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The spectra of quantum dots of different geometries~quantum ring, quantum cylinder, spherical square well,
and parabolic! are studied. The stochastic variational method on correlated Gaussian basis functions and a large
scale shell-model approach have been used to investigate these ‘‘artificial’’ atoms and their properties in
magnetic fields. Accurate numerical results are presented forN52 –8 electron systems.
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I. INTRODUCTION

Quantum dots1–4 are solid state structures made of sem
conductors or metals those confine a countable, small n
ber of electrons into a small space. The observed prope
of these confined electrons are similar to those of atoms.
possibility of fabrication of ‘‘artificial atoms’’ with ‘‘tun-
able’’ properties is a fascinating development in nanote
nology. These quantum dots not only offer the opportunity
various applications~laser and electronic devices, memorie
quantum gates, etc.! but also are quite intriguing physica
systems in their own right. Most theoretical model calcu
tions use the effective-mass approximation to study the
ergy levels or other properties of the electrons confined
quantum dots. These calculations address the low-en
sector where the interband mixing is assumed to be ne
gible and the periodic crystal potential is taken into acco
through the effective mass and dielectric constant. In th
models the electrons move in an external confining poten
and interact via the Coulomb interaction.

Given the geometry of the quantum dot and the para
eters of the heterostructure, the confining potential can
determined by a self-consistent calculation. This is not, ho
ever, a trivial task and most work on quantum dots u
simple model potentials. The confinement is generally v
strong in the vertical z direction, creating quasi-two
dimensional~2D! systems. The confinement on thexy plane
is most often assumed to be parabolic. A study of reali
confining potentials found that this approximation is fair
good in certain cases but generally the confining poten
might significantly differ from a harmonic-oscillator one.5 It
is therefore important to investigate particular quantum
geometries/structures as well.

The apparent similarity of ‘‘natural’’ atoms and quantu
dots suggests the application of sophisticated theore
methods used in atomic physics and quantum chemistr
calculate the properties of quantum dots. Parabolically c
fined 2D quantum dots have been studied by several diffe
well-established methods: exact diagonalizat
techniques,6–9 Hartree-Fock approximations,10–12 and den-
sity functional approaches.13,14 Quantum Monte Carlo
~QMC! techniques have also been used for 2D,15–17,19,20as
well as three-dimensional~3D! structures.18 Few-electron ar-
0163-1829/2001/63~20!/205308~15!/$20.00 63 2053
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tificial atoms of spherical21,22 and cylindrical23 symmetry in
3D have also been investigated in the variational a
Hartree-Fock frameworks. The strongly correlated lo
electronic-density regime got much attention due to the
triguing possibility of the formation of Wigner
molecules.12,24,25 Here we use a correlated basis functi
which gives very accurate results for different few-electr
systems. The accuracy becomes important when one stu
subtle properties such as level orders, weakly bound sta
etc. We investigate different models of quantum dots s
gested by various authors.

In this paper the stochastic variational method has b
used to solve the few-electron Schro¨dinger equation. In this
approach correlated Gaussians are adopted as basis
tions. This basis is nonorthogonal and overcomplete. T
trial function depends on the parameters of the Gauss
and one has to optimize the parameters to get the bes
ergy. The most adequate basis functions are selected by
stochastic variational method~SVM!.26,27 The advantage of
this basis lies in its flexibility. A relatively small number o
basis functions give very accurate results provided that
parameters are carefully optimized.

To test the accuracy of the results we have expanded
wave function in terms of harmonic-oscillator Slater det
minants as well. This basis forms a complete set and
energy is obtained by diagonalizing the corresponding eig
value problem. The only approximation is the truncation
the basis. The dimension of the harmonic-oscillator ba
quickly increases with the number of single-particle sta
included and even the powerful Lanczos method becom
infeasible. The advantage of this approach is that it is sim
Once the matrix elements are calculated there is no need
optimization of the basis set. In addition, we may improve
this approach by utilizing the starting-energy-independ
two-body effective interaction28 that takes into account two
electron correlations from the excluded space. Again, no
ditional optimization is needed as the effective interact
does not depend on any extra parameter.

We have carefully compared the results obtained w
these basis states to test the accuracy of the energies
other physical properties. These quantum mechanical
tems provide us with very good tests of different approach
and therefore we think that it is important and useful to tab
late the energy and other quantities of the quantum dots. T
©2001 The American Physical Society08-1
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may serve as a benchmark test to compare different meth
An intriguing feature of these systems is that the stren

~and shape! of the confining potential can be changed. U
like in natural atoms the relative importance of the pairw
Coulomb interaction and the external potential can be tun

We have calculated the ground and the first few exci
states. The ground and excited states are characterized b
total orbital angular momentumL and spinS. The order of
the levels depends on the external~confining! potential. We
have investigated how the level order changes as the pa
eter of the potential is varied.

The next section introduces the basics of our formalis
The results of the calculation for different systems are p
sented in Sec. III. The last section is devoted to discuss
and summary.

II. THE FORMALISM

We investigate a system ofNe electrons confined by the
potentialVcon(r ). The Hamiltonian is

H5(
i 51

Ne S 2
\2

2m*
¹ i

21Vcon~r i ! D1
e2

e (
i , j

Ne 1

ur i2r j u
. ~1!

In Eq. ~1!, m* is the effective mass of the electron ande is
the dielectric constant of the semiconductor. In the followi
~if not explicitly specified otherwise! we will use effective
atomic units, defined by\5e2/e5m* 51. In this system of
units, the length unit is the Bohr radius (a5\2/mee

2) times
e/(m* /me), and the energy unit is the Hartree (H
5mee

4/\2) times (m* /me)/e
2 whereme is the mass of the

electron. For the GaAs dots we consider here,e512.4 and
m* 50.067me , and the effective Bohr radiusa0* and the
effective HartreeH* are .97.94 Å and.11.86 meV, re-
spectively. These effective length and energy units are ca
atomic units~a.u.! in what follows.

In the variational method the trial wave function is e
panded in terms of basis functions:

C5(
i

ciF i , ~2!

and the variational energies are obtained by solving the g
eralized eigenvalue problem

(
j

~Hi j 2EOi j !cj50, Hi j 5^F i uHuF j&

and

Oi j 5^F i uF j&. ~3!

The energy eigenvaluesE1 ,E2 , . . . are variational uppe
bounds of the energies of the ground and first, second,
excited states.

A. Correlated Gaussian basis functions

The correlated Gaussian basis is defined in the follow
way:
20530
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F i~r !5AH expS 2
1

2
rAir D uLML

~r !xSMSJ , ~4!

whereA is the antisymmetrizing operator for the electro
and r5(r1 , . . . ,rNe

) stands for a set of spatial coordinat

of the electrons.rAir is a short hand notation of the quadrat
form ( j ,k51

Ne (Ai) jkr j•r k , whereAi is an Ne3Ne symmetric
positive-definite matrix whose elements are variational
rameters. Both the spin functionxSMS

and the angular func-

tion uLML
(r ) are constructed by successively coupling t

corresponding single-particle functions:

xSMS
5@@@j1/2~1!j1/2~2!#s12

j1/2~3!#s123
. . . #SMS

~5!

and

uLML
~r !5@@@Yl 1

~r1!Yl 2
~r2!# l 12

Yl 3
~r3!# l 123

. . . #LML
, ~6!

where jm/2 and Ylm(r )5r lYlm( r̂ ) are the spin and angula
functions of the electron.

The Hamiltonian we consider in this paper contains
term that couples the spin and orbital angular momenta,
commutes with the total spin and total orbital angular m
menta or theirz components when the uniform magnet
field is applied in thez direction. There is no coupling be
tween the spin and the orbital part in the basis function
Eq. ~4!.

