PHYSICAL REVIEW B, VOLUME 63, 205301

Luminescence polarization of silicon nanocrystals
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We consider theoretically the polarization of the luminescence of Si nanocrystals that arises from the
anisotropy of the optical moments. No-phonon and phonon-assisted optical transitions are calculated in tight
binding and interpreted using effective-mass theory. In contrast to direct-gap semiconductors, we show that
simple selection rules cannot be established in Si nanocrystals because the degree of linear polarization
presents large oscillations with respect to the size of the clusters. This effect is due to the indirect nature of the
Si band gap that leads to a dependence of the optical matrix elements on the oscillatory overlaps between
electron and hole states in momentum space. However, in a statistical ensemble of crystallites elongated in a
given direction and with size larger than 2—3 nm, we obtain that the light is in average polarized along this
direction, in agreement with the experiments.
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[. INTRODUCTION asymmetric silicon nanocrystals. We present detailed tight-
binding calculations on clusters with various shapes and
The investigation of low-dimensional semiconductor sizes. We show that, in contrast to direct-gap semiconduc-
structures has attracted much attention in recent years. @rs, the polarization anisotropy is extremely sensitive to the
particular, the spectroscopy of optical transitions across thgoundary conditions, i.e., the surface of the quantum struc-
band gap has proved to be a powerful method to study theftire. A consequence is that the degree of linear polarization
electronic states. In asymmetric structures, the optical transfan vary completely between two crystallites with very close
tions have often a Strong dependence on the ||ght po|arizéhapes. We also show that, for a statistical distribution of
tion. This effect has been extensively studied in 1lI-V het-nanocrystals with elongated shapes oriented in a given direc-
erostructures such as quantum weltw wire$™ and in tion, the luminescence should be polarized in average along
11-VI nanocrysta'ss_ve All these studies concern direct_gap th|S direction. We pI‘OVide Simp|e interpretations Of the t|ght'
semiconductors where the polarization anisotropy mainly rebinding results using EMA.
sults from two independent factors. The first one comes from The paper is organized as follows. We first describe the
the anisotropy of transition dipole moments and the seconfight-binding technique used to calculate the recombination
one arises from a difference between the dielectric constari@tes for no-phonon and phonon-assisted transitions. In Sec.
of the semiconductor and its surrounding medi(tire so- Ill, we present the results for no-phonon transitions that we
called dielectric mode! On the theoretical side, the predic- interpret using a method of projection of the confined elec-
tion of anisotropic dipole moments is usually based on thdron and hole states in momentum space. In Sec. IV, we
framework of the effective-mass approximaﬁéﬁ (EMA) analyze these results USing EMA calculations. In Sec. V, we
that provides simple interpretations of the optical selectiorshow that the results for phonon-assisted transitions are close
rules. The situation is not so clear in indirect-gap semiconf0 the no-phonon case and we compare the results to the
ductors like silicon. Studies of the optical properties of sili- €Xperiments.
con nanostructures have been stimulated by the discovery of
the strong luminescence of porous siliédhat is sometimes
characterized by a huge degree of linear polarizatignto
309%).8712 An interpretation of these experiments has been The first step of our paper is the calculation of the elec-
proposed on the basis of the dielectric m8d&where po- tron and hole states of silicon nanocrystals. We use a tight-
rous silicon is described by ellipsoidal Si crystals embeddedbinding technique with a minimal basis set of a@nd three
in an effective dielectric medium with a lower dielectric con- p orbitals on each silicon atom. The Hamiltonian includes
stant. The polarization anisotropy that results from the dipolénteractions up to third-nearest neighbors and three center
moments is not considered in these models. Actually, théerms. Their parametrization, described in Ref. 15, allows
degree of polarization coming from this effect is not known, one to get a very good silicon band structure that is a neces-
as a corresponding theory is missing. More generally, theary condition to obtain correct predictions of the confine-
selection rules applicable to optical transitions in anisotropianent energie$® The surfaces of such nanostructures are pas-
nanocrystals of indirect-gap semiconductors have not beesivated by hydrogen atoms as in Ref. 17.
established in contrast to direct-gap ones. In silicon, one The second step of our paper is the calculation of the
complication arises from the fact that phonon-assisted trameptical transition rates with respect to the polarization of the
sitions are more efficient than no-phonon ones in a widdight. We first consider the direct recombination of electron-
range of nanocrystal sizé%* The aim of this paper is to hole pairs, i.e., no-phonon processes. The radiative recombi-
study theoretically the anisotropy of the optical transitions innation rate is defined from the dipole matrix eleméhts

