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We consider a number of strongly correlated quantum Hall states that are likely to be realized in bilayer
guantum Hall systems at total Landau level filling fractiop=1. One state, the (3,3,1) state, can occur as
an instability of a compressible state in the ladyég limit, whered and |z are the interlayer distance and
magnetic length, respectively. This state has a hierarchical descendent that is interlayer coherent. Another
interlayer coherent state, which is expected in the saal limit is the well-known Halperin (1,1,1) state.
Using the concept of composite fermion pairing, we discuss the wave functions that describe these states. We
construct a phase diagram using the Chern-Simons Landau-Ginzburg theory and discuss the transitions be-
tween the various phases. We propose that the longitudinal and Hall-drag resistivities can be used together with
interlayer tunneling to experimentally distinguish these different quantum Hall states. Our work indicates the
bilayer vt=1 quantum Hall phase diagram to be considerably richer than that assumed so far in the literature.
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I. INTRODUCTION goal of our paper is to describe and discuss the righ 1
bilayer quantum Hall phase diagram using the Chern-Simons
Bilayer quantum Hall systems at total Landau level filling Landau-Ginzburg approaén*®
factor v1=1, i.e., v=1/2 in each layet, allow for novel Among the more interesting quantum Hall phases are the
interlayer coherent phases. These phases have attracteds@called paired Hall states, which have been extensively
great deal of theoretical and experimental atteftmrer the  studied theoreticallj**?In these states, the composite fer-
last 16 years, dating back to a seminal paper by Halpérin mions form a superconducting paired state in which two
which the multicomponent generalization of the Laughlincomposite fermions bind into effective Cooper pairs that
wave function was first considered in a rather general concondense into a ground state analogous to the BCS state. The
text. In particular, there is strong experimental evidéfice well-studied Moore-Read Pfaffian stétés a spin-polarized
and compelling theoretical baéisto believe that a spin- version of such a paired Hall state for a single-layer system.
polarized bilayerv=3 quantum Hall system would have a Bilayer paired Hall states have been discussed earlier in the
novel spontaneous interlayer coherent incompressible phag$iterature in the context of =3 (andv=3 systems but no
for small values of the interlayer separatidneven in the definitive idea has emerged regarding their experimental ob-
absence of interlayer tunnelingiVe consider only the situ- servability or their relation to the more intensively studied
ation without any interlayer tunneling in this paper, our con-(and robust (1,1,1) staté:>> The main purpose of the cur-
siderations also apply to the physical situation with weakrent paper is to critically discuss the possible existence of
interlayer tunneling. The situation with strong interlayer tun-paired v=73 bilayer Hall states that, we argue, are distin-
neling is trivial by virtue of the tunneling-induced guishable from the better-studied (1,1,1) incompressible
symmetric-antisymmetric single-particle tunneling gap thatstate(as well as from compressible statéisrough interlayer
leads to the usual;=1 quantum Hall state in the symmetric drag experiments. The transitions between these states are
band) In the limit d—<, however, one expects two decou- described by a variety of Landau-Ginzburg theories. Given
pled layers each with=3% and hence no quantized Hall the great current interést in the physics ofv= 73 bilayer
state. The phase diagram for this compressible to incomsystems, we believe that the results presented in this paper
pressible quantum phase transitionzis 3 bilayer systems could shed considerable light on the nature of the possible
has been studied extensively in the literattibeit we still do  quantum phase transitions in bilayer systems.
not have a complete qualitative understanding of the detailed In Secs. Il, lll, and IV of this paper, we consider the
nature of this transition. In particular, one does not knowpossible bilayerw =3 quantum Hall phases in the parameter
how different kinds of incompressibléand compressibje regimesd>Ig (Sec. I), d>Iz (Sec. ll)), andd=<Ilg (Sec.
phases compete as system paramétegs,d) are tuned, and 1V), wherelg is the magnetic length, which sets the scale for
how to distinguish among possible competing incompressintralayer correlations. We argue that the likely ground states
ible phases. In this paper, we revisit this issue by arguingn these three regimes are, respectively, compressible
that, in principle, there are several interesting and nontrivialFermi-liquid-like) states @>1g), paired Hall states d
guantum Hall phases in the;=1 bilayer system that could >1g), and (1,1,1) statesdt~1g). In Sec. V, we discuss the
be systematically probed via interlayer drag experiments cartransition between thd>|z andd=<Iy limits and introduce
ried out at various values of the interlayer separato®@ne  yet another state, a hierarchical descendent of the<{3,B,
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state with interlayer coherence. We conclude in Sec. VI with
a critical discussion of the various drag resistivities that we ki
argue can, in principle, distinguish among these phases and ) -0
could be used to study bilayer quantum phase transitions o
experimentally.

