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Radiative heat transfer between nanostructures
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We use a general theory of the fluctuating electromagnetic field and a generalized KirchhoffReb\v@
to calculate the heat transfer between macroscopic and nanoscale bodies of arbitrary shape, dispersive, and
absorptive dielectric properties. We study the heat transfer betw@emo parallel semi-infinite bodiegb) a
semi-infinite body and a spherical body, aieiitwo spherical bodies. We consider the dependence of the heat
transfer on the temperatufie the shape and the separatiyrand discuss the role of nonlocal and retardation
effects. We find that for low-resistivity material the heat transfer is dominated by retardation effects even for
the very short separations.
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[. INTRODUCTION formalism requires only the evaluation of a surface integral
over one of the bodies and is simplified further in the non-

It is well known that for bodies separated hi»-d,, retarded limit(small distances between bodiesvhere the
~chlkgT the radiative heat transfer between them is de<alculation of the heat transfer is reduced to the problem of

scribed by the Stefan-Bolzman law: finding the electrostatic potential due to a point charge. We
apply the formalism to the calculation of the heat transfer

wzké 4 4 between:(a) two semi-infinite bodies(b) a semi-infinite

I= 6oz (i~ Ta), (1) body and a spherical particle, afij two spherical particles.

Problem (a) was considered by Polder and Van Hdve,

whereT, and T, are the temperatures of solid 1 and 2, re-Levin, Polevoy, and Ryto%,and more recently by Pendfy.
spectively. In this limiting case the heat transfer is connectedn comparison with other treatments, we study in detail the
with trave”ng e|ectr0magnetic waves radiated by the bodiesl';lomoca' and retardation effects. A striking result we find is
and does not depend on the separatiorFor d<dy,, the thatfor low-resistivity metals retardation effects become cru-
heat transfer increases by many order of magnitude, Wh|Cﬁ|a| and in fact dominate the heat transfer between bodies.
can be explained by the existence of evanescent electromaghe problem(b) was recently studied by Pendry in a differ-
netic field that decay exponentially into the vacuum. At the€nt formalisnt> We shall point out the differences between
present time there is an increasing number of investigationgur results and those obtained by Pendry, wherever appropri-
of heat transfer due to evanescent waves in connection witfte.

scanning tunneling microscopy and scanning thermal mi-

croscopy(STM) under ultrahigh vacuum conditiods? STM Il. FORMALISM

can be used for local heating of the surface, resulting in local .

desorption or decomposition of molecular species, and this Following Polder and Van Hoveto calculate the fluctu-

offers further possibilities for the STM to control local chem- &ing electromagnetic field we use the general theory of Ry-
istry on a surface. tov (see Refs. 5)8 This method is based on the introduction

A general formalism for evaluating the heat transfer be-Of @ fluctuating current density in the Maxwell equations
tween macroscopic bodies was proposed some years ago dySt s, for example, the introduction of a “random” force
Polder and Van Hovt Their theory is based on the general I the theory of Brownian motion of a partigleé=or a mono-
theory of the fluctuating electromagnetic field developed byehromatic field[time factor expt-ief)] in a dielectric, non-
Rytov® and applied by Lifshitfor studying the conservative magnetic medium, these equations are
part, and by Volokitin and Perssbfor studying the dissipa-
tive part of the van der Waals interaction. The formalism of VXE=i
Polder and Van Hove can be significantly simplified using a
generalized Kirchhoff's lavf:® In this approach, the calcula-
tion of the correlation functions for the fluctuating electro- o 41
magnetic field is reduced to finding the electromagnetic field VXH=-i—D+—j, ©)

c c
created by a point dipole outside the bodies. The formalism
of Polder and Van Hove requires the determination of thewhere, according to Rytov, we have introduced a fluctuating
electromagnetic field for all space and for all position of acurrent density' associated with thermal and quantum fluc-
point dipole, and requires the integration of the product oftuations.E, D, H, and B are the electric and the electric-
the component of the electric and magnetic field over thalisplacement field, and the magnetic and the magnetic-
volumes of two bodies. In the present paper we use a simplénduction fields, respectively. For non-magnetic me@ia
formalism, which is originally due to Levin and Ryt&\This ~=H and D=¢E, wheree is the dielectric constant of the
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surrounded media. Accordingly to Rytov, the average value (Ei(r)E}*(r’))w
of the product of components ¢f for the local optic case is

given by formula =J dr’A(r")w? Ime(r")Dy(r,r")DA(r',r")

