained heterostructures may exhibit two types of str
relaxation mechanisms, according to the two terms, wh
compose the in-plane strain component,« i i 52mii 6nibi .
Conventional strain relaxation due to formation of misfit d
locations reduces« i i at the expense of an increasing disloc
tion density ni . The amount of strain reduction by th
mechanism is directly related to the in-plane lattice para
eter differencesjxx andjzz @see Eq.~9!#. The second mecha
nism is based on the diminishing of the lattice mismatchmii
as a result of the atomic rearrangements. In grown het
structures the rearrangement mentioned can, in principle
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driven by atomic diffusion,35 although in most practica
cases atomic diffusion at room and elevated temperature
too slow to be taken into account. Results presented h
show that in systems in which the lattice mismatch is p
duced by point defects, this rearrangement can be very
portant. Annealing of point defects reduces the strain ene
via diminishing the mismatch components@the first term in
Eq. ~10!#. As was pointed out in Ref. 14, annealing at tem
peratures higher than 200 °C leads to the fast lattice reco
and considerable reduction in the optical barrierB5jyy in
the waveguide layer.

In this research we have carried out additional tempe
ture measurements of theB(T) values in order to follow
kinetics of lattice recovery in more detail. For this purpo
the (030)LiNbO3 diffraction profiles were taken from im
planted and isochronously~for t0530 min! annealed sample
at temperatures ranging between 225 and 470 °C. The de
dependentjyy profiles similar to those plotted in Fig. 3 wer
obtained as a result of fittings, using dynamical diffracti
theory ~see, e.g., Refs. 22 and 23!. Reduction of the optical
barrierB(T) with temperature was treated in terms of Deb
relaxation model:

FIG. 10. Mismatch parameters as a function of the anisotr
parameter,p: ~a! In the HD layer of an as-implanted sample;~b! In
the LD layer of the sample, implanted and annealed at 250 °C.
0-11
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B~T!5B~0!expS 2
t0

t D ~41!

with the relaxation timet defined by an activation energ
DE:

t5t0 exp~DE/kT!. ~42!

Using Eqs.~41! and~42!, we can present the temperatu
behavior of the optical barrierB(T) in the Arrhenius-like
form:

lnF ln
B~0!

B~T!G5 ln
t0

t0
2

DE

kT
. ~43!

Experimental data plotted in this format are well fitted
straight line~see Fig. 11!, providing an activation energy o
DE50.32 eV, which coincides with the one obtaine
previously.14 This DE value is much less than the characte
istic energies required for dislocation formation, and t
gives some additional proof that, in our case, the situatio
completely controlled by point defects.

V. SUMMARY

Heterostructures of reduced crystal symmetry~especially
belonging to the hexagonal and rhombohedral systems! at-
tract great deal of attention in structural studies due t
growing interest to use them in modern microelectronic a
optoelectronic noncubic crystalline systems. For this purp
a general approach to solving the elasticity problem is f
mulated, which does not rely on the isotropy assumption
lattice mismatch or misfit dislocations density. The dev
oped routine permits us, in principle, to obtain complete
formation on all strain-tensor components.

Calculation steps are described with a focus on theY-cut
LiNbO3. As a result, a set of equations is derived, whi
connect the measured modifications of lattice parameters
the intrinsic structural characteristics, such as lattice m
matches and strain degrees. In general, these equation
able us to check the validity of the Vegard rule and/or
reveal the strain-induced breakdown of the initial u
cell symmetry. As a consequence of avoiding any prelim

FIG. 11. Arrhenius plot, showing the temperature-dependen
minishing of the implantation-induced lattice swelling along theY
axis.
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nary assumptions, an extra degree of freedom appears in
equation set, which results in an interval of paramet
matching the experimental data, rather than the unique s
tion.

This approach, being applied to the rhombohed
LiNbO3, allows us to shed some additional light on structu
modifications evolving in the near-surface wavegui
layers as a result of ion implantation and subsequent ann
ing. Using RSM in the vicinity of symmetric and asymmetr
reflections, we were able to precisely measure latt
parameter changes with an accuracy ofDa/a'1025

and thus to obtain comprehensive information on the
plane and out-of-plane strain components, including sh
strains.

Experimental results show that the He-implantati
causes significant modification of the out-of-plane lattice
rameter, while the in-plane lattice parameters rem
matched to those of a crystal bulk, which means that
planted layers are fully strained. However, in an absol
scale the in-plane strain components were found to be c
to zero. Heat treatments lead to the rapid relief of the out-
plane lattice parameter while only subtle modifications of
in-plane lattice parameters,Dd/di,831025, were detected
using sensitive RSM technique.

It was found that the lattice mismatch in theX direction of
the initial rhombohedral unit cell is significantly smaller~by
at least a factor of 6! than that in theY direction. This is the
first direct observation of the implantation-induced anis
ropy of lattice mismatch which, from the symmetry point
view, is expected to be isotropic in theXY-plane. The ob-
tained results indicate a reduction in the initial rhombohed
symmetry, presumably to the monoclinic one. This effect
explained in terms of the strain-induced ordering of po
defects, which reduces certain strain components actin
the interface plane and, correspondingly, the total strain
ergy of the system. Taking this effect into account, it is po
sible to conclude that modifications of the refractive index
an implanted LiNbO3 are mainly due to the implantation
induced lattice swelling in theY direction~and related reduc-
tion of electron density! rather than due to the optoelast
effect.

Strain-induced ordering of point defects is a we
established phenomenon in the field of physical metallur
but to the best of our knowledge has been never mentio
in the studies of thin film heterostructures. Because of
potential importance to other layered structures, this p
nomenon was included in the general formulation of the e
ticity problem for layered crystalline structures.
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