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Strain analysis of thin film heterostructures is expanded to noncubic crystalline symmetries with special
attention to the practically important hexagonal and rhombohedral systems. The developed formalism is rather
general and can be used to study systems with highly anisotropic lattice mism@ebesinknowhand strain
degrees. It is applied here to analyze complex structural modifications in the near-surface waveguide layers
produced by He-implantation iM-cut LINbO; wafers, which initially have the rhombohedral Bravais lattice.
Experimental results, obtained by x-ray mapping of reciprocal space in the vicinity of symmetric and asym-
metric reflections, showed a strong anisotropy of the layer-lattice mismatch in plane perpendicular to the
three-fold axis. This result unequivocally indicates that the initial rhombohedral symmetry of the unit cell is
broken as a result of ion implantation. Experimental findings are explained in terms of strain-induced ordering
of point defects, which is a well-known phenomenon in the field of physical metallurgy, but has never been
mentioned in the studies of thin film structures for microelectronics and optoelectronics. Since this phenom-
enon can be important to other layered structures, it is included into a general solution of the elasticity problem.
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[. INTRODUCTION heterostructures is only valid in fully strained situations with
no misfit dislocations.
Modern microelectronic and optoelectronic devices are Inrecent years there has been a growing interest to imple-
built on strained thin film heterostructurt3he lattice strain ment noncubid¢mainly hexagonal and rhombohedraingle
can appear during epitaxial growth of differently composedcrystals, such as GaN, AIN, SiC, A, LiNbO;, etc., into
layers or as a result of device processing, such as ion implaftodern device technology. Reduction of the unit cell sym-
tation, thermal treatment, oxidation, etc. Precise data ofetry makes strain analysis much more complicated. If the
strain levels have crucial importance to device functioning cTyStal symmetry differs from the cubic one, the lattice mis-
since lattice strain strongly affects such film characteristicdn@{ch is no longer isotropic. For example, in a hexagonal

as band-gap energy, carrier mobility, dielectric tensor, an _tticg, whiph will be. cqnsiQered below, a m_ismatch in the
refractive index. d!rect!on(sm—fold aX|§) is d!fferent from that in theX andY
Strain field in thin films is determined by the spatial dis- _dlrect|ons. If theZ axis is situated in the interface plane, the

tribution of lattice parameters and, in principle, can be de_m-plane lattice mismatch will be anisotropic. However, in

. . . . many cases the components of lattice mismatch continue to
duced from high-resolution x-ray diffraction measurements y b

. o follow the Vegard rule, i.e., they are proportional to the layer
In order to relate the measured lattice parameter variations t@omposition(although the proportionality factor may be dif-

strain values, an elasticity problem should be solved, whichg ant for theX. Y. andz directions, and, hence, are deter-
takes proper account of crystal symmetry. General sOlutiofyined by a single parameter: atomic concentrali$hFor
provides the relationship between the measured lattice paych structures a solution, given in Ref. 2, has been general-
rameter changes; the structural characteristics, such as lattiggq in Ref. 11 in order to describe lattice strains in crystals
mismatchegand, hence, the epilayer compositipand the \yith reduced symmetry. However, this solution only remains
strain degrees that can be expressed via misfit dislocatiopyiq for fully strained structures.

densities. In Sec. Il of this paper a general approach to solve the

An elasticity problem for a heterostructure, composed of &jasticity problem is developed that can be applied to any
cubic film epitaxially deposited on a cubic substrate of arbi-¢rystalline system. This approach is free from the strain isot-
trary orientation, had been solved in Refs. 2—4. They obyopy assumption and, hence, it can be applied to partially
tained solutions that are based on an assumption that thgjaxed layered structures as well. Moreover, the proposed

in-plane strain field(i.e., that is confined in the plane of analysis can be used in complicated situations when an initial
film/substrate interfages isotropic. Two conditions must be |aitice mismatch is unknown or the Vegard rule is not valid.

fulfilled in order to validate this assumption. ~ A good example is a heterostructure fabricated by ion im-
(1) Densities of misfit dislocations along the coordinatepjantation. The latter leads to the modification of lattice pa-

axes in the mte.rface'plane should be equal. . rameters due to implantation-induced lattice damage. As is

(2) In-plane lattice mismatch should be isotropic. shown below, such rather heavy treatment can even result in

However, experimental resuft show that in some Si-  the preaking of initial crystal symmetry, that should be taken
and zinc-blende-based structures the misfit dislocation dennto account when analyzing experimental data.

sities differ when measuring alorig.10] and[lTO] direc- Abilities of the developed formalism are illustrated by
tions. Hence, strictly speaking, the existing solution for cubicexperimental results obtained with He-implanted and an-
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nealed LiNbQ single crystals, having initial rhombohedral ~ The lattice mismatch describes the differences between
symmetry(which often is represented in the hexagonal setfespective lattice parameters of the substrate and the layer, in
ting). Implantation and subsequent heat treatments are usdi$ hypothetical free-standing state. Generally, the lattice
to fabricate waveguide layers for light propagation inmismatch is given by a second-rank tensgy whose diag-
LiNbOs-based optoelectronic devic¥sStructural modifica-  onal components

tions in the waveguide layer directly affect the refractive

index via electron density changes and strain-induced photo- agi—ag;

elastic effect. It has been shown that the depth dependence of mi T A @

the changes of refractive index is similar to that of the im- R

plantation damag® and to the variation of the interplanar are equal to the relative differences in lattice constants along
d-spacing along the ion trajectot§.Nevertheless, we are thei axis (=X,Y,Z) of the substrates; and the relaxed
still far from a complete understanding of atomic mecha-film ag;, respectively.

nisms that are responsible for modified optical characteris- The further analysis is formally valid for systems in
tics. which m;<<1. Most of the thin film structures satisfy this

In order to carry out a comprehensive strain analysis ircriterion.
the LINDO; waveguide layers, the changes of lattice param-  The mismatch tenson;; has a diagonal form in all crystal
eters were precisely measured by using x-ray mapping iglasses in which angles between the Bravais lattice vectors
reciprocal space. Experimental data are displayed in Sec. llhre fixed by symmetry constrains. Nondiagofsileay com-