i f sfx 0 I\ /i f IS PN
Jir )" (1, 0))=(i(Njk (1) ,d(e—o’), [A(T,) —A(T,)]c? , )
U 5 = >i dSi{Dj(r,r")
MK e=A(T,0) 0" Ime(w)d(r—r1") &y, (4
" . ><[V,”DJ-*k(r’,r”)—VL’Dj’](r’,r")]—DJ*k(r',r”)
A(T,w)Z(ZT)z(EJFn(w)), 5 X[V{Di(r,r')=ViDji(r,r )1}
. —4mwA(Ty)ReD;;(r,r'), (13)
n(w)= gholkgT 1 ®  \where we transformed the volume integral over bodies 1 and
. 2 to a surface integral over body 1. Assume that the two
and for nonlocal optic pointsr andr’ lie outside the bodies. Using that for’

GOIE)u=AT0) 0 IMey(r,r0), (1) Dy(r,r )V (r' 1) =Vi[Dy(r,r )DL "], (14

wheree;(r,r’,w) is a nonlocal dielectric constant. To cal- 54 performing surface integral in EGL3) gives
culate the correlation functions for the fluctuating electro-

magnetic field, we use the theory based on the generalize<cf5_(r)|?(r,)>
Kirchhoff's law? For simplicity, in the derivation we will : J @

assume local optics. However, the same derivation is valid [A(T;)—A(T,)]c? ,

also for the nonlocal optics case, and the final result is the = > J’ dS; - {Dj(r,r") V"D (r",r")
same in the sense that in both cases the problem of the heat

transfer between two bodies is reduced to the problem of —Dj*k(r’,r”)V”Dik(r,r”)}—47-rwA(T2)ReDij(r,r’).
finding the electromagnetic field outside the bodies. Com-

pared to Polder and Van Hove, this treatment includes non- (19

local effects, such as the anomalous skin effect. ) . )
In order to calculate the radiative energy transfer between Using the Maxwell Eq(2) we can write the Poyting vec-
the bodies, we need the ensemble average of the Poytirf§ @s

vector -
(S(r)), = (cI8m){(E(r) X B* (1)), +C.C., ®) (Su=gAV(EM-E'(r)
at suitable pointr. From Maxwell equations it follows that —((E(r)-V)E*(r"))—c.Cl_,. (16)
the electric field produced by random current dengityis
given by

In the nonretarded limit the formalism can be simplified.
In this case, the electric field can be written as the gradient of
Ei(f)=f dr'Dig(r,r",@)jk(r"), (99  an electrostatic potentiak(r)=—V¢(r). Thus, the total
Poynting vector becomes

where functionD;,(r,r’,w) obeys the equations

Cc
[Vivk_ 5ik{v2_(w/C)Z}s(r)]ij(r’rr,w) (S[Otal)wzgf dS{<[EXB ]>w+C.C.}
=(4mowilc?)s;8(r—r"), 10 i
( Twl/C ) i (r r ) ( ) :|8_0;f dS'V,(<¢(r)¢*(r’)>w_C-C-)r=rf- (17)
[V Vi~ 8dV 2~ (w/c)2e(r) Dy (1,1’ )
In the same approximation we can write

=(4mwilc?)5;8(r—r’). (12)
The functionsD;(r,r’,w) have the following symmetry Di(r,r')=— I—ViV{(D(r,r’),
properties’ @
D (r,r,@)=Dy(r’,r, ). (12) where the functiorD(r,r’) obeys the Poisson’s equation
The Poynting vector can be expressed trough the average AD(r,r’")y=—4xw8(r—r"). (18
products of the components of the electric field. Using Egs.
(10) and (11) we get Using the identities
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Dik(r. ") ViD(r" ") = VDS (r',1")] J @
i S
== S ViViID(r, r){ViDji(r ") = ViDji(r,r")}]
4.
1 ! li n * ! n [
—EZViVJ-D(r,r YVID*(r',r"), (19 ol 5
formula (13) gives ol
(Ei(NE;(r"))o=ViVi{(r)¢*(r')),, (20 8

(d(r)d* (")),
SARZET [ asgion o v )

=D(r,r")V"'D*(r',;x")}=47A(To)ImD(r,r’").

log, , (thermal flux/Jm ?s™)
i

p
(21) ol

Il. HEAT TRANSFER BETWEEN TWO FLAT SURFACES 8 ()