II. TIGHT-BINDING CALCULATIONS
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Wi;(e)=AE;|(i]e-p|f)|?, (1)  creation and annihilation operators and averaging oyer

o I , . the number of phonons in mogewe obtain the following
whereli) is the initial state of the electron in the conduction .ombination rates for one-phonon processes after straight-
band andff) is the final state in the valence bafice., the forward algebra (details will be given in another
hole statg E;; is the energy of the transitiom,is the vector publicatior?d)

of the light polarization and\ is a constant. The momentum

matrix element(i|e-p|f) is developed in the tight-binding

basis where the atomic orbitals are replaced by GausSians. one-phonon emissiort#i w;):W;¢(e)

This method has already been applied to(Bef. 20 and 7 2

Cds (Ref._ _2]) zganoqrystals, and to the isolated dangling ~K‘ A /—Aj-e {m+1}, (6)
bond in silicon<* To include the effect of the temperature, 2wj

we define a thermal average of the recombination rates

one-phonon absorptioiif w;):Wis(e)
>, Wir(e)exp(—Ej; /kT)

if h
]

>, exp(—E;; /kT)

i,f

2
, W)

This equation is justified by the fact that the thermaliza- Where nj=[exp(iw;/kT)—~1]"~. The heavy part of the
tion of the electron and the hole after excitation in the band¥vork is the evaluation of the coupling coefficiets, which
is more efficient than the radiative recombinatidine radia-  are calculated numerically for all the modesf the quantum
tive recombination rate is smaller than’&0" as already dot. _For each modsg, it requ_lres_to calculate the_ wave
shown in Ref. 20 Then we calculate the degree of linear functions—therefore the Hamiltonian—and the optical ma-

polarization of the emitted light that we define as usual by X €lements when the nuclei are displaced from their equi-
librium sites according t&;. The matrix elements of the

(W(e))—(W(e,)) @ Hamiltonian are made dependent on the atomic positions fol-
o= , . L
(W(e))+(W(e)) lowing the rules of Ref. 24. The_ vibrational modes of the
_ _ nanocrystals are calculated using a valence force field
wheree, ande, are two orthogonal vector® will be fixed  model? The main results of these calculations will be pub-
with respect to the longest axis of the nanostrudtulteis  Jished elsewheré as we concentrate here on the polariza-
important to point out thatr calculated here only describes tion. To summarize these results, we confirm that the transi-
the polarization anisotropy that arises from the anisotropy ofions are mainly assisted by transverse-opfi®) and
the dipole moments. Other factors like dielectric effects—ongitudinal-optic modes, with smaller contributions from

which would make the constast in Eq. (1) dependent on  transverse-acousti@A) phonons, in agreement with the the-
the polarization vectoe—are not considered here since they oretical work of Ref. 13 and with the experimeftg®

have already been analyzed in detail in references such as

Ref. 9.
To calculate the recombination rates for phonon-assisted Ill. TIGHT-BINDING RESULTS FOR NO-PHONON
transitions, we start again from E(L). But now, the states TRANSITIONS

iy and|f) include the coordinates of the electron and of the
nuclei. Working within the adiabatic approximation, the ma-
trix element of the momentum becomes

