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Bilayer paired quantum Hall states and Coulomb drag
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We consider a number of strongly correlated quantum Hall states that are likely to be realized in bilayer
quantum Hall systems at total Landau level filling fractionnT51. One state, the (3,3,21) state, can occur as
an instability of a compressible state in the larged/ l B limit, where d and l B are the interlayer distance and
magnetic length, respectively. This state has a hierarchical descendent that is interlayer coherent. Another
interlayer coherent state, which is expected in the smalld/ l B limit is the well-known Halperin (1,1,1) state.
Using the concept of composite fermion pairing, we discuss the wave functions that describe these states. We
construct a phase diagram using the Chern-Simons Landau-Ginzburg theory and discuss the transitions be-
tween the various phases. We propose that the longitudinal and Hall-drag resistivities can be used together with
interlayer tunneling to experimentally distinguish these different quantum Hall states. Our work indicates the
bilayernT51 quantum Hall phase diagram to be considerably richer than that assumed so far in the literature.
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I. INTRODUCTION

Bilayer quantum Hall systems at total Landau level fillin
factor nT51, i.e., n51/2 in each layer,1 allow for novel
interlayer coherent phases. These phases have attrac
great deal of theoretical and experimental attention2 over the
last 16 years, dating back to a seminal paper by Halperin3 in
which the multicomponent generalization of the Laugh
wave function was first considered in a rather general c
text. In particular, there is strong experimental evidenc2,4

and compelling theoretical basis2,5 to believe that a spin-
polarized bilayern5 1

2 quantum Hall system would have
novel spontaneous interlayer coherent incompressible p
for small values of the interlayer separationd, even in the
absence of interlayer tunneling.~We consider only the situ
ation without any interlayer tunneling in this paper, our co
siderations also apply to the physical situation with we
interlayer tunneling. The situation with strong interlayer tu
neling is trivial by virtue of the tunneling-induce
symmetric-antisymmetric single-particle tunneling gap t
leads to the usualnT51 quantum Hall state in the symmetr
band.! In the limit d→`, however, one expects two deco
pled layers each withn5 1

2 and hence no quantized Ha
state. The phase diagram for this compressible to inc
pressible quantum phase transition inn5 1

2 bilayer systems
has been studied extensively in the literature,2 but we still do
not have a complete qualitative understanding of the deta
nature of this transition. In particular, one does not kn
how different kinds of incompressible~and compressible!
phases compete as system parameters~e.g.,d) are tuned, and
how to distinguish among possible competing incompre
ible phases. In this paper, we revisit this issue by argu
that, in principle, there are several interesting and nontri
quantum Hall phases in thenT51 bilayer system that could
be systematically probed via interlayer drag experiments
ried out at various values of the interlayer separationd. One
0163-1829/2001/63~20!/205315~9!/$20.00 63 2053
d a

-

se

-
k
-

t

-

d

s-
g
l

r-

goal of our paper is to describe and discuss the richnT51
bilayer quantum Hall phase diagram using the Chern-Sim
Landau-Ginzburg approach.6–10

Among the more interesting quantum Hall phases are
so-called paired Hall states, which have been extensiv
studied theoretically.3,11,12In these states, the composite fe
mions form a superconducting paired state in which t
composite fermions bind into effective Cooper pairs th
condense into a ground state analogous to the BCS state
well-studied Moore-Read Pfaffian state11 is a spin-polarized
version of such a paired Hall state for a single-layer syste
Bilayer paired Hall states have been discussed earlier in
literature in the context ofn5 1

2 ~andn5 1
4 systems!, but no

definitive idea has emerged regarding their experimental
servability or their relation to the more intensively studi
~and robust! (1,1,1) state.2,3,5 The main purpose of the cur
rent paper is to critically discuss the possible existence
paired n5 1

2 bilayer Hall states that, we argue, are disti
guishable from the better-studied (1,1,1) incompress
state~as well as from compressible states! through interlayer
drag experiments. The transitions between these states
described by a variety of Landau-Ginzburg theories. Giv
the great current interest4,13 in the physics ofn5 1

2 bilayer
systems, we believe that the results presented in this p
could shed considerable light on the nature of the poss
quantum phase transitions in bilayer systems.

In Secs. II, III, and IV of this paper, we consider th
possible bilayern5 1

2 quantum Hall phases in the paramet
regimesd@ l B ~Sec. II!, d. l B ~Sec. III!, and d& l B ~Sec.
IV !, wherel B is the magnetic length, which sets the scale
intralayer correlations. We argue that the likely ground sta
in these three regimes are, respectively, compress
~Fermi-liquid-like! states (d@ l B), paired Hall states (d
. l B), and (1,1,1) states (d; l B). In Sec. V, we discuss the
transition between thed. l B andd& l B limits and introduce
yet another state, a hierarchical descendent of the (3,3,21)
©2001 The American Physical Society15-1
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state with interlayer coherence. We conclude in Sec. VI w
a critical discussion of the various drag resistivities that
argue can, in principle, distinguish among these phases
could be used to study bilayer quantum phase transit
experimentally.

II. dš l B : COMPRESSIBLE STATE

Let us consider a bilayer system in which each layer
filling factor n51/2 in the limit of the layer separationd
being much larger than the typical interparticle spaci
which is of the order of the magnetic lengthl B . As a starting
point, we will model the system by two almost independe
Fermi-liquid-like compressible states, one in each lay
There are two alternative and complementary description
compressible states at even-denominator filling fractions.
will briefly recapitulate some features of both as they w
inform the following discussion of paired states.