In this section we apply the general formalism to the
problem of the heat transfer between two flat surfaces. This 6
problem was considered some years ago by Polder and Van
Hovel Levin, Polevoy, and Ryto%,and more recently by 2
Pendry® who used a completely different approach. We sup- 4
pose that the half spaze<0 is filled by a mediunitempera- P
ture T,) with reflection factorsR,,(q,w) andR;4(q,w) for ol
s- and p-polarized electromagnetic fields, respectively, and
the half space>d is filled by a medium(temperatureT,) 0 1 2 3 4
with reflection factorsR,,(q, @) andR,s(q, @), and the re- log, ,(d/Angstrom)
gion between the solids,<0z<d, is assumed to be vacuum.
Let g be the component of wave-vector (g,p) parallel to FIG. 1. (a) The heat transfer flux between two semi-infinite
the surfaces and silver bodies as a function of the separatiymone at temperature

T,=273 K and another ak,=0 K. (b) The same a&) except that
2 we have reduced the Drude electron relaxation tirrfer solid 1
—) - qz_ (22 from a value corresponding to a mean-free-pgth=1=560 to 20
A. (c) The same a$a) except that we have reducédo 3.4 A.
We note that in our approach the calculation of the reflection
factors forsandp waves is considered as a separate problemyhere
which, if necessary, can be solved by taking into account
nonlocal effects. Using the general formulas from Sec. Il and Ny(w)=(e"*eT1i-1)"1, (24)
omitting the details of calculations for the heat transfer be-

Ceg : the Bose-Einstein factor of soliland similarly forn,,.
tween two semi-infinite bodies, separated by a vacuum ga . ) 2"
with the widthd, we obtain P y g B The detailed distance dependenceSpthas been studied

by Polder and Van Hove within the local optics approxima-

b e tion, and will not be repeated here. For the local optic case,

SZ:FJ- dwwf d?q the reflection factors are determined by the well-known
™ Jo a=wlc Fresnel formulas

x {{1_|Rlp(w)|2}{l_|R2p(w)|2}{n1(w)_n2(w)}

1— e2PAR R 2 ' :Sip_si ' :p_si
| 1p(@)Rap( )| Rp=oprs’ R~ prg’ (25
h oo
+ —3j dwwf d?qe2lpld whereg; is the complex dielectric constant for boiy
27 Jo g>wlc
IM Ryp(@)IM Ryp() w? )
S = i—qg°. 26
X|1—872|p‘dR1p(a})R2p(w)|2 i 2 Ci q (26)
X{ny(w)—ny(w)}+[p—s], (23 Figure Xa) shows the heat transfer between two semi-infinite
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FIG. 2. The thermal flux as a function of the separatibhe- FIG. 3. The thermal flux as a function of the resistivity of the
tween the surfaces. One body is at zero temperature and the othersglids. The solid surfaces are separated cby10A and fiw,
T=273K. With (/7)/kgT=120 andfiw,/ksT=15.5. >kgT. The heat flux for other separations can be obtained using

scaling~ 1/d? that holds for high-resistivity materials.
silver bodies separated by the distanlcend at the tempera-
tures T;=273K and T,=0K, respectively. Thes- and the p contribution to the heat transfer increases while she
p-wave contributions are shown separately, andptiveave  contribution decreases. Since the mean-free path cannot be
contribution has been calculated using nonlocal optihne ~ much smaller than the lattice constant, the result in Fig). 1
lower curve denoted by p shows the result using local optepresent the largest possilgevave contribution for normal
tics). It is remarkable how important the contribution is ~ metals. However, thep-wave contribution may be even
even for short distances. The nonlocal optics contribution tdarger for other materials, e.g., semimetals, with lower carrier
(S)p, which is important only fod<I (wherel is the elec- concentration than in normal metals. This fact has already
tron mean-free path in the bylkis easy to calculate for been pointed out by Pendry: thewave contribution for
free-electronlike metals. The nonlocal surface contribution tgshort distances is expected to be maximal when the function

ImR, is given by?°
i
1_21(2+_)

wp C!)p pr

e—1 -1
o q ImRy~Im——=Im
(Im Rp)surfzsz_k_':, e+l
p

where(q) depends on the electron-density paramejdnit is maximal with respect to variations in7L/This gives

typically £(0)~1. Using this expression for IR, in Eq.

