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The spectra of quantum dots of different geomettégsantum ring, quantum cylinder, spherical square well,
and parabolitare studied. The stochastic variational method on correlated Gaussian basis functions and a large
scale shell-model approach have been used to investigate these “artificial” atoms and their properties in
magnetic fields. Accurate numerical results are presentel fo2 -8 electron systems.
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. INTRODUCTION tificial atoms of sphericdt??and cylindricat® symmetry in
3D have also been investigated in the variational and
Quantum dots™ are solid state structures made of semi-Hartree-Fock frameworks. The strongly correlated low-
conductors or metals those confine a countable, small nunflectronic-density regime got much attention due to the in-
ber of electrons into a small space. The observed propertid@9Uing  possibility —of  the formation ~ of ~Wigner

2,24,25 . .

of these confined electrons are similar to those of atoms, ThalClecules. Here we use a correlated basis function

e A I N which gives very accurate results for different few-electron
possibility of fabrication of “artificial atoms” with “tun-

> o . : systems. The accuracy becomes important when one studies
able” properties is a fascinating development in nanotech

| Th q v offer th Tunit f'subtle properties such as level orders, weakly bound states,
nology. These quantum dots not only ofter the opportunity ol “\ye investigate different models of quantum dots sug-

various applicationglaser and electronic devices, memories, ested by various authors.

quantum gates, ejcbut also are quite intriguing physical ™ |5 this paper the stochastic variational method has been
systems in their own right. Most theoretical model calcula-sed to solve the few-electron Sctinger equation. In this
tions use the effective-mass approximation to study the emgpproach correlated Gaussians are adopted as basis func-
ergy levels or other properties of the electrons confined injons. This basis is nonorthogonal and overcomplete. The
quantum dots. These calculations address the low-energyial function depends on the parameters of the Gaussians
sector where the interband mixing is assumed to be negliand one has to optimize the parameters to get the best en-
gible and the periodic crystal potential is taken into accounergy. The most adequate basis functions are selected by the
through the effective mass and dielectric constant. In thesstochastic variational metha@®VM).2%2” The advantage of
models the electrons move in an external confining potentiathis basis lies in its flexibility. A relatively small number of
and interact via the Coulomb interaction. basis functions give very accurate results provided that the
Given the geometry of the quantum dot and the paramparameters are carefully optimized.
eters of the heterostructure, the confining potential can be To test the accuracy of the results we have expanded the
determined by a self-consistent calculation. This is not, howwave function in terms of harmonic-oscillator Slater deter-
ever, a trivial task and most work on quantum dots usesninants as well. This basis forms a complete set and the
simple model potentials. The confinement is generally veryenergy is obtained by diagonalizing the corresponding eigen-
strong in the verticalz direction, creating quasi-two- value problem. The only approximation is the truncation of
dimensional2D) systems. The confinement on thg plane  the basis. The dimension of the harmonic-oscillator basis
is most often assumed to be parabolic. A study of realistiqquickly increases with the number of single-particle states
confining potentials found that this approximation is fairly included and even the powerful Lanczos method becomes
good in certain cases but generally the confining potentiainfeasible. The advantage of this approach is that it is simple.
might significantly differ from a harmonic-oscillator oRét ~ Once the matrix elements are calculated there is no need for
is therefore important to investigate particular quantum dobptimization of the basis set. In addition, we may improve on
geometries/structures as well. this approach by utilizing the starting-energy-independent
The apparent similarity of “natural” atoms and quantum two-body effective interactidfi that takes into account two-
dots suggests the application of sophisticated theoreticalectron correlations from the excluded space. Again, no ad-
methods used in atomic physics and quantum chemistry tditional optimization is needed as the effective interaction
calculate the properties of quantum dots. Parabolically condoes not depend on any extra parameter.
fined 2D quantum dots have been studied by several different We have carefully compared the results obtained with
well-established methods: exact diagonalizationthese basis states to test the accuracy of the energies and
technique$;® Hartree-Fock approximationt§;*? and den-  other physical properties. These quantum mechanical sys-
sity functional approachés$:* Quantum Monte Carlo tems provide us with very good tests of different approaches,
(QMC) techniques have also been used for®®0/1%?%as  and therefore we think that it is important and useful to tabu-
well as three-dimension#BD) structures® Few-electron ar-  late the energy and other quantities of the quantum dots. This
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may serve as a benchmark test to compare different methods. 1
An intriguing feature of these systems is that the strength d;i(r) =A[ ex;{ —SrAr
(and shapgof the confining potential can be changed. Un-
like in natural atoms the relative importance of the pairwisewhere A is the antisymmetrizing operator for the electrons
Coulomb interaction and the external potential can be tunedandr=(ry, ... ry ) stands for a set of spatial coordinates
We have calculated the ground and the first few excitechf the electronstAir is a short hand notation of the quadratic
states. T.he ground and excited states are characterized by e, EjNizl(Ai)jkfj -r, whereA, is anN.x N, symmetric
:ﬁtealleovrglgacli:ggr?(ljasrom%w:r;t;r:rggbdnf?ﬁil:; ptﬂzn(t)igjle(/\g positiveldefinite matri>_< Whos_e elements are variational pa-
h : : ' rameters. Both the spin functiopsy,. and the angular func-
ave investigated how the level order changes as the param S , .
eter of the potential is varied. tion 6y (r) are constructed by successively coupling the
The next section introduces the basics of our formalismgcorresponding single-particle functions:
The results of the calculation for different systems are pre-
sented in Sec. Ill. The last section is devoted to discussion  Xsmg=[[[§12(1)€122)]s, £1/23)]s - - - Ismg (B
and summary.

GLML(r)XSMS]r 4

and

Il. THE FORMALISM Oum, (D=, TON () N (D)1, Tim,s (6)

We investigate a system &f, electrons confined by the

potentialV.,(r). The Hamiltonian is where &, and Vim(r)=r1"Y, (1) are the spin and angular

functions of the electron.

Ne 52 g2 Ne 4 The Hamiltonian we consider in this paper contains no
H=> | = 5= VZ+ Vo 1) | +— >, (1)  term that couples the spin and orbital angular momenta, and
=1 2m € i<j |ri_ri| commutes with the total spin and total orbital angular mo-

menta or theirz components when the uniform magnetic
field is applied in thez direction. There is no coupling be-
tween the spin and the orbital part in the basis function of

In Eq. (1), m* is the effective mass of the electron aads
the dielectric constant of the semiconductor. In the following
(if not explicitly specified otherwisewe will use effective
atomic units, defined b =e? e=m* =1. In this system of Eq. (4). . _ . :
units, the length unit is the Bohr radiua#72/m.e?) times Thg cqrrelated Qaussmn function can be rewritten in a
e/(m*/my), and the energy unit is the HartreeH ( MOre intuitive form:

=mqe*/%?) times (M*/my)/e®> wherem, is the mass of the

electron. For the GaAs dots we consider here,12.4 and ex;{ - ErAr
m* =0.067m,, and the effective Bohr radiugg and the 2

1 Ne 1 e
=expg — 5>, a(re—r)?—s> Bire|.
2= 21

effective HartreeH* are =97.94 A and=11.86 meV, re- (7)

spect_ively_. These_effective length and energy units are calleg(kI and B, can be expressed by the elementsiaind vice

atomic units(a.u) in what follows. . versa. The advantage of this notation is that it explicitly con-
In the variational method the trial wave function is ex- hects the nonlinear parameters to the pair correlation be-

panded in terms of basis functions: tween the particlesandj and thus explains the name “cor-

related Gaussians.” The second part, exé(zfjlﬁkrﬁ), is
‘1’=Ei cid;, (2)  a product of independent single-particle Gaussians.
and the variational energies are obtained by solving the gen- B. Stochastic variational method

eralized eigenvalue problem The energy crucially depends on the variational param-

eters. The optimal nonlinear parameters are selected by the
> (Hij—EOy)c;=0, Hjj=(®|H|®)) stochastic variational methd@?’ In each step of this proce-
! dure, K differentA; are generated by randomly choosing the
values ofe,, and 8, from the[0,8] interval. The parameter

and set that gives the best variational energy is selected and the
function corresponding to that parameter set is added to the
Ojj =(di| ;). ) set of basis functions. The trial function also depends on the

The energy eigenvalueg, ,E,, ... are variational upper intermediate coupling quantum numbesgy(Sy53, . . . ) and

bounds of the energies of the ground and first, second, . . (l1.12,112,15, . . ). These possibilities are also randomly
excited states ' " " "fested during the optimization of the basis.