The obtained results are analyzed in Sec. IV. We shovponents appear only in the monoclinic and triclinic classes in
how equations derived in Sec. Il can be used to deduce thghich one or three angles, respectively, are independent lat-
components of lattice mismatches and strain degrees frofice parameters. In these cases, the nondiagonal components
measured changes of lattice parameters. Comparison begre defined as the differences between corresponding angles
tween different components of lattice mismatch allowed usn the substrate and the free-standing layer.
to conclude that the initial rhombohedral symmetry is broken The number of essential mismatch components depends
as a result of ion implantation. The driving force of this on the crystal symmetry. For example, in cubic crystals there
breakdown is the strain-induced ordering of point defects ins only one such mismatch since thg; tensor is diagonal
an implanted layer. Analysis of experimental data taken fronand m, = Myy=M,;.
the annealed samples gave straightforward indication that |n general, the lattice parameter differences between the
heat treatment at elevated temperatures leads to lattice recostibstrate and the layer, which are measured by x-ray diffrac-
ery (via annihilation and migration of postimplantation paint tion, differ from the mismatchesy; due to the elastic strains
defects$ rather than to the misfit dislocation formation. in the layer that are produced by the forces acting at the

layer/substrate interface. The lattice parameter differences

Il. THEORETICAL ANALYSIS are completely described by the second-rank teggor

A general solution of the elasticity problem in layered
structures results in complex expressions that are difficult to =
analyze and to adopt to real situations. On the other hand, Uox

most of the potentially used heterostructures have Spedﬁﬁ/hich is common in the theory of elasticdfyand is defined

lattice symmetry and orientation that greatly simplify theo'via the deformation vectar that describes the displacements

retical analysls. Keeping thls_m mind, we mtrpduce here %f the layer’'s atoms from their hypothetical positions accord-
general routine for the solution of the elasticity problem; g to the order of the substrate’s lattice

, . . i n
(W.h'Ch can b_e applied to th_e arbitrary |§1’['th8 symmetry and Another definition that is often used in thin film studés,
orientatior) without developing the explicit general expres-

ions.
sions a7 8g;

Instead, the important steps are explained that have to be &i a—s_, 3
|

au;

2

performed to solve the elasticity problem. Following these
steps, the reader will be able to derive explicit expressiongs based on the comparison between the actual lattice con-
for layered structures of particular symmetry. In this paper atants of the layer, ; and the substrates;, along thei
complete set of equations is derived for the rhombohedraixis. Note, that Eq(3) defines only diagonal elements of the
Y-oriented LiNbQ layers, in which anisotropic lattice mis- tensor;; . So, in order to take into account the shear strains
match (unknown is introduced by ion implantation. Taking in the layer, Eq.(2) should generally be used. It is also
this sufficiently complicated situation as an example, weworthwhile to emphasize that the origin of the shear defor-
show a way in which the detailed strain analysis can be carmation is not necessarily the “intrinsically” nondiagonal
ried out. mismatch componentas in monoclinic or triclinic crysta)s
As will be shown in Sec. 11D, shear strains can appear if
there are nonzero components of the stiffness tensor that
Let us consider a single-crystalline thin film that is grown connect between in-plane axial stresses and shear strains.
or fabricated on the top of a substrate having the same lattice The difference between the free-standing latticke-
symmetry and orientation, but slightly different lattice pa- scribed by tensom;;) and the strained lattice of the layer
rameters. (described by tensaf;;) is defined via the equation:

A. Definitions
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Y — surface normal terms. Moreover, two of the three diagonal componemts,
my,, andm;, are equal, viz.m,,=m,,, owing to the trigo-
nal symmetry of translation vectors in thér plane. How-
ever, ion implantation produces unpredictable structural
changes in the near surface layer due to formation of a large
amount of point defects. Under implantation conditions not
X only are the mismatch values unknown, but also the relations
between the mismatch components. It is even possible that
the implantation procedure leads to the breakdown of the
initial symmetry of the layer, and further analysis of experi-
mental data gives us evidence that this is the case.

B. In-plane strains and misfit dislocations

Interatomic forces, acting on the layer/substrate interface,
FIG. 1. Unit cell of LINbGQ; (in hexagonal settingand a suitable compel the layer's at.oms t9 fit into the in-plgne arran.gement
choice of Cartesian coordinate syst€4 Y, 2 within it. of the substrate lattice. Since the layer thickness is much
smaller than that of the substrate, one can neglect the sub-

4) strate strains. For very thin films with the thickness less than

some critical value, the system energy is minimized if the

In general case, the tensej is not symmetric and can be interface is fully coherent and the layer is fully strained. This

§y=m+e;.

divided into a symmetric pas;; , means that the in-plane lattice parameters of the layey,
exactly match those of the substrate;;, and, henceg;
eij= (& +€;)/2, (5) =0 for both coordinate axes located in the interface plane.

which describes lattice strains, and an antisymmetric part FOr thicker layers there is a thermodynamically dictated
driving force to form misfit dislocations in order to accom-

modate lattice mismatch and to diminish elastic strain en-

wij= (& —€i)/2, (6) ergy. Despite the dislocation-strain field being nonuniform, it
) ) ) ) o is possible to define effectivéor averaged lattice param-
which qlescrlbes lattice rotathns. Substituting E(ds, (3), eters, which can be put into Eq@) and(7), instead ofa, ; .
and(4) into Eq.(5) and neglecting second-order termswf  This simplification is good enough for layered structures
andgj; [i.e., replacingas; by ag  in the denominator of EQ.  ith Jow dislocation densities, when dislocation-induced
(3)] yields the well-known definition of the diagonal strain o qification of lattice parameters is smalla/a<1.
components: In this case, the effective in-plane lattice parameters of the

layer are related to the linear misfit dislocation densitieas
(7)  follows:*®

wij,

a i~ aR;
g T—— .
aRi

: . . a_ j=as;(1xnby), (8)
Before starting to solve the elasticity problem, attention ) )

should be paid to an appropriate choice of the coordinat¥/hereb; is the component of Burgers vector along ttais.

system. It is suitable to choose a coordinate system with twd N sign[+]in Eq. (8) corresponds tag ;>as, while the

axes located in the plane of the layer/substrate interface artign[—] corresponds tag j<as; . )

the third axis being perpendicular to it. In order to be able to  Substituting Eq(8) into Egs.(3) and(7), yields the fol-

use Egs(1), (3), and(7), the coordinate axes should be somelowing expressions for the in-plane components of tensors

linear combinations of the translation vectors, but it is notéij ande;; :

obligatory that they coincide with the basis of Bravais lattice.