The correlated Gaussian function can be rewritten in
more intuitive form:

expS 2
1

2
rAr D5expS 2

1

2(k, l

Ne

akl~r k2r l !
22

1

2(
k51

Ne

bkr k
2D .

~7!

akl andbk can be expressed by the elements ofA and vice
versa. The advantage of this notation is that it explicitly co
nects the nonlinear parametersa i j to the pair correlation be-
tween the particlesi and j and thus explains the name ‘‘cor
related Gaussians.’’ The second part, exp(2 1

2 (k51
Ne bkr k

2), is
a product of independent single-particle Gaussians.

B. Stochastic variational method

The energy crucially depends on the variational para
eters. The optimal nonlinear parameters are selected by
stochastic variational method.26,27 In each step of this proce
dure,K differentAi are generated by randomly choosing t
values ofakl andbk from the@0,b# interval. The paramete
set that gives the best variational energy is selected and
function corresponding to that parameter set is added to
set of basis functions. The trial function also depends on
intermediate coupling quantum numbers (s12,s123, . . . ) and
( l 1 ,l 2 ,l 12,l 3 , . . . ). These possibilities are also random
tested during the optimization of the basis.

Our stochastic selection procedure uses the follow
steps.

(1) Setting up a new basis or enlarging an existing on
Let us assume that the basis set hasN21 elements. One
generatesK random basis states and calculates the ener
8-2
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ENi ( i 51, . . . ,K) with the newN-dimensional bases tha
contain thei th random element and the preselectedN21
basis elements. The random state that gives the lowes
ergy is selected as a new basis state and added to the b
The variational principle ensures that the energy of
N-dimensional basis is always lower than that of theN
21)-dimensional one. This procedure is therefore guar
teed to lead to a better and better upper bound of the gro
state energy. Notice that as the (N21)-dimensional basis is
orthogonalized this method does not require the diagona
tion of N-dimensional matrices.26,27 The energy gaineN
5EN2EN21 shows the rate of convergence. A calculati
of good convergence giveseN'0.

(2) Refinement: Improving the energy of a basis.In the
previous step only the newly added element is optimized,
the rest of the basis is kept fixed. In the refinement we k
the dimension of the basis fixed and try to replace thekth
basis element withK randomly generated elements. If th
best energy obtained by substituting thekth basis state with
the random candidate is lower than that of the original ba
then thekth basis state is discarded and the new random s
is included in the basis. This procedure is cyclically repea
for k51, . . . ,N. As the dimension of the model space
fixed, this step does not necessarily give lower energy, bu
practice in most cases it does. Actually, if one cannot fi
better basis elements, that is an indication of a w
converged energy/basis. Again no diagonalization is nee
in this step when starting from an orthogonalized basis.

(3) Optimization by ‘‘fine tuning’’ of the parameters.In
step 2 the parameters are randomly selected irrespectiv
their previous values. This certainly helps to avoid the tra
of local minima, but if one is already~presumably! close to
the ‘‘global’’ minimum then the chance to move closer to
is small. If the basis parameters are ‘‘reasonably’’ optimiz
or further repetition of step 1 or 2 does not lead to app
ciable changes, one may try to change the basis param
by selecting new parameters in the vicinity of the existi
ones. That increases the probability of finding the nea
minimum. In practical calculations this step was imp
mented by requiring the new random parameters to be in
@0.8a,1.2a# interval (a is the previously chosen paramete!.
In this case the basis optimization is done in exactly the sa
way as in step 2. The only difference is that the search
terval is limited and defined by the previous parameters.

A combination of steps 1, 2, and 3 is repeated until
required accuracy is reached. A practical and econom
way to set up a basis is to generateN elements (N520 or 40
is a reasonable choice! by using step 1. Then repeat step
for each basis state several~say 3–5! times. Use step 1 onc
more to enlarge the basis by addingN elements to it and
repeat step 2 as described before. After reaching a ce
basis size where further repetition of steps 1 and 2 does
yield considerable improvement, then try step 3.

This basis selection procedure proved to be quite relia
and provides a very accurate solution. More details can
found in Ref. 26.

C. Harmonic-oscillator basis

Alternatively, we also set up a harmonic-oscillator basis29

In this case the basis functions are
20530
n-
sis.
e

n-
nd

a-

ut
p

s,
te
d

in
d
l-
ed

of
s

d
-
ers

y
-
e

e
-

e
al

in
ot

le
e

F i~r !5det$@wnj l jmj
~r j !j1

2 m j
~ j !#%, ~8!

where the single-particle functionwnj l jmj
is a harmonic-

oscillator function. This basis depends on only one para
eter, the harmonic-oscillator width. For harmonic-oscilla
confinement this is chosen to be equal to the oscillator
quency of the potential. In this way the harmonic-oscilla
basis functions are eigenfunctions for a noninteracting s
tem.

This is an orthogonal basis and the Hamiltonian matrix
sparse. The Lanczos method, in particular the many-ferm
dynamics shell-model code,30 is used to find the lowest ei
genvalues. In the diagonalization we used all states up
( i 51

Ne (2ni1 l i)<Nmax.
The basic difference between the two bases is that

Gaussian basis isexplicitly correlated. It explicitly depends
on theur i2r j u distances, so it is better suited to describe
electron-electron correlations. At the same time t
harmonic-oscillator basis is simpler because no optimiza
is needed.

An advantage of the harmonic-oscillator basis is the f
that we may alternatively perform the calculations in the
cobi coordinates with the center-of-mass degrees of freed
removed. It is straightforward, although numerically inte
sive, to construct an antisymmetrized harmonic-oscillator
sis depending on the Jacobi coordinates.28 Depending on the
problem, we may choose the more efficient basis. ForNe

53,4,5 electron systems it turns out that the use of Jac
coordinates is more profitable. For larger numbers of el
trons, it is more efficient to use the single-particle coor
nates and the Slater determinant basis~8!.

As the harmonic-oscillator frequency is fixed as describ
above, the only parameter of the calculation is the mo
space size characterized byNmax. In the present calculation
we use as largeNmax as possible, typicallyNmax515–33 for
Ne,5 andNmax58 –12 for larger systems.

A speed-up of convergence can be achieved by utiliz
the effective-interaction approach that was successfully
plied in ab initio shell-model calculations for few-nucleo
systems and light nuclei.28,29While it is crucial in the nuclear
physics application to use the effective interactions, in
present electron systems the effective interaction provi
only minor improvement. In some cases, however, it brin
the SVM and SM results to much closer agreement. T
details of how the effective interaction is computed from t
bare Hamiltonian, here the harmonic-oscillator and Coulo
interaction, is given, e.g., in Refs. 28 and 29. The basic g
of the effective interaction is to take into account, in this ca
two-electron, correlations from the excluded space, i.e., fr
the space containing excitations aboveNmax. A formal dif-
ference from the nuclear case is that here the harmo
oscillator potential is a real binding potential, while in th
nuclear application it is a model potential representing
mean field formed by all nucleons, which is added/subtrac
to the real nucleon-nucleon interaction in order to facilita
the effective interaction calculation.
8-3
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We note that when the basis~8! is used the good quantum
numbers are checked by evaluating the mean values of
evant operators, e.g.,J2, L , andS, for each eigenstate.

D. Magnetic field

In external magnetic field the kinetic energy operator
replaced by

1

2m*
pi

2→ 1

2m* S pi1
e

c
A i D 2

. ~9!

We consider a uniform magnetic fieldB5(0,0,2B). By tak-

ing A i52
1
2

r i3B the above expression can be rewritten in

more detailed form:

1

2m* S pi1
e

c
A i D 2

52
1

2m*
\2D i1

1

2
m* ~vc/2!2~xi

21yi
2!