One description of a Fermi-liquid-like compressible sta
at n51/2 is based on the lowest Landau-level wa
function14

C1/2~$zi%!5PLLL DetM)
i , j

~zi2zj !
2, ~1!

whereM has the matrix elementsMi j 5eiki•r j . Here,r i is the
position of electroni. Thek is are parameters that are chos
so that the total energy of the system is minimized. We w
discuss their interpretation below.PLLL projects states into
the lowest Landau level; it has the following action:14,15

P LLLeiki•r jPLLL5eiki•Rj , ~2!

whereRi are the guiding-center coordinates of the electro
The corresponding wave function of the double-layer s

tem atnT51 can be written as

Ccompressible5C1/2~$zi
↑%!C1/2~$zi

↓%!, ~3!

wherea5↑,↓ label the two layers.
The lowest Landau-level constraint and Fermi statis

displace the electrons from the correlation holes, i.e., ze
of the wave function or, equivalently, vortices represented
the ) i , j (zi2zj )

2 factor in the wave function. The DetM
factor is necessary to ensure Fermi statistics; it is a displ
ment operator16 becausek i•r j acts ask̄izj1ki]/]zj in the
lowest Landau level. Thus the composite fermion made o
electron and two correlation holes has a dipolar structu
Using these ideas, the system can be described as a co
tion of dipolar ‘‘composite fermions’’ in which each dipola
fermion consists of an electron and the corresponding co
lation holes.16–19 To each composite fermion we assign ak i
that is equal in magnitude~in units of l B) and perpendicular
to the displacement between the electron and its correla
holes. By Fermi statistics, thek is must be distinct. The struc
ture of a dipolar composite fermion is given schematically
Fig. 1. The energy of a composite fermion increases withk i ,
so the ground state is a filled Fermi sea ink space. In the
long-wavelength limit, the total energy of these dipolar co
20531
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posite fermions can be approximately written as( iki
2/2m*

with effective massm* , which is determined by the interac
tion potential.17,19

An alternative formulation arises from the observati
that an electron may be represented by a composite ferm
together with a Chern-Simons gauge field that attaches
fictitious flux quanta to each fermion.20–22 This representa-
tion is mathematically equivalent to the original one but
naturally suggests another approximation. The compo
fermions see zero average magnetic field due to the can
lation between the external magnetic field and the aver
fictitious magnetic field coming from the fictitious flu
quanta. Consequently, the system can be described as a
most free~composite-! fermion system in zero effective mag
netic field. In this approach, the fictitious flux quanta a
introduced to represent the phase winding of the elect
wave function around correlation holes associated with
positions of other electrons. The Det@eiki•Rj # factor in Eq.~1!
can be interpreted as the wave function of the almost f
composite-fermion system.14,22 Thenk is can be regarded a
the ‘‘kinetic momenta’’ of the composite fermions. In th
long-wavelength, low-frequency limit, the two formulation
are equivalent.

Note that in addition to the Fermi-liquid-liken51/2 com-
pressible state in each layer one could have, in princi
other compressible states~e.g., charge-density wave o
Wigner crystal! in thed@ l B limit depending on the details o
interaction and Landau-level coupling. In addition, stro
disorder will lead to localized insulating states. We do n
consider these possibilities in this paper.

III. dÌ l B : PAIRING

We will now implement the latter formulation in a
double-layer system, and show that the compressible s
has a strong pairing instability.12 We introduce two compos
ite fermion fieldsca and two Chern-Simons gauge fieldsaa ,
a5↑,↓. The Hamiltonian is

H5H01HI ,

H05E d2r (
a5↑,↓

1

2m*
ca

†~“2aa!2ca ,

HI5E d2r E d2r 8dra~r !Vab~r2r 8!drb~r 8! ~4!

with the constraints“3aa52pf̃dra(r ). f̃52 if the filling
factor of each layer isn51/2. Heredr(r )5r(r )2 r̄ is the

FIG. 1. Schematic picture of the dipolar composite fermion. T
black and white dots represent the electron and vortex, respecti
The ‘‘wave vector’’ k i is perpendicular to the dipole moment.
5-2



t

s

te
iv
e
e-
u

sit
m
nt
ul
an
a

he

he
r
e

m
ng

th

he
n
d

n-

n

ith
at
of

of
m
s

rily
iring
n-
est

g-
he
t of
he

re-

BILAYER PAIRED QUANTUM HALL STATES AND COULOMB DRAG PHYSICAL REVIEW B 63 205315
density disturbance measured from the average valuer̄. The
interaction potential is given byV↑↑5V↓↓5e2/«r and V↑↓
5V↓↑5e2/«Ar 21d2 where« is the dielectric constant.