(23) gives the(surface contribution: W T= 2keT
P hoy '
£ks
Ssur™ wzkéd%g(T‘l‘—T‘z‘). where we have used that typical frequencies-kgT/%.
p

Since the dc resistivity>=41-r/(wrz,r) we get(at room tem-
Note from Fig. 1a) that the local optics contribution t8,,  peraturg p~27fi/kgT~0.14Q cm. To illustrate this case,
depends nearly linearly ond/n the distance interval stud- Fig. 2 shows the thermal flux as a function of the separation
ied, and that this contribution is much smaller than thed between the surfaces when#/¢)/kgT=120 and
swave contribution. Both these observations differ from#w,/kgT=15.5. One body is at zero temperature and the
Ref. 3, where it is stated that tleecontribution can be ne- other atT=273K.
glected for small distances and that fir@vave contribution Figure 3 shows the thermal flux as a function of the re-
(within local optic$ is proportional to 1d? for small dis-  sistivity of the solids. Again we assume that one body is at
tances. However, for very high-resistivity materials, thezero temperature and the otherTat 273 K. The solid sur-
p-wave contribution becomes much more important, and daces are separated li/=10A and fiw,>kgT. The heat
crossover to a #? dependence 08, is observed at short flux for other separations can be obtained using scaling
separationsl. This is illustrated in Figs. (b) and Xc) which ~1/d?, which holds for high-resistivity materials. Finally,
have been calculated with the same parameters as in Figie note that thin high-resistivity coatings can drastically in-
1(a), except that the electron mean-free path has been rerease the heat transfer between two solids. This is illustrated
duced froml =560 A (the electron mean-free path for silver in Fig. 4, which shows the heat flux when thin filis10 A)
at room temperatuieto 20 A (roughly the electron mean- of high-resistivity materiap=0.14Q cm, are deposited on
free path in lead at room temperatuf€ig. 1(b)] and 3.4 A silver. One body is at zero temperature and the otheF at
(of order the lattice constant, representing the minimal pos=273K. (a) and(b) shows thep ands contributions, respec-
sible mean-free pajtiFig. 1(c)]. Note that wher decreases, tively. Also shown are the heat flux when the two bodies are
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(@) :ﬁ o - - s
S,=— | dww[ny(w)—ny(w)]| dqge
10 2, )
| IM Ry (@) IM Ryp( o) ]
° 1p 2p
= +[p—s];. 2
6 < high resistivity (ll—e 299R, (@) Rop(@)[? [p—s] (27)

Now, assume that the mediutnis sufficiently rarefied and
consists of particles with the radil®<d, and the polariz-
ability a(w). Then,e,—1—4m7a,n<1, wheren is the num-
ber of particles per unit volume. Thus, when-0 it is

©) enough to include only the first-nonvanishing terms in the

log, (thermal flux/Jm-2s-1)
o

5 '  Siver expansion of the integrand of E(R7) in powers ofe,—1.

coated silver The heat transfer between one particle and a surface can be
4 obtained as the ratio between the change of heat transfer after
3 displacement of bod@ by small distancelz and the number

of particles in a slab with thicknesz:
2r high resistivit)/
1t f (= oc
Sz=2—f dww[nl(w)—nz(w)]f dgore™ 2
of 7 Jo 0
0 1 2 3 4
log, (d/Angstrom) X1 2 IMRyp(w)IM ay(w)

FIG. 4. The heat flux between two semi-infinite silver bodies 2

coated with 10 A high-resistivity (= 0.14Qcm) material. Also

shown is the heat flux between two silver bodies, and two high-

resistivity bodies. One body is at zero temperature and the other ah the comparison with the Pendry’s calculations formula,

T=273K. (a) and(b) show thep ands contributions, respectively. Eq.(28) includes thes-wave contribution that is given by the
second term.

made from silver, and from the high-resistivity material. Itis 10 Simplify this expression we assume tha(w)|>1
interesting to note that while the contribution to the heat holds for all relevant frequencies. In the limid

flux for the coated surfaces is strongly influenced by the<|8|_l/2dW’ whereg IS taken at the charactenistic frequency
coating, thes contribution is nearly unaffected. ~kgT/h, the reflection factor of the wave becomes

+ :; IMR;g(w)Im az(w)}. (28

Im Rlp~ 7 - (29)
IV. LOCAL HEATING OF A SURFACE BY AN STM TIP |&4]

It was pointed by Pendfythe local heating of a surface by The polarizability of the sphere is determined by
an STM tip can be used for local modification of a surface if
the heat transfer is sufficiently great. To investigate the ay=
power of a hot tip to heat a surface, Pendry modeled the tip g2+ 2
as a hot sphere of the same radRss the tip. This is a ) ] ) ]
common approximation when calculating tunneling currentVe describe the sphere the same dielectric function as the
and the same arguments justify its use for calculating heatUPStrate:
tunneling. Pendry considered the c&®&d<dy~ch/kgT

and the electrostatic limit. However, for an STM tip, an op-

posite limitd<R is usually realized, and at large distances
retardation effects can be important. In fact, it will be shown

below that the heat transfer between a sphere and surface \¥here 7 is the Drude relaxation time and, the plasma
the asymptotic limit(large separationcan be obtained di- frequency. In this case thewave contribution becomes
rectly from formula(23).

