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Excitons in T-shaped quantum wires
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We calculate energies, oscillator strengths for radiative recombination, and two-particle wave functions for
the ground-state exciton and around 100 excited states in a T-shaped quantum wire. We include the single-
particle potential and the Coulomb interaction between the electron and hole on an equal footing, and perform
exact diagonalization of the two-particle problem within a finite-basis set. We calculate spectra for all of the
experimentally studied cases of T-shaped wires including symmetric and asymmetric GaAs/AlxGa12xAs and
InyGa12yAs/AlxGa12xAs structures. We study in detail the shape of the wave functions to gain insight into the
nature of the various states for selected symmetric and asymmetric wires in which laser emission has been
experimentally observed. We also calculate the binding energy of the ground-state exciton and the confinement
energy of the one-dimensional~1D! quantum-wire-exciton state with respect to the 2D quantum-well exciton
for a wide range of structures, varying the well width and the Al molar fractionx. We find that the largest
binding energy of any wire constructed to date is 16.5 meV. We also notice that in asymmetric structures, the
confinement energy is enhanced with respect to the symmetric forms with comparable parameters but the
binding energy of the exciton is then lower than in the symmetric structures. For GaAs/AlxGa12xAs wires we
obtain an upper limit for the binding energy of around 25 meV in a 10-Å -wide GaAs/AlAs structure that
suggests that other materials must be explored in order to achieve room-temperature applications. There are
some indications that InyGa12yAs/AlxGa12xAs might be a good candidate.
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I. INTRODUCTION

Optical properties of electrons and holes confined to f
dimensions are of interest for optical and electronic devic
As the dimensionality of the structure is reduced, the den
of states tends to bunch together leading to a singularit
the one-dimensional~1D! case. This effect can be very usef
for low-threshold laser applications. At the same time
excitonic interaction in 1D is enhanced with respect to tha
3D and 2D structures. Quantum confinement leads to an
crease in the exciton binding energyEb and the oscillator
strength for radiative recombination. Both effects provi
possibilities for much better performance of optical devic
such as semiconductor lasers.

The binding energy of a ground-state exciton in an id
2D quantum well is four times that in the 3D bulk semico
ductor. For the ideal 1D quantum wireEb diverges. This
suggests thatEb for quasi-1D wires can be greatly increas
with respect to the 2D limit for very thin wires with high
potential barriers. 3D and 2D excitons dissociate at ro
temperature to form an electron-hole plasma. To make th
useful for real device applications, their binding ener
needs to be increased and this might be achieved by u
1D quantum confinement.

Technologically it is very difficult to manufacture good
quality 1D quantum wires with confinement in both spat
directions. They can be obtained from a 2D quantum w
fabricated by thin-film growth, by lateral structuring usin
lithographic methods. The accuracy of this method is, ho
ever, limited to some 10 nm and thus the electronic prop
ties of samples constructed in this way typically have
0163-1829/2001/63~20!/205317~14!/$20.00 63 2053
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strong-inhomogeneous broadening. Fortunately it appe
possible to achieve quasi-1D particles even without a rig
ous confinement in any of the spatial directions. This h
been realized in so-called V- and T-shaped quantum wi
V-shaped quantum wires are obtained by self-organi
growth in prepatterned materials such as chemically etc
V-shaped grooves in GaAs substrates. The T-shaped q
tum wire, first proposed by Changet al.,1 forms at the inter-
section of two quantum wells and is obtained by the cleav
edge over-growth method, a molecular-beam epita
technique. The accuracy of this method is extremely h
and allows fabrication of very thin~less than the Bohr radiu
of an exciton! wires with small thickness fluctuations. Thes
structures are currently the subject of intensive research
have been realized by several groups.2–8

Experimentalists try to optimize the geometry and the m
terials in order to increase the binding energy of the excit
Eb and the confinement energyEcon for possible room-
temperature applications. Until now, the most popular ma
rial studied experimentally has been GaAs/AlxGa12xAs. In-
creasing the Al molar fractionx should lead to biggerEb and
Econ but, unfortunately, for largerx the interfaces get
rougher that degrades the transport properties. Thus o
mized geometries for lower values ofx become more rel-
evant.

The confinement energyEcon is the energy difference be
tween the lowest excitonic state in the wire and the low
excitonic state in the 2D quantum well. It can be direc
measured as the difference between the photoluminesc
peaks obtained in a quantum wire~QWR! and a quantum
well ~QW!. It is, however, not possible to measure the ex
©2001 The American Physical Society17-1
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ton binding energy directly. Its value has to be obtain
froma combination of experimental data and one-particle
culations of electron and hole energies in a wire. There
been a disagreement between the purely theore
values9–13 and those obtained from a combination of expe
mental data and theoretical calculations. The confinem
energies, however, tend to agree between experiment
purely theoretical calculations, suggesting that experim
using combined methods where errors tend to accumu
usually overestimates the binding energy.

For the 5-nm scale symmetric GaAs/AlAs, Someyaet al.3

reported the largest confinement energy for excitons in s
metric wires~Fig. 1!, Econ538 meV andEb52763 meV.
The largest confinement energy of any structure was repo
by Gislason and co-workers4,5 for their optimized wires. Us-
ing asymmetric wells with different widths and Al content
in Fig. 2, they obtained an exciton-confinement energy of
meV. Recently there has also been the first experimenta
alization of T-shaped wires using InyGa12yAs/Al0.3Ga0.7As.2

The highest confinement energy reported for this structur
34 meV, which is very close to the GaAs/AlAs result, a

FIG. 1. Shape of the symmetric T-shaped wire with notatio

FIG. 2. Shape of the asymmetric T-shaped wire with notatio
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the quality of the structure can be much higher than for
GaAs/AlAs case.