It is convenient to change the gauge field variables
a65 1

2 (a↑6a↓). ThenH0 can be rewritten as

H05E d2r F 1

2m*
c↑

†~“2a12a2!2c↑
1

2m*
c↓

†

3~“2a11a2!2c↓G ~5!

with “3a65pf̃@dr↑(r )6dr↓(r )#. From Eq.~5!, we see
that c↑ andc↓ have the same gauge ‘‘charges’’ fora1 but
opposite gauge ‘‘charges’’ fora2 . As a result, there will be
an attractive interaction between the composite fermion
different layers viaa2 and a repulsive interaction viaa1 .
Composite fermions in the same layer have repulsive in
actions. As a result of Coulomb interactions, the attract
interaction mediated by thea2 gauge field dominates in th
low-energy limit and there exists a pairing instability b
tween the composite fermions in different layers. This res
can be understood in physical terms as follows. Thea2 and
a1 fields represent antisymmetric and symmetric den
fluctuations. In the presence of Coulomb interactions, sy
metric density fluctuations are highly suppressed but a
symmetric density fluctuations can still be large. As a res
the dynamic density fluctuations in the antisymmetric ch
nel become more important in the low-energy limit and le
to a pairing instability.

This pairing instability has a natural explanation in t
dipolar composite fermion picture.16–19Let us take a dipolar
composite fermion in layer↑ with wave vectork↑5kF and a
dipolar composite fermion in layer↓ with wave vectork↓

52kF . As seen in Fig. 2, this configuration can lower t
interlayer Coulomb energy because the electron in laye↑
and the vortex in layer↓ can sit on top of each other and vic
versa.

This analysis predicts that, at least in principle, the Fer
liquid-like compressible state is always unstable to pairi
In practice, the pairing gap will be small in the limitd@ l B
and easily destroyed by disorder. As a result, we expect
pairing instability discussed above to be relevant ford/ l B not
too small. Whend/ l B becomes small, on the other hand, t
starting point of two decoupled compressible states is
longer sensible and we take a different starting point, as
scribed in later sections.

FIG. 2. Pairing of the ‘‘intralayer’’ composite fermions.
20531
o

in

r-
e

lt

y
-
i-
t,
-

d

i-
.

e

o
e-

The wave function of the paired quantum Hall state co
structed in this way can be written as

Cpair5Cpair
cf )

i . j
~zi

↑2zj
↑!2)

k. l
~zk

↓2zl
↓!2, ~6!

where

Cpair
cf 5Pf@ f ~zi ,zj ;↑,↓ !#

[A@ f ~z1 ,z2 ;↑,↓ ! f ~z3 ,z4 ;↑,↓ !•••#, ~7!

and f (z1 ,z2 ;↑,↓) is the pair wave function that depends o
the symmetry of the pairing order parameter. Pf@•••# de-
notes the Pfaffian, which is defined in the second line, w
A@•••# denoting the antisymmetrized product. Notice th
Cpair can be regarded as the product of the wave function
the paired composite fermions and that of the~2,2,0! bosonic
Laughlin quantum Hall state.

It is not immediately clear what choice off (z1 ,z2 ;↑,↓) is
most favorable energetically. In the Chern-Simons theory
Ref. 12 there is a pairing instability in all angular momentu
channels.12 In a modified Chern-Simons theory, it wa
claimed that the leading instability occurs in thep-wave
channel.23 These approximate calculations do not necessa
capture the detailed energetics that determines the pa
symmetry. Hence, we will not enter into a discussion of e
ergetics, but limit ourselves to a discussion of the simpl
~and therefore likeliest! possibilities.

The simplest possibility ispx2 ipy pairing,

Cpair5PfF↑ i↓ j1↓ i↑ j

zi2zj
G)

i . j
~zi

↑2zj
↑!2)

k. l
~zk

↓2zl
↓!2. ~8!

Using the Cauchy identity,

)
i . j 51

N

~ai2aj !~bi2bj !5 )
i , j 51

N

~ai2bj !Detu~ai2bj !
21u,

~9!

this can be rewritten as

Cpair5C (3,3,21)5)
i . j

~zi
↑2zj

↑!3~zi
↓2zj

↓!3)
i , j

~zi
↑2zj

↓!21.

~10!

Thus Cpair is the (3,3,21) state if one takes thepx2 ipy
pairing. This wave function is well behaved in the lon
distance limit but has a short-distance singularity. In t
presence of Landau-level mixing, the short-distance par
the wave function can be modified without changing t
structure of the wave function in the long-distance limit:

C (3,3,21)5PfFh~ uzi2zj u/j!
↑ i↓ j1↓ i↑ j

zi2zj
G)

i . j
~zi

↑2zj
↑!2

3)
k. l

~zk
↓2zl

↓!2. ~11!

Here,h(0)50 andh(x)→1 asx→`. In realistic systems,
where Landau-level mixing is substantial,C (3,3,21) could be
a good candidate for the paired quantum Hall state rep
sented byCpair. It is natural to assume thatCpair does not
5-3
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KIM, NAYAK, DEMLER, READ, AND DAS SARMA PHYSICAL REVIEW B 63 205315
have an ‘‘interlayer Josephson effect’’ because there is
gapless neutral mode in the system, in contrast to the cas
the (1,1,1) state.4,13 We will show this later by direct calcu
lation.

Another possibility for the pair wave function is an exp
nentially decaying function with a correlation lengthj, for
example, either of

CSP5PfFe2uzi2zj u/j
↑ i↓ j1↓ i↑ j

zi2zj
G)

i . j
~zi

↑2zj
↑!2)

k. l
~zk

↓2zl
↓!2,

~12!

CSP5Pf@e2uzi2zj u/j~↑ i↓ j2↓ i↑ j !#)
i . j

~zi
↑2zj

↑!2

3)
k. l

~zk
↓2zl

↓!2.