Our stochastic selection procedure uses the following
steps.

(1) Setting up a new basis or enlarging an existing one.

The correlated Gaussian basis is defined in the followind-et us assume that the basis set t\s 1 elements. One
way: generatesC random basis states and calculates the energies

A. Correlated Gaussian basis functions
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Eni (i=1,...K) with the newA-dimensional bases that <1>i(r)=del{[<,onj,jmj(rj)§%#j(j)]}, (8)

contain theith random element and the preselectgd 1

basis elements. The random state that gives the lowest en-

ergy is selected as a new basis state and added to the bagjgere the single-particle functiow, ., is a harmonic-

The variational principle ensures that the energy of the . ) . . 17

N-dimensional basis is always lower than that of the ( oscillator functlon. Thls_ basis (_jepends on only one param-

—1)-dimensional one. This procedure is therefore guaraneter'_ the harm(_)nl_c-oscnlator width. For harmonlc-(_)scnlator

state energy. Notice that as th&¢ 1)-dimensional basis is quency of the potential. In this way the harmonic-oscillator

orthogonalized this method does not require the diagonalizebasis functions are eigenfunctions for a noninteracting sys-

tion of N-dimensional matrice$?’ The energy gaine,,  tem.

=E,—E\~—; shows the rate of convergence. A calculation This is an orthogonal basis and the Hamiltonian matrix is

of good convergence giveg~0. . sparse. The Lanczos method, in particular the many-fermion
(2) Refinement: Improving the energy of a basisthe  gynamics shell-model codd,is used to find the lowest ei-

previous step only the newly added element is optimized, bulenyajues. In the diagonalization we used all states up to
the rest of the basis is kept fixed. In the refinement we keep,n,
1(2ni +|i)$Nmax-

the dimension of the basis fixed and try to replace ktie i= = )
basis element withC randomly generated elements. If the The basic difference between the two bases is that the
best energy obtained by substituting ttl basis state with Gaussian basis isxplicitly correlated. It explicitly depends
the random candidate is lower than that of the original basison the|r; —r;| distances, so it is better suited to describe the
then thekth basis state is discarded and the new random statelectron-electron correlations. At the same time the
is included in the basis. This procedure is cyclically repeatetharmonic-oscillator basis is simpler because no optimization
for k=1, ... N. As the dimension of the model space is js needed.

fixed, this step does not necessarily give lower energy, butin - An advantage of the harmonic-oscillator basis is the fact
practice in most cases it does. Actually, if one cannot findp 4t e may alternatively perform the calculations in the Ja-
better basis elements, that is an indication of a well-

X . . R cdobi coordinates with the center-of-mass degrees of freedom
converged energy/basis. Again no diagonalization is neede

in this step when starting from an orthogonalized basis. r(_amoved. It is straightfqrward, a_lthough num_ericall_y Inten-
(3) Optimization by “fine tuning” of the parametertn sive, to coqstruct an antlsymmetnzgd harmomc—.oscnlator ba-
step 2 the parameters are randomly selected irrespective 8 depending on the Jacobi coordindfeBepending on the
their previous values. This certainly helps to avoid the trap®roblem, we may choose the more efficient basis. Rer
of local minima, but if one is alreadfpresumably close to ~ =3.,4,5 electron systems it turns out that the use of Jacobi
the “global” minimum then the chance to move closer to it coordinates is more profitable. For larger numbers of elec-
is small. If the basis parameters are “reasonably” optimizedtrons, it is more efficient to use the single-particle coordi-
or further repetition of step 1 or 2 does not lead to apprehates and the Slater determinant ba8is
ciable changes, one may try to change the basis parameters As the harmonic-oscillator frequency is fixed as described
by selecting new parameters in the vicinity of the existingabove, the only parameter of the calculation is the model
ones. That increases the probability of finding the nearbgpace size characterized By,.,. In the present calculations
minimum. In practical calculations this step was imple-we use as larghl,,., as possible, typicalliN, .= 15—33 for
mented by requiring the new random parameters to be in thﬁe<5 andN,,,=8—-12 for larger systems.
[0.8a,1.2a] interval (« is the previously chosen parameter A speed-up of convergence can be achieved by utilizing
In th|S case the ba.SiS Optimization iS done in eXaCtIy the Samﬁ]e eﬁective_interaction approach that was Successfu”y ap_
way as in step 2. The only difference is that the search inpjied in ab initio shell-model calculations for few-nucleon
terval is limited and defined by the previous parameters.  systems and light nuclé®?°While it is crucial in the nuclear
A combination of steps 1, 2, and 3 is repeated until thephysics application to use the effective interactions, in the
required accuracy is reached. A practical and economicairesent electron systems the effective interaction provides
way to set up a basis is to generateelements (/=20 or 40 only minor improvement. In some cases, however, it brings
is a reasonable choic®y using step 1. Then repeat step 2the SVM and SM results to much closer agreement. The
for each basis state sevefally 3—3 times. Use step 1 once details of how the effective interaction is computed from the
more to enlarge the basis by addingelements to it and  pare Hamiltonian, here the harmonic-oscillator and Coulomb
repeat step 2 as described before. After reaching a certajfteraction, is given, e.g., in Refs. 28 and 29. The basic goal
basis size where further repetition of steps 1 and 2 does n@jf the effective interaction is to take into account, in this case
yield considerable improvement, then try step 3. two-electron, correlations from the excluded space, i.e., from
This basis selection procedure proved to be quite reliablgne space containing excitations abdVg,,. A formal dif-
and prOVideS a very accurate solution. More details can bfbrence from the nuclear case is that here the harmonic-
found in Ref. 26. oscillator potential is a real binding potential, while in the
nuclear application it is a model potential representing the
mean field formed by all nucleons, which is added/subtracted
Alternatively, we also set up a harmonic-oscillator bd3is. to the real nucleon-nucleon interaction in order to facilitate
In this case the basis functions are the effective interaction calculation.

C. Harmonic-oscillator basis
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We note that when the bagi®) is used the good quantum 1 Ne 1 Ne
numbers are checked by evaluating the mean values of rel- exp — 5 E Aijpi-pj— > Z Bijzizj |, (12
evant operators, e.g)?, L, andS, for each eigenstate. hi=1 hi=1

where the nonlinear parameters are differ@ard indepen-
D. Magnetic field den) in thexy andz directiong] p; = (x; ,y;) ]. This extension
brings a great deal of flexibility by allowing a separate de-
scription on thexy plane and along the axis. The Hamil-
tonian does not commute with? but it does withL,. The
1 1 e \2 eigenfunctions have good quantum numbénf L,. Note
( Pit EAi)

In external magnetic field the kinetic energy operator is
replaced by

WPEHZm* 9 that we will useM for the orbital angular momentum quan-

tum number in 2D andl for the one in 3D. The above form

multiply the basis b§f

1
ingA=-— 5T X B the above expression can be rewritten in a N
more detailed form: iﬂl §mi(Pi), (13)
1 € ? 2 1 * 2/y2 2
ome | Pt GAl| =7 5w A+ S M (0d2) (X +YP) where
1 £ (p)= (x+iy)m for non—negative integem
~ 5 wclzi, (10 mPI= ] (x=iy)"™ for negative integem.