Laser emission from the lowest-exciton state in atom
cally smooth semiconductor quantum wires was fi
observed by Wegscheideret al.6 in symmetric, T-shaped
quantum wires made on the intersection of two 70-Å Ga
quantum wells surrounded by AlxGa12xAs with the Al frac-
tion x50.35. Recently the same group obtained excito
lasing in a 60-Å /140-Å asymmetric quantum wire with a 7
Al filled stem well ~see Fig. 2!.8 They reported an interestin
observation of two-mode lasing in this structure. Und
strong excitation they achieved simultaneous lasing from
levels in the quantum wire. There is a switching betwe
those two lasing modes as the temperature or pumping ra
changed. A simple rate equation model14 gives very good
agreement with experimental data, that suggests that we
lasing from two different states in the quantu
wire.

All calculations published to date which include the Co
lomb interaction between the electron and hole have o
examined the ground-state exciton. They have used ei
variational methods11–13 or other approximations9,10 and
were performed only for symmetric wires and for very lim
ited cases realized experimentally in the early days
T-shaped wire manufacturing. With the growing experime
tal realization of these structures as well as the interes
report of lasing phenomena there is a need for accurate
body calculations, treating on an equal footing the sing
particle potential and the Coulomb interaction, of both t
ground and excited states in the structure.

Excited states seem to be very important for the opera
of excitonic lasers.8 Calculations of energies, oscillato
strengths for radiative recombination~i.e, how the various
states couple to photons! as well as the full wave functions
for the whole spectra of interest would be very beneficial
understanding the origins of certain transitions and effe
This could help in the design of lasers with better propert
and higher maximum temperatures for excitonic lasing. T
goal is to design excitonic lasers that can operate at ro
temperature. Also, performing highly accurate calculatio
of the ground-state exciton in QWR and the correspond
QW enablesEb andEcon to be obtained for different geom
etries~both symmetric and asymmetric! for a wide range of
well widths and Al content,x. Such data are of great impor
tance for the optimization of the structures.

Our method is based on an exact-numerical solution
the Schro¨dinger equation in a certain basis within th
effective-mass approximation. The method is not restric
to a given number of excited states and we can calculat
many of them as required. For some structures we have
culated up to 100 excited states. We perform calculations
a very wide range of T-shaped wires. In Sec. II of the pa
the numerical method is discussed in detail while in Sec.
we present the results. There we first study the spectra
wave functions and present a discussion of the nature of
various excited states. Finally we discussEcon , Eb , and the
difference between the ground-state exciton energy and
first excited-state energyE221 as a function of well width
Dx and Al molar fractionx for the symmetric and asymme
ric quantum wires.

.
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EXCITONS IN T-SHAPED QUANTUM WIRES PHYSICAL REVIEW B63 205317
II. THE MODEL

We use the effective-mass approximation with an ani
tropic hole mass to describe an electron in a conduction b
and a hole in a valence band in the semiconductor struct
under consideration. The effective mass of the hole depe
on the crystallographic direction in the plane of the T-shap
structure. We consider the heavy hole only. The other ba
~split-off bands, light holes! would have energies higher tha
the region of interest for us. The light-hole exciton, the clo
est in energy to the heavy-hole exciton, is calculated to
over 30 meV higher that the heavy-hole exciton, and thu
is ignored in the calculations. The electron and hole are
the external potential of the quantum wire formed at
T-shaped intersection of the GaAs/AlxGa12xAs quantum
wells. The so-called arm quantum well is grown in the 1
crystal direction and intersects with a stem quantum w
grown in the 001 direction~see Figs. 1 and 2!. In our model
the crystal directions 110, 001, and 110 correspond tox, y,
and z, respectively. We consider symmetric quantum wi
where the arm and stem well are both of the same width,
Dx5Dy, and are made of GaAs. We also consider asy
metric wires where the stem well is significantly wider b
filled with Al xGa12xAs with a low Al content to compensat
for the reduction in confinement energy. Our method is
plicable to any structure regardless of its shape and mate
provided the external potential is independent ofz.

The value of the band gap is different for the differe
materials used in the well construction. This gives rise to
potential barriers at the interfaces between the Ga
Al xGa12xAs and InxGa12xAs that take different values fo
electrons and holes. In our model the electron and hole
placed in external potentialsVe(x,y) and Vh(x,y), respec-
tively, and interact via the Coulomb interaction. We choo
the potential in GaAs to be zero and calculate all potent
in other materials with respect to this level. The exter
potential is independent ofz in all cases. Sample geometrie
considered in this work are shown in Figs. 1 and 2. Using
above model, after the separation of the center of mass
relative motion in thez direction, the system is described b
the following Hamiltonian:

H52
\2

2me
¹xe ,ye

2 2
\2

2mhx
¹xh

2 2
\2

2mhy
¹yh

2 2
\2

2mz
¹z

2

1Ve~xe ,ye!1Vh~xh ,yh!

2
e2

4pe0eA~xe2xh!21~ye2yh!21z2
, ~2.1!

wherez5ze2zh and 1/mz51/me11/mhz . The wave func-
tion associated with the center-of-mass motion in thez direc-
tion is a plane wave and this coordinate can be omitted fr
the problem.

A. Numerical method for calculating quantum-wire
exciton states

We calculate the ground and excited states in the st
tures of interest by a direct-diagonalization method. Due
20531
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the complexity of the external potential with its limited sym
metry and sharp edges, none of the standard basis sets
appropriate. We use the following basis set:

c~xe ,ye ,xh ,yh ,ze2zh!

5(
i , j ,k

ci , j ,k sinS z
kp

Lz
2

kp

2 Dx i
e~xe ,ye!x j

h~xh ,yh!, ~2.2!

wherex i
e(xe ,ye)/x j

h(xh ,yh) are electron/hole single-particl
wave functions for a T-shaped potential without the electr
hole Coulomb interaction. In thez direction we introduce
hard-wall boundary conditions and use a standing-wave b
set.

Our basis set does not obey the so-called cusp conditi15

that is satisfied whenever two particles come together.
divergence in the potential energy when the electron
hole come together must be exactly canceled by an oppo
divergence in the kinetic energy. The exact wave funct
must therefore have a cusp when the electron and hole
coincident. Using a basis in which every basis functi
obeys the cusp condition would reduce the size of the b
set required. For an isotropic hole mass it would be very e
to satisfy the cusp condition by multiplying the basis fun
tions by the factor exp@2LA(xe2xh)21(ye2yh)21z2# that
is just the hydrogenic wave function. Unfortunately there
no analytical solution when we introduce the anisotro
hole mass. Thus we choose not to satisfy the cusp cond
and therefore have to use a larger basis set.