This would correspond to a ‘‘strong’’ pairing~SP! state
while the previous choice — the (3,3,21) state — corre-
sponds to a ‘‘weak’’ pairing state in the terminology of Re
and Green.24 The two different choices of SP wave function
~with p- and s-wave pairs, respectively! in Eq. ~12! can be
continuously connected without crossing a phase transiti

IV. d› l B : „1,1,1… STATE

When the layer separation becomes sufficiently small,
interlayer Coulomb interaction can be comparable to or e
larger than the intralayer Coulomb interaction. In this case
should be more advantageous to first form an ‘‘interlaye
dipolar object that consists of an electron in one layer a
two vortices in the other layer, then form a paired state
these ‘‘interlayer’’ composite fermions, as shown in Fig.
In the Chern-Simons formulation, this corresponds to
situation in which the electron in one layer can only s
fictitious flux in the other layer. The appropriate Cher
Simons constraint equations are

“3a↑52pf̃dr↓ , “3a↓52pf̃dr↑ . ~13!

As in the previous case, we can form symmetric and
tisymmetric combinations of the gauge fieldsa↑ and a↓ .
Again, the antisymmetric combination mediates an attrac
interaction. The wave function of the corresponding pai
quantum Hall state has the following form:

FIG. 3. The pairing of the ‘‘interlayer’’ composite fermions.
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Fpair5Fpair
cf )

i , j 51

N

~zi
↑2zj

↓!2, ~14!

where

Fpair
cf 5Pf@g~zi ,zj ;↑,↓ !# ~15!

andg(z1 ,z2 ;↑,↓) is the appropriate pair wave function. No
tice that the wave functionFpair can be regarded as the pro
uct of the wave function of a paired state of the compos
fermions and that of the~0,0,2! quantum Hall state for
bosons.

However, this line of thinking appears to conflict with th
conventional wisdom that a bilayer quantum Hall system
nT51 is described by the (1,1,1) state ford/ l B;1.3 Fortu-
nately, the (1,1,1) state

C (1,1,1)5 )
i . j 51

N

~zi
↑2zj

↑!~zi
↓2zj

↓! )
i , j 51

N

~zi
↑2zj

↓! ~16!

can be rewritten in the form

C (1,1,1)5PfF↑ i↓ j1↓ i↑ j

zi2zj
G )

i , j 51

N

~zi
↑2zj

↓!2 ~17!

using the Cauchy identity. In other words,

g~zi ,zj ;↑,↓ !5
↑ i↓ j1↓ i↑ j

zi2zj
~18!

is the correct choice ford/ l B;1.
Notice that this form ofg(zi ,zj ;↑,↓) corresponds to the

~pseudo-!spin tripletpx2 ipy pairing order parameter for th
interlayer composite fermions. From this point of view, it
natural to have the same pairing symmetry~11! for d. l B but
for intralayer rather than interlayer composite fermions.

V. PHASE DIAGRAM AT nTÄ1: CHERN-SIMONS
LANDAU-GINZBURG DESCRIPTION

In this section, we consider these states within the fram
work of Chern-Simons effective field theories,6–10 the nature
of the transitions between them, and also find an additio
state that is a hierarchical descendent of the~3,3,21! state
described by a 333 K matrix.

The Lagrangian of the (1,1,1) state is

L (1,1,1)5C↑
†~ i ] t1A↑

02a↑
02a↓

0!C↑2
1

2mU
3S“i 1A↑2a↑2a↓DC↑U2

1
1

4p
emnla↑

m]na↑
l

1~↑→↓ !2Vint . ~19!

Here C↑↓ and A↑↓
m describe composite bosons and elect

magnetic fields in the two layers, and the statistical gau
fieldsa↑↓

m ensure the agreement between this Lagrangian
the (1,1,1) wave function. In the absence of interlayer tu
neling, the number of electrons in each layer is conserved
we can use the dual description25 of the (1,1,1) state,
5-4
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BILAYER PAIRED QUANTUM HALL STATES AND COULOMB DRAG PHYSICAL REVIEW B 63 205315
L d
(1,1,1)5

1

2
u~ i ]m2bm

I !FvI u21V~FvI !1
1

2
~ f mn

I !2

1
1

4p
KIJbm

I ]nbl
Jemnl2

1

2p
Am

a ta
I ]nbl

I emnl.

~20!

HereFvI describe vortices in the fieldsC I with indicesI and
J labeling the layers↑ and ↓, the dual gauge fieldsbm

I de-
scribe the conserved currents, the Greek indicesm, n, l
include space and time components, and the Gram~or K)
matrix8,9 is

KIJ5S 1 1

1 1D . ~21!

It is also convenient to define the charge and spin ga
fields Am

C,S5(Am
↑ 6Am

↓ )/2, bm
C,S5bm

↑ 6bm
↓ with charge and

spin vectorstC5(1,1) andtS5(1,21), anda5C, S. Here
and henceforth, we use the term ‘‘spin’’ to refer to the cha
difference between the two layers, not the physical spin
the electrons, which is assumed to be fully polarized~i.e.,
spin here refers to an pseudospin associated with the lay!.

A generic quasiparticle may now be constructed by tak
a composite ofl 1 vortices of typeFv↑ andl 2 vortices of type
Fv↓ . F ( l 1 ,l 2) creates such a quasiparticle, which has cha
Q and spinS

Q5tC
TK21l , ~22!