2
1

2
vcl zi , ~10!

where l zi is thez component of the orbital angular mome
tum of thei th electron. The cyclotron frequency for the p
rameters we use in this paper reads as

\vc5
e\B

m* c
5

2me

m*
mBB50.145 72B~H* !, ~11!

where the Bohr magneton ismB5e\/(2mec)50.057 88
meV/T. The interaction of the magnetic field with the spi
leads to the Zeeman term2g* mBBszi , whereszi is the z
component of the spin of thei th electron andg* is the ef-
fectiveg factor of the electron. The Zeeman term leads to
splitting of the energies for different spin orientations. As t
Hamiltonian with this term still commutes with thez com-
ponent of the total spin,Sz5( i 51

Ne szi , the energy shift is
simply given by2g* mBBSz and one can easily add this t
the energies presented in the following. This energy is
included in what follows.

The correlated Gaussians defined above are not ide
suited for systems in magnetic field, because the basis f
tions belonging to different orbital angular momenta wou
be coupled by the Hamiltonian. This coupling would requ
an infinite series of orbital angular momentum states, wh
is obviously out of the question. To avoid this, we choos
deformed form of the correlated Gaussian~DCG!:31
20530
el-

s

e

t

lly
c-

h
a

expH 2
1

2 (
i , j 51

Ne

Ai j r i•r j2
1

2 (
i , j 51

Ne

Bi j zizj J , ~12!

where the nonlinear parameters are different~and indepen-
dent! in thexy andz directions@r i5(xi ,yi)#. This extension
brings a great deal of flexibility by allowing a separate d
scription on thexy plane and along thez axis. The Hamil-
tonian does not commute withL2 but it does withLz . The
eigenfunctions have good quantum numberM of Lz . Note
that we will useM for the orbital angular momentum quan
tum number in 2D andL for the one in 3D. The above form
of the DCG belongs toM50. To allow forMÞ0 states we
multiply the basis by26

)
i 51

Ne

jmi
~r i !, ~13!

where

jm~r!5H ~x1 iy !m for non2negative integerm

~x2 iy !2m for negative integerm.
~14!

Thus our variational basis function reads as

FM~r !5AH S )
i 51

Ne

jmi
~r i !D

3expS 2
1

2 (
i , j 51

Ne

Ai j r i•r j2
1

2 (
i , j 51

Ne

Bi j zizj D J ,

~15!

whereM5m11m21•••1mNe
.

The above basis is defined for 3D cases. It is used
only for solutions in the presence of magnetic field but a
for external potentials with cylindrical symmetry. For 2
calculations the same form is used except that the third c
ponent of the vectors is dropped~or equivalentlyBi j 50 is
assumed!.

III. CALCULATION

A. Harmonic-oscillator confinement in 2D

Harmonically confined 2D systems have received mu
theoretical attention and this is a very good test case to ga
the accuracy of different approaches. In this case the con
ing interaction takes the simpleVcon(r )5 1

2 m* v2r 2 form.
ven in

TABLE I. Comparison of the energies of harmonically confined 2D three-electron system (v50.2841,

\v53.37 meV! by different methods. The energies are given in meV. Values in parentheses are gi
atomic units.

QMC
(M ,S) SVM Diag. Ref. 6 Ref. 15 Ref. 17 Ref. 16

~1,1/2! 26.7827~2.2582! 26.82 26.77 26.821460.0036 26.88
~2,1/2! 28.2443~2.3814! 28.27 28.30 28.35
~3,3/2! 30.0101~2.5304! 30.02 30.04 30.03
8-4



en

e

pa
he
p

a-
y o
o
a

en
th
fo
e
i

tis
is
n

n

C

h
io
e
n
’s

he
u
s

ee
o

ict

tra-
ith

k

he
y

be

rre-

ion
ger
on-
oes

tion
ic-
see
er-
od

g-
ree-

-
re-

r
The
in

on
-
o-
ht
due

n-

STOCHASTIC VARIATIONAL APPROACH TO FEW- . . . PHYSICAL REVIEW B 63 205308
The single-particle energy of the harmonic-oscillator pot
tial is given by (2n1umu11)\v, wheren50,1,2, . . . , and
m50,61,62, . . . . InTable I we compare our results to th
‘‘exact diagonalization’’6–8 and QMC methods15–17 for the
Ne53 electron system. We have carefully optimized the
rameters and repeated the calculation several times to c
the convergence. Our result is expected to be accurate u
the digits shown in Table I. In principle the QMC calcul
tions, except for the statistical error, give the exact energ
the system. In practical cases the famous ‘‘minus-sign pr
lem’’ forces the QMC approaches to use certain approxim
tions ~in Refs. 16 and 17 the ‘‘fixed-node’’ method has be
used!. The slight difference between our results and
QMC values is probably due to this fact. The energies
both the ground and excited states are in good agreem
Our results are slightly better than the other calculations
each case.

In Table II a similar comparison is presented forNe
52–6 electron systems. The QMC results17 quoted in Table
II are obtained by very careful calculations and their sta
tical error is very small. Note that the confining strength
slightly different in the calculations presented in Tables I a
II. This table also includes the virial factor

h52^T&/^W&, ^W&5K (
i 51

Ne

r i•“ iVintL , ~16!

whereVint is the ‘‘interaction part’’ of the Hamiltonian, in-
cluding the confining and the electron-electron interactio
The virial factor is unity for the exact wave function.

Our result is in excellent agreement with the QM
predictions17 in all but one case (Ne54). The QMC method
renders the (M ,S)5(0,0) state as the ground state and t
(M ,S)5(0,1) state as the first excited state, which is a v
lation of Hund’s rule. The shell filling and Hund’s rule hav
been experimentally investigated in Ref. 2 and it is fou
that a circular dot obeys Hund’s rule. According to Hund
rule the ground state of a system with a well-developed s
structure is in the maximum spin state allowed by the Pa
principle. The violation of Hund’s rule in this system wa
also observed in another QMC calculation.15 This latter cal-
culation predicts a relatively large energy difference betw
the ~0,0! and~0,1! levels, but it is somewhat less accurate f
Ne54, using only the lowest Landau levels.

TABLE II. Comparison of the energies of harmonically co
fined 2D electron systems (v50.28,\v53.32 meV! by different
methods.h is the virial factor.

Ne (M ,S) QMC ~Ref. 17! SVM h

2 ~0,0! 1.02162~7! 1.02164 0.999995
3 ~1,1/2! 2.2339~3! 2.2320 0.999988
4 ~0,1! 3.7157~4! 3.7130 0.999971
4 ~2,0! 3.7545~1! 3.7525 0.999982
4 ~0,0! 3.7135~6! 3.7783 0.999992
5 ~1,1/2! 5.5336~3! 5.5310 0.999481
6 ~0,0! 7.5996~8! 7.6020 0.998912
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Our calculations, in agreement with Hund’s rule, pred
the (M ,S)5(0,1) state to be the ground state and the~2,0!
and ~0,0! states to be the lower excited states. This con
dicts the results of Refs. 15 and 17 but is in agreement w
the other QMC calculation.16 The violation of Hund’s rule
for Ne54 is also found in unrestricted Hartree-Foc
calculations,12 while exact diagonalization calculations8

show that the shell filling obeys Hund’s rule.
Our other energies are very close to the QMC results: T

agreements forNe55 andNe56 electron systems are ver
impressive.

We define the pair correlation function

P~r ,r0!5
2

Ne~Ne21!

3^Cu(
i , j

d~r i2R2r !d~r j2R2r0!uC&.

~17!