The diagonalization is performed using a NAG libra
routine. Convergence is usually achieved with a basis
containing 20 of each of the single-particle wave functio
and 20 standing waves in thez direction. Thus 20320320
58000 basis functions are needed that gives 206 matrix ele-
ments. Only one quarter of the total number needs to
calculated as interchangingk1 andk2 leaves the matrix ele-
ment unchanged while interchangingi 1 and j 1 with i 2 and j 2
gives its complex conjugate. This still leaves a great ma
matrix elements to be calculated. Thus to make the calc
tions feasible the matrix elements need to be calculated v
rapidly ~see Sec. II C!.

B. Computational method for calculating the single-particle
wave functions

The one-particle~electron and hole! wave functions,
x i

e(xe ,ye) and x j
h(xh ,yh) in a T-shaped external potentia

are calculated using the conjugate-gradient minimizat
technique with preconditioning of the steepest descent v
tor. A detailed explanation of this method can be found
reference.16 We specify the external potential on a 2D gr
and use periodic boundary conditions in thex and y direc-
tions so that we are able to use fast Fourier transform~FFT!
methods to calculate the kinetic energy in Fourier sp
while the potential energy-matrix elements are calculated
real space. The fast calculation of the energy-matrix e
ments is crucial as they have to be calculated many tim
during the conjugate-gradient minimization. The FFT pr
vides very fast switching between real and Fourier space
7-3
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makes the algorithm much more efficient, but the use
periodic boundary conditions introduces the problem of
tercell interactions in the case of two-particle calculatio
To avoid this problem we place the unit cell in the middle
another, larger unit cell of infinite potential~see Fig. 3 and
the Sec. II C!.

We use plane waves as a basis set for the one-par
problem. Using this method we can calculate as many a
states for the electron and 50 for the hole. Very good c
vergence with respect to the number of plane waves and
size of the unit cell is obtained~see Sec. III C!.

C. Computational method for calculating the matrix elements

The kinetic and potential energies are diagonal in t
basis and are obtained from the one-particle calculatio
Thus only the Coulomb matrix elements need to be ca
lated.

A Coulomb matrix element in the basis set~2.2! is a 5D
integral of the following form:

2E E E E E dxe dye dxh dyh dz

3sinS z
k2p

Lz
2

k2p

2 Dx i 2
e* ~xe ,ye!x j 2

h* ~xh ,yh!

q~xe2xh ,ye2yh ,z!

3sinS z
k1p

Lz
2

k1p

2 Dx i 1
e ~xe ,ye!x j 1

h ~xh ,yh!, ~2.3!

where q(xe2xh ,ye2yh ,z) is the Coulomb interaction cu
off at final distance to avoid image effects~see below!. This

FIG. 3. Lattice used for calculations and notations.
20531
f
-
.

f

le
50
-

he

s
s.
-

integral must be calculated numerically. Numerical integ
tion for so many dimensions is very slow and thus is n
feasible for the case of 206 matrix elements. Thus anothe
method has to be introduced.

The above integral is of the form

2E E E E E dxe dye dxh dyh dz fe~xe ,ye!

3 f h~xh ,yh!q~xe2xh ,ye2yh ,z! f z~z!, ~2.4!

where

f e~xe ,ye!5x i 2
e* ~xe ,ye!x i 1

e ~xe ,ye!,

f h~xh ,yh!5x i 2
h* ~xh ,yh!x i 1

h ~xh ,yh!. ~2.5!

Using the Fourier transform and the convolution theorem
can be shown that the above integral is equal to

E dz (
Gx ,Gy

Fe~2Gx ,2Gy!Fh~Gx ,Gy!Q~Gx ,Gy ,z!,

~2.6!

whereFe , Fh , Q are the 2D Fourier transforms of the fun
tion f e with respect toxe andye , f h with respect toxh and
yh and q with respect toxe2xh and ye2yh , respectively.
Thus the 5D integral can be reduced to a 1D integral w
respect to thez variable and a 2D sum in Fourier space. T
Fe andFh Fourier transforms can be easily calculated us
FFT’s in real space after multiplication of the correspondi
x i 1

e (xe ,ye) by x i 2
e* (xe ,ye) for electrons andx i 1

h (xh ,yh) by

x i 2
h* (xh ,yh).

In order to use FFT’s we need to introduce period
boundary conditions in thex andy directions as in the one
particle calculations. To eliminate interactions between p
ticles in neighboring cells, we place the unit cell in th
middle of another, bigger unit cell of infinite potential~see
Fig. 3!.

The distance between the edges of successive small
cells is exactly the width of the small unit cell,L. We cut off
the Coulomb interaction at a distance corresponding to
size of the small unit cell. We therefore consider the follo
ing form of Coulomb interaction:
q~xe2xh ,ye2yh ,z!55
if xe2xh,Lx

2
e2

4pe0eA~xe2xh!21~ye2yh!21z2
and ye2yh,Ly

0 otherwise.

~2.7!
7-4
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EXCITONS IN T-SHAPED QUANTUM WIRES PHYSICAL REVIEW B63 205317
Particles interact only when their separations in thex andy
directions are smaller thanLx and Ly , respectively. The
separations of particles in neighboring cells is always big
than the cutoff and thus they do not interact. Particles in
same unit cell are always separated by less than that
cutoff distance due to the infinite potential outside the sm
unit cell. Thus we take into account all of the physical Co
lomb interaction and completely eliminate the interactio
between images. In the numerical implementation the infin
potential is replaced by a large but finite potential. Thus
probability of the particle being outside the small unit cell
effectively zero and we find that the results do not depend
the value of this potential for values greater than arou
three times the potential in the AlxGa12xAs region.