Il. d>lg: COMPRESSIBLE STATE FIG. 1. Schematic picture of the dipolar composite fermion. The
black and white dots represent the electron and vortex, respectively.
Let us consider a bilayer system in which each layer haghe “wave vector”k; is perpendicular to the dipole moment.
filling factor v=1/2 in the limit of the layer separatiod
being much larger than the typical interparticle spacingposite fermions can be approximately written %&2/2m*
which is of the order of the magnetic lendf). As a starting  jth effective massn*, which is determined by the interac-
point, we will model the system by two almost independentijgn potentialt’°
Fermi-liquid-like compressible states, one in each layer. An alternative formulation arises from the observation
There are two alternative and complementary descriptions ghat an electron may be represented by a composite fermion
Compl’eSSib|e states at eVen'denominator f|”|ng fractions. W%gether with a Chern-Simons gauge field that attaches two
will briefly recapitulate some features of both as they will fictitious flux quanta to each fermidfi-?? This representa-
inform the following discussion of paired states. tion is mathematically equivalent to the original one but it
One description of a Fermi-liquid-like compressible statenaturally suggests another approximation. The composite
at v=1/2 is based on the lowest Landau-level wavefermions see zero average magnetic field due to the cancel-
function't lation between the external magnetic field and the average
fictitious magnetic field coming from the fictitious flux
quanta. Consequently, the system can be described as an al-
most free(composite} fermion system in zero effective mag-
netic field. In this approach, the fictitious flux quanta are
whereM has the matrix elementd;; =e'“""i. Here,r; isthe introduced to represent the phase winding of the electron
position of electron. Thek;s are parameters that are chosenwave function around correlation holes associated with the
so that the total energy of the system is minimized. We willpositions of other electrons. The Pe'ti Ri] factor in Eq.(1)
discuss their interpretation below?, | projects states into can be interpreted as the wave function of the almost free

V({zih) =PLLL DetMiE[j (zi— 7)), ()

iki'l'

the lowest Landau level; it has the following actitft> composite-fermion systef:?2 Thenk;s can be regarded as
_ . the “kinetic momenta” of the composite fermions. In the
Peiip  =ekiR (2)  long-wavelength, low-frequency limit, the two formulations

.- . are equivalent.
whereR; are the guiding-center coordinates of the electrons. Note that in addition to the Fermi-liquid-like= 1/2 com-

The corresponding wave function of the double-layer syspressible state in each layer one could have, in principle,

tem atvr=1 can be written as other compressible stateg.g., charge-density wave or
Wigner crystal in thed> | limit depending on the details of
W compressibe Y122 D W1({z{}), (3) interaction and Landau-level coupling. In addition, strong
disorder will lead to localized insulating states. We do not
wherea=T1,| label the two layers. consider these possibilities in this paper.
The lowest Landau-level constraint and Fermi statistics
displace the electrons from the correlation holes, i.e., zeros . d>1g: PAIRING
of the wave function or, equivalently, vortices represented by
the Hi<,-(zi—zj)2 factor in the wave function. The Dbt We will now implement the latter formulation in a

factor is necessary to ensure Fermi statistics; it is a displacaelouble-layer system, and show that the compressible state
ment operatdf becausek;-r; acts aSEZjJrki(;/ﬁzj in the  has a strong pairing instabilify. We introduce two compos-
lowest Landau level. Thus the composite fermion made of aff€ fermion fieldsy,, and two Chern-Simons gauge fields,
electron and two correlation holes has a dipolar structure¢=T,|. The Hamiltonian is

Using these ideas, the system can be described as a collec-

tion of dipolar “composite fermions” in which each dipolar H=HotH,,
fermion consists of an electron and the corresponding corre-

lation holes'®~**To each composite fermion we assigik;a Ho=f ar S
that is equal in magnitudéen units oflg) and perpendicular a=1,1
to the displacement between the electron and its correlation

holes. By Fermi statistics, tHes must be distinct. The struc- , , ,

ture of aydipolar composite?grmion is given schematically in HI:f dzrf d?r’ Sp (1) ap(r—r")Spp(r’) — (4)
Fig. 1. The energy of a composite fermion increases With - -

so the ground state is a filled Fermi seakirspace. In the With the constraint¥ X a,=2m¢dp,(r). ¢=2 if the filling
long-wavelength limit, the total energy of these dipolar com-factor of each layer i3 =1/2. Heredp(r)=p(r)—p is the

1

T _ 2
5 V(Y =20
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k The wave function of the paired quantum Hall state con-
\\F O structed in this way can be written as
Voar= Vi L1 (2 -2)]1 @-z0% ©)
where
oN® V=PI 211 0)]
F EA[f(Z:L!ZZ;T!l)f(Z3!ZA;T!l«)'"]1 (7)
FIG. 2. Pairing of the “intralayer” composite fermions. andf(z;,z,;7,]) is the pair wave function that depends on

. the symmetry of the pairing order parameter] -Pf] de-
density disturbance measured from the average yalUge  notes the Pfaffian, which is defined in the second line, with
interaction potential is given bymzvuzezlsr andV;, A[ -+ -] denoting the antisymmetrized product. Notice that

=Vu=e2/s JrZ+d? wheree is the dielectric constant. W air can be regarded as the product of the wave function of
It is convenient to change the gauge field variables tdhe paired composite fermions and that of (82,0 bosonic
a.=3(a,=a,). ThenH, can be rewritten as Laughlin quantum Hall state.