Here r0 is a fixed vector and its magnitude is chosen to
equal to^Cu( i ur i2RuuC&/Ne . The functionP(r ,r0) gives
us information on where one electron located atr0 experi-
ences other electrons. Figures 1 and 2 display the pair co
lation functions for the ground state (M ,S)5(1,1/2) and the
first excited state (M ,S)5(2,3/2) of theNe55 electron sys-
tem. Both figures show qualitatively similar features. Forv
51, the confinement potential is strong and the contribut
of the single-particle energies to the total energy is lar
than that of the Coulomb potential. The electrons are c
fined in a rather compact region so that the contour map d
not show four clear peaks. On the contrary, forv50.1 the
effect of the confinement becomes weak and the contribu
of the Coulomb potential is larger than that of the harmon
oscillator part. The size of the system grows and we
clearly a well-separated pentagonlike structure. The Wign
molecule-like structures formed in this case are in very go
qualitative agreement with the results of Ref. 12.

Next we present in Table III an example where the ma
netic field is nonzero. Again, the energies are in good ag
ment with those from the QMC ~Ref. 15! and
diagonalization6 methods. In 2D the inclusion of the mag
netic field leads to a change of the harmonic-oscillator f
quency

v→Av21~vc/2!2 ~18!

and an energy shift by2 1
2 M\vc , so we expect that ou

results are as accurate as those for the zero field case.
accuracy is also indicated by the virial factor included
Table III.

We have improved the prediction of the diagonalizati
method.6 The diagonalization method would give the ‘‘ex
act’’ solution in infinite model space. In practice the diag
nalization is always limited to finite dimensions. The slig
disagreement between our and the QMC results might be
to the statistical~and/or fixed-node! error of the QMC calcu-
lation.
8-5
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FIG. 1. Pair correlation func-
tion of the ground state (M ,S)
5(1,1/2) of 2D five-electron sys-
tem as a function of the frequenc
v of the harmonically confining
potential. The white cross denote
r0. Atomic units are used.
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The energy levels of the first three spin-polarized a
spin-unpolarized three-electron states in a magnetic field
shown in Fig. 3. The spin-unpolarized (1,1/2) state is
ground state in the weak magnetic field limit. The level ord
at B50 is (1,1/2),(0,3/2),(2,1/2),(0,1/2),(3,3/2). TheM
50 states are formed by placing one electron in each of
m50,1,21 single-particle orbits. The (2,1/2) unpolarize
state becomes the ground state in a very small interval of
magnetic field strength. The sequence of ground states
increasing the magnetic field is (1,1/2),(2,1/2),(3,3/2),
(4,1/2),(6,3/2) in agreement with Ref. 7@the (4,1/2) state is
not included in Fig. 3#. The lowest spin-polarized state is th
20530
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(0,3/2) state for weak field. For stronger field the (3,3/
and then the (6,3/2) states become the lowest spin-polar
~and ground! state, following the (3,6, . . . ,3n) ‘‘magic’’ se-
quence. Other spin-polarized states@e.g.,~1,3/2!, etc.# never
become the lowest state. The explanation of the magic
quence is very simple. In the spin-polarized case all electr
have to occupy different orbits. As the magnetic field g
stronger, the single-particle states belonging to positive
bital angular momentum quantum numbers (mi
50,1,2,3, . . . ) areenergetically more favorable than thos
with negative ones. TheM53 state @(m1 ,m2 ,m3)
5(0,1,2)# is therefore lower than theM52 state@which
y

s

FIG. 2. Pair correlation func-
tion of the excited state (M ,S)
5(2,3/2) of 2D five-electron sys-
tem as a function of the frequenc
v of the harmonically confining
potential. The white cross denote
r0. Atomic units are used.
8-6
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TABLE III. Comparison of the energies of harmonically confined 2D three-electron systems in mag
field (v50.2841) by different methods. The energies are in meV except for the values in parentheses
are in atomic units.h is the virial factor.

(M ,S) B ~T! SVM h QMC ~Ref. 15 Diag.~Ref. 6!

~1,1/2! 0.0 26.78~2.2582! 0.999991 26.77 26.82
~1,1/2! 1.0 26.61~2.2442! 0.999989 26.60 26.65
~1,1/2! 2.0 27.69~2.3353! 1.000034 27.68 27.74
~1,1/2! 3.0 29.71~2.5055! 0.999987 29.69 29.77
~1,1/2! 4.0 32.36~2.7283! 1.000026 32.32 32.43
~1,1/2! 5.0 35.39~2.9842! 0.999985 35.33 35.48
~2,1/2! 0.0 28.24~2.3814! 0.999992 28.30 28.27
~2,1/2! 1.0 27.28~2.2998! 0.999925 27.33 27.29
~2,1/2! 2.0 27.67~2.3338! 0.999905 27.72 27.69
~2,1/2! 3.0 29.09~2.4531! 0.999954 29.14 29.13
~2,1/2! 4.0 31.22~2.6324! 0.999976 31.26 31.26
~2,1/2! 5.0 33.79~2.8495! 0.999963 33.82 33.85
~3,3/2! 0.0 30.01~2.5304! 0.999999 30.04 30.02
~3,3/2! 1.0 28.24~2.3817! 1.000006 28.27 28.25
~3,3/2! 2.0 27.97~2.3585! 0.999997 28.00 27.98
~3,3/2! 3.0 28.83~2.4315! 0.999999 28.86 28.85
~3,3/2! 4.0 30.48~2.5703! 0.999997 30.51 30.50
~3,3/2! 5.0 32.63~2.7519! 0.999998 32.67 32.66
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requires (0,21,3) or (1,2,21), etc.#. For a weak magnetic
field the above argument does not hold in general and
lowest polarized state isM50 with the (0,1,21) orbits.

A similar picture is valid forNe54 ~see Fig. 4!. In the
very weak field regime the unpolarized (M ,S)5(0,1) state is
the ground state. On increasing the magnetic field, the s
polarized M52 state @(m1 ,m2 ,m3 ,m4)5(0,1,21,2)# be-

FIG. 3. Energies of the harmonically confined (\v53.37 meV!
lowest spin-unpolarized (S51/2, thin solid line! and spin-polarized
(S53/2, thick solid line! three-electron states in a magnetic fie
The orbital angular momentumM of the state is indicated by th
number next to the curve. The Zeeman energy is not included.
20530
e

n-

comes the ground state before the ‘‘magic’’M56(0,1,2,3)
state takes over.

Figure 4 reassures us that the (M ,S)5(0,1) state is the
ground state and the (M ,S)5(0,0) is an excited state fo
zero magnetic field: Both states belong toM50, and there-
fore the change of the magnetic field simply changes
harmonic-oscillator frequency@see Eq.~18!#. The figure thus

FIG. 4. Energies of the harmonically confined (\v53.37 meV!
lowest spin-polarized (S52, thick solid line! four-electron states in
a magnetic field. The orbital angular momentumM of the state is
indicated by the number next to the curve. The two thin solid cur
are theS50 andS51 states belonging toM50 ~theseSvalues are
indicated next to the thin curves!. The Zeeman energy is not in
cluded.
8-7



e

fir
y

m
si-

th

a

-
IV
te
th
th
h
im

t
o
x

ated
ell-

e
ited
ives
ore
to
cal-

is
3D.

p
tate

t

oc-

e is
. In

the

n

K. VARGA, P. NAVRATIL, J. USUKURA, AND Y. SUZUKI PHYSICAL REVIEW B 63 205308
shows that the order of these two states remains the sam
different harmonic-oscillator frequencies.

B. Harmonic-oscillator confinement in 3D

We have calculated the energies of the ground and
few excited states of 3D few-electron systems confined b
harmonic-oscillator potential@Vcon(r )5 1

2 m* v2r 2#. The re-
sults for different values of the oscillator frequency are co
pared in Tables IV–X. All intermediate spin coupling pos
bilities (s12,s123, . . . ) areincluded in the trial function. The
partial wave components (l 1 ,l 2 , . . . ) are included up to
( i 51

Ne21l i<6. The quantum numbers necessary to specify
states are the total orbital momentumL, the total spinS, and
the parityp.