(14)
wherel,; is thez component of the orbital angular momen- t1us our variational basis function reads as
tum of theith electron. The cyclotron frequency for the pa-
rameters we use in this paper reads as Ne
CDM(r):A{(H gmxpi))
_ehB  2m, 3 . =1
e —FMBB—O.MS TB(H*), (17

We

1 Ne 1 Ne

where the Bohr magneton igg=ef/(2m.)=0.057 88 Xex;{ 2 i,JZ'l Aifi 2 i,izzl B”Z'ZJ)]’
meV/T. The interaction of the magnetic field with the spins (15)
leads to the Zeeman termg* ugBs,;, wheres,; is the z
component of the spin of thigh electron andy* is the ef- whereM=m;+my+- .- +my_.
fective g factor of the electron. The Zeeman term leads to the The above basis is defined for 3D cases. It is used not
splitting of the energies for different spin orientations. As theonly for solutions in the presence of magnetic field but also
Hamiltonian with this term still commutes with ttecom-  for external potentials with cylindrical symmetry. For 2D
ponent of the total spinSZ=Eileszi, the energy shift is calculations the same form is used except that the third com-
simply given by—g* £gBS, and one can easily add this to ponent of the vectors is droppédr equivalentlyB;; =0 is
the energies presented in the following. This energy is nofissumel
included in what follows.

The correlated Gaussians defined above are not ideally Ill. CALCULATION
suited for systems in magnetic field, because the basis func-
tions belonging to different orbital angular momenta would
be coupled by the Hamiltonian. This coupling would require  Harmonically confined 2D systems have received much
an infinite series of orbital angular momentum states, whictiheoretical attention and this is a very good test case to gauge
is obviously out of the question. To avoid this, we choose ahe accuracy of different approaches. In this case the confin-
deformed form of the correlated Gaussi@CG):3* ing interaction takes the Simpl ,{(r)=32m*w?r? form.

A. Harmonic-oscillator confinement in 2D

TABLE |. Comparison of the energies of harmonically confined 2D three-electron sysiend.@841,
hw=3.37 me\} by different methods. The energies are given in meV. Values in parentheses are given in

atomic units.
QMC
(M,S) SVM Diag. Ref. 6 Ref. 15 Ref. 17 Ref. 16
1,172 26.7827(2.2582 26.82 26.77 26.82140.0036 26.88
(2,172 28.2443(2.3819 28.27 28.30 28.35
(3,312 30.0101(2.5309 30.02 30.04 30.03
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TABLE Il. Comparison of the energies of harmonically con- Our calculations, in agreement with Hund'’s rule, predict
fined 2D electron systemsw(=0.28fiw=3.32 meV by different  the (M,S)=(0,1) state to be the ground state and (Ag®)

methods.7 is the virial factor. and (0,0) states to be the lower excited states. This contra-
dicts the results of Refs. 15 and 17 but is in agreement with
Ne (M,S)  QMC (Ref. 17 SVM n the other QMC calculatiof The violation of Hund’s rule
2 0,0 1.021627) 1.02164 0.999995 for Neg=4 is also found in unrestricted Hartree-Fock
3 (1.1/2 2.23393) 29320 0.99993g  calculations;? while exact diagonalization calculatidhs
4 ((') 2 3.71574) 3.7130 0.999971 show that the shell filling obeys Hund'’s rule.
4 (2’0) 3'75431) 3'7525 0.999982 Our other energies are very close to the QMC results: The
4 (0’0) 3'71356) 3'7783 0'999992 agreements foN.=5 andN.=6 electron systems are very
’ ’ ’ ' impressive.
2 ((lélc/))a ?23223 ?'2328 g'ggzgi; We define the pair correlation function
; . . . P(r,rg)=——c—><
The single-particle energy of the harmonic-oscillator poten- (1:o) Ne(Ng—1)
tial is given by (h+|m|+1)%w, wheren=0,1,2 . .., and
m=0,+1,+2,....InTable | we compare our results to the (WD S(ri—R—r)8(r;—R—ry)|¥).
“exact diagonalization®® and QMC method$~*' for the < |igj ' . o)
Ne=3 electron system. We have carefully optimized the pa- (17)

rameters and repeated the calculation several times to check

the convergence. Our result is expected to be accurate up Merer,, is a fixed vector and its magnitude is chosen to be
the digits shown in Table I. In principle the QMC calcula- equal to(V|S;|r;—R||¥)/N,. The functionP(r,ro) gives
tions, except for the_statistical error, give the exact energy ofis information on where one electron located gexperi-

the system. In practical cases the famous “minus-sign probances other electrons. Figures 1 and 2 display the pair corre-
lem” forces the QMC approalc‘:hes to use certain approximapation functions for the ground staté(S)=(1,1/2) and the
tions (in Refs._16 an_d 17 the “fixed-node” method has beeng; ¢t excited stateMl,S) = (2,3/2) of theN =5 electron sys-
used. The slight difference between our results and theem goth figures show qualitatively similar features. kor
QMC values is probably due to this fact. The energies for_ the confinement potential is strong and the contribution
both the ground and excited states are in good agreeme the single-particle energies to the total energy is larger

Our results are slightly better than the other calculations iRy, that of the Coulomb potential. The electrons are con-
each case. . o fined in a rather compact region so that the contour map does
In Table Il a similar comparison is presented M ot show four clear peaks. On the contrary, o=0.1 the

=2-6 electron systems. The QMC res%ﬂtquoted in Table  fact of the confinement becomes weak and the contribution
Il are obtained by very careful calculations and their statiS¢ he Coulomb potential is larger than that of the harmonic-
tical error is very small. Note that the confining strength is

: : ) ) : oscillator part. The size of the system grows and we see
slightly different in the calculations presented in Tables | antyjearly a well-separated pentagoniike structure. The Wigner-
Il. This table also includes the virial factor molecule-like structures formed in this case are in very good
qualitative agreement with the results of Ref. 12.
Ne .
Next we present in Table Il an example where the mag-
7=2(TIW), (W)= < ;1 ri'ViVint> ' (16)  netic field is nonzero. Again, the energies are in good agree-
ment with those from the QMC (Ref. 15 and
whereV,, is the “interaction part” of the Hamiltonian, in- diagonalizatiofi methods. In 2D the inclusion of the mag-
cluding the confining and the electron-electron interactionsnetic field leads to a change of the harmonic-oscillator fre-

The virial factor is unity for the exact wave function. quency
Our result is in excellent agreement with the QMC
predictiond’ in all but one caseN,=4). The QMC method w— o’ + (02)? (18)

renders the M,S)=(0,0) state as the ground state and the

(M,S)=(0,1) state as the first excited state, which is a vio-and an energy shift by-3M% ., so we expect that our
lation of Hund's rule. The shell filling and Hund'’s rule have results are as accurate as those for the zero field case. The
been experimentally investigated in Ref. 2 and it is foundaccuracy is also indicated by the virial factor included in
that a circular dot obeys Hund'’s rule. According to Hund’s Table 1.

rule the ground state of a system with a well-developed shell We have improved the prediction of the diagonalization
structure is in the maximum spin state allowed by the Paulimethod® The diagonalization method would give the “ex-
principle. The violation of Hund’s rule in this system was act” solution in infinite model space. In practice the diago-
also observed in another QMC calculatiGrThis latter cal-  nalization is always limited to finite dimensions. The slight
culation predicts a relatively large energy difference betweenlisagreement between our and the QMC results might be due
the (0,0) and(0,1) levels, but it is somewhat less accurate forto the statistica(and/or fixed-nodeerror of the QMC calcu-
Ne=4, using only the lowest Landau levels. lation.
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®=0.5

FIG. 1. Pair correlation func-
tion of the ground stateM,S)
=(1,1/2) of 2D five-electron sys-
tem as a function of the frequency
o of the harmonically confining
potential. The white cross denotes
ro. Atomic units are used.

