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Luminescence polarization of silicon nanocrystals
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We consider theoretically the polarization of the luminescence of Si nanocrystals that arises from the
anisotropy of the optical moments. No-phonon and phonon-assisted optical transitions are calculated in tight
binding and interpreted using effective-mass theory. In contrast to direct-gap semiconductors, we show that
simple selection rules cannot be established in Si nanocrystals because the degree of linear polarization
presents large oscillations with respect to the size of the clusters. This effect is due to the indirect nature of the
Si band gap that leads to a dependence of the optical matrix elements on the oscillatory overlaps between
electron and hole states in momentum space. However, in a statistical ensemble of crystallites elongated in a
given direction and with size larger than 2–3 nm, we obtain that the light is in average polarized along this
direction, in agreement with the experiments.
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I. INTRODUCTION

The investigation of low-dimensional semiconduct
structures has attracted much attention in recent years
particular, the spectroscopy of optical transitions across
band gap has proved to be a powerful method to study t
electronic states. In asymmetric structures, the optical tra
tions have often a strong dependence on the light polar
tion. This effect has been extensively studied in III–V h
erostructures such as quantum wells1 or wires2–4 and in
II–VI nanocrystals.5,6 All these studies concern direct-ga
semiconductors where the polarization anisotropy mainly
sults from two independent factors. The first one comes fr
the anisotropy of transition dipole moments and the sec
one arises from a difference between the dielectric cons
of the semiconductor and its surrounding medium~the so-
called dielectric model!. On the theoretical side, the predi
tion of anisotropic dipole moments is usually based on
framework of the effective-mass approximation1,4,6 ~EMA!
that provides simple interpretations of the optical select
rules. The situation is not so clear in indirect-gap semic
ductors like silicon. Studies of the optical properties of s
con nanostructures have been stimulated by the discove
the strong luminescence of porous silicon7 that is sometimes
characterized by a huge degree of linear polarization~up to
30%!.8–12 An interpretation of these experiments has be
proposed on the basis of the dielectric model9,10 where po-
rous silicon is described by ellipsoidal Si crystals embed
in an effective dielectric medium with a lower dielectric co
stant. The polarization anisotropy that results from the dip
moments is not considered in these models. Actually,
degree of polarization coming from this effect is not know
as a corresponding theory is missing. More generally,
selection rules applicable to optical transitions in anisotro
nanocrystals of indirect-gap semiconductors have not b
established in contrast to direct-gap ones. In silicon,
complication arises from the fact that phonon-assisted t
sitions are more efficient than no-phonon ones in a w
range of nanocrystal sizes.13,14 The aim of this paper is to
study theoretically the anisotropy of the optical transitions
0163-1829/2001/63~20!/205301~8!/$20.00 63 2053
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asymmetric silicon nanocrystals. We present detailed tig
binding calculations on clusters with various shapes a
sizes. We show that, in contrast to direct-gap semicond
tors, the polarization anisotropy is extremely sensitive to
boundary conditions, i.e., the surface of the quantum str
ture. A consequence is that the degree of linear polariza
can vary completely between two crystallites with very clo
shapes. We also show that, for a statistical distribution
nanocrystals with elongated shapes oriented in a given di
tion, the luminescence should be polarized in average al
this direction. We provide simple interpretations of the tigh
binding results using EMA.

The paper is organized as follows. We first describe
tight-binding technique used to calculate the recombinat
rates for no-phonon and phonon-assisted transitions. In
III, we present the results for no-phonon transitions that
interpret using a method of projection of the confined el
tron and hole states in momentum space. In Sec. IV,
analyze these results using EMA calculations. In Sec. V,
show that the results for phonon-assisted transitions are c
to the no-phonon case and we compare the results to
experiments.

II. TIGHT-BINDING CALCULATIONS

The first step of our paper is the calculation of the ele
tron and hole states of silicon nanocrystals. We use a tig
binding technique with a minimal basis set of ones and three
p orbitals on each silicon atom. The Hamiltonian includ
interactions up to third-nearest neighbors and three ce
terms. Their parametrization, described in Ref. 15, allo
one to get a very good silicon band structure that is a ne
sary condition to obtain correct predictions of the confin
ment energies.16 The surfaces of such nanostructures are p
sivated by hydrogen atoms as in Ref. 17.