S5tS
TK21l .

If the K matrix has a vanishing determinant as it does in E
~21!, then Eq.~22! will have to be modified. When this oc
curs, the zero eigenvalue corresponds to the Golds
modes associated with some broken continuous symm
Hence, if we are to use theK-matrix formalism to calculate
the quasiparticle properties and the degeneracy of the gro
states on a torus@usually the degeneracy is detK ~Refs. 8
and 9!#, some sort of reducedK matrix will be required. We
will now describe how this can be done in general. It
helpful to think in terms of the vectors in the condens
lattice;8 theK matrix is the Gram matrix of the lattice, that i
the matrix of inner products of a basis of vectors in t
lattice. The inner product of two vectorsm, n in the lattice,
represented as column vectors of integers@not to be confused
with the similar vectorsl, which lie instead in the dual~ex-
citation! lattice#, is then given bymTKn. The vanishing de-
terminant ofK implies that we can find a lattice vectorn
such thatKn50. Then the inner product ofn with anyother
vector, including itself, is zero; we calln a null vector. We
choosen to beprimitive, that is, not divisible by any intege
larger than 1. Two vectors that differ by an integer multip
of n have the same inner product with any other vector
causen is null. Hence, we can obtain a reduced lattice
which we identify vectors that differ by integer multiples
n and the inner product remains well defined. The redu
lattice is the quotient of the previous one byn. In terms of
matrices, the reducedK-matrix is obtained by changing
20531
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basis,8,9 taking n as one of the basis vectors. Then in t
resultingK-matrix, the entries in the row and column corr
sponding ton are all zero. The reducedK-matrix, K red is
obtained by deleting this row and column. The process
be repeated until either a nonzero determinant is obtaine
the lattice has dimension zero; in our examples, a sin
reduction is sufficient.

In the case of the (1,1,1) state above, the null vecto
n5(1,21) and the reducedK matrix is K red IJ5(1), the
same as in the polarized or single-layern51 state. The
physical meaning of the procedure is that the (1,1,1) stat
obtained by condensing composite bosons with pseudo
or by taking a pseudospin-polarized state and tilting
pseudospins into theXY plane. This does not affect th
quantum Hall properties of the state, which remain those
the single layern51 state. The procedure above correc
accounts for disregarding the direction of the pseudospin
implies that there is a single ground state on the torus u
low-lying states associated with the broken symmetry. T
use of the reducedK matrix gives the quasiparticle prope
ties; the quasiparticles carry charge61 and are fermions.
We see that the merons~vortices in the pseudospin orde
parameter that carry charge61/2 and ill-defined statistics!
are not obtained fromK red, but are confined by the logarith
mic potential between them, and cannot be separated to
finity with finite energy. Usually, the different degenera
ground states can be obtained from each other by creati
quasiparticle-quasihole pair, transporting one of them aro
the torus and subsequently annihilating them. The nontri
statistics~Abelian, in all cases in this paper! of the quasipar-
ticles then require degenerate ground states. Since
merons are confined, they do not contribute to the coun
ground states, and indeed dragging one around the torus
duces a helical texture in the ground state, increasing
energy by order width/length; we do not regard such a s
as a ground state. In general, the ground-state degenera
divisible by the denominator of the filling factornT ~equal to
1 here!; any ground-state degeneracy beyond that is
exact in a finite-size system, but the energy splitti
;exp(2cL) on a torus of sizeL, wherec is a constant. Fi-
nally, spin wave states have excitation energies;1/L.

Returning to the dual Lagrangian in terms of the un
ducedK matrix of the (1,1,1) state, in terms of the char
and spin gauge fields and the quasiparticle fieldsF (m,n) , it is

L d
(1,1,1)5

1

2 UF i ]m2S m1n

2 D bm
C2S m2n

2 D bm
SGF (m,n)U2

1
1

4p
bm

C]nbl
Cemnl2

1

2p
Am

a ]nbl
aemnl1

1

2
~ f mn

a !2.

~23!

Since there is no Chern-Simons term forbm
S , it is mass-

less. This gauge field is dual to the Goldstone mode t
results whenC↑ , C↓ condense, thereby breaking the U~1!
pseudospin symmetry. Quantum fluctuations can disorder
pseudospin degree of freedom. This occurs whenF (1,21)
~the field for merons! condenses in Eq.~23!. The effective
theory for this transition is
5-5
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L d
(1,1,1)5

1

2
u~ i ]m2 bm

S!F (1,21)u21V~ uF (1,21)u2!

1
1

4p
bm

C]nbl
Cemnl2

1

2p
Am

a ]nbl
aemnl1

1

2
~ f mn

a !2.

~24!

Applying U~1! duality25 in reverse to the pseudospin alon
we find

L d
(1,1,1)5

1

2
u~ i ]m2Am

S!fu21V~ ufu2!1
1

4p
bm

C]nbl
Cemnl

2
1

2p
Am

C]nbl
Cemnl1

1

2
~ f mn

a !2. ~25!

The first line of Eq.~25! decouples from the second so th
transition between the (1,1,1) state and the quantum di
dered state is in theXY universality class.