The energy levels of the first three spin-polarized and0,3/2) state for weak field. For stronger field the (3,3/2)
spin-unpolarized three-electron states in a magnetic field arand then the (6,3/2) states become the lowest spin-polarized
shown in Fig. 3. The spin-unpolarized (1,1/2) state is theland groungl state, following the (3,6...,3n) “magic” se-
ground state in the weak magnetic field limit. The level orderquence. Other spin-polarized stafesg.,(1,3/2, etc] never
at B=0 is (1,12),(0,32),(2,12),(0,12),(3,3/2). TheM become the lowest state. The explanation of the magic se-
=0 states are formed by placing one electron in each of thgquence is very simple. In the spin-polarized case all electrons
m=0,1,—-1 single-particle orbits. The (2,1/2) unpolarized have to occupy different orbits. As the magnetic field gets
state becomes the ground state in a very small interval of thstronger, the single-particle states belonging to positive or-
magnetic field strength. The sequence of ground states dmital angular momentum quantum numbersm; (
increasing the magnetic field is (12/(2,12),(3,3/2), =0,1,2,3...) areenergetically more favorable than those
(4,12),(6,3/2) in agreement with Ref.[the (4,1/2) state is with negative ones. TheM=3 state [(m;,m,,m3)
not included in Fig.  The lowest spin-polarized state is the =(0,1,2)] is therefore lower than th& =2 state[which

0=0.1 ®=0.5 =1

FIG. 2. Pair correlation func-
tion of the excited stateM,S)
=(2,3/2) of 2D five-electron sys-
tem as a function of the frequency
o of the harmonically confining
potential. The white cross denotes
ro. Atomic units are used.
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TABLE lIl. Comparison of the energies of harmonically confined 2D three-electron systems in magnetic
field (w=0.2841) by different methods. The energies are in meV except for the values in parentheses which
are in atomic unitsz is the virial factor.

(M,S) B (T) SVM - QMC (Ref. 15 Diag.(Ref. 6
(1,1/2 0.0 26.78(2.2582 0.999991 26.77 26.82
(1,172 1.0 26.61(2.2442 0.999989 26.60 26.65
(1,1/2 2.0 27.69(2.3353 1.000034 27.68 27.74
(1,1/2 3.0 29.71(2.5055 0.999987 29.69 29.77
(1,1/2 4.0 32.36(2.7283 1.000026 32.32 32.43
(1,1/2 5.0 35.39(2.9842 0.999985 35.33 35.48
2,1/2 0.0 28.24(2.3819 0.999992 28.30 28.27
2,1/2 1.0 27.28(2.2999 0.999925 27.33 27.29
(2,1/2 2.0 27.67(2.3339 0.999905 27.72 27.69
2,1/2 3.0 29.09(2.4531) 0.999954 29.14 29.13
2,1/2 4.0 31.22(2.6329 0.999976 31.26 31.26
2,1/2 5.0 33.79(2.8495 0.999963 33.82 33.85
(3,32 0.0 30.01(2.5304 0.999999 30.04 30.02
(3,32 1.0 28.24(2.3817 1.000006 28.27 28.25
(3,32 2.0 27.97(2.3585 0.999997 28.00 27.98
(3,32 3.0 28.83(2.4315 0.999999 28.86 28.85
(3,32 4.0 30.48(2.5703 0.999997 30.51 30.50
(3,32 5.0 32.63(2.7519 0.999998 32.67 32.66

requires (0--1,3) or (1,2,-1), etc]. For a weak magnetic comes the ground state before the “magi®’'=6(0,1,2,3)
field the above argument does not hold in general and thstate takes over.
lowest polarized state 81 =0 with the (0,1;-1) orbits. Figure 4 reassures us that thel (S)=(0,1) state is the

A similar picture is valid forN.=4 (see Fig. 4. In the  ground state and theM,S)=(0,0) is an excited state for
very weak field regime the unpolarizeM(S)=(0,1) state is zero magnetic field: Both states belongMo=0, and there-
the ground state. On increasing the magnetic field, the spirfore the change of the magnetic field simply changes the
polarized M =2 state[(m;,m,,m3,m,)=(0,1,—1,2)] be- harmonic-oscillator frequendpee Eq(18)]. The figure thus

40.0 58.0 B
~ 53.0 b
35.0 %
E
< w
[
E
w 48.0 1
30.0
43.0 . . .
0.0 2.0 4.0 6.0 8.0
B
25.0 ' ' ' M
0.0 2.0 4.0 6.0 8.0 . . .
B (M FIG. 4. Energies of the harmonically confingde{=3.37 meV

lowest spin-polarized$= 2, thick solid ling four-electron states in
FIG. 3. Energies of the harmonically confingd«=3.37 meVf a magnetic field. The orbital angular momentivnof the state is
lowest spin-unpolarizedS= 1/2, thin solid ling and spin-polarized indicated by the number next to the curve. The two thin solid curves
(S=3/2, thick solid ling three-electron states in a magnetic field. are theS=0 andS=1 states belonging tv =0 (theseSvalues are
The orbital angular momentud of the state is indicated by the indicated next to the thin curvesThe Zeeman energy is not in-
number next to the curve. The Zeeman energy is not included. cluded.
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TABLE IV. Energies of harmonically confined two-electron =(3,1,—) and the first excited state of (0;0). The order of

system in 3D. the other levels listed in Table IV does not change.
The energies of the ground and excited states calculated

@ by the correlated Gaussian and the harmonic-oscillator shell-
(L.Sm) 0.01 0.5 10 model bases are compared fdg=3—-6 electron systems in
(0,0+) 0.07921 2.0000 32.449 Tables V-VIII. Both methods give very similar results. The
(1,1-) 0.08198 2.3597 41.665 agreement is especially good for the ground and first excited
(2,0+) 0.08681 2.7936 51.338 states. For higher excited states the Gaussian basis gives
(0,0+) 0.09696 2.9401 52.072 slightly less accurate energies because it is significantly more
(3,1-) 0.09302 3.2538 61.149 difficult to optimize the basis for excited states. In addition to
(1,1-) 0.10005 3.3286 61.504 the present results we note that the harmonic-oscillator cal-

culation dependence on the model space siz8élfer3,4 and
0=0.5 was discussed and tabulated in Ref. 33.

shows that the order of these two states remains the same for The agreement is especially striking fb,=3. Almost
different harmonic-oscillator frequencies. all digits are equal for most of the calculated cases. It is
interesting to compare the order of the states in 2D and 3D.
In the 2D case for N,=3 the energy levels of
the first few states follow the order of M,S)

We have calculated the energies of the ground and first (1,12),(0,32),(2,12),(0,1/2), while in 3D the levels
few excited states of 3D few-electron systems confined by are ordered as L(S,m7)=(1,1/2,-),(1,3/2;+),(2,1/2,
harmonic-oscillator potentiglVe,(r)=3m* »?r?]. The re-  +),(0,1/2;+). This shows that the lowest levels are built up
sults for different values of the oscillator frequency are com-from the same single-particle states. In the 3D ground state
pared in Tables IV-X. All intermediate spin coupling possi- two electrons are in the=0 orbital and one is in thé=1
bilities (12,8123, - . . ) areincluded in the trial function. The orbital. The first excited state has two electrons in Ithel
partial wave componentsl (l,, ...) areincluded up to  orbital, which are coupled th=1 because their spin must
EiNjIlliSG. The quantum numbers necessary to specify thée parallel to build uB=3/2 with the third. In the 2D case
states are the total orbital momentumthe total spinS, and  they are in them=1 andm=—1 orbitals and their total
the parity 7. orbital angular momentum i =0. The higher excited