The 2D Fourier transform of the 3D Coulomb interacti
with a cutoff cannot be done analytically. Thus we put t
Coulomb interaction onto a 2D grid as a function of relati
coordinatesxe2xh and ye2yh for every z value. The unit
cell in relative coordinates will go from2Lx to Lx , and
2Ly to Ly , respectively. Then for every value ofz a 2D FFT
is performed with respect toxe2xh and ye2yh and the re-
sults stored in the 3D arrayQ(Gx ,Gy ,z). Since this is the
same for every matrix element the above calculation need
be performed only once.

The calculations described by Eq.~2.6! need to be per-
formed for every matrix element. AfterFe(Gx ,Gy) and
Fh(Gx ,Gy) have been calculated the summation over
reciprocal lattice vectorsGx and Gy for every value ofz is
performed. The remaining 1D integral in thez direction is
done numerically, after interpolation of data points, using
routine from the NAG library. The dependence of the in
grand onz is found to be very smooth and thus not ma
points are required to obtain accurate results.

III. RESULTS

We perform the calculations for a series of T-shap
structures. We calculate energies, oscillator strengths,
wave functions for the first 20–100 two-particle states
symmetric and asymmetric wires.

For symmetric wires we consider the structure denoted
W that has been experimentally studied by Wegsche
et al.6 and consists of GaAs/Al0.35Ga0.65As 70-Å quantum
wells. Then, keeping the rest of parameters constant, we
the quantum-well width from 10 Å to 80 Å in steps of 10
in order to examine the width dependence of the vari
properties. We also perform calculations for samples deno
by S1 and S2 studied by Someyaet al.3 made of
GaAs/Al0.3Ga0.7As (S1) and GaAs/AlAs (S2) quantum
wells of width around 50 Å. For the GaAs/AlAs case w
again vary the well width from 10 Å to 60 Å. Then we tak
an intermediate value of the Al molar fraction,x50.56, and
vary the well width from 10 Å to 60 Å in order to examin
the dependence on the well width as well as Al conte
Finally we perform calculations for 35-Å-scal
In0.17Ga0.83As/Al0.3Ga0.7As ~denoted byN4) as well as for
40-Å-scale In0.09Ga0.91As/Al0.3Ga0.7As ~denoted by N2)
samples as studied experimentally by Akiyamaet al.2

For asymmetric structures we consider the wire stud
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experimentally by Rubioet al.8 that consists of a 60-Å
GaAs/Al0.35Ga0.65As arm quantum well and a 140-Å
Al0.07Ga0.93As/Al0.35Ga0.65As stem quantum well. We vary
the width of the arm quantum well from 50 Å to 100 Å. W
also perform calculations for the asymmetric structure st
ied by a different group4,5 that consists of a 25-Å
GaAs/Al0.3Ga0.7As arm quantum well and a 120-Å
Al0.14Ga0.86As/Al0.3Ga0.7As stem quantum well.

In the first part of this section we present the spectra
symmetric and asymmetric quantum wires with the positio
of 2D exciton, 1D continuum~unbound electron and hol
both in the wire! and 1De/2Dh continuum~unbound electron
in the wire and hole in the well! states as well as pictures o
representative wave functions. This allows us to discuss
nature of the excited states in the structures. In the sec
part we discuss the trends in confinement and binding ene
and the separation in energy between the ground and
first-excited states as a function of the well width and
fraction.

We use a static dielectric constante513.2 and a
conduction-band offset ratioQc5DEcond/DEg of 0.65. For
the difference in band gaps on the GaAs/AlxGa12xAs inter-
face we use the following formula:DEg512473x meV for
x,0.45 and 12473x111473(x20.45)2 meV for x
.0.45. For the electron mass we useme50.067m0 while for
the hole massmhx5mhz5mh[110]50.6920.71m0 and mhy
5mh[001]50.38m0 (m0 is the electron rest mass!. For the
In0.09Ga0.91As/Al0.3Ga0.7As (In0.17Ga0.83As/Al0.3Ga0.7As) we
use parameters from Ref. 2: for the electronme
50.0647(0.0626)m0, for the hole mhy5mhh[001]
50.367(0.358)m0 and mhx5mhz5mh[110]
50.682(0.656)m0 , DEg5464(557) meV and the ban
offset was assumed to be 65% in the conduction and 35%
the valence band.

A. Excited states

1. Symmetric wires

In Fig. 4 we show spectra~the oscillator strength versu
energy! for the first 20~30 in the case of the 70-Å and 30-Å
wire! states for the GaAs/Al0.35Ga0.65As structure for well
widths from 10 Å to 80 Å. A dashed line shows the ener
of the 1D continuum, a dotted line that of the 1D electr
and 2D hole continuum, the dotted-dashed line—
quantum-well 2D exciton, while the dashed-dot-dotted li
shows the 2D electron and 2D hole continuum. In the cas
the 20-Å wire the 2D electron and 2D hole continuum is n
shown as its value of 245.5 meV is out of range by a sign
cant amount. Because our system is finite in thez direction,
we obtain only a sampling of the continuum states; below
continuum edge the states are discrete.

Note that for the experimentally studied 70-Å structu
the 2D exciton has a lower energy than the completely
bound electron and hole in the wire. The situation clea
depends on the well width and the crossing point is betw
60 and 70 Å. For well widths of 60 Å or smaller, the 1
continuum~1Dcon! is lower in energy that the 2D excito
~2Dexc! with the difference being maximal for a width o
around 20 Å. For widths of 70 Å or bigger, the 1Dcon
7-5
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FIG. 4. Oscillator strength ver-
sus energy for the lowest 20–3
states in a symmetric T-shape
structure for different well widths
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higher in energy than the 2Dexc with the difference grow
for increasing well width. This effect might be significant fo
pumping T-shaped-wire lasers. Free electrons and holes
excited in the whole area of both wells and thus, when
2D exciton has a lower energy than the 1D continuum, f
mation of the 2D excitons is energetically favourable. The
excitons can recombine in a well instead of going to the w
and forming a 1D exciton. Clearly it is more efficient to ha
the 1D continuum lower in energy than the 2D exciton.

By increasing the well width we obtain more states th
are lower in energy than the 1Dcon and 2Dexc beginn
with two ~ground and the first excited! for the 10-Å well,
three for widths between 20–50 Å and four states for lar
widths.