Consider distancesi<dy~c#/kgT (at T=300K we N27T3R3ké 1
haved,,~10°A). In this case we can neglect the first inte- Spz~ 5d3%3 (wlzﬂ)z
gral in Eq. (23), and in the second integral we can put
~iq, and extend the integral to the whadeplane. Using  This result is in agreement with calculations of Pentiiyo
these approximations, the second integral in 8) can be  evaluate theswave contribution in the limid<|e|~Y2dy,
written as we use the integral

82_1 3 3|m82

R%, Ima,~ (30

|82|2 '

2

=1 e 31
g(w)= —m, (31

(T1=T3). (32
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_ S 1 r" (n—m)!

dge 29%1m s

f 1q+s [r—r’ mE:o nzmr’““(ner)'P (cosf)

_ mdqlmiq_s X PM(cosh’)emcosm(p— '), (r<r’), (37

ig+s
1 e - ror’! (I+n)!
2 _ R — -1 I+n
Im[Iso|e f dt;zl] [r—r’ mzzo nzm |:Zm( ) A (1+ m)l (n+m)!
t+yte—1
X Pp(cos#)P"(cosd’) e, cosm(¢p—¢'),

1 (=

[ id —z_ 3z
2'm(|30|e Lﬁ/zdz(e ¢ )] (r,r'<hf2), (39)
2 lsulcos ) . Picose)
3 0 ’ (_1)n mT

I
wheres,=s(q=0)=(w/c) e, |so|*% ¢=argsy. Thus, * .
So~2- 1KY~ 92R3 T2 2 1)~ 112 (33) :Izm (_l)th”_”*_(lan) P"(cos#), (r<h),
z p . =
From the comparisof32) and (33) the s'wave contribution (39

exceeds the-wave contribution ford>(dyc/w}7)"% for
typical metals at room temperaturd,w flkBT 10° and
w,7~10% so thatd>10?A. For dyle| Y2<d<d,, we ob-

tai n

whereeg=1, €,=2 for m#0. Using Eqs(37)—(39) we can
rewrite Eq.(35) in the form

0= 3, 3 3 {1 e (e an

szm SSZ% 10(3/22?,_7/2d_2R3C_1T9/2(0)§T)_3/2. (34) (n+ m)l
e,—1 r'! (1+n)!
e1+1 WL (I+m)!(n+m)!

Assume now that the spherical particle is so close to the
surface that we can neglect retardation effects. In this case
the problem is reduced to the finding of electrostatic poten-

+( 1)I+n+1

tial created by a point charge located in vacuum. Using the X Pr(cos@)P"(cosd’ )+ Cr(r")
image theorem! the electrostatic potential can be written in —1 I+
LSS
g,+1h' T i +m
, 1 g1 m
D)= 1= oy |r_ mE nE cr(r) xp{“(cosa)]emcosm(¢—¢’). (40
Pp(coso) nem E1— 1 Pr(cose;) Across the surface of the sphere, the Green fundiionr’)
rn+l (=1 e,+1 it (as a function of), and its normal derivatives must be con-
' tinuous. These boundary conditions lead to the equation
xcosm(¢p—¢'), (395
where we have chosen the origin of the coordinate system atc™(r")=A,, 2 [(% M S+ (—1)+n+l
the centelO of the spherical particle, and taken the polar axis r (n+m)!
along the line connectin® with the center of “image” - (I+n)!
sphereQ’, and assumed that the pointsandr’ have the <1 T P"(cosb")
polar coordinatesr(6,¢) and (',60’,4') with respectO;T’ er+1 W2 (T+m)(n+m)!

is the “image” of r’; ry;=r—h=(r;,6,,¢) whereh is the g1 2\ 4

vector connecting the cente@®@ and O’'. h=2(R+d) and + (— —) ( )C, (r )), (42
P.'(cos#) is the associated Legendre functitsee Fig. 5. eitl h n+m

At any interior point of the sphere, the resultant potential is

(1_82)n 2n+1

© oo I"I=
D(r,r)= 2 2 AR(r')r"Ppi(cos6) cosm(é—¢'),

m=0 n=m Outside the sphere the functi@}(r') satisfies the Laplace
equation and can be expanded as

(r<R). (36)
We expand the potentidB5) in spherical harmonics around ( +bmr,|) PM(cos’ 43
the centerO using the formula€ :2 AR i ) 43

205404-6
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FIG. 5. Spherical particléorigin O) above a flat surface and its
“image” (origin O’).