The second step of our paper is the calculation of
optical transition rates with respect to the polarization of
light. We first consider the direct recombination of electro
hole pairs, i.e., no-phonon processes. The radiative recom
nation rate is defined from the dipole matrix elements18
©2001 The American Physical Society01-1
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G. ALLAN, C. DELERUE, AND Y. M. NIQUET PHYSICAL REVIEW B63 205301
Wi f ~e!5AEi f u^ i ue•pu f &u2, ~1!

whereui& is the initial state of the electron in the conductio
band anduf& is the final state in the valence band~i.e., the
hole state!. Ei f is the energy of the transition,e is the vector
of the light polarization andA is a constant. The momentum
matrix element̂ i ue•pu f & is developed in the tight-binding
basis where the atomic orbitals are replaced by Gaussia19

This method has already been applied to Si~Ref. 20! and
CdS ~Ref. 21! nanocrystals, and to the isolated dangli
bond in silicon.22 To include the effect of the temperatur
we define a thermal average of the recombination rates

^W~e!&5

(
i , f

Wi f ~e!exp~2Ei f /kT!

(
i , f

exp~2Ei f /kT!

. ~2!

This equation is justified by the fact that the thermaliz
tion of the electron and the hole after excitation in the ba
is more efficient than the radiative recombination~the radia-
tive recombination rate is smaller than 107 s21 as already
shown in Ref. 20!. Then we calculate the degree of line
polarization of the emitted light that we define as usual b

s5
^W~ei!&2^W~e'!&

^W~ei!&1^W~e'!&
, ~3!

whereei ande' are two orthogonal vectors~ei will be fixed
with respect to the longest axis of the nanostructure!. It is
important to point out thats calculated here only describe
the polarization anisotropy that arises from the anisotropy
the dipole moments. Other factors like dielectric effects
which would make the constantA in Eq. ~1! dependent on
the polarization vectore—are not considered here since th
have already been analyzed in detail in references suc
Ref. 9.

To calculate the recombination rates for phonon-assis
transitions, we start again from Eq.~1!. But now, the states
ui& and uf& include the coordinates of the electron and of t
nuclei. Working within the adiabatic approximation, the m
trix element of the momentum becomes

^ i ue•pu f &5^x i u^c i ue•puc f&ux f&. ~4!

ux i& and ux f& are the vibrational states of the system th
are functions of the nuclear coordinates. They are built in
harmonic approximation from independent harmonic osci
tors corresponding to 3N normal modesQj ~N is the number
of atoms in the system!. uc i& and uc f& in Eq. ~4! are the
electronic wave functions that can be defined for any se
nuclear coordinates. We can expand the momentum ma
element to first order in the normal modes

^c i upuc f&5^c i upuc f&01(
j 51

3N

A j^x i uQj ux f&, ~5!

whereA j5(]^c ipuc f&/]Qj )0 . The index 0 means that th
quantities are calculated at the equilibrium positions. Us
the transformationQj5A\/2v j (aj

11aj ) as a function of the
20530
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creation and annihilation operators and averaging overnj ,
the number of phonons in modej, we obtain the following
recombination rates for one-phonon processes after stra
forward algebra ~details will be given in another
publication23!

one-phonon emission~\v j !:Wi f ~e!

'KUA \

2v j
A j•eU2

$n̄ j11%, ~6!

one-phonon absorption~\v j !:Wi f ~e!

'KUA \

2v j
A j•eU2

n̄ j , ~7!

where n̄ j5@exp(\vj /kT)21#21. The heavy part of the
work is the evaluation of the coupling coefficientsA j , which
are calculated numerically for all the modesj of the quantum
dot. For each modej, it requires to calculate the wav
functions—therefore the Hamiltonian—and the optical m
trix elements when the nuclei are displaced from their eq
librium sites according toQj . The matrix elements of the
Hamiltonian are made dependent on the atomic positions
lowing the rules of Ref. 24. The vibrational modes of t
nanocrystals are calculated using a valence force fi
model.25 The main results of these calculations will be pu
lished elsewhere,23 as we concentrate here on the polariz
tion. To summarize these results, we confirm that the tra
tions are mainly assisted by transverse-optic~TO! and
longitudinal-optic modes, with smaller contributions fro
transverse-acoustic~TA! phonons, in agreement with the the
oretical work of Ref. 13 and with the experiments.14,26