The two-electron case is relatively simple and it is an
lytically solvable for certain frequencies.32 For v50.5, for
example, the exact energy is 2 a.u.,32 and we can easily re
produce this value up to several digits as shown in Table
where the energies of other low-lying states are also lis
Three very different oscillator frequencies are used to test
accuracy of the method under different circumstances. In
case ofv50.01 the confinement is extremely weak and t
Coulomb interaction governs the dynamics. In the other l
iting case the confinement is very strong (v510). Another
reason for choosing these values is that we want to study
ordering of the energy levels as a function of the strength
the confining interaction. In the two-electron case, for e
ample, there is a level crossing between the state (L,S,p)

TABLE IV. Energies of harmonically confined two-electro
system in 3D.

v
(L,S,p) 0.01 0.5 10

(0,0,1) 0.07921 2.0000 32.449
(1,1,2) 0.08198 2.3597 41.665
(2,0,1) 0.08681 2.7936 51.338
(0,0,1) 0.09696 2.9401 52.072
(3,1,2) 0.09302 3.2538 61.149
(1,1,2) 0.10005 3.3286 61.504
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5(3,1,2) and the first excited state of (0,0,1). The order of
the other levels listed in Table IV does not change.

The energies of the ground and excited states calcul
by the correlated Gaussian and the harmonic-oscillator sh
model bases are compared forNe53 –6 electron systems in
Tables V–VIII. Both methods give very similar results. Th
agreement is especially good for the ground and first exc
states. For higher excited states the Gaussian basis g
slightly less accurate energies because it is significantly m
difficult to optimize the basis for excited states. In addition
the present results we note that the harmonic-oscillator
culation dependence on the model space size forNe53,4 and
v50.5 was discussed and tabulated in Ref. 33.

The agreement is especially striking forNe53. Almost
all digits are equal for most of the calculated cases. It
interesting to compare the order of the states in 2D and
In the 2D case for Ne53 the energy levels of
the first few states follow the order of (M ,S)
5(1,1/2),(0,3/2),(2,1/2),(0,1/2), while in 3D the levels
are ordered as (L,S,p)5(1,1/2,2),(1,3/2,1),(2,1/2,
1),(0,1/2,1). This shows that the lowest levels are built u
from the same single-particle states. In the 3D ground s
two electrons are in thel 50 orbital and one is in thel 51
orbital. The first excited state has two electrons in thel 51
orbital, which are coupled toL51 because their spin mus
be parallel to build upS53/2 with the third. In the 2D case
they are in them51 and m521 orbitals and their total
orbital angular momentum isM50. The higher excited
states have similar correspondence. The same similarity
curs for Ne54 @(M ,S)5(0,1),(2,0),(0,0) in 2D and
(L,S,p)5(1,1,1),(2,0,1),(0,0,1) in 3D#. For example,
the 3D ground state has two electrons in thel 50 and two
electrons~with parallel spin! in the l 51 orbital and the two
electrons in thel 51 orbital are again coupled toL51. In the
2D ground state the two electrons are in them51 andm5
21 orbitals and the orbital angular momentum isM50.
With respect to the single-particle state occupations ther
of course a big difference between the 2D and 3D cases
2D the shell fillings occur atNe52,6,12,20, . . . , etc., while
in 3D the shells are filled atNe52,8,20,40, . . . . For Ne
.6 particle systems the single-particle components of
wave functions in 2D and 3D might be quite different.
is the

9485
2624
5871
4399
0680
0650
1346
4750
TABLE V. Energies of harmonically confined three-electron system in 3D. The SVM is the stochastic variational calculation, SM
shell model, and SM-eff is the shell model with effective-interaction approach~see Sec. II D!. Atomic units are used.

SVM SM-eff SM SVM SM-eff SM SVM SM-eff SM
(L,S,p) v50.01 v50.5 v510

(1,1/2,2) 0.181936 0.181936 0.181936 4.013240 4.013224 4.013511 61.138525 61.138549 61.13
(1,3/2,1) 0.182973 0.182973 0.182973 4.310690 4.310690 4.310712 69.972571 69.972571 69.97
(2,1/2,1) 0.184585 0.184584 0.184584 4.366473 4.366385 4.366537 70.315335 70.315387 70.31
(0,1/2,1) 0.191567 0.191568 0.191568 4.467439 4.467459 4.467878 70.853077 70.853154 70.85
(2,1/2,2) 0.198201 0.187935 0.187935 4.717817 4.717817 4.717828 79.490651 79.490655 79.49
(1,3/2,2) 0.193764 0.193764 0.193764 4.794580 4.794582 4.794614 79.860576 79.860582 79.86
(1,1/2,2) 0.193351 0.193325 0.193325 4.805341 4.797973 4.798186 79.890842 79.890818 79.89
(1,1/2,2) 0.199667 0.199656 0.199656 4.960409 4.957257 4.957683 80.793524 80.793567 80.79
8-8
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TABLE VI. Energies of harmonically confined four-electron system in 3D. See the caption of Table

SVM SM-eff SM SVM SM-eff SM SVM SM-eff SM
(L,S,p) v50.01 v50.5 v510

(1,1,1) 0.3159 0.3141 0.3141 6.3492 6.3490 6.3502 91.4466 91.4459 91.4
(2,0,1) 0.3177 0.3188 0.3189 6.3865 6.3865 6.3896 91.6750 91.6758 91.6
(0,0,1) 0.3210 0.3185 0.3185 6.4462 6.4456 6.4474 92.0260 92.0239 92.0
(0,2,2) 0.3138 0.3151 0.3151 6.5875 6.5875 6.5879 99.9068 99.9041 99.9
(2,0,2) 0.3198 0.3181 0.3181 6.7002 6.6961 6.6980 100.5877 100.5875 100.
(1,1,2) 0.3240 0.3195 0.3195 6.7196 6.7093 6.7105 100.6478 100.6199 100.
(1,0,2) 0.3278 0.3251 0.3251 6.7961 6.7935 6.7963 101.0946 101.0740 101.
(1,1,2) 0.3408 0.3232 0.3232 6.8448 6.8153 6.8169 101.3253 101.2220 101.
(2,2,1) 0.3223 0.3212 0.3212 7.0385 7.0202 7.0205 109.5179 109.5156 109.
(1,2,1) 0.3264 0.3313 0.3313 7.0702 7.0706 7.0719 109.7618 109.7612 109.
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The addition energy is conveniently used to show
shell closure that occurs at a specific electron number.
addition energyDm(Ne) is defined by

Dm~Ne!5m~Ne11!2m~Ne!, ~19!

where the chemical potentialm(Ne) is the increase of the
ground state energy by adding one electron to the gro
state of theNe21 system:

m~Ne!5E~Ne!2E~Ne21!. ~20!

Shell or half shell closure is reflected by a sudden increas
Dm(Ne) at a certainNe or the change of the differentia
capacitance given bye2/Dm(Ne). This is because the elec
tron needs much energy when it fills an orbit across the
generate orbits of a shell or goes beyond the half shell, du
Hund’s rule. The addition energies of the harmonically co
fined electrons in 2D and 3D are compared in Figs. 5 an
In 2D the addition energy shows a large peak atNe52 and a
smaller peak atNe54. The former corresponds to the fillin
of the n50,m50 orbit, while the latter is a reflection of th
half shell filling of the degenerate orbitsn50,m561,
which can be understood by Hund’s rule. On decreasingv
the level spacing of the single-particle orbits becom
smaller and the correlation due to the Coulomb interact
takes over the shell structure. This explains why the pea
20530
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Ne52 disappears forv50.1. The behavior of the 3D addi
tion energy is similar to the 2D case. One difference is t
the half shell filling occurs atNe55 because the relevan
orbit is l 51 and can accommodate six electrons.