It is not immediately clear what choice 6z;,z,;7,]) is

H :f dzr[ J(V—a.—a )2y " most favorable energetically. In the Chern-Simons theory of

0 2m* 71 T Tom* Tl Ref. 12 there is a pairing instability in all angular momentum
channels? In a modified Chern-Simons theory, it was
claimed that the leading instability occurs in tipewave
channef?® These approximate calculations do not necessarily
. ~ capture the detailed energetics that determines the pairing
with VXa.=m¢[opi(r)* dp (r)]. From Eq.(5), we see  symmetry. Hence, we will not enter into a discussion of en-
that ¢, and ¢ have the same gauge “charges” far but  ergetics, but limit ourselves to a discussion of the simplest
opposite gauge “charges” faa_ . As a result, there will be (and therefore likeliestpossibilities.
an attractive interaction between the composite fermions in The simplest possibility ip,—ip, pairing,

different layers viaa_ and a repulsive interaction via, .

Composite fermions in the same layer have repulsive inter-

actions. As a result of Coulomb interactions, the attractive W pair= P'{
interaction mediated by the gauge field dominates in the ) _ )
low-energy limit and there exists a pairing instability be- Using the Cauchy identity,

><(V—a++a_)2¢i} 5

Tilj+ 1T
z—z

i

}[[J (z?—z})zg (zi—zH)% (8

tween the composite fermions in different layers. This result n N

can be understood in physical terms as follows. &heand (ai—a)(bj—b)=[] (a—b;)Det(a;—b;)
a, fields represent antisymmetric and symmetric density i>j=1 I = T F '
fluctuations. In the presence of Coulomb interactions, sym- 9)

metric density fluctuations are highly suppressed but antithis can be rewritten as
symmetric density fluctuations can still be large. As a result,

the dynamic density fluctuations in the antisymmetric chan- B B f 3ol o3 N
nel become more important in the low-energy limit and lead \I'pair_\P(&&*l)_il;[j (z=7)%(z — 7)) 1|_J[ (zi—2z)
to a pairing instability. (10)

This pairing instability has a natural explanation in the
dipolar composite fermion pictur@~°Let us take a dipolar
composite fermion in layef with wave vectok'=kg and a
dipolar composite fermion in layef with wave vectork!
=—Kkg. As seen in Fig. 2, this configuration can lower the
interlayer Coulomb energy because the electron in ldyer
and the vortex in layef can sit on top of each other and vice
versa. _ _ o _ Tilj+ Ll P2

This analysis predicts that, at least in principle, the Fermi- W (33-1)=P h(IZi—Zjllf)? H (zi —z))
liquid-like compressible state is always unstable to pairing. e e
In practice, the pairing gap will be small in the linde>1g
and easily destroyed by disorder. As a result, we expect the X[ (zi—2})2. (11
pairing instability discussed above to be relevantdtig not K=
too small. Wherd/lg becomes small, on the other hand, theHere,h(0)=0 andh(x)—1 asx—o. In realistic systems,
starting point of two decoupled compressible states is navhere Landau-level mixing is substantidt; ; ;) could be
longer sensible and we take a different starting point, as dea good candidate for the paired quantum Hall state repre-
scribed in later sections. sented byW ;. It is natural to assume thalt,,;; does not

Thus ¥, is the (3,3;-1) state if one takes thp,—ipy
pairing. This wave function is well behaved in the long-
distance limit but has a short-distance singularity. In the
presence of Landau-level mixing, the short-distance part of
the wave function can be modified without changing the
structure of the wave function in the long-distance limit:
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N
’ Q q)pair:q)gfairigl (ZiT_Zjl)Z, (14)
I i where
E E O=Plg(z,7;1,1)] (19
é . andg(z,,z,;7,]) is the appropriate pair wave function. No-

tice that the wave functiof ,.;; can be regarded as the prod-
uct of the wave function of a paired state of the composite
N _ _ ) fermions and that of th€g0,0,2 quantum Hall state for
FIG. 3. The pairing of the “interlayer” composite fermions. bosons.
. _ However, this line of thinking appears to conflict with the
have an “interlayer Josephson effect” because there is N@gynyentional wisdom that a bilayer quantum Hall system at

gapless neutral mode in the system, in contrast to the case 9f =1 is described by the (1,1,1) state fiti g~ 1 2 Fortu-
the (1,1,1) staté® We will show this later by direct calcu- nately, the (1,1,1) state "

lation.

Another possibility for the pair wave function is an expo- N N
nentially decaying function with a correlation lenggh for Vo= I @-2hz-2) 11 /-2 (18
example, either of i>j=1 ij=1

L can be rewritten in the form
Wsp= Pr{e“i’fM II @-2)?[1 (z-2)?
Zi—Zj |i5] K>

Tilj+ LT

N
(12) \I’(l’l'l): Pf{: Zi— Zj =

[@-zh?