We have mainly studied Si dielectric ellipsoids as they are
considered in the microscopic description of porous silicon.
The ellipsoids are defined as usual by three principal axes of

ile-plfy={(y:|( e ] 4 respective lengtla, b, ¢ with a oriented along §100] axis
(ile-pIfy=CxilCvile-plunlxn @ andb=c=a/v2. The polarization degree for no-phonon
|xi) and|x;) are the vibrational states of the system thattransitions is plotted in Fig. 1 with respect ta(T
are functions of the nuclear coordinates. They are built in the=300K). We see that foa<2 nm, o is scattered and gets
harmonic approximation from independent harmonic oscillapositive or negative values, but for larger sizestends to
tors corresponding tol normal mode; (N is the number become positive in average. It is particularly interesting to
of atoms in the system|y;) and ;) in Eq. (4) are the compare thus with the results obtained for ellipsoids with a
electronic wave functions that can be defined for any set ogimilar shape but with a long axis oriented alond14.0]
nuclear coordinates. We can expand the momentum matrigtirection(dashed lines in Fig.)1We see that the two curves
element to first order in the normal modes do not coincide in spite of the great similarity of the nanoc-
rystals. However, in both casaespscillates between positive
or negative values for small lengtlisc3 nm) and tends to
<‘/’i|p|‘/’f>:<‘/’i|p|‘r”f>0+zl Ai(xilQjlx). ®) remain positive for bigger crystallites. Similar behavior is
: obtained for ellipsoids with the long axi oriented along
where A= (d(yip| 1)/ 9Q;)o. The index 0 means that the [100] but with a=v2b=2c (Fig. 2). All these results are
quantities are calculated at the equilibrium positions. Usingather surprising at first glance and they have no equivalence
the transformatio®; = \/ﬁ/ij(ajJr +4a,) as a function of the in the case of direct-gap semiconductors.
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FIG. 1. The polarization degree for Si ellipsoids oriented along o (om)
a [100] direction (straight ling or a[110] direction (dashed Iin}; . FIG. 3. Polarization degree for L, XL, X L, boxes bounded by
calculated as a function of the length of the long axis, which iS(100) planes (T=300K). The results are plotted versus L, for dif-
equal tov2 times the length of small one§ ¢300K). ferent values of L, : 1.22 nm (<), 1.76 nm (+), 2.31 nm (H), 2.85

nm (X), 3.39 nm (A), 3.93 nm (%), 4.48 nm (@), 5.02 nm (%), 5.56

In many experimentgfor example, the photolumines- nm, (F), 6.10 nm (D). The polarization is equal to zero for L,

cence of porous siliconone must take into account that the =Ly.
samplgs are hete.rogenec.)us.. Slpce there e proori way for IV. INTERPRETATION USING EEEECTIVE-MASS
choosing a particular distribution of crystallite sizes and THEORY

shapes, the problem is inherently complex taking into ac-

count the oscillations of~. However, we have seen in the 10 understand the peculiar behavior of the polarization,

preceding section thatr becomes positive in average for W€ analyze in detail the nature of the no-phonon transitions.
sizes larger than 2—3 nm. We have checked that this COhC|lY—Ve come back to important points that hgve_ been discussed
In detail in Refs. 20, 27. Because of the indirect gap, band-

sion holds true for other types of asymmetric nanocrystalsédge transitions in bulk Si are only possible with the assis-

such as cyhnders_or boxésarqllel_eplpeo)s Figure 3 shows tance of phonons to supply the momentum in a second-order
the degree of linear polarlza_'uon c_alculated fgr boxesprocess. In nanocrystals, the strong confinement of the elec-
bounded by100) planes and of dimensiors ,L, ,Lyinthe  ,h and hole wave functions in real space leads to a spread
X, y, zdirections respectivelyr is defined with respect to the ¢ the wave functions in momentum space. Thus, radiative
z axis (g=2). WhenL;=L, (cubic crystallitey o is equal  yecombination can proceed by direct no-phonon transitions
to zero as imposed by the symmetry. Whep>L, , o is  and the oscillator strength is directly proportional to the re-
positive and, wherh <L, , o is negative, which means that ciprocal space overlap. To illustrate this effect, we plot on
the light is always polarized along the largest dimension. Werig. 4 the weight of the lowest electron statg and of the

also note that there are less oscillations than in the case of thigghest hole statey, in momentum space. To obtain these
ellipsoids(however, the results obtained at 10 K again showalues, we project the tight-binding eigenfunctions in the ba-

large oscillations sis of the bulk states
3 21 2| [100] + [010]
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FIG. 4. Top: projection |(anyk|2) of the lowest electron state in