The results forNe55 andNe56 are somewhat less ac
curate and the agreement between the SVM and the s
model is not as good as forNe,5. The SVM seems to be
more accurate than the shell model for weak confinem
where the role of the Coulomb interaction is more pr
nounced and it is more difficult to take the Coulomb cor
lation into account with the shell-model basis. At the sa
time it is easier to use the shell-model approach for lar
systems~see Tables IX and X!, while the SVM becomes
very time consuming beyondNe56.

A general feature of the results is that the excited sta
change their level orders as the harmonic-oscillator stren
changes, but the ground state always remains the same
have very carefully tested this property and we do not fi
any level crossings with the ground state.

Other insights into the relation between the 2D and
systems can be gained by comparing the expectation va
of the kinetic, confining, and Coulomb operators. Tables
and XII show the contributions of the Coulomb, kinetic, a
confinement parts of the Hamiltonian to the total energy. T
contributions are nearly equal in thev50.5 case. Just as on
V.

682
129
482
523
265
427
026
658
105
762
TABLE VII. Energies of harmonically confined five-electron system in 3D. See the caption of Table

SVM SM-eff SM SVM SM-eff SM SVM SM-eff SM
(L,S,p) v50.01 v50.5 v510

(0,3/2,2) 0.4804 0.5141 0.5165 8.9963 8.9979 9.0032 123.357 123.3539 123.3
(2,1/2,2) 0.4858 0.5175 0.5203 9.0567 9.0526 9.0588 123.749 123.6960 123.7
(1,1/2,2) 0.4880 0.5186 0.5211 9.0954 9.0919 9.0988 123.949 123.9287 123.9
(1,3/2,1) 0.4869 0.5318 0.5359 9.3110 9.2969 9.3024 132.320 132.1385 132.1
(0,1/2,1) 0.4931 0.5450 0.5525 9.4443 9.4355 9.4458 133.045 132.9021 132.9
(1,3/2,1) 0.5108 0.5472 0.5537 9.7104 9.4701 9.3692 133.223 133.1205 133.1
(2,1/2,1) 0.4950 0.5357 0.5406 9.3582 9.3528 9.3599 133.471 132.487 132.5
(0,1/2,1) 0.5267 0.5561 0.5644 9.8766 9.5866 9.5990 134.204 133.8337 133.8
(2,5/2,2) 0.4829 0.5232 0.5253 9.5919 9.5891 9.5914 140.973 140.9054 140.9
(0,5/2,2) 0.4882 0.5306 0.5336 9.6626 9.6618 9.6648 141.270 141.2692 141.2
8-9
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TABLE VIII. Energies of harmonically confined six-electron system in 3D. See the caption of Table

SVM SM-eff SM SVM SM-eff SM SVM SM-eff SM
(L,S,p) v50.01 v50.5 v510

(1,1,1) 0.703 0.797 0.815 12.038 12.064 12.079 157.701 157.415 157.
(2,0,1) 0.743 0.801 0.819 12.080 12.101 12.118 157.910 157.643 157.
(0,0,1) 0.714 0.805 0.822 12.128 12.159 12.178 158.080 157.991 158.
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expects in the strong confinement case (v510) the kinetic
and confinement energies are strongly enhanced, and
Coulomb energy is relatively small but not negligible. On t
other hand, in the weak confining case the Coulomb inte
tion dominates.

The contribution of the confining interaction and thus t
kinetic energy is of course larger in 3D. If the electrons d
not interact then both the kinetic and the harmonic confi
ment energies would be increased 1.5 times in 3D compa
to the 2D case. In the interacting case the kinetic and c
finement energy increase is roughly 1.5 forNe52 andNe
53. For more systems the increase is smaller. On the o
hand, the Coulomb correlation energy is smaller in 3D th
in 2D because there is more space available in 3D for
electrons.

C. Spherical square well

As an alternative to the harmonic confinement one
consider a spherical square well model of the 3D quan
dots. In this case the electrons are confined by a square
potential:

Vcon~r !5H 2V0 , r<R

0, r .R .
~21!

The square well potential is analytically solvable for the on
particle case. The eigenenergiesE can be determined from
the transcendental equationAV02uEucot(A2(V02uEu)R)5
2AuEu ~for l 50, and atomic units used!. Our SVM numeri-
cal approach almost exactly reproduces the analytically
termined energies.

Spherical quantum-well-like quantum dots have be
studied in Ref. 21. Unlike the harmonic-oscillator potenti
the spherical well can hold only a certain number of el
trons. The number of electrons that a spherical well can b

TABLE IX. Energies of harmonically confined seven-electr
system in 3D. The SM is the shell-model calculation. Atomic un
are used.

SM
(L,S,p) v50.01 v50.5 v510

(1,1/2,2) 1.063 15.390 193.055
(1,3/2,2) 1.084 15.934 209.998
(3,5/2,2) 1.087 15.960 210.134
(0,1/2,1) 1.104 15.672 201.377
(2,3/2,1) 1.108 15.707 201.575
(3,3/2,1) 1.113 15.749 201.802
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depends onV0R2. Figure 7 shows the energies of few
electron systems confined by a spherical square well po
tial in 3D as a function of the radiusR. A spherical well can
bind an electron only ifp2/8,V0R2. In our exampleV0
510 and therefore the one-electron bound state app
when 0.35,R. By increasing the radius the two-, three
. . . , etc. electron systems may become bound in the w
~see Fig. 7!. This potential parameter was used in Ref. 21
simulate quantum dots in GaAs/Al12xGaxAs with x'0.1.

A comment is in order concerning the energy curves
Fig. 7 ~and in Figs. 8 and 13 below!. If the Ne-electron
system has a bound ground state then our calculation
verges to the energy of that state. If there is no bound sta
a given potential then the energy converges to the low
relevant threshold, which is in this case the energy of
(Ne21)-electron system. In the figures the system is bou
if the energy of theNe-electron system is below that of th
corresponding (Ne21)-electron system. Strictly speaking
for unbound (Ne-electron! states the energies of th
Ne-electron and (Ne21)-electron systems should be equ
The convergence of the energy of the unboundNe-electron
system to the energy of the (Ne21)-electron system is rathe
slow, so one needs many basis states to describe the ‘‘fr
electron. Therefore the fact that the energy curves of
unbound states are above the corresponding thresholds
consequence of our spatially limited basis. By using m
basis states and by allowing them to go far outside the ra
of the confining interaction, one would get the same ene
for the (Ne21)- and the unboundNe-electron systems.

We have found no ‘‘phase transition’’ inNe52 andNe
53 electron systems. The authors of Ref. 21 investigated
energy of the lowest spin-polarized and spin-unpolariz
Ne52 andNe53 electron systems as a function of the r
dius of the square well. They found that beyond a cert
radius the spin-polarized state becomes lower than the s

TABLE X. Energies of harmonically confined eight-electro
system in 3D. See the caption of Table IX.

SM SM SM
(L,S,p) v50.01 v50.5 v510

(0,0,1) 1.412 19.038 230.219
(0,2,1) 1.448 19.650 247.204
(2,1,1) 1.448 19.653 247.212
(1,1,2) 1.475 19.430 238.771
(3,1,2) 1.479 19.456 238.915
(2,0,2) 1.483 19.491 239.131
(2,1,2) 1.484 19.496 239.139
8-10
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unpolarized ground state. We have very carefully inve
gated these systems and have not observed this ‘‘param
netic to ferromagnetic phase transition.’’ The same auth
in a later paper22 investigated a harmonically confined two
electron system and found that the spin-unpolarized to s
polarized transition is most likely an artifact of the neglect
part of the electron-electron correlation in Hartree-Fock c
culations.