It is much easier to operate with strain tensor components in Sii

the orthogonal coordinate system, which is a natural choice o me+nb. 10

for cubic, tetragonal, and orthorhombic crystalline systems. &ii Mi = Ni0; - (10

In the cases of rhombohedral and hexagonal symmetryin Eq.(10) we again neglected second-order termmgfand

which are of main interest here, the suitable orthogonal cog; sincem; <1 andé&;<1.

ordinate system is depicted in Fig. 1. In this system,Zhe  Another way to describe the effect of misfit dislocation

axis coincides with the three-fold or six-fold axis, theaxis ~ formation consists of the introduction of the strain degree,

is parallel to the triangle or hexagon side, and ¥haxis is  0<S =<1, which characterizes the strain relaxation processes

perpendicular to both the andX axes. This coordinate sys- (see, e.g., Ref. 29Since the misfit dislocation density is

tem is also routinely used to describe elastic properties ofienerally anisotropic, the strain degr®eshould also be de-

hexagonal and rhombohedral crystds. fined separately for each of two in-plane coordinate axes via
Tensorm;; , describing the mismatch between lattice pa-the following expression:

rameters of the layer and the substrate, both of hexagonal or
rhombohedral symmetry, does not contain the nondiagonal ei=—m;S. (11

=*n;b;, 9
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Setting Eq.(10) equal to Eq.(11), gives the relation be- TABLE I. LiNbOg stiffness constantéGP3, taken from Ref.
tween the strain degrees and the misfit dislocation densitie€0.

Si=1—|nib;|/my, (12 Cu Ci2 Cis Cia Cs3 Cua
wherem;; # 0. Substituting Eq(12) into Eq. (9) yields 203 55 75 8.8 244 60
&i=mi(1-§) (13 ,
for two i axes, which are located in the interface plane. e = — (CaCrat C14)8X><+2C44C13€ZZ,
In fully strained stateS;=1, and the misfit dislocation v C4sC11—Cyy
density isn;=0. Thus, the in-plane strains reach the maxi-
mum value ofe;;= —m;;, and the in-plane lattice parameters R (C1it Croexxt Crzey,
of the layer match those of the substrate, i&+0. In the yz ¥ CuCi—C3, ’
fully relaxed stateS,=0, and the misfit dislocation density
reaches the maximum value of"®=|m|/b;. At the same xy=0. (16)

time the in-plane strains equal =0, and the in-plane lattice
parameters of the layer reach their relaxed values, a,g.,
=ag; and§;=m; .

In Eqg. (16) the standard form of the elastic stiffness tensor
with reduced indiceqgfrom 4 to 2 is used. The nonzero

In further analysis we will take into account the possibles’t'ﬁcnes’S constaritS of LiNbO; crystals are given in Table I.

formation of the misfit dislocations via strain degree param-enggi%heigir?;:é; ﬁ?ﬂizrzt:;nigggndsﬁ t$htigeisp;ef ) i
eters[Egs. (11)—(13)]. In this description the relations be- 14 p ' yp

AN . o cal situation for lattices with low symmetry or when the
tween intrinsic lattice characteristisy; and$;) and the two normal to the interface does not coincide with the symmetry

axial strain components along the in-plane axes are given by . . . . .
P g P 9 xis?! As will be shown in the following sections, the mea-

Eq. (11). As was already mentioned, the in-plane shear Com_surement of shear strain is very important to the comprehen-
ponent only appears in the monoclinic and triclinic systems; y1mp P

. ; Sive strain analysis.
Thus, in our case of th¥-cut LiINbO; crystals, Note that settingC,4=0, C1,=Cya, ande,—¢,, in Eq.

Eo=—MSe, €,=—-M,S,, &,=0. (14) (16) yields the well-known results for cubic crystals:

The situation is more complex in the monoclinic and tri- eyy= ~2(C1o/Criex and ey,=0. (17)

cI_inic crystals, espe_cially because of an influence of misfit Finally, the substitution of Eq.14) into Eq. (16) enables
dislocations on the in-plane shear strain components. us to express all the components of the strain tensor as a
. function of m;; and§;.
C. Plane stress assumption
The boundary conditions, which should be imposed solvE. Relationship between the intrinsic lattice characteristicam;,
ing the elasticity problem for a layered structure, assume that and S;, and the measured lattice parameter changes;;

there are no forces acting on a free surface of the layer in the The strain state of the layer will be completely defined if

pegjendicularr] dilrectionh_ K . ¢ d ¢ . dthe intrinsic lattice characteristics, such as lattice mismatches
ecause the layer thickness Is a few orders of magnitu Fnij and strain degreeS;, are known. However, the quanti-

less than its lateral dimensions, it is reasonable to assume.. | aasured by means of x-ray diffraction are the lattice
that the layer stresses act only in the interface plane. Thi

. ides the th ith Barameter changef; . In order to find the relationship re-
assumption provides the three stress componeftaith at quired, let us substitute Eq&5) and (6) into Eq. (4). This
least one of the indices indicating the normal to the interface,

yields
equal to zero.
For theY-cut LINbO; this assumption yields &i=myj+ei+w;. (18

Tyy= Oyy=02,=0. (15) T_he only term in Eq(18) w_hich still has not been f_expressed
via m;; and §;, is the antisymmetric lattice rotation tensor
wj; . As was explained in Sec. IIA, it contributes to the
nondiagonal components of tensgy.

The three strain components acting in the interface plane Tensorw;; may appear due to the tendency to form a
have already been found in Sec. I[Bee Eq.(14)]. Using  coherent interface. Analysis of shear strains in LiNt&yers
plane-stress assumptidieq. (15)] and Hooke's law,o;; shows that the coherent interface results in the deformation
=Cjjuen (where Gy is the stiffness tensor for a given of a typeé,,=2¢,,, while §,,=0 (see Fig. 2 Misfit dislo-
point-group symmetryyields three equations for the other cations at the substrate/layer interface can also contribute to
three strain components; with at least one of the indexes the rotation tensor and change the situation schematically
indicating the normal to the interface. For the rhombohedralllustrated in Fig. 2.