FIG. 2. Polarization degree for Si ellipsoids oriented along aan ellipsoid on the bulk state®, , for k along[100] and[010]
[100] direction calculated as a function of the length of the long (sum of the twg. Middle: same fok along[001]. Bottom: projec-
axis (T=300K). The[100] ellipsoid axis is equal to2 times the  tion (/b |?) of the highest hole state fér along[001] (right) and
[010] one and to two times th@01] one(straight lines: no-phonon [111] (left). Solid lines: ellipsoid long axis of 1.90 nm, short axis of
transitions, dashed lines: phonon-assisted transjtions 1.36 nm. Dashed line: long axis of 2.17 nm, short axis of 1.36 nm.
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for x, X, y, y. In the case of a box with,>L, , the lowest
lﬁe:Ek ank¥nk, electron states arise from the four equivalent minirka.
- (12)]. Following Eqgs.(8) and(9), the evaluation of the dipole
matrix elements requires us to write the total wave function
=2 by ¥, (8)  inthe basis of the bulk stateB, . Since the coupling be-
nk tween the different bands is neglect@d particular, between
. . _ the conduction band valleysthe sum in Eq(8) is restricted
where th_e |n_de>n enumerates the bands. The dipole matrix;y (o highest valence banl,  for the hole statels, and to
element is given by the lowest conduction band;. , for an electron statéje (j
enumerates the four equivalent minimgollowing standard
<'7[fe|e'p|lr/fh>: 2 a-n,k* bn',k<an,k|e'p|\I,n/,k>' (9) EMA (Refs. 27’ 29’ we obtain

n,n’ .k

Figure 4 shows that the overlap{* b,/ \) of ¥ andyy, ’ﬁh:; FOOW, ks
in momentum space is small becauggis centered at the
conduction-band minimakE=ky) and ¢, is centered ak
=0. It explains why the radiative lifetime remains long in zpje=2 F(k—kop)Wic k. (13
silicon crystallite€>%’ As a, , andb,,, , are oscillatory func- K
tions of k (Fig. 4 and below oscillatory factors enter the \yhereF (k) is the Fourier transform of the envelope function
optical matrix elements and the degree of polarization. Aryng ko; is the wave vector at the conduction-band minimum

additional source of scattering comes from the fact thaj Thys, the dipole matrix elemefiq. (9)] is given by
(¥, e p|¥, k) is not a constant with respect ko

To understand the origin of the average linear polarization
of the no-phonon transitions along the long axis of the nano- (¥jel€: plgpny= > F(k— Kop) ¥ F(K)(Wic.kle p|¥, ).
structures, we use the EMA, following closely Ref. 27. Even : (14)
if the EMA has been designed to treat shallow potentials in
semiconductors, its application to semiconductor hetero- \ye need to calculate this matrix element for two polar-
structures and nanostructures is now widely develdpBte  i,ations e=z ande, =x. Let us consider specifically the
advantage of the EMA is its simplicity that allows us to getgjectron statey,, corresponding to thex valley [Koy
analytic results. However, its accura@g., for the band-gap ~0.89(2m/a)x]. SinceF (k) andF(k—ko,) are centered at
energy is not sufficient in many situations, in particular | _ andk =k, respectively, we expect that the maximum
compared to more elaborate techniques like tight bindingy their overlap[ F (k— ko) * F(K)] is in the vicinity of the
(see the discussion in Ref. 2&8Ve consider a box of volume [100] axis of the momentum space. Thus, we have analyzed
L,L,Ly. Under the assumption of an infinite barrier at they,q optical matrix element®,. e p|¥, ) in this region
boundary of the_crystallite, the envelope function for elec'using the tight-binding wave functions of bulk silicon. We
trons and holes is obtain that forx polarization, the matrix element is equal to
zero along th¢100] axis. Forz polarization, it is not equal to
F(r)= /icos( W_X) cos( W_y) cos( 77_2) zero and we will assume that it is approximately independent
L2L, Ly L, Ly of k.2° Therefore, in the vicinity of th¢100] axis, we can
write to the first significative order
=L, 2=sx,y<L,/2
with —LH/2$Z$ L”/2 ' (10) <\I,xc,k|px|q,v,k>%a(ky+kz)a