The two-electron case is relatively simple and it is ana-states have similar correspondence. The same similarity oc-
lytically solvable for certain frequencié.For w=0.5, for ~curs for N.=4 [(M,S)=(0,1),(2,0),(0,0) in 2D and
example, the exact energy is 2 &tand we can easily re- (L,S,7)=(1,1,+),(2,0,;+),(0,0,+) in 3D]. For example,
produce this value up to several digits as shown in Table IVthe 3D ground state has two electrons in tke0 and two
where the energies of other low-lying states are also listecelectrons(with parallel spin in thel=1 orbital and the two
Three very different oscillator frequencies are used to test thelectrons in thé= 1 orbital are again coupled to=1. In the
accuracy of the method under different circumstances. In th@D ground state the two electrons are in the 1 andm=
case ofw=0.01 the confinement is extremely weak and the—1 orbitals and the orbital angular momentumN&=0.
Coulomb interaction governs the dynamics. In the other lim-With respect to the single-particle state occupations there is
iting case the confinement is very strong=10). Another  of course a big difference between the 2D and 3D cases. In
reason for choosing these values is that we want to study th2D the shell fillings occur aN.=2,6,12,20. . ., etc., while
ordering of the energy levels as a function of the strength ofn 3D the shells are filled aN.=2,8,20,40... . For N,
the confining interaction. In the two-electron case, for ex->6 particle systems the single-particle components of the
ample, there is a level crossing between the stht&,qr) wave functions in 2D and 3D might be quite different.

B. Harmonic-oscillator confinement in 3D

TABLE V. Energies of harmonically confined three-electron system in 3D. The SVM is the stochastic variational calculation, SM is the
shell model, and SM-eff is the shell model with effective-interaction apprésed Sec. Il . Atomic units are used.

SVM SM-eff SM SVM SM-eff SM SVM SM-eff SM

(L,S,m) w=0.01 =05 =10

(1,1/2-)  0.181936 0.181936  0.181936  4.013240 4.013224  4.013511 61.138525 61.138549  61.139485
(1,3/2+)  0.182973 0.182973  0.182973  4.310690  4.310690  4.310712  69.972571  69.972571  69.972624
(2,1/2+)  0.184585 0.184584  0.184584  4.366473  4.366385  4.366537  70.315335  70.315387  70.315871
(0,1/2+)  0.191567 0.191568  0.191568  4.467439  4.467459  4.467878  70.853077  70.853154  70.854399
(2,1/2-)  0.198201 0.187935 0.187935 4.717817  4.717817  4.717828  79.490651  79.490655  79.490680
(1,32—)  0.193764  0.193764  0.193764  4.794580  4.794582  4.794614  79.860576  79.860582  79.860650
(1,1/2-)  0.193351 0.193325 0.193325  4.805341  4.797973  4.798186  79.890842  79.890818  79.891346
(1,1/2-)  0.199667  0.199656 0.199656  4.960409  4.957257 4.957683  80.793524  80.793567  80.794750
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TABLE VI. Energies of harmonically confined four-electron system in 3D. See the caption of Table V.

SVM  SM-eff SM SVM  SM-eff SM SVM SM-eff SM
(L,S,m) 0=0.01 w=0.5 w=10

(1,1,+) 0.3159 0.3141 0.3141 6.3492 6.3490 6.3502 91.4466 91.4459 91.4496
(2,0,1) 0.3177 0.3188 0.3189 6.3865 6.3865 6.3896 91.6750 91.6758 91.6847
(0,0,+) 0.3210 0.3185 0.3185 6.4462 6.4456 6.4474 92.0260 92.0239 92.0297
(0,2-) 0.3138 0.3151 0.3151 6.5875 6.5875 6.5879 99.9068 99.9041 99.9053
(2,0-) 0.3198 0.3181 0.3181 6.7002 6.6961 6.6980 100.5877 100.5875 100.5930
(11-) 0.3240 0.3195 0.3195 6.7196 6.7093 6.7105 100.6478 100.6199 100.6235
(1,0-) 0.3278 0.3251 0.3251 6.7961 6.7935 6.7963 101.0946 101.0740 101.0813
(11-) 0.3408 0.3232 0.3232 6.8448 6.8153 6.8169 101.3253 101.2220 101.2270
(2,2,1) 0.3223 0.3212 0.3212 7.0385 7.0202 7.0205 109.5179 109.5156 109.5162
(1,2,+) 0.3264 0.3313 0.3313 7.0702 7.0706 7.0719 109.7618 109.7612 109.7638

The addition energy is conveniently used to show theN.=2 disappears fow=0.1. The behavior of the 3D addi-
shell closure that occurs at a specific electron number. Théon energy is similar to the 2D case. One difference is that

addition energyA u(N,) is defined by the half shell filling occurs aN.=5 because the relevant
A B orbit is|=1 and can accommodate six electrons.
#(Ne)=t(Ne+1) = 11(Ne), (19 The results foN,=5 andN,=6 are somewhat less ac-

where the chemical potential(N,) is the increase of the curate and the agreement between the SVM and the shell
ground state energy by adding one electron to the grounthodel is not as good as fdi.<5. The SVM seems to be

state of theN,— 1 system: more accurate than the shell model for weak confinement,
where the role of the Coulomb interaction is more pro-
m(Ne) =E(Ng) —E(Ne—1). (200 nounced and it is more difficult to take the Coulomb corre-

Shell or half shell closure is reflected by a sudden increase dftion into account with the shell-model basis. At the same
Au(N,) at a certainN, or the change of the differential time it is easier to use the shell-model approach for larger
capacitance given bg?/Au(N). This is because the elec- Systéms(see Tables IX and X while the SVM becomes
tron needs much energy when it fills an orbit across the devery time consuming beyonll.=6.

generate orbits of a shell or goes beyond the half shell, due to A general feature of the results is that the excited states
Hund’s rule. The addition energies of the harmonically con-change their level orders as the harmonic-oscillator strength
fined electrons in 2D and 3D are compared in Figs. 5 and échanges, but the ground state always remains the same. We
In 2D the addition energy shows a large peaklgt2 and a  have very carefully tested this property and we do not find
smaller peak aN.=4. The former corresponds to the filling any level crossings with the ground state.

of then=0,m=0 orbit, while the latter is a reflection of the Other insights into the relation between the 2D and 3D
half shell filling of the degenerate orbite=0m==x1, systems can be gained by comparing the expectation values
which can be understood by Hund’s rule. On decreaging of the kinetic, confining, and Coulomb operators. Tables Xl
the level spacing of the single-particle orbits becomesand XIl show the contributions of the Coulomb, kinetic, and
smaller and the correlation due to the Coulomb interactiorconfinement parts of the Hamiltonian to the total energy. The
takes over the shell structure. This explains why the peak atontributions are nearly equal in the=0.5 case. Just as one

TABLE VII. Energies of harmonically confined five-electron system in 3D. See the caption of Table V.