We now discuss the behavior ofucu2 for the 70-Å case.
The wave functions depend on five spatial coordinates
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thus various cuts in 5D space are presented in Figs. 5 an
~a! the electronxe , ye position after averaging over the ho
position, ~b! the holexh , yh position after averaging ove
the electron position, and relative coordinates after averag
over the center of mass position,~c! the xe2xh , ye2yh
relative coordinates forze2zh50, and ~d! the xe2xh , z
relative coordinates forye2yh50.

For the ground state we observe that the electron and
are very well localized in the wire with slightly more hol
localization. The relative coordinate plots clearly show t
bound exciton~Fig. 5 state 1!.

The electron in the first-excited state is localized in t
wire while the hole already expands into the arm well. T
relative coordinate pictures show that the electron and h
are bound and form an exciton with an asymmetric sha
The size of the exciton is smallest in thex direction ~the
7-6
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FIG. 5. Modulus squared of
the two-particle wave function for
the ground ~1!, first excited ~2!
and the 15th~15! state in the sym-
metric T structure. Electron~a!,
hole ~b!, and the relative coordi-
nates xe2xh , ye2yh ~c!, xe

2xh , z ~d! probability densities
are shown.
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and
stem-well direction! and the exciton expands more into they
~the arm well where the hole is expanded! and freez direc-
tions ~Fig. 5 state 2!. The oscillator strength of this state
about one-third of that of the ground state and the s
clearly takes the form of a 1D exciton with its center of ma
in the T wire.

It can be seen from the spectra~Fig. 4! that there are four
states~apart from the ground state! with energies smaller
than 1Dcon and 2Dexc. The nature of the third and fi
states is very similar to the second one: the center of ma
in the wire and the electron is still well localized in the wi
while the hole spreads into the wells~into both the arm and
stem wells for the third state while only into the stem w
for the fifth one!. The relative coordinates show the comple
asymmetric shape of this excitonic state and the oscilla
20531
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r

strength is again around one-third of the ground-state e
ton.

The fourth state with almost zero oscillator strength c
responds to a 1D continuum. The electron and hole are b
in the wire but the relative coordinate pictures show an
bound exciton. Within the first 30 states we have three sta
of that nature: the 4th, 7th, and 15th. The 15th state is sho
in Fig. 5: the electron and hole are confined in the wire~a, b!
and there are 3 nodes in thez direction and 1 node in they
direction. The other two states look similar and differ only
the number of nodes. The energy of the fourth state, whic
the lowest 1Dcon state, turns out to be lower than the r
1Dcon obtained from our one-particle calculations. This
due to the finite-size effects. Our method is very well co
verged with respect to the cell size for the bound state
7-7
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FIG. 6. Modulus squared of
the two-particle wave function for
the 22nd, 25th, and the 27th sta
in the symmetric T structure
Electron~a!, hole~b!, and the rela-
tive coordinatesxe2xh , ye2yh

~c!, xe2xh , z ~d! probability den-
sities are shown.
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for the unbound ones where at least one of the particles
the well. However, for the unbound continuum 1D states,
particles are very close in thex,y plane because of the ver
small size of the wire and thus the interaction is strong
Consequently it does not decay as fast in thez direction as
other states and thus we need a much bigger unit cell in
z direction to achieve convergence. There are however o
three such states within the 30 we examine and we kn
their true energies from the preceding one-particle calc
tions.

For further excited states up to the 25th, the electron,
thus the center of mass, is still localized in the wire while t
hole is taking up more and more energetic states in b
wells, where energies are quantized due to the finite siz
the cell. Those states can be divided into two groups depe
20531
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ing on their relative coordinate nature: excitonic-like sta
similar to the second state~Fig. 5 state 2! and ionized states
like the 22nd that is represented in Fig. 6 state 22. The
cillator strength of the second group is zero~see Fig. 4!.

The 25th state~Fig. 6 state 25! is the first state where the
electron is delocalized in both wells, the relative coordina
and the large oscillator strength shows that it is clearly
excitonic-like state. It appears to be a 2D quantum well
citon state scattered on the T-shaped intersection. Its en
is thus higher than that of a pure 2Dexc.

The 27th state is the 2D arm-quantum-well-exciton sta
It has higher energy than the ground-state 2D exciton
cause the electron and hole wave functions occupy hig
energy states than the ground state of the well due to
presence of the T intersection.
7-8
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EXCITONS IN T-SHAPED QUANTUM WIRES PHYSICAL REVIEW B63 205317
The 30th state has a very similar nature as the 27th bu
exciton expands into the stem instead of the arm quan
well.

The 25th, 27th, and 30th states all have large-oscilla
strengths~around three-fourths of that of the ground-sta
exciton!. It is interesting to note that between the grou
state and those 2D large-oscillator-strength states, there
group of states with relatively low-oscillator strengths. T
reason for this is that after the ground state, there are s
where either the wirelike electron is bound to the well-li
hole and thus they do not overlap enough to give big con
bution to the spectrum or they consist of a wirelike electr
with an unbound hole.

Those quantum-well-like exciton states that scattered
the T-shaped potential~like state 25! appear to be quite im
portant for the excitonic lasing because of their big oscilla
strength. In Ref. 8 the authors reported two-mode lasing
an asymmetric wire where the laser switches between
ground-state exciton and the other state whose energy c
sponds to the state from the tail of the above-mentio
states.

2. Asymmetric wires

The asymmetric wire that we study in detail consists o
60-Å or 56-Å GaAs/Al0.35Ga0.65As arm quantum well and a
140-Å Al0.07Ga0.93As/Al0.35Ga0.65As stem quantum well.8

The spectrum for the 60-Å arm case is shown in Fig. 7. T
nature of the states is very similar to the case of the symm
ric wire. The first two excited states are excitonlike and ha
an electron confined in the wire while the hole spreads i
the well. All excited states up to the 20th have the elect
confined in the wire. The hole spreads to one or both qu
tum wells taking up more energetic states in the well. T
relative coordinates show either an excitonlike wave funct
~states with nonzero-oscillator strength in the spectra of F
7! or the case where a hole is confined in the wire but is
bound to the electron~states with zero-oscillator strength
the spectra!. Both groups were discussed and shown for
symmetric wire.