Y-cut LINbO; crystals (point group 3n), this procedure The rotation tensor components can be determined by
yields measuring two nondiagonal ternfg and¢;;

D. Strain tensor
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FIG. 3. Typical changes of the out-of-plaf@30) d-spacing in
as-implantedy-cut LiNbO;, as a function of the crystal depth. The
separation to “low damage layer(LD) and “high damage layer”
(HD) is indicated.

Substrate

Equation(21) provides a straightforward way to check an

FIG. 2. Schematic illustration of shear deformation in fully €quality,m,,=m,,, on the basis of measured data and, if it
strainedY-cut LiNbOs. turns out thatA#0, to detect possible symmetry breaking
induced by ion implantation or other reasons.

wij = (&j— &i)/2. (19

Using Eq.(19), the measured values @f; can be substituted _ o _

into Eq. (18) in order to obtain a final relationship between  Y-cut LINbO; wafers, 3 in. in diameter, 0.5 mm thick,

the intrinsic lattice characteristicsy; andS;, and the mea- With one polished face, were subjected to He implantation in

sured lattice parameter changgs. ordgr to produce waveguide layers near the wafer surface.
In case of theY-cut LiINbO,, Egs.(14), (16), and (18),  He-ions, of an energy of 320 keV, were implanted at room

together with numerical values of elastic stiffness coeffi-temperature through the polished face of the wafers at a dose

IIl. EXPERIMENT

cients(see Table), finally yield of 2x 10'®ions/cnt. After implantation a part of the samples
were subjected to 30-min heat treatments in a furnace under
Exx=Mix(1=S)), (200  aflow of forming gas, at temperatures ranging between 200
and 470°C in order to anneal the implantation damage.
_ Structural modifications were measured by high-resolution
Eyy= 0:278MoSct My +0.372M, 3, x-ray diffraction (HRXRD).
In the previous study the HRXRD profiles were taken in
§2=MA1-Sy), the vicinity of the symmetric (030)LiNbQreflection, pro-
viding diffraction intensity from atomic planes parallel to the
2ey,= &7yt &y~ 0.3751,,S,+0.109n, S, . crystal surface. Based on successful fittings between mea-

sured and simulated diffraction profiles, the out-of-plane

Thus, we have four equatioriaccording to four measur- (normal to the surfagechanges of the interplana030)
able lattice parameter changehat connect five variables: d-spacingAd/d as a function of crystal depti were de-
three mismatch parameters and two strain degrees. The sysdced. These dependendsge typical example in Fig.)3
tem of Eqs.(20) permits an interval of structural parameters, showed that in the first approximation the damaged region,
which can be extracted from the experimental data, rathewhich for the given He-ion energy spans up touin in
than the unique solution. This is a typical situation in thedepth, consists of two distinct layers. The first layer, which
strain analysis of heterostructures, which is not frequentlyve will call the “low-damage layer”(LD), is situated be-
mentioned in the research reports. Instead, some additionakeen 0.1 and 0.8am beneath the surface. Within this layer
assumptions based on the Vegard rule or on the allegedihe energy losseslE/dy and the respective implantation
known crystal symmetry of strained layer are used, whiclrdamage are moderate and weaklgependent because of the
allow us to avoid the uncertainty mentioned. These assumpelatively high velocity of implanted species. Correspond-
tions are often considered as self-evident without carefuingly, the Ad/d(y) function is nearly constant here.
testing of their compatibility to experimental data. The second layer is confined between 0.85 ang in

In case of they-cut LiNbO;, an excessive degree of free- depth and is characterized by shaxgd/d variation. At this
dom can be removed by assumimg,=m,,, that reflects an  point the ion velocity is close to zero, and the implanted
initial rhombohedral symmetry. However, it cannot be donespecies are effectively stopped by the nuclear stopping
a priori. By using Eq.(20), one can compose a difference, mechanism, producing a large amount of point defects. We
A= (myy,—m,,), as a function of the measured lattice param-will call this layer the “high-damage layer'(HD). Due to

eter changes: the lattice swelling in this layer the electron density and,
correspondingly, the refractive index are reduced and, hence,
myy— My, =A=§y— &x—3.4542¢ ;). (21 an optical barrier to light propagation into the crystal bulk is
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10° separately. A corresponding routine, based on diffraction
measurements with symmetric and asymmetric reflections, is
10t L ) B4 well established for cubic crystalsand allows us to deduce
the lattice parameter differences between the layer and the
2 1001 Messyremenkselup substrate, along,Na/a);, and perpendicular,Xa/a), , to
2 the Iayer/substrat_e interface from measu&ﬁqnd Ag vgl— _
Z il ues. For noncubic crystals, the corresponding relationship
£ should be found in accordance with the specific crystal sym-
metry and orientation. In the next section these relations will
10" ¢ ) be developed for th&-cut LiINbO; under a method that can
also be used in a general case.
10° : . ; — .
-800 -600 -400 -200 0 200 400

B. Strain components inY-cut LINbO 5: diffraction profile
analysis

Relative angle (sec arc)

FIG. 4. (220LiNbOg diffraction profiles taken from an as-
implanted samplg1) as well as from the sample implanted and
annealed at 250 °C2). Inset shows the scattering geometry for
asymmetric reflection.

As was mentioned in Sec. Il, comprehensive strain analy-
sis is based on the tensgy;, which in the case olf-cut
LiNbOg is given by

created® The presence of the optical barrier leads to light &x O 0

confinement near the crystal surface, i.e., provides wave- B

guide properties. Gi=| 0 & O (23
Beyond the HD layer, a nondamaged crystal region 0 28y, &

(“substrate”) is located, since implanted species do not pen-

etrate there. Implantation-induced lattice mismatem-  Tensor &; has this form in Cartesian coordinate system
known) at the HD/substrate interface is a driving force for (x v,z depicted in Fig. 1. However, the measured angular
lattice strains there, which can produce additional changes ifalues, A9 and A¢, are related to the axial strain and the
refractive index via photoelastic effect. Thus, the compreshear strain, respectively, in another coordinate system, viz,
hensive analysis of this complicated problem requires alln which the atomic planeékl) are indexed. Therefore, to
components of strain tensor to be measured by HRXRD. Thexpress the axial and shear strain components via the com-
measurement procedures are described in the next sectionﬁonems of the deformation tensér, some rotation of the
tensoré;; to the new coordinate system should be performed.
A. HRXRD technique Below, a corresponding procedure is introduced for reflec-