SVM  SM-eff SM SVM  SM-eff SM SVM SM-eff SM
(L,S,m) 0=0.01 0=0.5 w=10

(0,3/2~) 0.4804 0.5141 0.5165 8.9963 8.9979 9.0032 123.357 123.3539 123.3682
(2,1/2~-) 0.4858 0.5175 0.5203 9.0567 9.0526 9.0588 123.749 123.6960 123.7129
(1,2/2-) 0.4880 0.5186 0.5211 9.0954 9.0919 9.0988 123.949 123.9287 123.9482
(1,3/2/+) 0.4869 0.5318 0.5359 9.3110 9.2969 9.3024 132.320 132.1385 132.1523
(0,21/2;+) 0.4931 0.5450 0.5525 9.4443 94355 9.4458 133.045 132.9021 132.9265
(1,3/2+) 05108 0.5472 0.5537 9.7104 9.4701 9.3692 133.223 133.1205 133.1427
(2,1/2+) 0.4950 0.5357 0.5406 9.3582 9.3528 9.3599 133.471 132.487 132.5026
(0,2/2+) 0.5267 0.5561 0.5644 9.8766 9.5866 9.5990 134.204 133.8337 133.8658
(2,5/2~) 0.4829 05232 0.5253 9.5919 9.5891 9.5914 140.973 140.9054 140.9105
(0,5/2~) 0.4882 0.5306 0.5336 9.6626 9.6618 9.6648 141.270 141.2692 141.2762
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TABLE VIII. Energies of harmonically confined six-electron system in 3D. See the caption of Table V.

SVM  SM-eff SM SVM SM-eff SM SVM SM-eff SM
(L,S,m) 0=0.01 w=0.5 w=10

(1,1,+) 0.703 0.797 0.815 12.038 12.064 12.079 157.701 157.415 157.451
(2,0,1) 0.743 0.801 0.819 12.080 12.101 12.118 157.910 157.643 157.681
(0,0,+) 0.714 0.805 0.822 12.128 12.159 12.178 158.080 157.991 158.034

expects in the strong confinement case=<(10) the kinetic  depends onVyR2. Figure 7 shows the energies of few-
and confinement energies are strongly enhanced, and tleectron systems confined by a spherical square well poten-
Coulomb energy is relatively small but not negligible. On thetial in 3D as a function of the radiu’. A spherical well can
other hand, in the weak confining case the Coulomb interadsind an electron only if72/8<V,R?. In our exampleV,
tion dominates. =10 and therefore the one-electron bound state appears
The contribution of the confining interaction and thus thewhen 0.35<R. By increasing the radius the two-, three-,
kinetic energy is of course larger in 3D. If the electrons did . . ., etc. electron systems may become bound in the well
not interact then both the kinetic and the harmonic confine{see Fig. 7. This potential parameter was used in Ref. 21 to
ment energies would be increased 1.5 times in 3D comparesimulate quantum dots in GaAsl, _,GaAs with x~0.1.
to the 2D case. In the interacting case the kinetic and con- A comment is in order concerning the energy curves in
finement energy increase is roughly 1.5 fég=2 andN, Fig. 7 (and in Figs. 8 and 13 belgwIf the Ng-electron
=3. For more systems the increase is smaller. On the oth&ystem has a bound ground state then our calculation con-
hand, the Coulomb correlation energy is smaller in 3D tharverges to the energy of that state. If there is no bound state in
in 2D because there is more space available in 3D for tha given potential then the energy converges to the lowest
electrons. relevant threshold, which is in this case the energy of the
(Neg—1)-electron system. In the figures the system is bound
C. Spherical square well if the energy of theN-electron system is below that of the
corresponding Nl.—1)-electron system. Strictly speaking,
or unbound {.electron states the energies of the
o-electron and Kl,—1)-electron systems should be equal.
e convergence of the energy of the unbolgdelectron
system to the energy of thé&l{— 1)-electron system is rather
~V,, r<R slow, so one needs many basis states to describe the “free”
Veor(r) = (21 electron. Therefore the fact that the energy curves of the
0 unbound states are above the corresponding thresholds is a
The square well potential is analytically solvable for the one-consequence of our spatially limited basis. By using more
particle case. The eigenenergiesan be determined from basis states and by allowing them to go far outside the range
the transcendental equatiaf/,— |E[cot(v2(Ve— |E[)R) = of the confining interaction, one would get the same energy
_ \/E (for 1 =0, and atomic units us&dour SVM numeri- for the (N.—1)- and the unbounwe-t_e!ectrqn systems.
cal approach almost exactly reproduces the analytically de- We have found no “phase transition” iN.=2 andN,
termined energies. =3 electron systems. The authors of Ref. 21 investigated the
Spherical quantum-well-ike quantum dots have beerfnergy of the lowest spin-polarized and spin-unpolarized
studied in Ref. 21. Unlike the harmonic-oscillator potential,Ne=2 andN=3 electron systems as a function of the ra-
the spherical well can hold only a certain number of elecdius of the square well. They found that beyond a certain
trons. The number of electrons that a spherical well can bing2dius the spin-polarized state becomes lower than the spin-

As an alternative to the harmonic confinement one ca
consider a spherical square well model of the 3D quantu
dots. In this case the electrons are confined by a square w
potential:

, r>R.

TABLE IX. Energies of harmonically confined seven-electron ~ TABLE X. Energies of harmonically confined eight-electron
system in 3D. The SM is the shell-model calculation. Atomic unitssystem in 3D. See the caption of Table IX.
are used.

SM SM SM
SM (L,S,7) ©=0.01 ©=05 ©=10
(L.Sm ©=001 ©=05 ©=10 (0,0+) 1.412 19.038 230.219
(1,1/2-) 1.063 15.390 193.055  (0,2+) 1.448 19.650 247.204
(1,3/2-) 1.084 15.934 200.998  (2,1+) 1.448 19.653 247.212
(3,5/2-) 1.087 15.960 210134  (1,1-) 1.475 19.430 238.771
(0,1/2:+) 1.104 15.672 201377 (3,1-) 1.479 19.456 238.915
(2,312:+) 1.108 15.707 201575  (2,0-) 1.483 19.491 239.131
(3,312:+) 1113 15.749 201.802  (2,1-) 1.484 19.496 239.139
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2.5 TABLE Xl. Properties of harmonically confined 2D systems.
Atomic units are used.
2.0+ Ne (M, S) ®0=0.01 0=0.5 »w=10
§ 2(0,0 (H) 0.0738 1.659 23.652
2 (T) 0.0092 0.443 9.297
£ 154 (Vead  0.0369 0.516 3.372
S (Veor) 0.0277 0.701 10.983
§ n 0.9999998  0.9999995  0.9999998
8 10— 31,112 (H) 0.176 3.573 48.365
8 (T) 0.016 0.822 18.286
§ (Veou) 0.096 1.286 7.858
< 0.5 (Veon 0.064 1.465 22.220
n 0.9999972  0.9999984  0.9999981
4(0,7) (H) 0.317 5.863 74.979
0.0 (T) 0.018 1.137 26.836
- ' ' ! ! (Veow 0.186 2.391 14.163
2 Eleftmn Nm‘; o 3 (Voor) 0.112 2.335 33.981
n 0.999812 0.999921 0.999942
FIG. 5. Addition energy of harmonically confined electrons in 5(1,1/2 (H) 0.515 8.670 104.642
2D as a function of the electron number.is the frequency of the (T) 0.0196 1.421 34.931
confining potential. (Veow) 0.339 3.874 23.168
(Veon 0.159 3.376 46.543
unpolarized ground state. We have very carefully investi- 7 0.9992 0.9995 0.9991

gated these systems and have not observed this “paramag=

netic to ferromagnetic phase transition.” The same authors

in a later papéf investigated a harmonically confined two- the noninteracting electrons in the quantum well. If there is

electron system and found that the spin-unpolarized to spimao Coulomb interaction then the energy of the spin-polarized

polarized transition is most likely an artifact of the neglect ofand -unpolarized electrons is the same, so on increasing the

part of the electron-electron correlation in Hartree-Fock cal+adius both converge to the same energy. In our present ex-

culations. ample (V,=10) the energies of the lowest-lying spin-
We have increased the radius gradualige Fig. 7. As

the Coulomb repulsion decreases the energy of the system TABLE XII. Properties of harmonically confined 3D systems.

gets smaller and smaller, converging toward the energy oftomic units are used.