According to the arguments of Ref. 13, such a disorde
state is the SP state of Eq.~12!, with Landau-Ginzburg
theory,

Lp5Cp
†~]02a022A0

C!Cp1
1

2m
u@]W2 iaW 22iAW C#Cpu2

2
1

16p
emnlam]nal . ~26!

The order parameter is given byCp5C↑C↓ @as opposed to
C↑,↓ individually as in Eq.~19!#. Equation~26! may be de-
rived from Eq.~19! in the limit thatCp is lighter thanC↑,↓ .
The dual theory for SP is

L d
SP5

1

2
u~ i ]m2bm

C!F l u21
4

4p
bm

C]nbl
Cemnl

22
1

2p
Am

C]nbl
Cemnl1

1

2
~ f mn

C !2. ~27!

According to standard arguments,8,9 the SP ground states o
a torus are fourfold degenerate and these ground state
have even electron number.24

We note the existence, in principle, of a state intermed
between the SP and (1,1,1) states with the follow
Landau-Ginzburg theory

Lp5Cp
†~]02a022A0

C!Cp1
1

2m
u@]W2 iaW 22iAW C#Cpu2

2
i

16p
emnlam]nal1Cs

†~]022A0
S!Cs

1
1

2m
u@]W22iAW S#Csu21V~ uCpu2,uCsu2!, ~28!

which is valid whenCp5C↑C↓ and Cs5C↑C↓
† are light

fields. The state in whicĥCp&Þ0, ^Cs&Þ0 also breaks
pseudospin symmetry as a result of the latter order par
eter. We will call this state SP/F to indicate the coexisten
of distinct strong pairing and ferromagnetic order para
20531
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all
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eters. Note that again theK matrix for the SP state and th
reducedK matrix for the SP/F state are both justKIJ5(4).
The transition between the SP and SP/F states is anXY tran-
sition at whichCs condenses. The transition between t
SP/F and (1,1,1) states is an Ising transition at which
symmetryC↑,↓→2C↑,↓ is broken; it can also be viewed a
a strong- to weak-pairing transition, similar to Ref. 24, but
the presence of ferromagnetic order in the pseudospin.

An alternative Chern-Simons Landau-Ginzburg theo
yields the (3,3,21) state by Bose-condensing compos
bosons that consist of an up electron and 3 vortices acting
the up electrons, and21 vortices acting on the down elec
trons,

L (3,3,21)5C↑
†~ i ] t1A↑

023a↑
01a↓

0!C↑2
1

2mU
3S“i 1A↑23a↑1a↓DC↑U2

1
1

4p
emnla↑

m]na↑
l

1~↑→↓ !2Vint . ~29!

As we have described in the previous section, this state
also be viewed as a paired state. Passing to the dual the
we have Eq.~20!, but with

KIJ5S 3 21

21 3D . ~30!

In terms of the charge and spin gauge fields and the q
siparticle fieldsF (m,n) , the dual Lagrangian takes the form

L d
(3,3,21)5L~F (m,n)!1

1

4p
bm

C]nbl
Cemnl1

2

4p
bm

S]nbl
Semnl

2
1

2p
Am

a ]nbl
aemnl1

1

2
~ f mn

a !2. ~31!

From Eq. ~30! we can see that the charge sector of t
(3,3,21) state is similar to the SP state. It has a quantiz
charge Hall conductance and supports elementary excitat
of charge 1/2. The pseudospin sector is different from tha
either of the other states: it is gapped, unlike (1,1,1), a
exhibits a pseudospin Hall effect~which is manifested in the
Hall drag resistance as we discuss later!, unlike (1,1,1) and
SP.

The condensation of the neutral semion (1,21) in Eq.
~31! eliminates the peudospin gauge fieldbm

S by the
Anderson-Higgs effect, thereby leading to the SP state. T
is analogous to the situation atnT51/2, where it was shown
in Ref. 24 that the transition between the (3,3,1) and stro
pairing states is a second-order transition at which a D
fermion becomes massless. However in thenT51 case, we
are dealing with a semion, rather than a fermion, so we m
expect the transition to be analogous to the quantum H
liquid to insulator transition. Both are described by a sing
relativistic field coupled to the Chern-Simons gauge field.
the large-N limit this transition was shown to be secon
5-6
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order,26,27but in the relevantN51 limit the gauge-field fluc-
tuations may drive the transition first order.28 However, simi-
lar arguments in the absence of a Chern-Simons term w
not conclusive. That transition was argued to be first orde
42e dimensions,29 but three-dimensional duality25 implies
that the transition is in the invertedXY universality class
and, therefore, second order. Therefore, the possibility
the transition in the presence of the Chern-Simons term
second order appears to be still open. In the presenc
disorder, at any rate, the transition will be second order.
believe, therefore, that thenT51 bilayer quantum phas
transition between the (3,3,21) paired state and the SP sta
is a continuous phase transition.

We may, on the other hand, consider the condensatio
the boson (2,22) upon the attachment of two flux quanta

L d
(3,3,21)5

1

2
u~ i ]m22bm

S2am!F̃ (2,22)u21V~ uF̃2,22u2!

1
1

4p
am]nblemnl1

2

4p
bm]nblemnl

1
1

4p
bm

C]nbl
Cemnl1

2

4p
bm

S]nbl
Semnl

2
1

2p
Am

a ]nbl
aemnl1

1

2
~ f mn

a !2. ~32!