FIG. 7. Oscillator strength versus energy for the lowest 30 st
in an asymmetric T-shaped structure withDx560 Å , Dy
5140 Å .
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The 21st and the 24th states~large oscillator strengths in
Fig. 7! have an electron expanding into the arm well. T
electron wave function has a node in the wire region. T
hole wave function spreads into the arm well and has
node for the 21st state and one node in the wire region
the 24th state. The relative coordinates show the excito
nature of these states. Thus these states correspond to
2D excitonic states scattered on the wire.

For the asymmetric structure we observe one state~the
15th, see Fig. 8! that does not correspond to any state in t
symmetric case. The state is clearly excitoniclike with
large-oscillator strength and the relative coordinate pl
show a very well bound exciton. The electron is confined
the wire in the same way as the ground state while the ho
clearly 1D-like, strongly confined in the wire but in a diffe
ent way. It has a node in the wire region.

B. Trends in confinement and binding energies

1. Symmetric wires

We calculate the exciton binding energy,Eb5Ee1Eh
2E1Dexc, whereEe andEh are the one-particle energies o
an electron and a hole, respectively, in the wire. We a
calculate, using the same method, the exciton energy in
quantum well,E2Dexc, to obtain the confinement energy o
the 1D exciton,Econ5E2Dexc2E1Dexc, in the wire.

We perform calculations for a wide range of structu
parameters. For the GaAs/AlxGa12xAs quantum wire we
change the well width from 10 Å to 80 Å for three differen
values of the Al contentx. The results are shown in Fig. 9.
can be noticed that for a well width bigger than 50 Å, chan
ing the Al content has very little effect on the confineme
and binding energies. The difference in binding energy
tween the 60-Å GaAs/Al0.35Ga0.65As and the pure AlAs is
only 1.5 meV. Thus it seems more promising to change
well width rather than the Al content for relatively wid
wires. However, for thinner wires in the range of 10–50
changing the Al content is much more profitable then cha
ing the well width. The difference in binding energies f
20-Å wires with Al molar fractions ofx50.3 andx51.0 is
6.4 meV. This increases to 10.6 meV when the width
reduced to 10 Å.

Eb andEcon for Al contents ofx50.35 andx50.56 both
approach a maximum for a well width between 10 Å and
Å. The maximum values for x50.35 are Ebmax
517.1 meV, Econmax526.4 meV and forx50.56 they
are Ebmax519.7 meV, Econmax541.4 meV. For thex
51.0 case, the curve does not have a maximum in the re
for which calculations has been performed but we consi
going to wells thinner than 10 Å as practically uninterestin
Thus the maximum energies are forDx510 Å and they are
Ebmax525.8 meV andEconmax587.8 meV.

Econ increases much more rapidly thanEb when the well
width is progressively reduced. The curves cross for a w
width between 60 Å and 70 Å, i.e. for widths of 60 Å o
smaller,Econ is greater thatEb that means that the 1D con
tinuum is lower in energy than the 2D exciton~as we dis-
cussed in Sec. III A 1! with the difference having a maxi
mum at around 20 Å. For widths of 70 Å or bigger,Eb is

s
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FIG. 8. Electron~a!, hole ~b!, and the relative coordinatesxe

2xh , ye2yh ~c!, xe2xh , z ~d! probability densities for the 15th
state in an asymmetric T-shaped structure withDx560 Å , Dy
5140 Å .
20531
greater thanEcon with the difference growing for increasin
well width. We also consider the difference in energy b
tween the ground-state exciton in the wire and the fir
excited state as a function of the well widths. For the expe
mentally realizedDx570-Å case, this difference isE221
57.0 meV and the maximum value forDx510 Å is
E221max513.5 meV. The maximum value for the GaA
AlAs at Dx520 Å is 22 meV.

Although pure AlAs gives the biggest potential offse
and thus the biggest binding and confinement energies,
GaAs/AlAs interfaces are not very smooth, which influenc
the transport properties. Thus new materials have to be

FIG. 9. Confinement energyEcon5E2Dexc2E1Dexc, binding
energy of the ground-state excitonEb , and the energy difference
between the ground state and the first-excited stateE221 as a func-
tion of the well width Dx in a symmetric T structure for three
different aluminium molar fractionsx.
7-10
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TABLE I. Binding energyEb and the confinement energyEcon5E1Dexc2E2Dexc in meV of the QWR
exciton for five different samplesW,S1 ,S2 ,N2 ,N4 obtained from different methods.

W a S1
b S2

b N2
c N4

c R d G e

Method Eb Econ Eb Econ Eb Econ Eb Econ Eb Econ Eb Econ Eb Econ

Expt f 17 17 17 18 27 38 28 34 13.8 23 54
This work 13 12 14.3 17.8 16.5 31.1 12.1 26.3 16.5 31.2 13.5 21.4 14.6 3
Nonvar1g 13.2 14.3 16.4
Nonvar2h 11.63 13.9
Var1 i 15 18
Var2 j 9.6 11.9
Var3 k 12 14

aSample and experimental values from Ref. 6.
bSample and experimental values from Ref. 3.
cSample and experimental values from Ref. 2.
dSample and experimental values from Ref. 8.
eSample and experimental values from Refs. 4 and 5.
fEcon is obtained experimentally from the shift between QW and QWR exciton lines. TheEb is obtained
indirectly from experimental measurement of the QWR exciton line and one-particle calculations.

gResults of calculations from Ref. 9.
hResults of calculations from Ref. 10.
iResults of variational calculations from Ref. 11.
jResults of variational calculations from Ref. 12.
kResults of variational calculations from Ref. 13.
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posed. Two structures based on InGaAs have been man
tured and measured:2 35-Å-scale In0.17Ga0.83As/
Al0.3Ga0.7As (N4) and 40-Å-scale In0.09Ga0.91As/
Al0.3Ga0.7As (N2). The results of calculations for thes
structures are presented in Table I. It can be seen that e
gies for the sampleN4 are almost exactly the same as for t
GaAs/AlAs sampleS2 suggesting that these materials mig
be very good candidates for structures with large-exci
confinement and binding energies.