III. TIGHT-BINDING RESULTS FOR NO-PHONON
TRANSITIONS

We have mainly studied Si dielectric ellipsoids as they
considered in the microscopic description of porous silico9

The ellipsoids are defined as usual by three principal axe
respective lengtha, b, c, with a oriented along a@100# axis
and b5c5a/&. The polarization degrees for no-phonon
transitions is plotted in Fig. 1 with respect toa (T
5300 K). We see that fora,2 nm, s is scattered and get
positive or negative values, but for larger sizes,s tends to
become positive in average. It is particularly interesting
compare thus with the results obtained for ellipsoids with
similar shape but with a long axis oriented along a@110#
direction~dashed lines in Fig. 1!. We see that the two curve
do not coincide in spite of the great similarity of the nano
rystals. However, in both cases,s oscillates between positive
or negative values for small lengths~,3 nm! and tends to
remain positive for bigger crystallites. Similar behavior
obtained for ellipsoids with the long axisa oriented along
@100# but with a5&b52c ~Fig. 2!. All these results are
rather surprising at first glance and they have no equivale
in the case of direct-gap semiconductors.
1-2
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LUMINESCENCE POLARIZATION OF SILICON NANOCRYSTALS PHYSICAL REVIEW B63 205301
In many experiments~for example, the photolumines
cence of porous silicon!, one must take into account that th
samples are heterogeneous. Since there is noa priori way for
choosing a particular distribution of crystallite sizes a
shapes, the problem is inherently complex taking into
count the oscillations ofs. However, we have seen in th
preceding section thats becomes positive in average fo
sizes larger than 2–3 nm. We have checked that this con
sion holds true for other types of asymmetric nanocrys
such as cylinders or boxes~parallelepipeds!. Figure 3 shows
the degree of linear polarization calculated for box
bounded by~100! planes and of dimensionsL' ,L' ,L i in the
x, y, zdirections respectively.s is defined with respect to th
z axis (ei5z). WhenL i5L' ~cubic crystallites!, s is equal
to zero as imposed by the symmetry. WhenL i.L' , s is
positive and, whenL i,L' , s is negative, which means tha
the light is always polarized along the largest dimension.
also note that there are less oscillations than in the case o
ellipsoids~however, the results obtained at 10 K again sh
large oscillations!.

FIG. 1. The polarization degree for Si ellipsoids oriented alo
a @100# direction ~straight line! or a @110# direction ~dashed line!
calculated as a function of the length of the long axis, which
equal to& times the length of small ones (T5300 K).

FIG. 2. Polarization degree for Si ellipsoids oriented along
@100# direction calculated as a function of the length of the lo
axis (T5300 K). The@100# ellipsoid axis is equal to& times the
@010# one and to two times the@001# one~straight lines: no-phonon
transitions, dashed lines: phonon-assisted transitions!.
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IV. INTERPRETATION USING EFFECTIVE-MASS
THEORY

To understand the peculiar behavior of the polarizati
we analyze in detail the nature of the no-phonon transitio
We come back to important points that have been discus
in detail in Refs. 20, 27. Because of the indirect gap, ba
edge transitions in bulk Si are only possible with the ass
tance of phonons to supply the momentum in a second-o
process. In nanocrystals, the strong confinement of the e
tron and hole wave functions in real space leads to a sp
of the wave functions in momentum space. Thus, radia
recombination can proceed by direct no-phonon transiti
and the oscillator strength is directly proportional to the
ciprocal space overlap. To illustrate this effect, we plot
Fig. 4 the weight of the lowest electron statece and of the
highest hole statech in momentum space. To obtain thes
values, we project the tight-binding eigenfunctions in the b
sis of the bulk states

FIG. 4. Top: projection (uan,ku2) of the lowest electron state in
an ellipsoid on the bulk statesCn,k for k along @100# and @010#
~sum of the two!. Middle: same fork along@001#. Bottom: projec-
tion (ubn,ku2) of the highest hole state fork along@001# ~right! and
@111# ~left!. Solid lines: ellipsoid long axis of 1.90 nm, short axis
1.36 nm. Dashed line: long axis of 2.17 nm, short axis of 1.36 n

g

s

a
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G. ALLAN, C. DELERUE, AND Y. M. NIQUET PHYSICAL REVIEW B63 205301
ce5(
n,k

an,kCn,k ,

ch5(
n,k

bn,kCn,k , ~8!

where the indexn enumerates the bands. The dipole mat
element is given by

^ceue•puch&5 (
n,n8,k

an,k* bn8,k^Cn,kue•puCn8,k&. ~9!