One difficulty in the problem is that there are six equiva- (Ve P W 1)~ B, (19
lent (10(2e|e£tron_v§1lleys in the. Si conduction barde- where @ and 8 are two complex scalars. Inserting EG5)
notedx, X, ¥, Y, z z, in the foIIowmg). We_assume for the into Eq. (14), we obtain
moment that the treatment of the six minima can be decou-
pled. Because these valleys are anisotropic with a longitudi-
nal massm;=0.92m, and a transverse mass,=0.19m,, (theel Pyl i) = >, F(k—Ko)*F(K)(ky+k,)=0,
the confinement energies afie atomic unitg K

1 (7\2 1[x\2 ( _ *
T G I i Uel Pl tin) = B2 F(k—ko)*F(K)
AE 2m, L) +mt('—i) ’ 1D s k "
for states arising fronz andz valleys and :'BJ elkocT|F(r)|2dr, (16)
2 2 2
AE= i(l) n 1 (1 +(1) } 12 (¥xdPxlinm) is equal to zero becauge(k—ko,) and F(k)
2m\Ly ) 2m[ (L, L are invariant when one changlsinto —k,, due to the sym-
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metry of the envelope function. The same result is obtained
for the electron states arising from tlevalley. For they 3 2] [100] +[010]
valley [ko,~0.89(2m/a)y], the same analysis leads to N_: 1 \
o . r 32TX
<¢yelpx|¢h>:<¢ye|pz|¢h>::3f elkoy r|F(I’)|2dr, = 5 | ]
(17) g : [001]
ey '
and to identical results fogy,. The integrals in Eqs(16) E) 0 I
and(17) are equal by symmetfy r I ko X 3/2TX
227 [001]
. ) s [111] ih
f elor M| (1) 2dr o1 /\
Z / \
£, ' .
=M (I—J_) L r X
1 (273 02]-1 oL FIG. 5. Top: projection|@, «|?) of the lowest electron state in a
= _ (_Tr) kg__(_w) sin(h) L, XL, XL, box on the bulk state¥,, for k along[100] and
Ko \ Ly ! L, 2 ) [010] (sum of the twg. Middle: same fork along[001]. Bottom:
projection (b, /%) of the highest hole state fok along [001]
(18)  (right) and [111] (left). Solid lines: L,=1.90 nmL, =1.36 nm.

for j=x, X, y, y. Then, we calculate the total recombination

rate forx andz polarizations using Eq.1)

<W<x>>=AEo; [ iel Pxl )| 2= 2AEoBZM(L | )?,

<W<z>>=AE02j (Wil Pl )| >=4AEB?M(L )2,
(19)

where j e {X, X, y,y}. The degree of linear polarization is

equal to

Wi — (W 1
UZ%‘E when M(L,)#0. (20

The oscillatory functiorM (L | ) simplifies because it fac-

Dashed lineL;=2.17 nm|., =1.63 nm.

1/3 and depends oh, (it is independent oL, whenL,
>L ). The origins of this dependence are twofold: the
coupling betweerx,X,y,y valleys that leads to a splitting of
the four degenerate state@;) the electron and hole states
have nonzero projections on all valence and conduction
bands. We discuss these effects in the Appendix.

The mixing of the states arising from X, y, y valleys is
confirmed by the analysis of the tight-binding wave func-
tions that shows, in addition, that the couplingz@ndz
valleys is weak in the case of boxésig. 5). In the case of
the elongated ellipsoids discussed in the preceding section,
the coupling toz andz is stronger(Fig. 4), in particular in
small nanostructures. The main consequence is that the opti-
cal matrix elements between electron and hole states include

torizes both in the numerator and in the denominator. It icombinations of terms likeM(L,) and M(L;) which are
then straightforward to calculatein the case of a box with oscillatory functions[Eq. (18)]. As these functions do not

L,<L, . The lowest electron states arise franandz val-
leys. The optical matrix elements are

(Wedp iy =B | o IF () Pdr=pmL,),

<‘r/fze| pz|’/’h>:0’ (21)

simplify in the expression ofr [Eq. (20)], it leads to strong
oscillations for ellipsoidgthe intervalley couplings also con-
tribute to the oscillations; see AppengidHowever, for the
largest ones, because the lower electron states mainly arise
from x,X,y,y valleys, the contribution oM (L) becomes
smaller, which explains the positive value @fin average.