HRXRD is based on the measurements of diffraction pro-tions of atype of bk0) and (kI), which were used in this

Lo - research.
files in the close vicinity of the Bragg anglés, and on . . .
subsequent fittings of the measured intensity distributions to For the (1k) reflection a rotation of the deformation ten-

those simulated by means of the dynamical diffractionfso.rgij should be made around tleaxis, in order to express

theorn?>2 or in the framework of the extended kinematical 't !N & NeW coordinate systenX(,Y',Z’) in which the

approactt? In fact, the latter is well suited for implantation axis 1 perpendicular to the reflecting planes andxhexis

and diffusion problems in thin film&2% As a result of this S Parallel to them. In this coordinate systelul/d ) is

fitting, the depth-resolved changes in lattice parameters agdu@l t0&),, andA ) is equal tog),. Using standard

extracted, providing information that is unattainable by any'otation transformation for the second-rank tenSahe fol-
other technique. lowing expressions can be derived:
In case of spatially well-defined layers it is possible to

stay within the more simple routine, viz, measuring an angu- Ad
lar distanceAw between diffraction peaks originated in the (T) =Sir? ¢pé&,y+ CoF déyy (29
layer and in the substrdfe(see Fig. 4 Angular distancé\ w (hko)
can be split into two componentAdp andA¢. The first con-
tribution A6 appears due to the difference between lattice .
spacingdd in the layer and in the substrate: A (ko) =SiNb COS- (£yy~ xx)

Ad where ¢ is an angle between the reflecting plamk@) and

Af=—tanbpg—-. (22 the interface.
A similar procedure should be performed fork() reflec-

The second term ¢ is a tilt angle between théhkl)-atomic  tion, but this time the rotation is around tieaxis, thus, the
planes in the substrate and in the layer, arising due to th¥' axis is perpendicular to the reflecting plané(Pand the
respective differences in lattice parameters. To describe th2’ axis is parallel to it. In this coordinate system the expres-
strain state of the layer we need to kndw andA¢ values  sions forAd/d gy andA ¢ gy are
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Ad Hy

(F) (0k|): &y, =S p&,,+C0S &y, +sing cose(2zy,), O
(25

Ao = &y, =SiNd COSP(&yy— &,) SIN P(2¢,,).

In Egs.(25) the sign[ =] relates to the sign of the index 1 of H
the chosen reflection Q).
Equations(24) and (25) allow us to deduce the compo-

9! U,

nents of tensog;; as a function of the measured parameters L
Ad/d andA¢. Since we used the specific asymmetric reflec-
tions (220 and (036) in this experiment, one can specify: A4 AH”%
Fully strained line AH |
Ad (FSL)
by ( d )(220)+tan¢(220)A¢(220), 9 FIG. 5. Schematic drawing of the mapping area in reciprocal
space in the vicinity of the nodel. Points of reciprocal lattice,
Ad originated in the substrate and in the layer, are indicated by |&ters
&= (F) —COt P (2204 P (220 » (27) andL, respectively.
(220
C. Strain components in theY-cut LiINbO 5. X-ray
SZZZ(%d) _C0t¢(036)A¢(036)- (28) mapping in reciprocal space -
(036) RSM measurements were performed with a setup that

combimgd a 18 kW Rigaku rotating anode generator with a
A Bede D*® diffractometer. The primary beafCuK «; line)
28y,= C°t¢<03ﬁ)(a) +A (036~ COL(03p yy - was prepared by two channel-o(@20)Si crystals. The dif-
(038 (29 fracted beam, before entering the detector, passed through
the additional channel-c220Si crystal analyzer. In order
For LINDbO; lattice the anglesh 2,0 and ¢ 36 are equal to  to afford high-precision measurements of lattice parameter
30° and 32.76°, respectively. Note that formal changing ofdifferences between the layers and the substrate, RSM was
the Miller indices (&I)— (Okl) leads to changing the sign Pperformed in the vicinity of symmetric (030)LiNhOeflec-
of 2e,,. However, it does not influence the further analysistion and two asymmetric LiNb reflections, (036) and
of the experimental data, because only the absolute values 6220).
2e,, make sense. Details on RSM technique can be found in Refs. 27 and
By using the symmetri¢030) reflection it is possible to 29 and an analysis of its enhanced precision in Ref. 28.
directly obtain theg,, term of the deformation tensor, since Briefly speaking, in the mapping mode the two-dimensional

it is defined via the out-of-plan®30) d-spacing difference: intensity distribution in the scattering plane is collected by
performing w/20 scans at different offseb angles. In the

Ad reciprocal space the/20 movement takes place along the
Eyy= a (30 vector of reciprocal latticeH, while the o offset is repre-
(030 sented in the perpendicular directiGsee Fig. 5. Therefore,

Equation(30) provides a higher precision for particular term RSM enables the straightforward separation between the dif-
¢,y than a usage of asymmetric reflecti@20) and Eq.(26). ferences ind-spacing(which are revealed on the map along
However, it is knowf’ that despite all precautions the the vectorH), and an anglé ¢ between the reflecting planes
diffraction profile measurements are not accurate enougif the substrate and in the lay@which is revealed along the
when the subtle modifications of the in-plane lattice paramperpendicular axis _
eters are of the main interest. Generally, this is due to the However, if one is interested in the subtle changes of the
overlapping of the substrate and the layer diffraction peakd)-Plane strains a map will be more representative in another
measured in the vicinity of asymmetric reflections. The pre-coordinate system, viz, with one axis being parallel to the
cision of HRXRD is analyzed in more detail in our paper. substrate/layer interfacghe X or the Z axis inour spgmﬂc
In case ofY-LiNbO; we estimated an accuracy of this mode 2S¢, and the second one being perpendicular tatie Y
of measurement as 16. Due to the limited accuracy an 2@xis for theY-cut LINbO;) (see Fig. 5. In this coordinate
analysis of experimental profiles based on E@6)—(30)  System the vector of reciprocal spadgi, which connects
gave small €10 %) but negative in-plane components of the nodesH of the substratdS) and of the layer (), is
tensoré; . This is unreasonable from the physical point of Projected to the\H, andAH, components. The relationship
view, since ion implantation, in general, leads to the swelling?@tween the deformation vectorin real space and the vec-
of the lattice. Reliable experimental data of significantly en-tor AH in reciprocal space is given by the expressfon
hanced precision~ 10 °) were obtained by means of x-ray
mapping in reciprocal spad&®SM). AH=—gradH-u)=—gradH, u, +Hu,). (31
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Substituting Eq(2) into Eqg. (31) yields

0ol ; LD S (a) |
AHy=—=§& H = &,H, (32 3 W

AH,=—& H —§ H,. (33 01}

If a symmetric reflection is used for RSM measurements,
the reciprocal lattice vectdd has no components parallel to
the interface H,=0). Hence, determination of thieH, and
AH, magnitudes from the RSM directly yields tigg , and
&, | values[the first terms in Eqs(32) and (33)].