Using Eq.(43) in Eqg. (41) and taking into account that Eq.
(41) must be satisfied at arbitrary we obtain equations for
coefficientsa)) and by,

n+|
n+m

m

a

I"+n+1
) (44)

|

].

1

h

81_1

n81+1 |

I"+n+1
A |

-

>

’r_

b=

nl

(I"+n)!
(I"'+m)l(n+m)!

n+l1’
n+m

[E—

)bf?l (45)
If we make the replacement

(n—m)!
"(n+m)!

m:
nl

=m

an=A Sntan, (46)

then from Eqgs(44) and(45) we obtain
(47)

Let us introduce the dimensionless coefficiexis

20540
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B 1 I+n+1 Rlp
W= TR nrmyremy A
R1
_(_ n+l+1 P
=(=¢&R) (n+m)!(I+m)! AkiXar, - (48)
where
R _Si_l
ip_8i+1,
£=(R/h), \y=—A,/R?"*1 The coefficientsx,,| obey the
equation
- , (n+1")!
— | 21" +1 , ,
Xnl (n+m)'+R1p|§m g )\l (ll_m)|(|r+m)| Xy -
(49

The solution of Eq(49) can be found by iterations and has
the form

]

, I +1)!
X =(N+m)!+Ry, > €27\, (n+1OVA7+1)!

U —m (I"=m)t (1" +m)!
Rip E E §2|'+1§2|”+1)\|,)\|”
I"'=m1”"=m
I+ (1 +1M1(+1)!

A =mra+m! "—m)! (" +m)!
(50

Using Egs.(44) and (45), formula (40) can be significantly
simplified

0

1
D(r,r')= E 2 cl(r’ )(j—+

]

A

P (cosa)]
X encosm(gp—a'). (51

Using Eq.(51) in Eq. (21) we obtain
(d(r)d*(r'))w

i v
;[nl(w)—nz(w)]mzzo ngm

(n+m)! c'(r)C*
(n—-m!  RL

"(r') Im\,
I, |2 Cosm(¢ o)

—47A(T)ImD(r,r"). (52

Using Eq.(52) in Eq. (17) for the heat transfer between a
sphere and a flat surface we obtain
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S=;ﬁz f:dww[m(w)—nz(w)]
* «© o §n+l+1
><r'nE:O nzm I:zm (n—=m)! (I —m)!

x| (n— m) Im(ynmnRilcp) 5n|

§n+l+l| Rlp|2

—= P gm2
(n+|)!(|+m)!|xln| ImA; [IMmA,.

(53
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ﬁ o0
S:Efo doo[ni(0) —ny(w)]IMRp(w)IM Ryy(w)
de cos #sind
o 428 T cosoT?
™ —1 _—1; 3,414 T4
%%60'1 0'2 fl kB(Tl_TZ)! (56)

whereo = w’7/41. If we assume that in an accordance with
Eqg. (32) every elementary volume of the sphere gives the
contribution to the heat transfer

The above formalism gives, in principle, an exact solution of

the problem in the nonretarded limit. However, <R,

extensive numerical calculations are necessary, because in
this case the series converges slowly. The numerical results
will be presented elsewhere. In the present paper we only

present an approximate solution of the problem.

Using the image theorem far>1 and for the points
andr’ close to the surface of the sphere, in the first approx
mation in the expansion of the electrostatic potential in th
sum of the potentials created by the image charges we ¢
write the potential in the form

R ! R !
=] ]

D(r)= 17

+ RlpR2p| r _Ti/ | '

(54)

where

_2R—r’
=

!
r

(x"y".z'),

r'=(x",y’,—h—2z') and¥/=(x{,y{ ,—h—2z/). The value

| 3kg
Sor, 0, )~ 1601 +d—r cos6)43

Xopto,?

(57)

then after integration of Eq(57) over the volume of the
i_sphere, we obtain the result of the same order magnitude as
eEq. (56). Because ford<R<dW|s|‘1’2 in the accordance
a\ﬁith Eq. (33) thes contribution of the small particle does not
depend on the separatiahformula (33) is valid also for
small separatiord. From the comparison of Eq$56) and
(33), we get that for the sphere close to the surface, the

s-wave contribution dominates for

(T1—T3dV,

d>10"3(dwc/ wp) ¥R (w,7) 2

For “normal” metals at room temperature and fdR
~10% A the swave contribution dominates fa>1 A.