Figure 4 shows that the overlap (an,k* bn8,k) of ce andch
in momentum space is small becausece is centered at the
conduction-band minima (k5k0) and ch is centered atk
50. It explains why the radiative lifetime remains long
silicon crystallites.20,27As an,k andbn8,k are oscillatory func-
tions of k ~Fig. 4 and below!, oscillatory factors enter the
optical matrix elements and the degree of polarization.
additional source of scattering comes from the fact t
^Cn,kue•puCn8,k& is not a constant with respect tok.

To understand the origin of the average linear polarizat
of the no-phonon transitions along the long axis of the na
structures, we use the EMA, following closely Ref. 27. Ev
if the EMA has been designed to treat shallow potentials
semiconductors, its application to semiconductor hete
structures and nanostructures is now widely developed.1 The
advantage of the EMA is its simplicity that allows us to g
analytic results. However, its accuracy~e.g., for the band-gap
energy! is not sufficient in many situations, in particula
compared to more elaborate techniques like tight bind
~see the discussion in Ref. 28!. We consider a box of volume
L'L'L i . Under the assumption of an infinite barrier at t
boundary of the crystallite, the envelope function for ele
trons and holes is

F~r !5A 8

L'
2 L i

cosS px

L'
D cosS py

L'
D cosS pz

L i
D

with
2L'/2<x,y<L'/2

2L i/2<z<L i/2
. ~10!

One difficulty in the problem is that there are six equiv
lent ~100! electron valleys in the Si conduction band~de-
notedx, x̄, y, ȳ, z, z̄, in the following!. We assume for the
moment that the treatment of the six minima can be dec
pled. Because these valleys are anisotropic with a longit
nal massml50.92m0 and a transverse massmt50.19m0 ,
the confinement energies are~in atomic units!

DE5
1

2ml
S p

L i
D 2

1
1

mt
S p

L'
D 2

, ~11!

for states arising fromz and z̄ valleys and

DE5
1

2ml
S p

L'
D 2

1
1

2mt
F S p

L'
D 2

1S p

L i
D 2G , ~12!
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for x, x̄, y, ȳ. In the case of a box withL i.L' , the lowest
electron states arise from the four equivalent minima@Eq.
~12!#. Following Eqs.~8! and~9!, the evaluation of the dipole
matrix elements requires us to write the total wave funct
in the basis of the bulk statesCn,k . Since the coupling be-
tween the different bands is neglected~in particular, between
the conduction band valleys!, the sum in Eq.~8! is restricted
to the highest valence bandCn,k for the hole statech and to
the lowest conduction bandsC jc,k for an electron statec je ~j
enumerates the four equivalent minima!. Following standard
EMA ~Refs. 27, 29!, we obtain

ch5(
k

F~k!Cn,k ,

c je5(
k

F~k2k0 j !C jc,k , ~13!

whereF(k) is the Fourier transform of the envelope functio
andk0 j is the wave vector at the conduction-band minimu
j. Thus, the dipole matrix element@Eq. ~9!# is given by

^c jeue•puch&5(
k

F~k2k0 j !* F~k!^C jc,kue•puCn,k&.

~14!

We need to calculate this matrix element for two pola
izations ei5z and e'5x. Let us consider specifically the
electron statecxe corresponding to thex valley @k0x
'0.89(2p/a)x#. SinceF(k) andF(k2k0x) are centered a
k50 andk5k0x , respectively, we expect that the maximu
of their overlap@F(k2k0x)* F(k)# is in the vicinity of the
@100# axis of the momentum space. Thus, we have analy
the optical matrix element̂Cxc,kue•puCn,k& in this region
using the tight-binding wave functions of bulk silicon. W
obtain that forx polarization, the matrix element is equal
zero along the@100# axis. Forz polarization, it is not equal to
zero and we will assume that it is approximately independ
of k.30 Therefore, in the vicinity of the@100# axis, we can
write to the first significative order

^Cxc,kupxuCn,k&'a~ky1kz!,

^Cxc,kupzuCn,k&'b, ~15!

wherea and b are two complex scalars. Inserting Eq.~15!
into Eq. ~14!, we obtain

^cxeupxuch&5a(
k

F~k2k0x!* F~k!~ky1kz!50,

^cxeupzuch&5b(
k

F~k2k0x!* F~k!