When F̃2,22 condenses, the resulting Meissner effect e
forces the condition 2bm

S5am ~up to gauge transformations!.
Hence, the following quantum Hall state results:

L5
4

4p
bm

S]nblemnl1
2

4p
bm]nblemnl1

1

4p
bm

C]nbl
Cemnl

1
2

4p
bm

S]nbl
Semnl2

1

2p
Am

a ]nbl
aemnl1

1

2
~ f mn

a !2, ~33!

or

L5
1

4p
KIJ bm

I ]nbl
Jemnl1

1

2
~ f mn

I !22
1

2p
Am

a ta
I ]nbl

I emnl,

~34!

whereI ,J51,2,3, bm
3 [bm , tC

I 5(1,1,0), tS
I 5(1,21,0), and

KIJ5S 3 21 2

21 3 22

2 22 2
D . ~35!

This state is a hierarchical descendent of the (3,3,21) state
~though the construction differs from the usual hierarchy
condensing neutral quasiparticles, which does not change
filling factor!. A wave function for it can be constructe
along the lines of Ref. 8. When the number of flux quanta
the sphere isNf5N23 @as in the (3,3,21) state#, it con-
tains two merons and two antimerons, which are bound
pairs to form two charge11 excitations so the natura
ground state hasNf5N21. Also, it can occur forN odd as
well as for N even, like the (1,1,1) state and unlike th
20531
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(3,3,21) state. The state is distinct from the (1,1,1) sta
despite the fact that it breaks pseudospin symmetry~since
F̃ (2,22) carries pseudospin, the same value as the elect!
and has a gapless Goldstone mode. The 333 K matrix has
determinant zero and hence a reducedK matrix is required.
This can be obtained most easily by first making the ba
change for the condensate lattice to basis vectors (1,0,21),
(0,1,1), and (0,0,1)~relative to the previous basis!. The re-
sulting K matrix is

KIJ8 5S 1 1 0

1 1 0

0 0 2
D . ~36!

Since this contains the (1,1,1) stateK matrix as a block, it is
clear that the reducedK matrix is

K red IJ8 5S 1 0

0 2D . ~37!

Hence, the ground-state degeneracy on the torus is 2.
dentally, the block containing only 2 represents a ‘‘hidd
SU~2!’’ in this state; the corresponding edge theory is
SU~2! current algebra at level 1, even though this will pr
sumably not be a symmetry of the Hamiltonian.

We can complete the circle and return to our start
point, the (1,1,1) state, if the quasiparticleF (1,21,1) ~where
the vortices are relative to the original basis! condenses in
the state~34!, thereby eliminating one of the neutral gaug
fields by the Anderson-Higgs effect. The proliferation
these vortices leaves intact only those condensates~compos-
ite boson fields! that do not wind on going around thes
vortices. These condensates lie on a sublattice~of the unre-
duced lattice!, which is the same as that of the (1,1,1) sta
in fact in the basis used forK8 in Eq. ~36! or for K red8 in Eq.
~37!, the transition has destroyed the condensate descr
by the 131 block at the lower right, leaving the (1,1,1
state. This transition could be first order or second orde
the absence of disorder according to the conflicting conv
tional wisdom discussed above.

A more useful form for the critical theory for the trans
tion between (3,3,21) and its interlayer coherent desce
dent, along the lines of Eq.~25!, may be derived from Eq
~32! by making the change of variablesam→am22bm

S and
integrating outbm . The Lagrangian takes the form

L5
1

2
u~ i ]m2am!F̃2,22u21V2

1

8p
am]nalemnl

1
1

2p
am]nbl

Semnl1
1

2
~ f mn

a !21
1

4p
bm

C]nbl
Cemnl

2
1

2p
Am

a ]nbl
aemnl. ~38!

The gauge fieldbm
S only appears linearly in the Lagrangian

so we may integrate it out thereby resulting in the constra
that am5Am

S up to a gauge transformation. The final L
grangian is then
5-7
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L5
1

2
u~ i ]m2Am

S!F̃2,22u21V~ uF̃2,22u2!2
1

8p
Am

S]nAl
Semnl

1
1

2
~ f mn

I !21
1

4p
bm

C]nbl
Cemnl2

1

2p
Am

C]nbl
Cemnl. ~39!

Hence, the transition between the (3,3,21) state and its in-
terlayer coherent hierarchical descendent is also in theXY
universality class.

These states and transitions are depicted in the phase
gram of Fig. 4. The two states in the upper portion of t
phase diagram — SP and (3,3,21) — are not interlayer
coherent while the three states in the lower portion@SP/F,
(1,1,1), and the interlayer coherent descendent of (3,3,21)
~identified by itsK matrix!# are interlayer coherent@i.e., they
spontaneously break pseudospin U~1! symmetry#. The devel-
opment of interlayer coherence may be probed by interla
tunneling experiments.4 The states on the right in Fig. 4 ar
expected ford@ l B while those on the left are expected f
d; l B . As we discuss in the next section, these may be
tinguished by their Hall drag resistivities. This phase d
gram suggests that the transition between the (3,3,21) and
(1,1,1) states may occur via an intermediate state tha
either the SP state or the interlayer coherent hierarchical
scendent of the (3,3,21) state. We caution the reader th
first-order transitions between any of these states are
sible, even those that are not adjacent in the figure. Howe
the XY transitionscan be second order.