1
using the Cauchy identity. In other words,

Tidj+1iT;

Zi_zj

We=Ple 541 L= LTI (2 -2

g(ziizj;Tai): (18)

X —z})2.
g (z=2) is the correct choice fod/lg~1.

Notice that this form ofy(z ,z;;7,|) corresponds to the
(pseudojspin tripletp,—ip, pairing order parameter for the
interlayer composite fermions. From this point of view, it is
natural to have the same pairing symmetr$) for d>Ig but
for intralayer rather than interlayer composite fermions.

This would correspond to a “strong” pairingSP state
while the previous choice — the (3;31) state — corre-
sponds to a “weak” pairing state in the terminology of Read
and Greerf* The two different choices of SP wave functions
(with p- and sswave pairs, respectivelyin Eq. (12) can be

continuously connected without crossing a phase transition. V. PHASE DIAGRAM AT »;=1: CHERN-SIMONS

LANDAU-GINZBURG DESCRIPTION
IV. d<Ig: (1,1,) STATE
In this section, we consider these states within the frame-

When the layer separation becomes sufficiently small, th&/0rk of Chern-Simons effective field theon%‘_sl,othe nature
interlayer Coulomb interaction can be comparable to or eveRf the transitions between them, and also find an additional
larger than the intralayer Coulomb interaction. In this case, iftate that is a hierarchical descendent of (83,~1) state
should be more advantageous to first form an “interlayer” described by a 33 K matrix. _
dipolar object that consists of an electron in one layer and The Lagrangian of the (1,1,1) state is
two vortices in the other layer, then form a paired state of
these “interlayer” composite fermions, as shown in Fig. 3. 5(1,1,1):\1@(“9#,5\?_a?_a(f)q;T_ _‘
In the Chern-Simons formulation, this corresponds to the 2m

situation in which the electron in one layer can only see \ 2 4
fictitious flux in the other layer. The appropriate Chern- X|—+A —a—a |V, +_6ma¢(gya?
Simons constraint equations are ! 4

~ ~ +(T—=1)—Vint- (19
VXa,=2w¢pdp,, VXa=2mddp;. (13 _ _
Here ¥, and Af'| describe composite bosons and electro-
As in the previous case, we can form symmetric and anmagnetic fields in the two layers, and the statistical gauge
tisymmetric combinations of the gauge fields and a, . fieldsaf, ensure the agreement between this Lagrangian and
Again, the antisymmetric combination mediates an attractivehe (1,1,1) wave function. In the absence of interlayer tun-
interaction. The wave function of the corresponding pairedheling, the number of electrons in each layer is conserved, so
guantum Hall state has the following form: we can use the dual descriptfdrof the (1,1,1) state,
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basis®® taking n as one of the basis vectors. Then in the
resultingK-matrix, the entries in the row and column corre-
sponding ton are all zero. The reduceld-matrix, K,qq IS
obtained by deleting this row and column. The process can
be repeated until either a nonzero determinant is obtained or
the lattice has dimension zero; in our examples, a single
(20 reduction is sufficient.
Here®,, describe vortices in the fieldk, with indicesl and In the case of the (1,1,1) state above, the null vector is
J labeling the layers and |, the dual gauge fields), de- n=(1,—1) and the reduced matrix is Kyeqiy=(1), the
scribe the conserved currents, the Greek indiggsy, A same as in the polarized or single-layer1 state. The
include space and time components, and the GfarK) physical meaning of the procedure is that the (1,1,1) state is

1 !
£&1,1,1):§|(|(9M_bLL)(I)UI|2+V((DU|)+ E(flluv)z

1 1
| J v | | v
+ —4WK.JbﬂavbAsﬂ N— _ZWAitaﬁvb)\E'u N

matrix®?® is obtained by condensing composite bosons with pseudospin
or by taking a pseudospin-polarized state and tilting the

11 pseudospins into th&XY plane. This does not affect the
Kig= 1 1) (21) quantum Hall properties of the state, which remain those of

the single layervr=1 state. The procedure above correctly
It is also convenient to define the charge and spin gaugaccounts for disregarding the direction of the pseudospin and
fields AS'S: (ALiAi)/z’ bﬁvS: bLi bi with charge and implies that there is a single ground state on the torus up to
spin vectorste=(1,1) andts=(1,—1), anda=C, S Here low-lying states associated with the broken symmetry. The
and henceforth, we use the term “spin” to refer to the chargeuse of the reduced matrix gives the quasiparticle proper-
difference between the two layers, not the physical spin ofi€s; the quasiparticles carry chargel and are fermions.
the electrons, which is assumed to be fully polarifed., ~We see that the merorortices in the pseudospin order
spin here refers to an pseudospin associated with the Jayer$arameter that carry charge1/2 and ill-defined statistigs
A generic quasiparticle may now be constructed by takingre not obtained frori(cq, but are confined by the logarith-
a Composite 0f1 vortices of '[ypecl)vT and|2 vortices of type mic potentlal between them, and cannot be Separated to In-