An important point to consider is the accuracy of our

with similar results for/. . The recombination rates become tight-binding predictions. In particular, we need to discuss

(W(x))=2AEB°M(L,)?,
(W(2))=0, (22)
which gives, for the degree of polarization

o——1 when M(L,)#0. (23

effects beyond one-particle approximations such as the
electron-hole interaction in the excited state. Thus, we have
performed calculations oé taking into account excitonic
effects. Following the procedure of Refs. 17 and 21, the ex-
citon wave function is written as a linear combination of
Slater determinants built from one-electron states and corre-
sponding to single electron-hole excitations. The Hamil-
tonian includes the screened electron-hole Coulomb interac-

Thus, this simple EMA model qualitatively explains the tion, exchange interactions and spin-orbit coupling. Details

tight-binding results of Fig. 3 where>0 whenL;>L, and
o~—1 whenlL;<L, . However, whenL,>L, , the tight-
binding calculations predict a value of which differs from

on the calculation can be found in Refs. 17 and 21. Applied
to elongated ellipsoids, we obtain results qualitatively very
close to those of single-particle calculations with many os-
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that the silicon nanocrystals are embedded in an effective
medium with a lower dielectric constaht® However, recent
photoluminescence experiments on porous silicon show that
the positive polarization degree is larger under resonant ex-
citation than under nonresonant conditidhshis is inter-
preted by the authors by a polarization of the dipole moment
in anisotropic nanocrystals, which is totally supported by our
calculations. In addition, the photoluminescence observed
under resonant excitation shows onsets related to no-phonon,
TO, and TA phonon-assisted transitions. The enhancement
of the polarization degree compared to the nonresonant spec-
trum is obtained in the three cases, once again in agreement
r K [100] X with our results.
In conclusion, we have performed tight-binding calcula-

FIG. 6. The Si band structure near the gap region along thdéions of the degree of linear polarizatian in asymmetric
(100 direction. The processes for phonon-assisted transitions argilicon nanocrystalso presents large oscillations with re-
illustrated. spect to the size of the clusters. This effect, which has no

counterpart in the case of direct-gap semiconductors, is at-

cillations for small sizes and a positive value in average foitributed to the valley degeneracy induced by the indirect na-
larger sizes. This result is not surprising, because in théure of the silicon band gap. We also show that for an en-
strong confinement regime, the main effect of the electronsemble of crystallites elongated in a same direction, the light
hole interaction in confined systems is just to shift downwardshould be preferentially polarized along this direction.
the transition energy and to split states arising from the sam&imple effective mass theory is used to interpret this effect.
multiplet (equivalent valleys Another point to consider is The results are in agreement with the experiments on porous
the importance of phonon-assisted transitions that remaisilicon and silicon nanocrystals.
more efficient than no-phonon onksWe analyze these pro-

Energy (eV)

cesses in the next section. ACKNOWLEDGMENTS
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We consider for example the ellipsoids with a long axis 1due du Nord is UMR 8520 of CNRS.
oriented alond100] and witha=v2b=2c (Fig. 2. Com-
paring no-phonon and phonon-assisted transitions, we see APPENDIX
that the behavior of is quite similar. In particularg tends )
to become positive at large sizes and the oscillations at small N @ L, XL, XL, box bounded by(100 planes withL,
sizes are correlated. To understand whyends to become >L. . the lowest electron statédenotedyye, e , ye thye)
positive in average, we can use the qualitative picture of Figare associated with the four conduction valleys,y,y. This
6. The electron-hole transition involves an electron- or holevalley degeneracy predicted in EMA is lifted in actual sys-
phonon scattering event. Thus, the vertical optical transitioh€ms, giving rise to the so-called valley splittings observed in
occurs, either near a conduction-band minimk”qqko, or Si inversion |ayer§.2 An examination of the tlght-blndlng
neark=0. In the first caseK=ko), the discussion of the results shows that the couplings between states are not con-
preceding section about the polarization of no-phonon transtant but are oscillatory functions of size and are strongly
sitions in the vicinity of 100] axes can be used here, leading dependent on the boundary conditidfigThis effect can be
to the same conclusion. In the second case @), we re- roughly understood using EMA wave functions. The cou-
cover the situation of a direct-gap material, where the opticaPling between two states;e and ;.¢(j’ #]) is given by
dipole moments are polarized along the long axis of a
nanostructuré?® Therefore, the two channels for the transi-