For asymmetric reflections the reciprocal lattice vecior
has both componentd, andH,. Therefore, both terms in
Egs. (32) and (33) will contribute to the measurablAH
value taken from the map. Hence, RSM in the vicinity of
symmetric and asymmetric reflections also allows us to de-
termine theg, , and&, , components. Using this method, it is
possible to determine a complete set of lattice parameter dif-
ferences, by choosing appropriate x-ray reflections.

An important particular situation arises if the in-plane lat-
tice parameters of the layer and the substrate exactly match
each other. Zero-mismatch value or fully strained state of the
layer are good examples. In this cagg=0 and &, =0,

i.e., AH;=0. This means, that on a map taken in the vicinity
of an asymmetric reflection, the diffraction intensity will be
distributed symmetrically around a straight line that connects
the reciprocal lattice pointS andL and is perpendicular to
the interface(i.e., parallel to theAH, ). We will call this a
“fully strained line”: FSL. The angle between the FSL and
the reciprocal vectoH for asymmetric reflection used is
equal to the anglep between the reflecting planes and the
interface.

An example of the maps taken in the vicinity of t@30)

AH; (nm™)

(b)

AHH (nm‘l)

FIG. 6. Reciprocal space magpsymmetric (030 reflection

- . . taken from LiNbQ samples:(a) as-implanted;(b) implanted and
symmetric reflect]on from an as-implanted sample, as well ag,nealed at 250 °C. Inset in parf@ shows rocking curvéone-
from the sample implanted and annealed at 250 °C, is ShOWfimensional map cross-section AH,=0) with peaks from the

in Fig. 6. For an as-implanted samjpféig. 6@)] the intensity g pstrate(s), high-damagedHD), and low-damaged_D) regions.
distribution is concentrated along the line that is parallel to
AH, , because the reciprocal vectdfysp) has no projection width?®) along directions situated in the interface plane, i.e.,
onto the interface plane. Equatiof32) and (33) are con- the Z and X directions, respectively. As a result, the defor-
verted toAH, = — &, H o3g), providing §,,=7.3X 1073 for  mation tensor components,, and &,,, were found to be
HD layer and§,,=3.7X 102 for LD layer. Annealing at  £,,=&,,~0 with a precision of X 10 °.
250 °C results in some additional diffraction intensity along  Strain relaxation due to heat treatments is illustrated in
AH, [Fig. 6(b)], due to diffuse scattering induced by point Fig. 8, which shows the RSM taken in the vicinity of the
defects and their aggregatéstortunately, the diffuse scat- asymmetric(220) reflection from the sample implanted and
tering affects mostly the tails of diffraction profiles and, annealed at 250 °C. It can be seen that despite the broadening
practically, it does not reduce the accuracy of RSM. How-of the distribution of diffraction intensity along thé axis
ever, Fig. @b) also shows that the diffraction peaks become(perpendicular to interfagethe distribution width along the
blurred alongAH, . Previous resear¢hhas shown that in X and theZ directions (situated in the interface planee-
samples annealed at elevated temperat(r200°C the  mains very narrow. Due to this circumstance we were able to
out-of-plane component,, varies much more gradually determine the,, and¢,, values with the same precision as
with the crystal depth than in the as-implanted samples. Iin an as-implanted sample.
this situation, the implanted region can hardly be separated The zoomed imaggF-ig. 8b)] demonstrates that the entire
into the HD and LD sublayers with certain lattice parametersintensity distribution is concentrated along the line that is
RSM'’s taken from an as-implanted sample in the vicinity slightly shifted from the FSL by a vecta&H, . By measur-
of the asymmetrig036) and (220) reflections are shown in ing these shifts in reciprocal lattice regions that correspond
Fig. 7. It is clearly visible that for both reflections the dif- to HD and LD layers, the values of,,=8x10 °+2
fracted intensity is concentrated around straight line with ax10™° and¢,,=6Xx 10 °+2x 10 °, respectively, were de-
slope that corresponds exactly to FSL. The intensity distri-duced.
bution is very narrow(close to the theoretically predicted A complete set of the precisely determinég compo-
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FIG. 7. Reciprocal space maps taken from an as-implanted %% 2= o o o1 008 008
sample in the vicinity of asymmetric reflection&) (036); (b) AH, (nm™)
(220.

FIG. 8. Reciprocal space map in the vicinity of the asymmetric
nents is given in Table Il. Due to enhanced precision, th&220) reflection taken from the sample, implanted and annealed at
results obtained by RSM can serve as a reliable database 250 °C. () Entire mapping arealb) Enlargement of the layer's
strain analysis, utilizing equations developed in Sec. Il. peak region.