5bE eik0x•ruF~r !u2dr , ~16!

^cxeupxuch& is equal to zero becauseF(k2k0x) and F(k)
are invariant when one changesky into 2ky due to the sym-
1-4
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LUMINESCENCE POLARIZATION OF SILICON NANOCRYSTALS PHYSICAL REVIEW B63 205301
metry of the envelope function. The same result is obtai
for the electron states arising from thex̄ valley. For they
valley @k0y'0.89(2p/a)y#, the same analysis leads to

^cyeupxuch&5^cyeupzuch&5bE eik0y•ruF~r !u2dr ,

~17!

and to identical results forc ȳe . The integrals in Eqs.~16!
and ~17! are equal by symmetry27

E eik0 j •ruF~r !u2dr

5M ~L'!

52
1

pk0 j
S 2p

L'
D 3Fk0 j

2 2S 2p

L'
D 2G21

sinS k0 jL'

2 D ,

~18!

for j 5x, x̄, y, ȳ. Then, we calculate the total recombinatio
rate forx andz polarizations using Eq.~1!

^W~x!&5AE0(
j

u^c jeupxuch&u252AE0b2M ~L'!2,

^W~z!&5AE0(
j

u^c jeupzuch&u254AE0b2M ~L'!2,

~19!

where j P$x, x̄, y, ȳ%. The degree of linear polarization i
equal to

s5
^W~z!&2^W~x!&

^W~z!&1^W~x!&
→ 1

3
when M ~L'!Þ0. ~20!

The oscillatory functionM (L') simplifies because it fac
torizes both in the numerator and in the denominator. I
then straightforward to calculates in the case of a box with
L i,L' . The lowest electron states arise fromz and z̄ val-
leys. The optical matrix elements are

^czeupxuch&5bE eik0z•ruF~r !u2dr5bM ~L i!,

^czeupzuch&50, ~21!

with similar results forc z̄e . The recombination rates becom

^W~x!&52AE0b2M ~L i!
2,

^W~z!&50, ~22!

which gives, for the degree of polarization

s→21 when M ~L i!Þ0. ~23!

Thus, this simple EMA model qualitatively explains th
tight-binding results of Fig. 3 wheres.0 whenL i.L' and
s'21 whenL i,L' . However, whenL i.L' , the tight-
binding calculations predict a value ofs, which differs from
20530
d

s

1/3 and depends onL' ~it is independent ofL i , when L i

@L'!. The origins of this dependence are twofold:~i! the
coupling betweenx,x̄,y,ȳ valleys that leads to a splitting o
the four degenerate states;~ii ! the electron and hole state
have nonzero projections on all valence and conduc
bands. We discuss these effects in the Appendix.

The mixing of the states arising fromx, x̄, y, ȳ valleys is
confirmed by the analysis of the tight-binding wave fun
tions that shows, in addition, that the coupling toz and z̄
valleys is weak in the case of boxes~Fig. 5!. In the case of
the elongated ellipsoids discussed in the preceding sec
the coupling toz and z̄ is stronger~Fig. 4!, in particular in
small nanostructures. The main consequence is that the
cal matrix elements between electron and hole states inc
combinations of terms likeM (L') and M (L i) which are
oscillatory functions@Eq. ~18!#. As these functions do no
simplify in the expression ofs @Eq. ~20!#, it leads to strong
oscillations for ellipsoids~the intervalley couplings also con
tribute to the oscillations; see Appendix!. However, for the
largest ones, because the lower electron states mainly
from x,x̄,y,ȳ valleys, the contribution ofM (L i) becomes
smaller, which explains the positive value ofs in average.