25 Ne (L,S,7) »=0.01 0=0.5 0=10
- g; 2(0,04+) (H) 0.0792 2.0000 32.4486
" e =] (T) 0.0121 0.6644 14.4412
2 2.0 ‘\‘X 10 —_— =10 2(0,0,+) (Veou 0.0366 0.4474 2.3776
E " (Veon 0.0304 0.8881 15.6299
o [ 7 0.999999  0.999999  0.999999
£ 154 3(1,1/2,-) (H) 0.1819 4.0132 61.1385
= (T) 0.0192 1.1507 26.0867
§ {(Veow 0.0957 1.1411 5.9763
g 1.04 (Veon 0.0671 1.7214 29.0755
8 7 0.999991  0.999995  0.999999
§ 4(1,1,+) (H) 0.3161 6.3502 91.446
< 054 (T) 0.0229 1.5853 37.371
(Veou 0.1770 2.1174 11.132
(Veon 0.1163 2.6475 42.943
0.0 7 0.999821  0.999891  0.999912
. ) "t ; é 5(0,3/2;-) (H) 0.48041 8.9963 123.36
Blectron Number (T) 0.02501 1.9786 48.283
(Veowd  0.27881 3.3562 17.808
FIG. 6. Addition energy of harmonically confined electrons in (Veorn 0.17660 3.6615 57.266
3D as a function of the electron number.is the frequency of the 7 0.99812 0.999671 0.999781

confining potential.
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FIG. 7. Energies oN.=1 (solid line), N,=2 (dotted ling, and . Lo . . . .
N,=3 (dashed lingelectron systems in a spherical quantum well as . |G- 9- Singlet(solid line) and triplet(dotted lin radial density
a function of the radius of the well. Lower dotted line, the grounddIStrIbUtlonS of tW(,), electrops in a cyllndrlcal qua“t“”? dat (
state (0,0,+); upper dotted line, the excited state (%); lower =10). The probability density distributiotdimensionlessis de-
dashed line, the ground state (1,3/2; upper dashed line, the first fined in Eq.(23) and normalized to the number of electrons.

excited statet1,3/2+). In this case the spherical symmetry is broken, and onlythe
component of the orbital angular momentum is conserved.
polarized and -unpolarized states are nearly degenerate bé/e have to use the DCG basis functions that were intro-
yondR=15, but we observe no level crossing between themduced for magnetic field. The state of this system is specified
by the total magnetic quantum numbér total spinS and
7, , the parity along the 2” direction. Our basis is restricted
D. Cylindrical well: “Quantum cylinder” to even parity states and this last quantum number is dropped

In this section we present a calculation for a cylindricalin the following. - o
quantum dot. A similar case was considered in Ref. 23 in an First we consider a model potential witf,=10 andR

unrestricted Hartree-Fock framework. The confinement is= 1 and change the “thickness” of the dhe height of the
cylinden froma=10toa=0 (in a.u). In this way we trans-

defined as
form the system from a rodlikea=10) geometry to a 2D
disk (a=0). Just as in the case of the spherical quantum well
~Vo if (x*+y*)’<Rand|z|<a a quantum cylinder can bind only a certain number of elec-
Veod =1 0 otherwise. (22 trons, depending on the potential parame¥gs R, and a.
The energy dependence on the thickness of the cylindrical
0.0 . dot for N.=1-4 electron systems is presented in Fig. 8. The

figure shows that, as one expects, the cylinder can hold more
and more electrons as the sitia our case the heighin-
creases. The really interesting thing here is that the order of

. 0.2 the energy levels also depends on the height of the cylinder.
£ -100 i For long, rodlike cylinders the ground state tends to be the
2 M =0 orbital angular momentum state. This probably means
5 (0,0) that the electrons are equidistantly positioned along zhe
< . . . . .
> axis. On depreasmg the h_elght we approach a d|s.kl|ke geom-
g 00 O2) e | etry which is somewhat similar to the 2D harmonic confine-
w ’ ©172) - ment discussed earlier. And, indeed, the level order changes
~—— e T (see Fig. 8 and one has the same level order as in the 2D
©1 harmonic confinement case. In this way we have found an
__o interesting transition: On decreasing the height of the cylin-
-30.0 : . - S der the (0,1/2) and (1,1/2N.=3 electron[also the (0,0)
0.0 20 40 60 8.0 100 and (0,1)N.=4 electror ground/excited states change their
a (atomic units) order.
FIG. 8. Energy ofN,=1 (solid line), Ng=2 (dotted lin@, N, Figures 9 and 10 show the density of tNg=2 electron

=3 (dashed ling andN,=4 (long dashed lineelectron systems in  system in a “long” cylinder &=10) along the radius and
a cylindrical quantum well as a function of the height of the cylin- along the symmetry axis, respectively. The density is defined
der. (Vo=10 and atomic units are used. as
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Z (atomic units) FIG. 11. Energy levels dil;=1-4 electron quantum rings. The
. . . . . arameters of the potential =10,r,=0.5, andr,=1. Atomic
FIG. 10. Singlet(solid line) and triplet (dotted ling density P P v 1 2

S oo . o units are used.
distributions along the direction of two electrons in a cylindrical
uantum dot §=10). See the caption of Fig. 9 also. . . . . .
a 4=10) P g model potential the first excited state (0,0) is not bound with
Ne respect to the three-electron threshold.
p(r)=<‘1’|2 S(ri—R—1)| W), (23) This c_iensny dlstrlbl_Jtlo_n can easily be man_lpulated by a
i=1 perpendicular magnetic field. The magnetic field acts as a

. L . . . . .. confining harmonic-oscillator potential on tlxg plane. On
and the rad|§1| de_nsny IS obtamled.by Integrating this quam't)fncreasing the strength of the magnetic field, the density dis-
along thez direction. The density is normalized to the num-

ber of electrons. The radial density distributions of the tripletmbm!On starts to move inward as showr_l n Fig. 12. In a
certain very narrow region of the magnetic field strength it

(1,1) and singlet (0,0) states are very similar. Both peal . . .
around 0.5 a.u. and the tail goes a little bit outside the cylij]als two peaks: an outer peak centered in the ring and an

) . . . . inner peak that is inside the harmonic confinement induced
inder. The density of the triplet and the singlet states inzthe o e

direction(obtaineﬁ by integfating the densi?y over taand by the magnetic field. If the magnetic field is stronger than a
y variables, however, are very different as shown in Fig. 10 given value then the electron moves inside the harmonic con-

The cylinder is so long that the two electrons can be far awa)?nement. This geometry gives us the possibility of moving

from each other to minimize the Coulomb repulsion and thehe electron from one well-defined position to another by
. . . . P switching on and off the magnetic field. Notice that we have
density tail hardly goes outside the cylinder.