tion lead to a positive degree of polarization. The oscillations <‘/’19|H | ’pi’9>:§, F(k=koj)"F(k’ —koj)
of o at small sizes arise from the intervalley couplings that '
are oscillatory functions of the siZéppendi¥. The oscilla- X(Wie kI HI¥rc k), (A1)

tions for no-phonon and phonon-assisted transitions are cor-
related because they both depend on the decomposition #fhereH is the Hamiltonian of the nanocrystal. Writirg
the electron wave function in the six valleys of the conduc-=Hpuk+U whereHy, is the bulk Hamiltonian ant is the
tion band. confining potential, we obtain

Thus, our calculations predict an average positive polar-
ization degree, in agreement with many experiments on po-

rous silicon or on silicon nanocrystds'? However, as men- (dielH| ’pj’e):g, F(k—koj)*F(k' —koj)
tioned in the introduction, a large part of the polarization '
degree may be explained by dielectric effects due to the fact X(Wie U rc k) (A2)
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The matrix element ob) gives rise to interference effects W,(x)=AEB*M(L )2 Wy(z)=0,
between Bloch states at the surfa@esimilar term is dis-
cussed in Ref. 33 By comparison to Eqs(16)—(18), and W3(x) =AEyB*M(L,)? Ws(2)=4AEeB°M(L,)2
sinceko;# Koj, We are easily convinced thatye|H| ;) (A7)

is an oscillatory function of the siz@ decreasing function  then e calculate the total recombination rates in terms

becausdJ takes a nonzero value only in the vicinity of the o the occupation numberfs ,f,, 5 of the orbitals, neglect-
surface. It is clear that a quantitative treatment of theseing states higher in energje., 2f,+f,+fa~1)

terms cannot be done using EMA since it depends on the

surface. However, the symmetry of the system requires that (W(x))=(fo+f3) AEoB*M(L,)?,
the coupling matrix between the four states has the followin
form P ? (W(2))=4f3AEB*M(L,)?, (A8)
0 5 s which gives for the degree of polarization
Y
05 8 3fz—f5
5 8 0 y| 3T l2
5 5 v O At low temperature, because the respective position of the

three levels quickly changes from one crystallite to another
where y and 6 are functions ofl, ,L; and of the boundary and because only the lowest state is populatedan take
conditions. The corresponding eigenvalues and eigenvectopsitive or negative values as confirmed by the tight binding
are calculations. For exampldz=1,f,=0 giveso=23/5, while
f3=0,f,=1 giveso=—1. When the temperature increases
E.— —~ twofold de enerat"l’llxe_ e and hye— Pye and the occupancy of the levels becomes uniforfn (
1 v 9 Y vi o ~1/4), we recover the preceding result thatends towards
(A4)  1/3. The situation of Fig. 3 is actually intermediate between
these two extremes as remains positive forL,>L, but

(UxeT ¥xe) — (Pyet Pye) differs from 1/3. WhenL;>L, , the splitting between the
Ex=v—26, 2 ' (AS) three levels becomes independentlgn which explains the
saturation ofc with respect toL; on Fig. 3. Thus, EMA
(et Ie) + (Pyet i) calculations explain qualitatively the tight-binding results.
Ez=vy+26, 5 : (A6)  However, it remains rather crude as shown by the analysis of

the tight-binding wave function&~igs. 4 and b The elec-
Let us already notice that the order Bf and of E, and  tron states have also a small component on the Bloch states

E; changes from one crystallite to another. The probabilitiestising fromz andz valleys. More generally, confined elec-
of transition are easily derived from Eq4.6)—(18), respec- tron and hole states have nonzero projections on all the

tively, for the three levels band$® that lead to nonnegligible terms in the optical matrix
elements. Obviously, these effects cannot be described in
Wi(X)=W,(2)=0, EMA.
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