V. HEATING OF A PARTICLE BY AN STM TIP

Let us now consider the heat transfer between an STM
tip, which we again model by a spherical particle with radius
R, and the polarizabilitya,(w), and a spherical particle
with radiusR; and the polarizabilitya(w) located on a sur-

of the surface integrdR1) does not change if we assume that face. We consider the case of large separaderR;,R,,

the potential has the forrf54) in all space outside a sphere. and neglect by influence of the substrate on the heat transfer.
Thus, using Green’s theorem we can convert the surface irfit large distances, the thermal electromagnetic field radiated
tegral to a volume integral over all space outside a spherd Particle 1 can be considered as the radiative electromag-
This volume integral can be easily calculated using the fachetic field of a fluctuating point dipol@’ with ensemble
that outside a sphere the potenti(r,r ') obeys Poisson’s average
equation with the point charges locatedratr’, r=7', and

r=¥/ . Performing the calculation gives (PP ) =A(TIM ay(@) 8. (58)
The electric field of this point dipole is given by
IM($(r)¢*(r')),, |
f ! E=[3n<n-pf>—pf](i— K)eik—kz[nm-pf)—pf]'—kr
=2—[n1(w)—n2(w)]Re[ Rip ;p/—:_ IpRZp 3 r? r’
™ Iri =T
(59
1 . . .
T RrRr wherek=w/c and wheren is a unit vector along the axis
] R~ MR

connecting the two particle. The rate at which a partitle

(55) does work on a particl@ is determined by

Using Eq.(55) in Eq. (17) for the heat transfer between a

. (60)
sphere and a flat surface we obtain

P=4J dow Imay(w)(EE),
0
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2 2k4
¢

For d>d\ye 2 we have

(BiEf)W=A(T1,@)Im ay(w) . (61)

0s~3.887 2d " 2c A3 T 0wV, (68)
After absorption by particle 2 this work is converted into ) )

heat. In the same manner we can calculate the rate of coolifgf @™ the comparisof65) and (67) we find thatos> o, for

of particle 2 using the same formula by reciprocity. Thus, thed> ¢/, 7. For typical metals at room temperature this cor-

total heat transfer between the particles will determined by responds tai>1 A. This is in drastic contrast to theon-
servativeé van der Waals interaction, where the retardation

_ o effects become important only fcn‘>c:/wp.6 Finally, we

~ 2?2 fo down;(e)—ny(w)]Imay(w)Im a;(w) carry out the transition to frictional stress between a particle
with the radiusR<d and semi-infinite body in Eq64). To

do this, we assume as in Sec. IV that the b&lis suffi-
ciently rarefied, i.e., that the differeneg—1 is small. Keep-

) o ) ) ing only the first nonvanishing terms in the expansion of the
Using for the polarizabilities of particles expressi@®) we integrand of Eq(64) in powers of these difference, we get a

S

6 2k? 2k*

4t

x d

: (62)

obtain formula similar to Eq(28):
$~10 % KaTiRRz0y Mory AV (= [ n(w)) [
o=— dw( — )f dqq“e_zqd
" o2 1 gt 1 ) (TimT,] 7T Jo dw 0
56 prr prre 2 el M K g A
d d2,,d* d?,,d? v
63) X1 21IMRyp(w)Im ay(w)
whered;y=#%c/kgT;. w2
VI. RELATION BETWEEN HEAT TRANSFER AND q

FRICTION In the limit d<|e|~*2d,, the reflection factor of the wave

The heat transfer studied above is closely related to th d_etermmed by Eq29) and in Eq.(69) the p-wave contri-
frictional stress between bodies in relative motion, separate§ution is reduced to the formula that was obtained by To-
by a vacuum gap. In the last years, this “vacuum” friction Massone and Widorr.For the spherical particle in this limit
has attracted a great deal of attention in connection with th¥/€ 9€t
development of the scanning probe technigife*~16|n
Ref. 7 we show that the frictional stress between bodies hav-
ing flat parallel surfaces separated by a distasthe@d mov-
ing with velocity V relative to each other for the distances
d<dyy is determined by a formula that is very similar to Eq.