2. Asymmetric wires

In order to increase binding and confinement energies,
asymmetric T-shaped structure was proposed and realize
two groups.8,4,5

We calculateEb and Econ for the 60-Å /140-Å structure
with the stem quantum well filled with 7% Al in order t
compare with experiment8 and then we vary the width of th
arm well from 50 to 100 Å. One can see from Fig. 10 that
binding energy is almost independent of the arm well wid
in this region, changing only from the maximum value
13.5 meV forDx560 Å to 11.5 meV forDx5100 Å . The
binding energy for the 60-Å symmetric wire with the sam
x50.35 Al mole fraction is 13.9 meV—a bit bigger than fo
the asymmetric structure. In contrast, the confinement en
Econ changes rapidly with the width of the arm well from 4
meV for Dx5100 Å up to 33.3 meV forDx550 Å . For
arm well widths of 60 Å or bigger, the 2D quantum-we
exciton in the arm well has a lower energy than that for
stem well, thus the confinement energy is calculated w
respect to the arm well exciton. For the 50-Å -wide arm we
the 2D exciton has higher energy than for the stem quan
well and thus the confinement energy is calculated with
20531
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spect to the stem quantum well. Therefore 33.3 meV is
highest confinement energy for this stem well and chang
the arm well would have no effect. Thus the 60-Å /140
structure is well optimized and its confinement energyEcon
is 21.4 meV that is much bigger than that of 14.7 meV
the 60-Å symmetric wire.

The highest confinement energy so far reported is for
asymmetric GaAs/Al0.35Ga0.65As wire with a 25-Å arm quan-
tum well and a 120-Å stem quantum well filled with 14%
Al.4,5 The experimentally obtainedEcon for this structure is
54 meV. Our calculations however give only 36.4 meV th
is still the highest among experimentally obtained structu

FIG. 10. Confinement energyEcon5E2Dexc2E1Dexc, binding
energy of the ground-state excitonEb , and the difference betwee
the ground and the first-excited stateE221 for an asymmetric wire
as a function of the well widthDx, whereDy5140 Å .
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but much lower than reported by the authors. Our calcula
of Econ for five different experimentally realized structure
agree very well with the experimental values and thus i
very probable that the value of 54 meV is overestimated. T
binding energy from our calculations is only 14.6 meV f
this structure.

We can conclude from our results that the optimiz
asymmetric structure does not lead to a bigger exciton b
ing energy than the symmetric ones with the same par
eters. The confinement energy is considerably enhanced
this effect, which can be measured directly, has often b
used to infer that the binding energy is increased. Howe
our results show that no such relationship holds between
confinement and binding energies. Thus the biggest confi
ment energy of any structure constructed so far of 36.4 m
does not lead to the biggest binding energy. Indeed, the b
ing energy of 14.6 meV is smaller than the 16.5 meV
ported for the GaAs/AlAs 50-Å-scale symmetric structu3

where the confinement energy should be only 31.1 meV.
also smaller than expected for a symmetric 25-Å-scale st
ture with the same parameters~16.0–16.5 meV!. Thus asym-
metric structures could be useful for applications wher
large confinement energy is required but appear to be
suitable than symmetric wires for applications where la
binding energies are of interest.

3. Comparison with experiment and other calculations

The comparison between experiment and other publis
calculations is presented in Table I. The confinement ene
of the exciton can be directly measured experimentally.
though, due to the strong-inhomogeneous broadening of
photoluminescence peaks, the accuracy of this number is
very high, it is the only experimentally proven quantity w
can refer to. The experimental binding energy needs to
calculated using both experimental data and one-particle
culations and thus errors might accumulate. Other theore
methods that we refer to obtain the ground-state exciton
ergy using variational techniques11–13~they differ in the form
used for the variational wave functions!. There are also two
nonvariational calculations for the ground-state exciton.9,10

Our results for the confinement energy of the ground-s
exciton Econ agree very well with experimental values fo
samplesS1, N2, andN4 to an accuracy of 1%, 6%, and 8%
respectively. This is indeed very good agreement taking
account the strong-inhomogeneous broadening of the p
they present. The spectral line width of the photolumin
cence peaks according to the authors is around 15 meV
corresponds to a thickness fluctuation of about 3 Å for N2
andN4.2 For theS1 andS2 samples the authors estimate t
experimental error due to the inhomogeneous broadenin
2 meV. Agreement between our calculations and experim
is not as good for theS2 sample but for this case addition
effects are present. For example, AlAs barriers give m
less smooth interfaces than the lower Al fraction samples
this is not taken into account in our model. There is also v
good agreement~better than 7%! between our results and th
experimental measurement8 for asymmetric wire R. The ear
lier Econ published by this group for the symmetric structu
W is probably slightly overestimated.
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All calculations published to date use the effective-ma
approximation model for the heavy-hole exciton. Values
potential barriers used in the calculations vary depending
the publication. We have examined the influence of th
differences on the final results~see Sec. III C!. Both binding
and confinement energies can differ by approximately
meV.

There are only two calculations published for the confin
ment energy. They are based on variational methods
were performed only for sampleW. Variational method 2
~Ref. 12! uses a wave function that takes into account cor
lation in all spatial direction and the agreement with o
results is very good for the confinement energy but not
good for the binding energy.

The variational method proposed by Kiselev a
Rossler13 and denoted here as method 3 has a trial w
function that has onlyz dependence in the correlation facto
Their binding energy for the sampleW differs by only 1 meV
from our result but their value for the confinement ener
differs from ours. They perform calculations of the bindin
energy for the whole range of well widthsDx from 10–70
Å. This can be compared with our results in Fig. 9. Th
calculations, like ours, give the maximum forEb and Econ

for a well width of around 20 Å. Their binding energy is a b
bigger than the one from our calculations. They obtaine
maximum of Eb518.6 meV that is 1.5 meV higher tha
our result. However, their confinement energyEconmax

533.0 meV differs by 7 meV from our result. Their value
of Econ are probably overestimated. They use the variatio
technique to calculate the quantum-wire exciton energy
the quantum-well exciton energy is taken from some ot
calculations of excitons in quantum wells performed usin
different method and with different parameters, thus err
may accumulate.

