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Using hyperspherical coordinates and assuming the quasiseparability of the hypeRr&diusthe angular
variables(} in the wave functions, we obtain the low-lying adiabatic channel potertig(&r) for the two-
dimensionalD ~ centers. In the larg& limit, these potential curves converge to the thresholds of the energy
levels of the neutral donor. The energy eigenstates supported by these potentials are calculated. The correlation
patterns in these channels and the effect of symmetry are investigated.
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I. INTRODUCTION method was first introduced to the study of correlation ef-
fects in Coulombic systems by Macek in 1988and has
A two-dimensionaD ~ center consists of a fixed positive since developed into a powerful tool for understanding the
ion and two electrons, all confined to they plane. Its exis-  electron correlations in the doubly excited states in the spec-
tence was first observed by Huant, Najda, and Etienne itra of He and H.'3 A principal advantage of the method is
selectively doped GaAs-Ga,Al,As multiple-quantum-well the reduction of a multidimensional problem to a one-
structures, where the binding energies were measured as dimensional problem with a set of effective potentials. These
function of the external magnetic field. This has stimulatedpotentials provide qualitative and quantitative information
numerous theoretical investigations of the system. Using thabout the dynamics of the system. More importantly, the
effective-mass model and the diffusion quantum Montemethod automatically projects the quantum spectrum into vi-
Carlo approaci,Pang and Louie calculated the ground-statebrational bands iR, and thus gives a useful and convenient
energy of theD ™ center in a magnetic field, and found good classification scheme.
agreement between theory and experiments. Exact solutions Mathematically, the adiabatic hyperspherical method is
for a D~ center in a strong magnetic field have been ob-similar to the Born-Oppenheimer approximation in diatomic
tained independently by Larsen and McC&rbzyubenko! molecules(note that the mass-weighted hyperradius coin-
and MacDonald. The effects of electron-phonon interaction cides with the internuclear separation for diatomic systems in
and of the finite width of the quantum well have been studiedhe heavy-nucleus limitHence its validity is not obvious for
by Shi, Peeters, and Devredsehe effect of position devia- D~ centers and the like. In the Born-Oppenheimer approxi-
tion of the donor from the well center has been considered irmation, the wave functions of the molecules are expressed as
a number of recent studiés!® Two well-established facts the products of electronic and vibrational nuclear wave func-
from all these studies are that the electron correlation is ver§ions. This quasiseparability is conventionally justified by the
important in this small system and that the reduced dimenargument that the mass, of the electron is much less than
sionality considerably enhances the binding energies. the masdvl of the nucleus and thus the vibrational motion of
The aim of this paper is not to improve the previous cal-the nuclei is adiabatic in comparison with the faster elec-
culations to bring theory closer to experiment but to providetronic motion. However, this argument is not substantially
a comprehensive understanding of the low-lying spectrunsupported by the actual magnitude of the nonadiabatic
and the associated patterns of correlation of this simplestorrection* The correction is proportional ton{,/M)
Coulomb system with electron-electron interaction. In par-~ %, while precise calculationd*®for the low-lying states of
ticular, as will be shown in the following, the reduced di- H,™ and H, show that the nonadiabatic effect is only of the
mensionality not only enhances the binding but also resultsrder 10 °. Therefore, there are other underlying dynamical
in extra symmetries which do not have counterparts in thregactors responsible for the validity of the adiabatic approxi-
dimensions, and thus enriches the patterns of correlation. Fenation in molecular physics. As has been pointed out by
this purpose, in this paper we use the adiabatic hyperspherseveral authors’*°the slow variation of the strength of the
cal method to make a systematic study of the low-lying dou-Coulombic interactions withR, and the fact that the kinetic
bly excited states of thB ™~ center, where the correlation is energy associated with the motionfis much smaller than
even stronger than that in the ground state. The method ahat associated witf) due to the limited ranges of the angu-
expanding the trial wave function in terms of hypersphericalar variables, are responsible for the adiabaticity. There has
harmonic$® suffers from extremely slow convergence for been much work demonstrating that the eigenenergies and
the doubly excited states. The adiabatic hypersphericaigenfunctions of the doubly excited states calculated in the
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adiabatic hyperspherical approximation agree quite well with

the results of other theoretical calculations and with 20
experiments?2°-23There has also been some work demon- s
strating that the validity of the approximation weakly de- 10
pends on the masses of the particte€:?°In this paper, we 5
further assume that the reduced dimensionality should not C€y) o
influence the validity of the approximation. -5
In the following section, details of our numerical method -10 90
are described. The numerical results are presented in Sec. Ill. -15 60
Some concluding remarks are presented in Sec. IV. 3605 -l 20 &@
[a) 9 0 c&K
Il. FORMALISM 12 (deg)