An important point to consider is the accuracy of o
tight-binding predictions. In particular, we need to discu
effects beyond one-particle approximations such as
electron-hole interaction in the excited state. Thus, we h
performed calculations ofs taking into account excitonic
effects. Following the procedure of Refs. 17 and 21, the
citon wave function is written as a linear combination
Slater determinants built from one-electron states and co
sponding to single electron-hole excitations. The Ham
tonian includes the screened electron-hole Coulomb inte
tion, exchange interactions and spin-orbit coupling. Deta
on the calculation can be found in Refs. 17 and 21. Appl
to elongated ellipsoids, we obtain results qualitatively ve
close to those of single-particle calculations with many

FIG. 5. Top: projection (uan,ku2) of the lowest electron state in
L'3L'3L i box on the bulk statesCn,k for k along @100# and
@010# ~sum of the two!. Middle: same fork along @001#. Bottom:
projection (ubn,ku2) of the highest hole state fork along @001#
~right! and @111# ~left!. Solid lines: L i51.90 nm,L'51.36 nm.
Dashed line:L i52.17 nm,L'51.63 nm.
1-5
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G. ALLAN, C. DELERUE, AND Y. M. NIQUET PHYSICAL REVIEW B63 205301
cillations for small sizes and a positive value in average
larger sizes. This result is not surprising, because in
strong confinement regime, the main effect of the electr
hole interaction in confined systems is just to shift downw
the transition energy and to split states arising from the sa
multiplet ~equivalent valleys!. Another point to consider is
the importance of phonon-assisted transitions that rem
more efficient than no-phonon ones.13 We analyze these pro
cesses in the next section.

V. PHONON-ASSISTED TRANSITIONS

We consider for example the ellipsoids with a long axisa
oriented along@100# and with a5&b52c ~Fig. 2!. Com-
paring no-phonon and phonon-assisted transitions, we
that the behavior ofs is quite similar. In particular,s tends
to become positive at large sizes and the oscillations at s
sizes are correlated. To understand whys tends to become
positive in average, we can use the qualitative picture of F
6. The electron-hole transition involves an electron- or ho
phonon scattering event. Thus, the vertical optical transi
occurs, either near a conduction-band minimumk5k0 , or
near k50. In the first case (k5k0), the discussion of the
preceding section about the polarization of no-phonon tr
sitions in the vicinity of@100# axes can be used here, leadi
to the same conclusion. In the second case (k50), we re-
cover the situation of a direct-gap material, where the opt
dipole moments are polarized along the long axis o
nanostructure.4,6 Therefore, the two channels for the trans
tion lead to a positive degree of polarization. The oscillatio
of s at small sizes arise from the intervalley couplings th
are oscillatory functions of the size~Appendix!. The oscilla-
tions for no-phonon and phonon-assisted transitions are
related because they both depend on the decompositio
the electron wave function in the six valleys of the condu
tion band.

Thus, our calculations predict an average positive po
ization degree, in agreement with many experiments on
rous silicon or on silicon nanocrystals.8–12However, as men-
tioned in the introduction, a large part of the polarizati
degree may be explained by dielectric effects due to the

FIG. 6. The Si band structure near the gap region along
~100! direction. The processes for phonon-assisted transitions
illustrated.
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that the silicon nanocrystals are embedded in an effec
medium with a lower dielectric constant.9,10 However, recent
photoluminescence experiments on porous silicon show
the positive polarization degree is larger under resonant
citation than under nonresonant conditions.31 This is inter-
preted by the authors by a polarization of the dipole mom
in anisotropic nanocrystals, which is totally supported by o
calculations. In addition, the photoluminescence obser
under resonant excitation shows onsets related to no-pho
TO, and TA phonon-assisted transitions. The enhancem
of the polarization degree compared to the nonresonant s
trum is obtained in the three cases, once again in agreem
with our results.