IV. DISCUSSION the initial point group 8, the modified unit cell presumably
belongs to the monoclinic symmetry. This conclusion stems
from the following considerations: the breakdown of the
As mentioned in Sec. Il, the assumptiom,,=m,,, rhombohedral symmetry implies that the three-fold axis defi-
which implies that the unit cell of implanted LiNkGkeeps nitely disappears as a result of ion implantation; the remain-
its initial rhombohedral symmetry, provides a unique solu-ing second symmetry element, the mirror plane, may be
tion for lattice mismatches and strain degrée=e Eq(20)].  found as the unique symmetry element only in the mono-
However, this equality cannot be asserted in advance, bufinic system, viz, in the point group. This result can be
should be checked by using ER1). The differencesA made more visual in the hexagonal setting of the initial unit
=m,,—m,,, calculated by means of the measuggdvalues  cell. Implantation-induced symmetry reduction to mono-
are also given in Table II. clinic can be driven by small deviations from the initial
Table Il provides direct evidence that in all measuredangle, «=120°, between corresponding translation vectors.
samples theA values are positive and much larger than theSimple geometric considerations yield the deviation angle,
measurements errors=(10"°). For example A=6Xx102  Aq, linearly proportional toA value, viz,Aa=2Av3. The
was determined in the HD layer of an as-implanted samplelatter expression, for example, providasy=1.2° for the
Therefore, it can be concluded that the swelling along¥he HD layer of an as-implanted sample. Post-implantation an-
direction in an implanted layefin its hypothetical free- nealing results in the partial lattice recovery toward the ini-
standing stateis much larger than that along tiedirection.  tial rhombohedral symmetry and, correspondingly, to a de-
This means that the initial rhombohedral symmetry is brokercrease of the deviation angler (see Table I\
due to the implantation processing. If we follow a rule that Anisotropy of lattice mismatch can be explained in terms
the reduced symmetry should be described by a subgroup of strain-induced ordering of point defects, which reduces

A. Strain state of implanted and annealedY-LiNbO 5
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TABLE Il. Summary of the RSM results.

Sample Layer & (X100 &,y (X10%)  &,(X10%)  2e,(x10%) A (Xx10%) A (deg

As impl. HD 0 73 0 3.8 60 1.2

LD 0 37 0 1.9 30 0.6
Annealed HD <0.2 56 <0.2 2.4 48 0.95
200°C LD 0.4 20 <0.2 1.2 15 0.3
Annealed HD 0.8 26 0.4 1 22 0.44
250°C LD 0.6 16 0.4 0.6 13 0.25
Annealed LD <0.2 9.6 <0.2 <0.4 8 0.15
350°C

the strain energy of the system by decreasing the in-planghe second tensog;; describes anisotropic deformation

mismatch. Such ordering is a well-known phenomenon in theaused by strain-induced ordering. In case of implaitedt

field of physical metallurgy’—* and interstitial carbon in  LiNbO3,

bcc iron is an example. However, to the best of our knowl-

edge such ordering has not been observed in single crystals [ My, +myy

used for modern microelectronics and optoelectronics. T
Strain-induced defect ordering can take place if defects

introduce a local strain field having a symmetry lower than

that of the initial lattice, i.e., they cause a local anisotropic 2

deformation of the crystal. An ordering mechanism of such 0 0 m,,

defects is schematically illustrated in Fig. 9.
During an ordering process the point defects jump to the m My — My,

neighboring sites, and the new defect states can be described - 0 0

in terms of orientation changing due to the anisotropy men-

tioned. The characteristic time of this jumping is much gij=

shorter as compared to other creep mechanisms, which cause 2

a plastic deformation due to dislocation gliding or the long-

range diffusion. L
For further analysis, it is worthwhile to recall Sec. Il in A degree of lattice mismatch anisotropy can be described by

order to include the strain-induced ordering in the general parameter &p<1:

elasticity problem. It will be helpful to split the lattice mis-

(36)

match tensom;; given by Eq.(1) into two terms: Myy— My
= (37)
P Myy+ My
my; = fij+gij - 34 \which gives the ratio between the deformation caused by

strain-induced ordering and the isotropic lattice swelling in
The first tensorf;; reflects the symmetry of the initial unit the X-Y plane. The valugp=1 relates to the fully aniso-
cell and describes a hypothetical situation of lattice modifi-tropic unit cell (n,,=0), while p=0 describes the fully
cation, with no elastic strains and ordering effects. The comisotropic state witm,,=m,,
ponents of tensof; linearly follow the atomic concentration ~ Although the mismatch components and strain degrees in
in case of epitaxially grown layersia Vegard rulg, or the  our samples cannot be found in terms of the unique solution

point-defect concentration in case of an implanted crystalof Eq. (20), it is possible to pinpoint the intervals of param-
eters that fit experimental data. These intervals can be ex-

pressed via a single variabfeby substituting its definition

L
kel (37) into Eq. (20):

Layer 0 0 000
=== 0 0g0 Moyl -1, 39
=00l oo o

ISubstrate () | Substrate (1)

FIG. 9. Schematic illustration of point-defect influence on the
lattice mismatch{a) Random defect distributiorfp) Defect order-

A 1
+0.27%,,— =| 1.279-+0.721
ing along the direction of preferred orientation. by +0-27%x 2 ( 95 0 ”

1
m,,= &, + 0372
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2p 0.008
=1-& —,
ST BRI 0.007 { M \(“)
g 0.006 1
&2z E’ 0.005 -
S=1- 1 A 1 g
&+ 0372 £,y +0.27%,,— > 1.2795+0.721 5 0.004
g 0.003 -
According to Eqs(12) and(13), the following conditions S 0.002
must be fulfilled: ’
0.001 { ™=
My = gxx and m, = gzz- (39) 0.000 = ' T
0.7 0.8 0.9 1.0
Substitutingm,, andm,, from Eq. (38) into Eq. (39) yields p
an interval of possible values for the anisotropy paramgter
0.002
A (b)
sp< . 40 myy
By b 104125, P AT2E, 0 ] —_
|7
b5
Equation (40) together with the numerical data from §
Table Il leads to the conclusion that in all waveguide layers £ 0.001 -
the anisotropy degre@>0.7. According to the definition g
(37), this means that the implantation-induced mismatch g
along theY direction is at least six times larger than that S
along the X direction. In samples annealed at 200 and m
250 °C, a similar analysis also revealed an upper limit for the
anisotropy degreegy<<0.93, which stems from the fact that 0.000 1= ‘ :

Ex*#0. , 0.7 0.8 0.9 1.0
By substituting the measured data from Table Il in Eq. p

(38), the permitted values of the mismatch components can

be represented as a function of the paramgt&xamples of FIG. 10. Mismatch parameters as a function of the anisotropy
the plots calculated for the HD layer in an as-implantedparameterp: (a) In the HD layer of an as-implanted sampib) In
sample, as well as for the LD layer in sample implanted andhe LD layer of the sample, implanted and annealed at 250 °C.
annealed at 250 °C, are shown in Fig. 10.