®, . &, creates such a quasiparticle, which has chargdinity with finite energy. Usually, the different degenerate
L2 ground states can be obtained from each other by creating a

Q and spinS A . . .
quasiparticle-quasihole pair, transporting one of them around
Q=tiK 1, (22)  the torus and subsequently annihilating them. The nontrivial
statistics(Abelian, in all cases in this papeof the quasipar-
S=tiK 1. ticles then require degenerate ground states. Since the

merons are confined, they do not contribute to the count of
If the K matrix has a vanishing determinant as it does in Eqground states, and indeed dragging one around the torus pro-
(21), then Eq.(22) will have to be modified. When this oc- duces a helical texture in the ground state, increasing the
curs, the zero eigenvalue corresponds to the Goldstongnergy by order width/length; we do not regard such a state
modes associated with some broken continuous symmetrys a ground state. In general, the ground-state degeneracy is
Hence, if we are to use th€-matrix formalism to calculate divisible by the denominator of the filling factef (equal to
the quasiparticle properties and the degeneracy of the ground herg; any ground-state degeneracy beyond that is not
states on a torupusually the degeneracy is dét(Refs. 8 exact in a finite-size system, but the energy splitting
and 9], some sort of reduceld matrix will be required. We  ~exp(~cL) on a torus of sizé., wherec is a constant. Fi-
will now describe how this can be done in general. It iSna”y' spin wave states have excitation energiesL.
helpful to think in terms of the vectors in the condensate Returning to the dual Lagrangian in terms of the unre-
|attice:S theK matrix is the Gram matrix of the |attice, that iS, ducedK matrix of the (1,1,1) state, in terms of the Charge

the matrix of inner products of a basis of vectors in theand spin gauge fields and the quasiparticle fidhds ), it is
lattice. The inner product of two vectors, n in the lattice,

represented as column vectors of intederst to be confused @i L||.. (m+n o [m—n} g 2
with the similar vectors, which lie instead in the dugex-  £d 3|19 | 5| Pu= {5 Pu|Pmn)
citation) lattice], is then given bym'Kn. The vanishing de-

terminant of K implies that we can find a lattice vector " ibc& bCe“”—iAaa b2 el 4 E(fa 2
such thatKn=0. Then the inner product af with any other Goqr THTVEN 2@ HIVTN 20w

vector, including itself, is zero; we catl a null vector We 23)
choosen to beprimitive, that is, not divisible by any integer

larger than 1. Two vectors that differ by an integer multiple  Since there is no Chern-Simons term b)f[ it is mass-

of n have the same inner product with any other vector betess. This gauge field is dual to the Goldstone mode that
causen is null. Hence, we can obtain a reduced lattice inresults when¥,, ¥ condense, thereby breaking thé1)
which we identify vectors that differ by integer multiples of pseudospin symmetry. Quantum fluctuations can disorder the
n and the inner product remains well defined. The reducegseudospin degree of freedom. This occurs when_ 1,
lattice is the quotient of the previous one byIn terms of  (the field for meronscondenses in Eq23). The effective
matrices, the reduce&-matrix is obtained by changing theory for this transition is
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1 eters. Note that again thé matrix for the SP state and the
ﬁgl’l'l):§|(ir9#— b)D 1 - 1) 2+ V(| g 1y[?) reducedK matrix for the SP/F state are both just;= (4).
The transition between the SP and SP/F states K¥atran-
C o nCopmh 1 . .. o 1 .5 sition at whichW¢ condenses. The transition between the
+ g Pud by et =5 AL o e S (1,7 SP/F and (1,1,1) states is an Ising transition at which the
symmetryV,  — —W, | is broken; it can also be viewed as
24 3 strong- to weak-pairing transition, similar to Ref. 24, but in
Applying U(1) duality?® in reverse to the pseudospin alone, the presence of ferromagnetic order in the pseudospin.
we find An alternative Chern-Simons Landau-Ginzburg theory
yields the (3,3;1) state by Bose-condensing composite
bosons that consist of an up electron and 3 vortices acting on
the up electrons, ane 1 vortices acting on the down elec-
trons,

1 1
Lt=3](1a,~AD P+ V(| 6|*) + —bga,ble ™
1 1
— 5 ALY S (1])2 (25)

The first line of Eq.(25) decouples from the second so the
transition between the (1,1,1) state and the quantum disor-

,c<3v3v1>=xlf$(iat+A?—3ag’+aj’)x1g—ﬁ

2
dered state is in th¥Y universality class. X Z+AT_3aT+aL v+ ie’”"aﬁ‘aya?
According to the arguments of Ref. 13, such a disordered ! 4
state is the SP state of Eql2), with Landau-Ginzburg +(1=1-V, (29)
theory, int:

1 As we have described in the previous section, this state can
£p=‘I’T(r9o—ao—2Ag)‘I’p+ —|[5—i5—2i,&°]‘lfp|2 also be viewed as a paired state. Passing to the dual theory,
P 2m we have Eq(20), but with

1
1J -1 3 .
The order parameter is given by, =¥,V [as opposed to
W, | individually as in Eq.(19)]. Equation(26) may be de-
rived from Eq.(19) in the limit thatW , is lighter than¥, | .
The dual theory for SP is

In terms of the charge and spin gauge fields and the qua-
siparticle fields® ,, ), the dual Lagrangian takes the form

1 4 1 2
SP_"1/i9 _RC 2. 7 1Cq WC_un (33-1)_ = WCo WC uvh1 S WS4 WS _uv
L3 —2|(|(9M b)) P +4Wb#avbheﬂ Ly —£(<I>(m,n))+4waaVbAeM *+4Wb#avasﬂ A
1 1 1 1
—ZEAgﬁybgf’uv}\‘f‘ E(flCL:V)Z (27 —EAZc?VbiE’MM"F E(ffw)z. (32

According to standard argumerit8the SP ground states on =
a torus are fourfold degenerate and these ground states ?g
have even electron numb#.

We note the existence, in principle, of a state intermediat
between the SP and (1,1,1) states with the followin
Landau-Ginzburg theory

om Eq. (300 we can see that the charge sector of the
,3,—1) state is similar to the SP state. It has a quantized
charge Hall conductance and supports elementary excitations
f charge 1/2. The pseudospin sector is different from that of
Yeither of the other states: it is gapped, unlike (1,1,1), and
exhibits a pseudospin Hall effe@ihich is manifested in the
1 . ) Hall drag resistance as we discuss Igtenlike (1,1,1) and
Epz‘Pg(&o—aO—ZAg)‘Perﬁ|[&—ia—2iAC]\Pp|2 SP.
The condensation of the neutral semion<1) in Eq.
i (31) eliminates the peudospin gauge fiehnﬁ by the
~ 16m €48, 0,3+ Vi(do—2A5) Wy Anderson-Higgs effect, thereby leading to the SP state. This
is analogous to the situation at=1/2, where it was shown
1 - - 5 5 5 in Ref. 24 that the transition between the (3,3,1) and strong-
5= [[0= 2IAPW 2+ V(W% [ W[, (28)  pairing states is a second-order transition at which a Dirac
fermion becomes massless. However in the=1 case, we
which is valid when¥ =¥, ¥ and \Ifsz\IfT\Iflr are light  are dealing with a semion, rather than a fermion, so we might
fields. The state in whickW)#0, (V5)#0 also breaks expect the transition to be analogous to the quantum Hall
pseudospin symmetry as a result of the latter order paramiquid to insulator transition. Both are described by a single
eter. We will call this state SP/F to indicate the coexistenceelativistic field coupled to the Chern-Simons gauge field. In
of distinct strong pairing and ferromagnetic order param-the largeN limit this transition was shown to be second

205315-6



BILAYER PAIRED QUANTUM HALL STATES AND COULOMB DRAG PHYSICAL REVIEW B 63 205315

order?®2?’put in the relevanN=1 limit the gauge-field fluc- (3,3,—1) state. The state is distinct from the (1,1,1) state,
tuations may drive the transition first ordiHowever, simi-  despite the fact that it breaks pseudospin symmetiyce
lar arguments in the absence of a Chern-Simons term wei@ , . carries pseudospin, the same value as the eléctron
not conclusive. That transition was argued to be first order igng has a gapless Goldstone mode. The33% matrix has
4—e dimensiong? but three-dimensional dual#y implies  determinant zero and hence a redugechatrix is required.
that the transition is in the invertedY universality class This can be obtained most easily by first making the basis
and, therefore, second order. Therefore, the possibility thaghange for the condensate lattice to basis vectors{1Lp,

the transition in the presence of the Chern-Simons term igp 1,1), and (0,0,1)relative to the previous basisThe re-
second order appears to be still open. In the presence @{iting K matrix is

disorder, at any rate, the transition will be second order. We

believe, therefore, that they=1 bilayer quantum phase 1 1 0

transition between the (3;3,1) paired state and the SP state K'=[1 1 0

) . . = . (36

is a continuous phase transition.
We may, on the other hand, consider the condensation of 0 0 2

the boson (27 2) upon the attachment of two flux quanta, - gjnce this contains the (1,1,1) stitenatrix as a block, it is

1 clear that the reduceld matrix is
LGP D=3](i19,- 205 = a,) Do 2|2+ V(| D, 52
d 2 n m n) ¥(2,-2) 2,-2

, 10
redlJ ™ ( 0 2) ' (37)