In conclusion, we have performed tight-binding calcu
tions of the degree of linear polarizations in asymmetric
silicon nanocrystals.s presents large oscillations with re
spect to the size of the clusters. This effect, which has
counterpart in the case of direct-gap semiconductors, is
tributed to the valley degeneracy induced by the indirect
ture of the silicon band gap. We also show that for an
semble of crystallites elongated in a same direction, the li
should be preferentially polarized along this directio
Simple effective mass theory is used to interpret this effe
The results are in agreement with the experiments on po
silicon and silicon nanocrystals.
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APPENDIX

In a L'3L'3L i box bounded by~100! planes withL i

.L' , the lowest electron states~denotedcxe ,c x̄e ,cye ,c ȳe!
are associated with the four conduction valleysx,x̄,y,ȳ. This
valley degeneracy predicted in EMA is lifted in actual sy
tems, giving rise to the so-called valley splittings observed
Si inversion layers.32 An examination of the tight-binding
results shows that the couplings between states are not
stant but are oscillatory functions of size and are stron
dependent on the boundary conditions.28 This effect can be
roughly understood using EMA wave functions. The co
pling between two statesc je andc j 8e( j 8Þ j ) is given by

^c jeuHuc j 8e&5(
k,k8

F~k2k0 j !* F~k82k0 j 8!

3^C jc,kuHuC j 8c,k8&, ~A1!

whereH is the Hamiltonian of the nanocrystal. WritingH
5Hbulk1U whereHbulk is the bulk Hamiltonian andU is the
confining potential, we obtain

^c jeuHuc j 8e&5(
k,k8

F~k2k0 j !* F~k82k0 j 8!

3^C jc,kuUuC j 8c,k8&. ~A2!
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The matrix element ofU gives rise to interference effect
between Bloch states at the surface~a similar term is dis-
cussed in Ref. 33!. By comparison to Eqs.~16!–~18!, and
sincek0 jÞk0 j 8 , we are easily convinced that^c jeuHuc j 8e&
is an oscillatory function of the size~a decreasing function
becauseU takes a nonzero value only in the vicinity of th
surface!. It is clear that a quantitative treatment of the
terms cannot be done using EMA since it depends on
surface. However, the symmetry of the system requires
the coupling matrix between the four states has the follow
form

F 0 g d d

g 0 d d

d d 0 g

d d g 0

G , ~A3!

whereg and d are functions ofL' ,L i and of the boundary
conditions. The corresponding eigenvalues and eigenvec
are

E152g, twofold degenerate,
cxe2c x̄e

&
and

cye2c ȳe

&
,

~A4!

E25g22d,
~cxe1c x̄e!2~cye1c ȳe!

2
, ~A5!

E35g12d,
~cxe1c x̄e!1~cye1c ȳe!

2
. ~A6!

Let us already notice that the order ofE1 and ofE2 and
E3 changes from one crystallite to another. The probabilit
of transition are easily derived from Eqs.~16!–~18!, respec-
tively, for the three levels

W1~x!5W1~z!50,
2053
e
he
at
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ors

s

W2~x!5AE0b2M ~L'!2 W2~z!50,

W3~x!5AE0b2M ~L'!2 W3~z!54AE0b2M ~L'!2.
~A7!

Then we calculate the total recombination rates in ter
of the occupation numbersf 1 , f 2 , f 3 of the orbitals, neglect-
ing states higher in energy~i.e., 2 f 11 f 21 f 3'1!

^W~x!&5~ f 21 f 3!AE0b2M ~L'!2,

^W~z!&54 f 3AE0b2M ~L'!2, ~A8!

which gives for the degree of polarization

s→ 3 f 32 f 2

5 f 31 f 2
when M ~L'!Þ0. ~A9!

At low temperature, because the respective position of
three levels quickly changes from one crystallite to anot
and because only the lowest state is populated,s can take
positive or negative values as confirmed by the tight bind
calculations. For example,f 351,f 250 givess53/5, while
f 350,f 251 givess521. When the temperature increas
and the occupancy of the levels becomes uniformf i
'1/4), we recover the preceding result thats tends towards
1/3. The situation of Fig. 3 is actually intermediate betwe
these two extremes ass remains positive forL i.L' but
differs from 1/3. WhenL i@L' , the splitting between the
three levels becomes independent onL i , which explains the
saturation ofs with respect toL i on Fig. 3. Thus, EMA
calculations explain qualitatively the tight-binding resul
However, it remains rather crude as shown by the analysi
the tight-binding wave functions~Figs. 4 and 5!. The elec-
tron states have also a small component on the Bloch st
arising fromz and z̄ valleys. More generally, confined elec
tron and hole states have nonzero projections on all
bands28 that lead to nonnegligible terms in the optical matr
elements. Obviously, these effects cannot be describe
EMA.
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