For two electrons bound to a positively charged donor ion  FIG. 1. Three-dimensional plot &(a, 6;,) in hyperspherical
in an ideal two-dimensional quantum well, the Salinger  coordinates.
equation reads
the potential surface has a sharp drop caused by the electron-
1 1 1 1 1 ion attraction. This configuration is expected to be important
- Evrzl_ Evrzz_ r E"' [ W(ry,ra) =EW(ry,ry), in the ground state in which the total energy of the system is
) minimized. In the situation whem ~r,, which corresponds

. to a~45°, the potential surface depends critically é13.
wherer; andr, measure the positions of the two electrons\yhan = 45° andd,,~0 or 360°, the two electrons lie close

from the donor ion. Atomic unit¢a.u) are used throughout 4, each other in the configuration space, where a large
this paper. . _ ) electron-electron repulsion is expected. In Fig. 1 this repul-
With r andr,, the- S|mplest hyper_sphencal coordinates g, appears as two spikes at,@;,)=(45°,0) and
are obtained by substituting andr, with (45°,3609, respectively. &,60,,)=(45°,180°) is a saddle
N o point, over a large area around which the potential surface is
R=(ri+rg)™  a=tan=(ra/ry). @ very flat. The existence of a saddle point is important for the
The hyperradiu®k measures the size of the system, while thedoubly excited states to be discussed in the following.
hyperanglea represents the radial correlation of the motion
of two electrons. Thus the two vectors andr, are now A. The adiabatic-channel expansion method
replaced by four coordinateR((}), where Q)= («,0,,6,)
collectively denotes the three angles, withbeing the polar
angle of electron.
In hyperspherical coordinates, the Sdafirmer equation

(1) can be expressed as ¥(R,0)=R ¥ FL.(R®,(RQ), (6)
y23

Following Macek’s prescriptioh> we expand the trial
wave function in terms of the channel functions

1[ > 3 a9 A?(Q)] CQ)
Sl Trr ®rR |IT R (YRY wherey is the channel index. The channel functichg are
eigenfunctions of the eigenequation
=EV¥(R,Q), ()
where ue,(RQ)=U,(R)®,(R,Q), (7)
- - h
# [cosa sina\ d L2 L3 where
A2(Q)=———|—— ntcoZa Sita
Ja Sina  COSa)da COS a SIT « .~ 1A%+3/4 C(Q)
(4) U= E R2 + T (8)

is the grand orbital operator, and

Equation (7) is equivalent to solving the Schdimger
C(Q)= 1 1 N 1 5) equation at constant values Bf neglecting the derivatives
() cosa Sina \/1—sin(2a)c03012’ with respect toR. Therefore, the channel functions, para-
metrically depending o, represent standing waves on the
where 6,,= 6,— 0,. Equation(3) is similar in structure to potential surfac€ () shown in Fig. 1. Since all the channel
the Schrdinger equation of a hydrogen atom in four spacefunctions form a complete set, the expansion in @.con-
dimensions, with—C({}) as the effective nuclear charge. tains no approximation.
Figure 1 is a three-dimensional plot of the potential surface Substituting Eqgs.(6) into (3), multiplying Eq. (3) by
C(Q) on the plane &, 6,,) in the ranges & @<90° and 0 [® ,(R,Q)]* from the left, integrating over the angular vari-
<6,,<360°. In the limita~0 or «~90°, a configuration ables, and making use of E), we obtain a set of coupled
where one electron is much closer to the ion than the othegquations for determiningF ,(R)},
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1 d*F ,(R)
S+ UL(RIF( R>+E W, (R)F 0 (R)

=EF,(R), 9

where

1 92
W (R)==5{ $u(RQ)| =5 ¢,/ (R, Q)

d
<¢,L(R Q)‘ du (R, Q)> (10)
are the coupling matrix elements.