The variational method 1,11 which uses yet another form
of trial wave function, has been applied to samplesS1 and
S2 to calculate the binding energyEb . It agrees quite well
with our and other accurate methods.

The binding energy we obtain shows excellent agreem
with other nonvariational calculations by Glutschet al.9 ~see
Table I!. They calculated the binding energy only fo
samplesW, S1, andS2 and thus unfortunately the confine
ment energy cannot be compared. The method presente
Ref. 10 gives much lower values for the binding energy th
all other methods.

Despite some small differences, all of the theoreti
methods give much smaller values forEb than the experi-
mental estimates. One has to bear in mind, however, tha
‘‘experimental’’ values forEb ~quoted in the Table I! are in
fact derived from a combination of experimental data a
associated theoretical modeling, with inherent uncertaint
Our results come from direct diagonalization and are v
well converged. Therefore we believe that the experimen
binding energies are, in some cases, considerably over
mated. The real binding energy is thus smaller than has b
claimed and the biggest value for any of the structures ma
factured so far is 16.5 meV for samplesS2 andN4.
7-12
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EXCITONS IN T-SHAPED QUANTUM WIRES PHYSICAL REVIEW B63 205317
C. Accuracy of the results

In our method the one-particle energies and wave fu
tions are calculated first. The one-particle energies are v
well converged with respect to all the variables such as
cell size, number of points on the grid and the number
plane waves to an accuracy of 0.1 meV. We use on ave
as many as 160 000 plane waves that correspond to
3400 points on the grid (2003200 in the small unit cell!.
We obtain excellent agreement between our energies for
single electron and hole and those obtained by Glutschet al.9

For the 70 Å,x50.35 symmetric quantum wire we obta
Ee547.09 meV andEh57.47 meV while their results are
Ee547.2 meV andEh57.5 meV. According to our calcu
lations there is only one electron state confined in the w
and its confinement energyE2D21D ~i.e., the difference be-
tween well-like and wirelike-electron states! is 9 meV. This
is in very good agreement with other methods. Pfeiferet al.17

using 8 bandkW•pW calculations obtained a confinement ener
of 8.5 meV for the same structure. Kiselev and Rossle13

using the so-called free-relaxation method obtained appr
mately the same value of 9 meV.

These one-particle wave functions are then used as a b
set for the two-particle calculations. TheE1Dexc is very well
converged with respect to the number of points on the g
~as for the one-particle calculations!, and with the size of the
basis set. Convergence is usually achieved with abou
320320 ~8000! basis functions. In order to minimize finite
size effects we use quite big unit cells@from 43 times the
well width, Dx for very thin wires~10 Å! to 7 timesDx for
the 80 Å wire#. The exciton energyE1Dexc is converged to
within about 0.2 meV andE2Dexc to within 0.3 meV that
gives an accuracy forEb of about 0.3 meV and forEcon of
about 0.5 meV.

The other problem that can influence the accuracy of
results is the uncertainty associated with the input par
eters. The electron and hole masses as well as the diele
constant are standard but the potential barriers vary a
depending on the publication. We have found quite differ
values of the potential offsets for the same material in
faces in the literature. We have examined the influence
this uncertainty on the final results by performing calcu
tions for the extrema of the sets of parameters found. B
binding and confinement energies can differ by appro
mately 0.5 meV.

For the parameters that we are using, the results are
verged to within 0.3 meV for the binding and 0.5 meV f
the confinement energies. However, one needs to remem
that these parameters are not well calibrated and this c
lead to an additional error in both energies of about 0.5 m

The first few~4 in the case of Fig. 7! excited states of the
wire that are below the 1Dcon and the 2Dexc are discr
quasi-1D excitonic states and are converged to within
meV. Convergence of the higher states in the continuum
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more complicated. Because our system is finite we ob
only a sampling of the continuum states. When we incre
the unit-cell size we automatically calculate more sta
within the same energy region and they do not have a o
to-one correspondence with the states calculated usin
smaller unit cell. The new states appear in between the
ones, with smaller oscillator strengths so that the total os
lator strength is conserved. When the Gaussian broade
of a 4 meV full width at half maximum is added to th
spectra then for a sufficiently big unit cell the broaden
spectrum is independent of the unit cell, thus convergenc
reached. The spectra shown in Figs. 4 and 7 are converge
the sense that the continuum is accurately sampled on
scale of 4 meV.

IV. SUMMARY

We have performed an exact diagonalization within
finite-basis set of the Hamiltonian that describes an inter
ing electron-hole pair in a T-shaped quantum wire. We ha
obtained the ground- and excited-state energies and w
functions for this system. The first group of excited sta
shows ans-like excitonic character where the electron is l
calized in the wire but is bound to the hole that spreads i
one of the wells. Due to the fact that the electron and hole
not localized in the same region, we have a group of l
oscillator-strength states just above the ground state. T
group is followed by a number of states with large-oscilla
strength that are 2D excitonic states scattered on
T-shaped intersection. The excitonic lasing from one of th
states has been experimentally observed.8 We have also per-
formed a detailed study of the exciton binding and confin
ment energies as a function of the well width and Al mo
fraction for symmetric and asymmetric wires. The highe
binding energy in any structure so far constructed is cal
lated to be 16.5 meV that is much smaller than previou
thought. Our results have shown that for optimized asymm
ric wires, the confinement energy is enhanced but the b
ing energy is slightly lower with respect to those in symm
ric wires. For GaAs/AlxGa12xAs wires we have obtained a
upper limit for the binding energy of around 25 meV in
10-Å -wide GaAs/AlAs structure that suggests that other m
terials need to be explored in order to achieve roo
temperature applications. InyGa12yAs/AlxGa12xAs might be
a good candidate.
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