VI. DRAG RESISTIVITIES

It is important to discuss experiments that can distingu
the C (1,1,1) state, theC (3,3,21) , its interlayer coherent de
scendent, and the SP state. Here, we propose Coulomb
experiments in which the longitudinal,rxx

↑↓ and Hall, rxy
↑↓ ,

drag resistivities are used to distinguish the different pha
These may be calculated in Chern-Simons theory from

FIG. 4. Schematic phase diagram of states atnT51. The thick
line represents a phase transition that may be first or second o
~see text!. The horizontal thin line represents a second-order ph
transition in theXY universality class. The thin line separating th
SP/F and (1,1,1) states is in the Ising universality class. The r
tionship between the states in this phase diagram is discusse
Sec. V. The drag resistivity, which together with interlayer tunn
ing, can distinguish these states is discussed in Sec. VI. The gr
state degeneracies on the torus are encircled.
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r i j
ab5r i j

cf ab1e i j r
cs ab, ~40!

where i , j 5x,y, a,b5↑,↓, e i j is the antisymmetric tensor
and rcs ab52dab in the compressible and (3,3,21) states
~intralayer composite fermions! while rcs ab52sab

x in the
(1,1,1) state~interlayer composite fermions!.

First, consider the longitudinal drag resistivity. In th
compressible state, if we neglect gauge-field fluctuatio
rxx

cf ↑↓50, so rxx
↑↓50. Including these fluctuations, it van

ishes asT4/3 at low temperatures.30 In C (1,1,1) andC (3,3,21)

~as well as its interlayer coherent descendent!, rxx
cf ↑↓ and,

hencerxx
↑↓ vanish at zero temperature and are activated at

temperatures.31

Now, let us consider the Hall drag resistivity. In the com
pressible state, both terms on the right-hand side of Eq.~40!
vanish so the Hall drag resistivity vanishes. In the (3
21) state,rxy

cf is that of apx1 ipy superconductor, which
has vanishing charge resistivity~since it is a superconductor!
but quantized spin Hall resistivity.24,33 In other words,
rxy

cf cc50, rxy
cf cs50, rxy

cf ss51. Consequently,rxy
↑↑5rxy

↓↓53
andrxy

↑↓521.
In the (1,1,1) state,rxy

cf is identical butrxy
cs is different so

rxy
↑↑5rxy

↓↓51 and rxy
↑↓51, in agreement with Ref. 32. Th

same result can be deduced physically by noting that in
layer coherence requires that the voltage be the same in
layers. If we run a current in one layer alone, then this c
dition can only be satisfied ifrxy

↑↑5rxy
↑↓ . On the other hand

the total Hall resistance of the system is (rxy
↑↑1rxy

↑↓)/2. Since
this must equal 1, we obtain the previously stated res
Note that the same logic applies to the interlayer coher
descendent of the (3,3,21) state that must, therefore, hav
rxy

↑↑5rxy
↑↓51. In other words, the full resistivity tensor of th

(1,1,1) state is identical to that of the interlayer coher
descendent of the (3,3,21) state.

Note that the interlayer coherent descendent of the (
21) state discussed in the previous section is apseudospin
Hall superconductor. From Eq.~39!, we see that the pseu
dospin conductivity tensor is of the form

sSS5S k

iv
1
2

2 1
2

k

iv

D , ~41!

wherek is a constant. Hence, there is nonvanishing spin H
conductivity. However, upon inverting this tensor, we s
that the spin Hall resistivity vanishes, as it must in order
satisfy rxy

↑↑5rxy
↑↓51. The (1,1,1) state, on the other han

has vanishing spin Hall conductivity. The distinction b
tween apseudospin Hall superconductorand an ‘‘ordinary’’
pseudospin superconductor is reminiscent of the differe
between a Hall insulator and an ordinary insulator~but in-
verted!.

Thus far, we have focused on the situation in which t
layers are perfectly balanced. If they are unbalanced du
the presence of an external bias field, for example, this
analogous to introducing a pseudospin Zeeman field al

er
e

a-
in

-
nd
5-8
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the z direction. This will have a pair-breaking effect on th
paired states and will be expected to weaken the quan
Hall effect. This should, as a consequence, increase the
gitudinal drag~along with the total longitudinal resistance!.
The presence of external bias can thus be used to disting
the paired state from other incompressible states.

We conclude by summarizing our results. We have sho
that then5 1

2 (nT51) bilayer quantum Hall system~in the
absence of interlayer tunneling! is likely to have as its
ground state a novel paired Hall state~possibly of p-wave
symmetry! for intermediate layer separationsd. l B , which
gives way to the usual (1,1,1) state for smaller layer sep
tions (d& l B), and to compressible Fermi-liquid-type stat
~two decoupled Halperin-Lee-Read22 n5 1

2 layers! for large
layer separations (d@ l B). We argue that the quantum pha
transitions separating the paired states from the (1,1,1)
bilayer Halperin-Lee-Read states can be experimentally s
ied via the measurement of various components of interla
vin
s

st

20531
m
n-

ish

n

a-

nd
d-
er

drag resistivities. We also argue that the transition betw
the (3,3,21) and (1,1,1) states may occur via an interme
ate state that is either the SP state or the interlayer cohe
hierarchical descendent of the (3,3,21) state and in either
case one of the two transitions will be in theXY universality
class.
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