We have increased the radius gradually~see Fig. 7!. As
the Coulomb repulsion decreases the energy of the sys
gets smaller and smaller, converging toward the energy

FIG. 5. Addition energy of harmonically confined electrons
2D as a function of the electron number.v is the frequency of the
confining potential.

FIG. 6. Addition energy of harmonically confined electrons
3D as a function of the electron number.v is the frequency of the
confining potential.
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the noninteracting electrons in the quantum well. If there
no Coulomb interaction then the energy of the spin-polariz
and -unpolarized electrons is the same, so on increasing
radius both converge to the same energy. In our present
ample (V0510) the energies of the lowest-lying spin

TABLE XI. Properties of harmonically confined 2D system
Atomic units are used.

Ne (M ,S) v50.01 v50.5 v510

2 ~0,0! ^H& 0.0738 1.659 23.652
^T& 0.0092 0.443 9.297

^VCoul& 0.0369 0.516 3.372
^Vcon& 0.0277 0.701 10.983

h 0.9999998 0.9999995 0.9999998
3 ~1,1/2! ^H& 0.176 3.573 48.365

^T& 0.016 0.822 18.286
^VCoul& 0.096 1.286 7.858
^Vcon& 0.064 1.465 22.220

h 0.9999972 0.9999984 0.9999981
4 ~0,1! ^H& 0.317 5.863 74.979

^T& 0.018 1.137 26.836
^VCoul& 0.186 2.391 14.163
^Vcon& 0.112 2.335 33.981

h 0.999812 0.999921 0.999942
5~1,1/2! ^H& 0.515 8.670 104.642

^T& 0.0196 1.421 34.931
^VCoul& 0.339 3.874 23.168
^Vcon& 0.159 3.376 46.543

h 0.9992 0.9995 0.9991

TABLE XII. Properties of harmonically confined 3D system
Atomic units are used.

Ne (L,S,p) v50.01 v50.5 v510

2~0,0,1! ^H& 0.0792 2.0000 32.4486
^T& 0.0121 0.6644 14.4412

2 ~0,0,1! ^VCoul& 0.0366 0.4474 2.3776
^Vcon& 0.0304 0.8881 15.6299

h 0.999999 0.999999 0.999999
3~1,1/2,2! ^H& 0.1819 4.0132 61.1385

^T& 0.0192 1.1507 26.0867
^VCoul& 0.0957 1.1411 5.9763
^Vcon& 0.0671 1.7214 29.0755

h 0.999991 0.999995 0.999999
4 ~1,1,1! ^H& 0.3161 6.3502 91.446

^T& 0.0229 1.5853 37.371
^VCoul& 0.1770 2.1174 11.132
^Vcon& 0.1163 2.6475 42.943

h 0.999821 0.999891 0.999912
5(0,3/2,2) ^H& 0.48041 8.9963 123.36

^T& 0.02501 1.9786 48.283
^VCoul& 0.27881 3.3562 17.808
^Vcon& 0.17660 3.6615 57.266

h 0.99812 0.999671 0.999781
8-11
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polarized and -unpolarized states are nearly degenerate
yondR515, but we observe no level crossing between the

D. Cylindrical well: ‘‘Quantum cylinder’’

In this section we present a calculation for a cylindric
quantum dot. A similar case was considered in Ref. 23 in
unrestricted Hartree-Fock framework. The confinement
defined as

Vcon~r !5H 2V0 if ~x21y2!1/2,R anduzu,a

0 otherwise. ~22!

FIG. 7. Energies ofNe51 ~solid line!, Ne52 ~dotted line!, and
Ne53 ~dashed line! electron systems in a spherical quantum well
a function of the radius of the well. Lower dotted line, the grou
state ~0,0,1!; upper dotted line, the excited state (1,1,2); lower
dashed line, the ground state (1,1/2,2); upper dashed line, the firs
excited state~1,3/2,1!.

FIG. 8. Energy ofNe51 ~solid line!, Ne52 ~dotted line!, Ne

53 ~dashed line!, andNe54 ~long dashed line! electron systems in
a cylindrical quantum well as a function of the height of the cyl
der. (V0510 and atomic units are used.!
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In this case the spherical symmetry is broken, and only thz
component of the orbital angular momentum is conserv
We have to use the DCG basis functions that were in
duced for magnetic field. The state of this system is speci
by the total magnetic quantum numberM, total spinS, and
pz , the parity along the ‘‘z’’ direction. Our basis is restricted
to even parity states and this last quantum number is drop
in the following.

First we consider a model potential withV0510 andR
51 and change the ‘‘thickness’’ of the dot~the height of the
cylinder! from a510 toa50 ~in a.u.!. In this way we trans-
form the system from a rodlike (a510) geometry to a 2D
disk (a50). Just as in the case of the spherical quantum w
a quantum cylinder can bind only a certain number of el
trons, depending on the potential parametersV0 , R, anda.
The energy dependence on the thickness of the cylindr
dot for Ne51 –4 electron systems is presented in Fig. 8. T
figure shows that, as one expects, the cylinder can hold m
and more electrons as the size~in our case the height! in-
creases. The really interesting thing here is that the orde
the energy levels also depends on the height of the cylin
For long, rodlike cylinders the ground state tends to be
M50 orbital angular momentum state. This probably mea
that the electrons are equidistantly positioned along thz
axis. On decreasing the height we approach a disklike ge
etry which is somewhat similar to the 2D harmonic confin
ment discussed earlier. And, indeed, the level order chan
~see Fig. 8! and one has the same level order as in the
harmonic confinement case. In this way we have found
interesting transition: On decreasing the height of the cy
der the (0,1/2) and (1,1/2)Ne53 electron@also the (0,0)
and (0,1)Ne54 electron# ground/excited states change the
order.

Figures 9 and 10 show the density of theNe52 electron
system in a ‘‘long’’ cylinder (a510) along the radius and
along the symmetry axis, respectively. The density is defi
as

s FIG. 9. Singlet~solid line! and triplet~dotted line! radial density
distributions of two electrons in a cylindrical quantum dot (a
510). The probability density distribution~dimensionless! is de-
fined in Eq.~23! and normalized to the number of electrons.
8-12
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r~r !5^Cu(
i 51

Ne

d~r i2R2r !uC&, ~23!

and the radial density is obtained by integrating this quan
along thez direction. The density is normalized to the num
ber of electrons. The radial density distributions of the trip
(1,1) and singlet (0,0) states are very similar. Both pe
around 0.5 a.u. and the tail goes a little bit outside the c
inder. The density of the triplet and the singlet states in thz
direction ~obtained by integrating the density over thex and
y variables!, however, are very different as shown in Fig. 1
The cylinder is so long that the two electrons can be far aw
from each other to minimize the Coulomb repulsion and
density tail hardly goes outside the cylinder.

E. ‘‘Quantum ring’’

Ringlike nanostructures have been grown by electr
beam lithography.34 The electronic and magnetic properti
of a single-electron quantum ring were studied in Ref.
We restrict our attention to a pure 2D case. An additio
confining interaction in thez direction would cause no extr
difficulty in our approach. The confinement in this case
defined as

Vcon~r!5H 0, r,r 1

2V0 , r 1<r<r 2

0, r.r 2.

~24!

This describes a square well potential in a ring betweenr 1
and r 2 on thexy plane.

The number of electrons bound in a ringlike potential,
in the previous cases, depends on the parameters (V0 ,r 1 ,r 2)
of the potential. An example of the energy levels in t
model potential is presented in Fig. 11. The maximum nu
ber of electrons this potential can bind isNe54. In the four-
electron case the lowest state is the (M ,S)5(0,1) state just
as in the case of 2D harmonic confinement. In the pres

FIG. 10. Singlet~solid line! and triplet ~dotted line! density
distributions along thez direction of two electrons in a cylindrica
quantum dot (a510). See the caption of Fig. 9 also.
20530
y

t
k
l-

.
y
e

-

.
l

s

s

-

nt

model potential the first excited state (0,0) is not bound w
respect to the three-electron threshold.