The accomplished strain analysis allowed us to draw amyiven by atomic diffusiorf® although in most practical

important conclusion, that due to the strain-induced orderin ases atomic diffusion at room and elevated temperatures is
of point defects the in-plane lattice mismatches and relate%00 slow to be taken into account. Results presented here

strain components in the waveguide layers are close to Zerg ow that in systems in which the lattice mismatch is pro-

in the absolute scale. This means that the main contributioHuced by point defects, this rearrangement can be very im-

to the modification of refractive index comes from the simple ortant. Annealing of point defects reduces the strain ener
implantation-induced lattice swelling, leading to the propor—p. o gorp . nergy
via diminishing the mismatch componerjthe first term in

tional reductions in the electron density and refraction index , . )
Eq. (10)]. As was pointed out in Ref. 14, annealing at tem-

An/n~¢,,. The role of the photoelastic effect is negligible. ; . .

peratures higher than 200 °C leads to the fast lattice recovery
and considerable reduction in the optical barier &, in
the waveguide layer.

Strained heterostructures may exhibit two types of strain In this research we have carried out additional tempera-
relaxation mechanisms, according to the two terms, whichiure measurements of tH&(T) values in order to follow
compose the in-plane strain componesit,=—m;; =n;b; . kinetics of lattice recovery in more detail. For this purpose
Conventional strain relaxation due to formation of misfit dis-the (030)LiNbQ diffraction profiles were taken from im-
locations reduces;; at the expense of an increasing disloca-planted and isochronousf{for t,=30 min annealed samples
tion density n;. The amount of strain reduction by this at temperatures ranging between 225 and 470 °C. The depth-
mechanism is directly related to the in-plane lattice paramdependent,, profiles similar to those plotted in Fig. 3 were
eter differenceg,, and¢,, [see Eq(9)]. The second mecha- obtained as a result of fittings, using dynamical diffraction
nism is based on the diminishing of the lattice mismatgh theory(see, e.g., Refs. 22 and 2Reduction of the optical
as a result of the atomic rearrangements. In grown heterdsarrierB(T) with temperature was treated in terms of Debye
structures the rearrangement mentioned can, in principle, belaxation model:

B. Relaxation mechanism of the implanted layer
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2 nary assumptions, an extra degree of freedom appears in the
equation set, which results in an interval of parameters
E=032eV matching the experimental data, rather than the unique solu-
tion.

This approach, being applied to the rhombohedral
LiNbOg, allows us to shed some additional light on structural
modifications evolving in the near-surface waveguide
051 layers as a result of ion implantation and subsequent anneal-
ing. Using RSM in the vicinity of symmetric and asymmetric
reflections, we were able to precisely measure lattice
A parameter changes with an accuracy Af/a~10"°
1000/K and thus to obtain comprehensive information on the in-
plane and out-of-plane strain components, including shear
strains.

Experimental results show that the He-implantation
causes significant modification of the out-of-plane lattice pa-
rameter, while the in-plane lattice parameters remain
(41 matched to those of a crystal bulk, which means that im-

planted layers are fully strained. However, in an absolute
with the relaxation timer defined by an activation energy scale the in-plane strain components were found to be close
AE: to zero. Heat treatments lead to the rapid relief of the out-of-
plane lattice parameter while only subtle modifications of the
7="7o €XPAE/KT). (42)  in-plane lattice parametera,d/d,<8x 10 °, were detected
using sensitive RSM technique.

It was found that the lattice mismatch in tRedirection of
the initial rhombohedral unit cell is significantly smalldry
at least a factor of )than that in theY direction. This is the
B(O)} t~ AE first direct observation of the implantation-induced anisot-

0

e -
1 — »

=3

In(In[BOYB(T)]

FIG. 11. Arrhenius plot, showing the temperature-dependent di
minishing of the implantation-induced lattice swelling along the
axis.

to

B(T)= B(O)exp( -2
.

Using Egs.(41) and(42), we can present the temperature
behavior of the optical barrieB(T) in the Arrhenius-like
form:

In Inﬁ =In KT (43)  ropy of lattice mismatch which, from the symmetry point of

0 view, is expected to be isotropic in th€Y-plane. The ob-
Experimental data plotted in this format are well fitted by tained results indicate a reduction in the initial rhombohedral
straight line(see Fig. 11, providing an activation energy of symmetry, presumably to the monoclinic one. This effect is
AE=0.32eV, which coincides with the one obtained explained in terms of the strain-induced ordering of point
previously** This AE value is much less than the character-defects, which reduces certain strain components acting in
istic energies required for dislocation formation, and thisthe interface plane and, correspondingly, the total strain en-

gives some additional proof that, in our case, the situation igrgy of the system. Taking this effect into account, it is pos-

completely controlled by point defects. sible to conclude that modifications of the refractive index in
an implanted LiNbQ@ are mainly due to the implantation-
V. SUMMARY induced lattice swelling in th¥ direction(and related reduc-

tion of electron densityrather than due to the optoelastic

Heterostructures of reduced crystal symmeggpecially
; effect.
belonging to the hexagonal and rhombohedral systeths Strain-induced ordering of point defects is a well-
tract great deal of attention in structural studies due to a tablished oh 9 th ? Id of phvsical metall
growing interest to use them in modern microelectronic an(gS avlished phenomenon In Ihe Tield of pnysical metaiurgy,

optoelectronic noncubic crystalline systems. For this purposBUt t0 the best of our knowledge has been never mentioned
a general approach to solving the elasticity problem is forIn the.stu_d|es of thin film heterostructures. Becausg of its
mulated, which does not rely on the isotropy assumption foPotential importance to other layered structures, this phe-
lattice mismatch or misfit dislocations density. The devel-N"omenon was included in the general formulation of the elas-
oped routine permits us, in principle, to obtain complete in-liCity problem for layered crystalline structures.
formation on all strain-tensor components.

Calculation steps are described with a focus on\uait
LiNbO5. As a result, a set of equations is derived, which ACKNOWLEDGMENTS
connect the measured modifications of lattice parameters and
the intrinsic structural characteristics, such as lattice mis- We thank the Implantation group of the Technion, and
matches and strain degrees. In general, these equations @specially Dr. V. Richter, for supplying us with implanted
able us to check the validity of the Vegard rule and/or tosamples. The Wolfson Center for Interface Studies at the
reveal the strain-induced breakdown of the initial unitTechnion is gratefully acknowledged for free access to the

cell symmetry. As a consequence of avoiding any prelimix-ray facility.
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