(27): 5/2
5l ( kB_T)

o~ 147~ 7
LRV [ e P d | %
o= | dw| dqce
2 0 0

3 hV(kBT

2
~_ B -1 _-1p3
167T2 d5 h ) 01 03 R, (70)

Op
and for|e| ~Y2d,y<d<dy, we get
o1 Y0, IR. (7))

Ford<|e| Y2y, o, is independent ofl:

IMRyp(@)IMRyp(w) _ n(w) F[ps] keT) 92
|1— e 299Ry () Ryp(w)[? dw P : o~3.3X 102w—1’2ﬁva§’202‘1c—5R3(T) , (72
64
e _ ( _) _and for|e| Y,y <d<dy, we get
For d<dye ™ ~'%, wheree(w) is taken at the characteristic
frequency~kgT/%, the p-wave contribution is given By AV [kgT)\ %2
o~3.547 %2 — —) o1 Y20, IRE. (73)
0.3kgT/hwy)? v (65) i
o,~0. Wp) 3 71, .
P 5 P (wpr)? d* From the comparisoli70) and (72) we get thatos> o, for
and fordye ~“2<d<dy: 0.1(ch/al)1’2<_d<|s|‘1’2dw. For a ngrmal metal at room
temperature this corresponds to 23@<10°A. For
9 AV kgT 1 66 |s|‘1’2dW§d<dW, o~0p. .
T~ o2 m h_wp w—pT (66) To estimates for R>d, we use the same approach as in

Sec. IV. We define the frictional stress between the elemen-
For d<dye 2 theswave contributionos becomes inde- tary volume dV and the semi-infinite body ado
pendent ofd: =(30/47R%dV, whereo is given by an expression for a
o1 a2e o 4 spherical particle foR<d. After integration over the vol-
0s~0.5m “h "¢ kT wpV. (67)  ume of the sphere fal<R<|e| %, we get

205404-9



A. I. VOLOKITIN AND B. N. J. PERSSON PHYSICAL REVIEW B53 205404

AV (keT\2 . have been neglectéd?® A striking result we found is that
op~4- 10_533-(7) o;'o; 'R, (74)  for systems with high two-dimensional electron density, e.g.,
thin metallic films, retardation effects become crucial and in
Because in this limitocg does not depend od, it is still ~ fact, dominate the frictional shear stress
determined by Eq(73). From Eqs(73) and(74) we get that

o> o, for
VIl. SUMMARY AND CONCLUSION

1 _
d>2.4-10%(cdwo ) TR We have calculated the heat transfer betwegrwo flat
For a “normal” metal at room temperature ai~10* A,  surfaces(b) a spherical particle and a flat surface, dog
d>10A. between two spherical particles. For two flat solid surfaces
Recently, Dorofeeet al'® have observed Brownian mo- We have presented numerical results for several cases of
tion of a small metal particle connected by a spring to apractical importance, namely for two *“normal’thigh-
holder, and located in ultrahigh vacuum in the vicinity of a conductivity metals(silver), two (high-resistivity semimet-
gold surface. It was observed that the particle performed &ls and two silver metals coated by thin layei® A) of
stochastic oscillatory motion increased as the particle aphigh-resistivity material. For high-resistivity metals, the
proaches the gold surface. It was suggested that this i-wave contribution dominates, but for “normalthigh-
creased damping is due to the coupling to the fluctuatingonductivity metals we found the remarkable result that the

electromagnetic field. From Eqé72) and (74) we can esti- S'wave contribution dominates even for short separation be-
mate the damping constanym=o/mV. For d~107A, tween the solids. For a spherical particle and a flat surface we

R~10°A, m~10 "-10"3kg, and for “normal” metal at have considered bothi>R and d<R, whered is the
room temperature we gey,/m~10"1" s and ys/m particle-surface separation afdthe radius of the particle.
~10"18 s, However in the experimett y/m~10? s~1.  For d<R we have obtained an exact result in the electro-
Thus, the contribution of a fluctuating electromagnetic fieldstatic limit, and the approximate formulas that include the

to the damping constant cannot explain the observed experietardation effects. We have pointed out the close relation-
mental date. This result is in agreement with our earliesship between the radiative heat transfer between two solids

conclusiont® and the vacuum friction'3that occur when one of the solids
The f|uctuating e|ectromagnetic field is an origin of the slide relative to the other solid. The formalism developed in

frictional drag observed between parallel two-dimensionathis paper can be generalized to treat the vacuum friction

electron system¥ In the frictional drag experiments a cur- between bodies with curved surfaces.

rent is drawn in the first layer, while the second layer is an

open circuit. '_I'hus, no dc qurrgnt can flow in the second ACKNOWLEDGMENTS
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