) 1.5 . . .
E. “Quantum ring”
Ringlike nanostructures have been grown by electron- | B,=\0
beam lithography? The electronic and magnetic properties Bf1'85 AN
of a single-electron quantum ring were studied in Ref. 35. ,/ \ fooN

We restrict our attention to a pure 2D case. An additional 10+ / \ / \
confining interaction in the direction would cause no extra
difficulty in our approach. The confinement in this case is £

defined as %
[m]
0, p<rq i
Veodp)=1 —Vo, rispsr, (24)
O, p>l’2

This describes a square well potential in a ring betwegen

andr, on thexy plane. )
The number of electrons bound in a ringlike potential, as %0 1.0 20 3.0

in the previous cases, depends on the parametys {,r,) r (atomic units)

of the potential. An example of the energy levels in the G, 12, Density distribution in a single-electron quantum ring

model potential is presented in Fig. 11. The maximum numzys 3 function of the magnetic field. The strength of the magnetic

ber of electrons this potential can bindNg=4. In the four-  field is indicated next to the corresponding density distribution. The

electron case the lowest state is ti,5) =(0,1) state just parameters of the potential avg=10, r;=2, andr,=3. Atomic

as in the case of 2D harmonic confinement. In the presentnits are used. See the caption of Fig. 9 also.
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two sharply separated peak positions in this case. In the casehere the order of energy levels depends on the height of the
of the previously studied harmonic or spherical square welfjuantum dot. In a disklike cylinder the ground state obeys
confinement the density distribution also moves toward thedund’s rule, but for a longer cylinder, typically when the
origin in the magnetic field. In that case, however, what wenheight of the cylinder is larger than its diameter, Hund’s rule
see is more like a “shrinking” of the density distribution on s violated. It would be interesting to look for experimental
the xy plane. The change is more drastic in the case of th@vidence showing that the ground state of a cylindrical three-
quantum ring. The peak of the distribution shifts from one foyr-) electron quantum dot is arM(,S)=(1,1/2) [(M,S)
position to another. =(0,1)] state if the height of the cylinder is small and be-
comes an 1,S)=(0,1/2) [(M,S)=(0,0)] state on increas-
ing the height of the cylinder.
Harmonically confined electron systems in 2D have at-
The properties of artificial atoms created by confiningtracted enormous attention. In this work we have also calcu-
electrons in quantum dots of different geometries are qualitated 3D electron systems in harmonic confinement. Com-
tatively very similar. The electrons occupy the single-particleparison of the 2D and 3D cases shows the effects of the
orbits defined by the confining interaction. The occupancy igjuantum well confinement in thedirection in quantum dots.
determined by the Pauli principle and the minimization of For the same harmonic-oscillator strength the electrons are
the Coulomb energy. In different confining potentials the ensomewhat farther from each other in 3D than in 2D, resulting
ergy levels are different but the essential features are verin a smaller Coulomb energy in 3D. The energy difference
similar. between the 2D and 3D geometries is predominantly due to
The confining interactions considered in this paper dethe confinement and the kinetic energy. The qualitative fea-
pend on one or more parameténarmonic-oscillator width, tures of the 2D and 3D systems are very similar in the case
radius and strength of square well, ¢t&Ve have studied the of the few-electron systems investigated here. One can make
dependence of the energy levels on these parameters. Oar easy correspondence between the orbital and spin quan-
intriguing property those we have found is that in sphericallytum numbers of the energy levels in 2D and 3D. The appli-
symmetric systems the ground state remains the same for apbility of our method was tested by calculations for very
values of the parameters. Its energy level does not cross wittlifferent confining strengths. The accuracy is slightly worse
those of the excited states. At the same time, the order dbr the weak confining region where one needs more basis
energy levels of the excited states frequently changes ddunctions to achieve convergence, but it is fairly good as one
pending on the parameters of the confining interactions. Aan judge by the virial factor and by comparing with the
change of symmetry of the ground state of a spherical quarresults of different methods. In the weak confining region
tum well has been reported in Ref. 21. We have investigate@w=0.01; see Tables Xl and Xllthe contribution of the
few-electron systems in spherical quantum wells of differenkinetic energy is fairly small compared to that of the Cou-
parameters but we have not observed any similar changéomb and confining interactions. This suggests the existence
This confirms that such a change of energy levels might bef a Wigner-crystal-like structure in both 2D and 3D. Con-
an artifact of Hartree-Fock calculatiofs.Our calculation trary to the prediction of Refs. 15 and 17 we find that the
predicts that the ground state is in accordance with Hund'ground state of thé&l,=4 system obeys Hund'’s rule.
rule for any parameter values and there is no transition from We have also investigated an example of a ringlike quan-
spin-unpolarized to spin-polarized states. tum dot in a magnetic field. This geometry offers an inter-
A change of the ground state would give us an interestingsting possibility. In the case of zero magnetic field the elec-
possibility. In a two-electron system, for example, thetrons are distributed along the ring. By applying the
ground state is a spin singlet, and the first excited state is magnetic field perpendicularly to the plane of the ring the
spin triplet. This two-state system may serve as a ‘“qubit,” electrons can be completely moved from the ring to the vi-
an elementary gate for a quantum dot quantum computecinity of the origin. Thus one may have the electrons in two
One would prepare a dot with singlet ground and triplet ex-very well-separated regions.
cited states and a second one, with different geometry, where The major difference between the harmonic and square
it is the other way around. The electrons can be moved fromvell confinementscylindrical, spherical, and rings that the
one dot to the other by an external electric field, for exampleharmonic potential can bind any number of electrons. The
switching fromS=0 to S=1. The calculations show, how- number of electrons bound in the square well case is finite
ever, that no matter how we change the geometry, the grourahd strongly depends on the parameters of the potential. In
state does not change for spherically symmetric systems. that case one can predict how many electrons can be bound
If the spherical symmetry is broken, for example by ain a certain quantum dot, that is, the “capacity’of the dot.
magnetic field or by a cylindrically symmetric confining po- This is expected to be a more realistic model of quantum
tential, then the ground state and excited state energy levetiots.
may cross each other. The fact that the magnetic field The concrete potential parameters and the potential itself
changes the order of energy levels has been studied frean only be determined experimentally. In this work we have
quently. In this paper we have presented a method that veryied to follow “experimentally inspired” and widely used
accurately predicts the level crossing as a function of theotentials and parameters. The aim of this work was to dem-
strength of the magnetic field. onstrate the wide range of applicability of the method and
The cylindrical quantum dot is a very interesting examplethe investigation of different properties of various artificial

IV. DISCUSSION
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atoms. The general features of experimental findings may bficial atoms. Different(parabolic, cylindrical, spherical, and

reasonably well described by the potential models consideredng-like) confining interactions have been investigated. The
here. In the present approach one assumes a Hamiltonian theffects of magnetic field have also been studied. One of the
models the quantum dot and we try to solve this well-definechims of this paper was to introduce the method and test its
quantum mechanical problem in a careful manner. There argapabilities on various models of quantum dots used in the

of course many things that may limit the applicability of our jiterature. Future work to investigate double quantum dots is
model Hamiltonian, but some of the phenomena that are exander way.

perimentally observed can be understood by such model cal-
culations, and we hope that some of the predictions of such
models can be experimentally observed.

The accuracy presented here is very useful and important
in the weakly confined(but strongly correlated regime The work of K.V. was sponsored by the U.S. Department
where otherwise it is difficult to predict the ground state, etc.of Energy under Contract No. DE-AC05-000R22725 with
One should also mention that the comparison of varioushe Oak Ridge National Laboratory, managed by UT-
methods for these quantum mechanical problems greatlBattelle, LLC, and OTKA Grant No. T02900@Hungary.
helps in testing and development of different quantum meY.S. was supported in part by the Matsuo Foundation and the
chanical many-body approaches. A nice example can bd8SPS-HAS cooperative research program. J.U. was sup-
found in Ref. 33, where the solution of few-electron quantumported by JSPS. The work of P.N. was performed under the
dot problems helps to test the Faddeev method, which waauspices of the U.S. Department of Energy at the University
developed for nuclear few-body systems. of California Lawrence Livermore National Laboratory un-

In summary, we have presented a large scale variationaler Contract No. W-7405-Eng-48. P.N. also acknowledges
approach to describe the spectra and other properties of ar8upport in part by the NSF Grant No. PHY96-05192.
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