Hence, the ground-state degeneracy on the torus is 2. Inci-
1 2 dentally, the block containing only 2 represents a “hidden
+-—b%,bSe ™+ —bSg, ble SU2)” in this state; the corresponding edge theory is an
4m - H 4m - # SU(2) current algebra at level 1, even though this will pre-
1 1 sumably not be a symmetry of the Hamiltonian.
—Z—AZavbﬂe“”“r E(ff‘w)z. (32 We can complete the circle and return to our starting
™ point, the (1,1,1) state, if the quasipartichg; _; ;) (Where
When 532‘_2 condenses, the resulting Meissner effect enthe vortices are relative' to thg original bast®ndenses in
forces the condition ﬁi: a, (up to gauge transformations the state(34), thereby eliminating one of the neutral gauge

Hence, the following quantum Hall state results: fields by _the Andersqn-H|ggs effect. The proliferation of
these vortices leaves intact only those condengateapos-

4 2 1 ite boson fields that do not wind on going around these
Ezﬂbi&vﬁxe””“r E,BM&V,BAE’”}‘-F Ebﬁaybfe"“ vortices. These condensates lie on a sublattéehe unre-
duced latticg, which is the same as that of the (1,1,1) state;
S v L oasa . Loa o in fact in the basis used fdt’ in Eq. (36) or for K|.4in Eq.
+ 2 Pud bR —o—ALabRe ™+ S(1,,)% (33) (37), the transition has destroyed the condensate described
by the X1 block at the lower right, leaving the (1,1,1)

1 JIA2N 2 MVN
+Ea#o",,,8)\e +EB#5VB)\E

or state. This transition could be first order or second order in
1 1 1 the absence of disorder according to the conflicting conven-

-~ K..b' Ik p Z(fl 2~ payl o tional wisdom discussed above.. . .

£ 4o M b.d.be 2( ) 2 ula 0oL, A more useful form for the critical theory for the transi-

(34)  tion between (3,3;1) and its interlayer coherent descen-
_ 3_ | _ | (1 _ dent, along the lines of Eq25), may be derived from Eq.
wherel,J=12,3,b, =8, 1c=(1,1,0),ts=(1,-1,0), and (32) by making the change of variablegt—>aﬂ—2bi and
3 -1 2 integrating outg, . The Lagrangian takes the form

Ko=| -1 3 -2/, (39)

1 H s 2 1 VA
5 _> 5 £=§|(Io7lu—aﬂ)q)2’_2| +V—o—a,d,ae"

87Ta

This state is a hierarchical descendent of the (313, state sam. L oa o Lo oo
(though the construction differs from the usual hierarchy by + o @, d,bYe N+ S (FL,) % g b0 bye”
condensing neutral quasiparticles, which does not change the

filling factor). A wave function for it can be constructed 84 pa_ vk

along the lines of Ref. 8. When the number of flux quanta on B EAuﬁvae . (38)
the sphere iN,=N—3 [as in the (3,37 1) statd, it con-

tains two merons and two antimerons, which are bound infThe gauge field)f; only appears linearly in the Lagrangian,
pairs to form two charget+ 1 excitations so the natural SO we may integrate it out thereby resulting in the constraint
ground state hall ,=N—1. Also, it can occur foN odd as  that alL:Ai up to a gauge transformation. The final La-
well as for N even, like the (1,1,1) state and unlike the grangian is then
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@ f « a
SP 331 Pl =pij “P+ejp™ P, (40)
N’ ’ Interlayer wherei,j=x,y, @,8=1,], €; is the antisymmetric tensor,
© Py =-1 Incoherent and p® *#=25,, in the compressible and (3;31) states
(intralayer composite fermiohswhile p* “#=24",; in the
spE/ (LLD 3.1 2 Interlayer (1,1,1) statdinterlayer composite fermiohs
@ @ 1 3 2 Coherent First, consider the longitudinal drag resistivity. In the
2 2 2 compressible state, if we neglect gauge-field fluctuations,
foy pS 1'=0, sopll=0. Including these fluctuations, it van-
Py . FPxx XX
o Py =1 @ ishes asT*? at low temperature® In W3 1 ;yand ¥ 33_1)
= o= 112

(as well as its interlayer coherent descengepf’, ' and,
FIG. 4. Schematic phase diagram of states.at 1. The thick ~ NeNCenLy vanish at zero temperature and are activated at low
line represents a phase transition that may be first or second ordé@mperatures:
(see text The horizontal thin line represents a second-order phase NOWw, let us consider the Hall drag resistivity. In the com-
transition in theXY universality class. The thin line separating the pressible state, both terms on the right-hand side of(4Q).
SP/F and (1,1,1) states is in the Ising universality class. The relavanish so the Hall drag resistivity vanishes. In the (3,3,
tionship between the states in this phase diagram is discussed in 1) state,pify is that of ap,+ip, superconductor, which
Sec. V. The drag resistivity, which together with interlayer tunnel-has vanishing charge resistivitgince it is a superconductor
ing, can distinguish these states is discussed in Sec. VI. The grounsit quantized spin Hall resistivi#:*® In other words,