This density distribution can easily be manipulated by
perpendicular magnetic field. The magnetic field acts a
confining harmonic-oscillator potential on thexy plane. On
increasing the strength of the magnetic field, the density
tribution starts to move inward as shown in Fig. 12. In
certain very narrow region of the magnetic field strength
has two peaks: an outer peak centered in the ring and
inner peak that is inside the harmonic confinement indu
by the magnetic field. If the magnetic field is stronger tha
given value then the electron moves inside the harmonic c
finement. This geometry gives us the possibility of movi
the electron from one well-defined position to another
switching on and off the magnetic field. Notice that we ha

FIG. 11. Energy levels ofNe51 –4 electron quantum rings. Th
parameters of the potential areV0510, r 150.5, andr 251. Atomic
units are used.

FIG. 12. Density distribution in a single-electron quantum ri
as a function of the magnetic field. The strength of the magn
field is indicated next to the corresponding density distribution. T
parameters of the potential areV0510, r 152, andr 253. Atomic
units are used. See the caption of Fig. 9 also.
8-13
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two sharply separated peak positions in this case. In the
of the previously studied harmonic or spherical square w
confinement the density distribution also moves toward
origin in the magnetic field. In that case, however, what
see is more like a ‘‘shrinking’’ of the density distribution o
the xy plane. The change is more drastic in the case of
quantum ring. The peak of the distribution shifts from o
position to another.

IV. DISCUSSION

The properties of artificial atoms created by confini
electrons in quantum dots of different geometries are qu
tatively very similar. The electrons occupy the single-parti
orbits defined by the confining interaction. The occupanc
determined by the Pauli principle and the minimization
the Coulomb energy. In different confining potentials the e
ergy levels are different but the essential features are v
similar.

The confining interactions considered in this paper
pend on one or more parameters~harmonic-oscillator width,
radius and strength of square well, etc.!. We have studied the
dependence of the energy levels on these parameters.
intriguing property those we have found is that in spherica
symmetric systems the ground state remains the same fo
values of the parameters. Its energy level does not cross
those of the excited states. At the same time, the orde
energy levels of the excited states frequently changes
pending on the parameters of the confining interactions
change of symmetry of the ground state of a spherical qu
tum well has been reported in Ref. 21. We have investiga
few-electron systems in spherical quantum wells of differ
parameters but we have not observed any similar cha
This confirms that such a change of energy levels might
an artifact of Hartree-Fock calculations.22 Our calculation
predicts that the ground state is in accordance with Hun
rule for any parameter values and there is no transition fr
spin-unpolarized to spin-polarized states.

A change of the ground state would give us an interes
possibility. In a two-electron system, for example, t
ground state is a spin singlet, and the first excited state
spin triplet. This two-state system may serve as a ‘‘qubi
an elementary gate for a quantum dot quantum compu
One would prepare a dot with singlet ground and triplet
cited states and a second one, with different geometry, w
it is the other way around. The electrons can be moved fr
one dot to the other by an external electric field, for examp
switching fromS50 to S51. The calculations show, how
ever, that no matter how we change the geometry, the gro
state does not change for spherically symmetric systems

If the spherical symmetry is broken, for example by
magnetic field or by a cylindrically symmetric confining p
tential, then the ground state and excited state energy le
may cross each other. The fact that the magnetic fi
changes the order of energy levels has been studied
quently. In this paper we have presented a method that
accurately predicts the level crossing as a function of
strength of the magnetic field.

The cylindrical quantum dot is a very interesting exam
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where the order of energy levels depends on the height of
quantum dot. In a disklike cylinder the ground state obe
Hund’s rule, but for a longer cylinder, typically when th
height of the cylinder is larger than its diameter, Hund’s ru
is violated. It would be interesting to look for experiment
evidence showing that the ground state of a cylindrical thr
~four-! electron quantum dot is an (M ,S)5(1,1/2) @(M ,S)
5(0,1)# state if the height of the cylinder is small and b
comes an (M ,S)5(0,1/2) @(M ,S)5(0,0)# state on increas-
ing the height of the cylinder.

Harmonically confined electron systems in 2D have
tracted enormous attention. In this work we have also ca
lated 3D electron systems in harmonic confinement. Co
parison of the 2D and 3D cases shows the effects of
quantum well confinement in thez direction in quantum dots
For the same harmonic-oscillator strength the electrons
somewhat farther from each other in 3D than in 2D, result
in a smaller Coulomb energy in 3D. The energy differen
between the 2D and 3D geometries is predominantly du
the confinement and the kinetic energy. The qualitative f
tures of the 2D and 3D systems are very similar in the c
of the few-electron systems investigated here. One can m
an easy correspondence between the orbital and spin q
tum numbers of the energy levels in 2D and 3D. The ap
cability of our method was tested by calculations for ve
different confining strengths. The accuracy is slightly wor
for the weak confining region where one needs more b
functions to achieve convergence, but it is fairly good as o
can judge by the virial factor and by comparing with th
results of different methods. In the weak confining regi
(v50.01; see Tables XI and XII! the contribution of the
kinetic energy is fairly small compared to that of the Co
lomb and confining interactions. This suggests the existe
of a Wigner-crystal-like structure in both 2D and 3D. Co
trary to the prediction of Refs. 15 and 17 we find that t
ground state of theNe54 system obeys Hund’s rule.

We have also investigated an example of a ringlike qu
tum dot in a magnetic field. This geometry offers an inte
esting possibility. In the case of zero magnetic field the el
trons are distributed along the ring. By applying th
magnetic field perpendicularly to the plane of the ring t
electrons can be completely moved from the ring to the
cinity of the origin. Thus one may have the electrons in tw
very well-separated regions.

The major difference between the harmonic and squ
well confinements~cylindrical, spherical, and ring! is that the
harmonic potential can bind any number of electrons. T
number of electrons bound in the square well case is fi
and strongly depends on the parameters of the potentia
that case one can predict how many electrons can be bo
in a certain quantum dot, that is, the ‘‘capacity’’36 of the dot.
This is expected to be a more realistic model of quant
dots.

The concrete potential parameters and the potential it
can only be determined experimentally. In this work we ha
tried to follow ‘‘experimentally inspired’’ and widely used
potentials and parameters. The aim of this work was to de
onstrate the wide range of applicability of the method a
the investigation of different properties of various artifici
8-14
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atoms. The general features of experimental findings may
reasonably well described by the potential models conside
here. In the present approach one assumes a Hamiltonian
models the quantum dot and we try to solve this well-defin
quantum mechanical problem in a careful manner. There
of course many things that may limit the applicability of o
model Hamiltonian, but some of the phenomena that are
perimentally observed can be understood by such model
culations, and we hope that some of the predictions of s
models can be experimentally observed.

The accuracy presented here is very useful and impor
in the weakly confined~but strongly correlated! regime
where otherwise it is difficult to predict the ground state, e
One should also mention that the comparison of vario
methods for these quantum mechanical problems gre
helps in testing and development of different quantum m
chanical many-body approaches. A nice example can
found in Ref. 33, where the solution of few-electron quantu
dot problems helps to test the Faddeev method, which
developed for nuclear few-body systems.

In summary, we have presented a large scale variatio
approach to describe the spectra and other properties of
2053
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ficial atoms. Different~parabolic, cylindrical, spherical, an
ring-like! confining interactions have been investigated. T
effects of magnetic field have also been studied. One of
aims of this paper was to introduce the method and tes
capabilities on various models of quantum dots used in
literature. Future work to investigate double quantum dot
under way.
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