state degeneracies on the torus are encircled. p)C(fy cc=, Pify ¢s—Q, Pify SS—1. Consequentlypl;=p}(f,:3
andp)y=—1.
1 ~ ~ 1 In the (1,1,1) statepS" is identical butpCS is different so
— (i _AS 2 2y_ _— AS S_pvh Al Xy Xy
£ 2|(|(9“ A a2+ V(| D-2%) g udANE piy=pxy=1 andpy,=1, in agreement with Ref. 32. The

same result can be deduced physically by noting that inter-
n E(fl )2+ ibcﬁvbfe/"’”— iACavbfe““. (39) layer coherence requires that the voltage be the same in both
2° B Ay 2w H layers. If we run a current in one layer alone, then this con-
dition can only be satisfied i},=p, . On the other hand,
Hence, the transition between the (3;3,) state and its in-  the total Hall resistance of the system jg{+ p}.)/2. Since
terlayer coherent hierarchical descendent is also inXMe this must equal 1, we obtain the previously stated result.
universality class. Note that the same logic applies to the interlayer coherent
These states and transitions are depicted in the phase digescendent of the (3;31) state that must, therefore, have
gram of Fig. 4. The two states in the upper portion of thepll,zpli,:l. In other words, the full resistivity tensor of the
phase diagram — SP and (3;31) — are not interlayer (177 1) state is identical to that of the interlayer coherent
coherent while the three states in the lower porti&r/F, descendent of the (3:31) state.
(1,1,1), and the interlayer coherent descendent of {313,
(identified by itsK matrix)] are interlayer coherefiie., they
spontaneously break pseudospiilsymmetry. The devel-
opment of interlayer coherence may be probed by interlay
tunneling experimentsThe states on the right in Fig. 4 are

expected ford>|g while those on the left are expected for

Note that the interlayer coherent descendent of the (3,3,
—1) state discussed in the previous section Esaudospin
Hall superconductar From Eq.(39), we see that the pseu-

®ospin conductivity tensor is of the form

K

d~Ig. As we discuss in the next section, these may be dis- — 1
tinguished by their Hall drag resistivities. This phase dia- oSS— lw 41)
gram suggests that the transition between the {313,and k |’

|
N[

(1,1,1) states may occur via an intermediate state that is o

either the SP state or the interlayer coherent hierarchical de-

scendent of the (3,3,1) state. We caution the reader that wherex is a constant. Hence, there is nonvanishing spin Hall
first-order transitions between any of these states are pogonductivity. However, upon inverting this tensor, we see
sible, even those that are not adjacent in the figure. Howevethat the spin Hall resistivity vanishes, as it must in order to

the XY transitionscan be second order. satisfy pi;:p;)l/:l_ The (1,1,1) state, on the other hand,
has vanishing spin Hall conductivity. The distinction be-
V1. DRAG RESISTIVITIES tween apseudospin Hall superconductand an “ordinary”

pseudospin superconductor is reminiscent of the difference
It is important to discuss experiments that can distinguisthbetween a Hall insulator and an ordinary insulatioat in-
the W, ;1) State, theW 35 1), its interlayer coherent de- verted.
scendent, and the SP state. Here, we propose Coulomb-drag Thus far, we have focused on the situation in which the
experiments in which the longitudinap); and Hall, pj()l/, layers are perfectly balanced. If they are unbalanced due to
drag resistivities are used to distinguish the different phaseshe presence of an external bias field, for example, this is
These may be calculated in Chern-Simons theory from analogous to introducing a pseudospin Zeeman field along
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the z direction. This will have a pair-breaking effect on the drag resistivities. We also argue that the transition between
paired states and will be expected to weaken the quantunhe (3,3;-1) and (1,1,1) states may occur via an intermedi-
Hall effect. This should, as a consequence, increase the loate state that is either the SP state or the interlayer coherent
gitudinal drag(along with the total longitudinal resistance hierarchical descendent of the (3;3,) state and in either

The presence of external bias can thus be used to distinguigfase one of the two transitions will be in thér universality
the paired state from other incompressible states. class.

We conclude by summarizing our results. We have shown
that thev=3 (vr=1) bilayer quantum Hall systerfin the
absence of interlayer tunnelings likely to have as its
ground state a novel paired Hall stg@ossibly of p-wave
symmetry for intermediate layer separations>1g, which We would like to thank L. Balents, J. Eisenstein, and S.
gives way to the usual (1,1,1) state for smaller layer separeSachdev for discussions. Y.B.K., C.N., N.R., and S.D.S.
tions (d=<lg), and to compressible Fermi-liquid-type stateswould like to thank the Aspen Center for Physics for hospi-
(two decoupled Halperin-Lee-Re&dv=1 layerg for large  tality. This work was supported by the NSF under Grant
layer separationsde>1g). We argue that the quantum phase Nos. DMR-9983783Y.B.K.), DMR-9983544(C.N.), DMR-
transitions separating the paired states from the (1,1,1) an@B818259 (N.R.); the A.P. Sloan FoundatioY.B.K. and
bilayer Halperin-Lee-Read states can be experimentally stud=.N.); the Harvard Society of FellowE.D.); and the ONR
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