B. The channel functions and channel potentials

As a first step of the approach, our task is to find out th
eigensolutions of Eq(7). Generally speaking, exact analyti-
cal solutions of Eq(7) that are valid at any value do not
exist. However, its eigensolutions in the limits R0 and
R— o0 are readily obtained. From E(B), we note that when
R~0 the electrostatic potential enerdy({))/R becomes
negligible compared to the kinetic energy A{
+3/4)/(2R?). The channel function® ,(R) approach the
eigenfunctions ofA 2,

q)ﬂ(R’Q)_}Y{Vlllz}(Q) - NL1'2P|V1|2(a)e“l"le”Z"Z,
13

and the channel potential is

U R 1 NN +2)+3/4 "
W(R)— 5 = (12
wherex=2v+|l4]+|l,]. In Eq. (1), N'l}'2 is the normaliza-

tion constant, ancﬂ>'V1'2 is a Jacobi polynomial, given by

N 2(2v+ |1+ 1]+ D) wl (w1 + 1)1 M2
v Am?(v+[1 DN (v+]I)!
(13

and

Il B : s v (1]
S e ]
X (cosa) 2 Ml(sing)2v=R+lal (14

In the limit of R—c and a— /2 such that ;=R cosa
remains finite and,= R sina~R, the operatot) approaches
the hydrogenic Hamiltoniaki(r,), i.e.,

.. L2 r,cosf;, 1
U=H(r1)+¥+T+O =3/ (15)

Py

and?® ,(R,Q) andU ,(R) are

®,(RQ) - (r1)€'2%, (16)
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1

UM(R)HGn:—Em. (17)

In EqQ. (16), ¢, are two-dimensional hydrogenic wave func-
tions,

B (n—|1])! vz
()= T T 723+ 1!

|||Ln2||“)|(p)e*p/zei|ﬁ,

(18)
wherep=2r/(n+1/2). n is the principal quantum number,
n=0,1,2...; €, is the corresponding eigenenergj,") are

Laguerre polynomials. The right-hand side of Ef6) cor-
responds to the fact that electron 1 is in it orbital and
electron 2 has an angular momentum The asymptotic
results aR—» and «a—0 can be obtained by exchanging
the electron coordinates {,6,)«(r»,6,) in Egs.(15) and

e(16). Notice that the energy level, is (2n+ 1)-fold degen-

erate. The actual channel functions will be the superpositions
of (2n+1) hydrogenic wave functions in the largehmit.
The third term on the right-hand side of E3d5) represents
the dipole interaction between the neutral donor and the
outer electron 2, which is expected to lift the degeneracy in
ranges of finiteR.

In the hydrogenic wave functiong,,(p), whenp is re-
placed by hyperspherical coordinates, the polynomial parts

plILE'0(p) are readily reexpressed as the superposition of a
finite set of hyperspherical harmonics, while the exponen-
tially decaying factore™*’?, which changes drastically with

a whenR is large, cannot be reproduced by a small set of
hyperspherical harmonics. Due to this fact, any calculations
with hyperspherical harmonics as basis functions alone are
inaccurate. Taking into account this fact and the exchange
symmetry, we choose a model space spanned by the follow-
ing nonorthogonal functions:

|nv| o >e:{PIVl|2(a)e*RCOSa/(n+l/2)

+ Plvzll( a)e—R sina/(n+ 1/2)}

l2—1y
xcos{ 612

5 eiL@) (19)

and

|n1/| 1|2i >°={P|yl|2(a)efR cosal/(n+1/2)

+ P|V2|1( a,)efR sinal(n+ 1/2)}

l,—

| )
X sin— Lg,,lelt® (20

to diagonalize the operatdfr to obtain the channel functions
and channel potentials at each intermedRtealue. In Egs.
(19 and (20), L=1,+1, and ®=(6,+ 6,)/2. The super-
script “€” indicates that the functions are even abadiyt,
while the superscript ¢” indicates that the functions are
odd abouté,,. Throughout this paper, we do not write out
the spin function explicitly. It is sufficient to remember that
the spatially symmetric wave functioks.g.,|nvl4l,+ )€ and
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R (a.u.) FIG. 3. Three-dimensional surface charge-dengifR, «, 61,)

plots for thex=(0,1) channel of symmetryS®.
FIG. 2. Potential curves fotS® channels converging to the,

limit: n=(a) 0, (b) 1. The horizontal lines mark the bound states ridge of Fig. 1 is expected in these states. The nodal lines we
supported by the potentials. discuss here arise from symmetries. They appear at exactly
the same positions in any systems with the same symmetries.
They will be called inherent nodal lines hereafter. It will
soon be clear that these nodal lines primarily determine the
correlation pattern and the energy level of a channel.

[nvl,l,—)°) describe the spin-singlet states, while the spa
tially antisymmetric wave functionge.qg., |nvl;l,—)¢ and
[nvl,l,+4)°) describe the spin-triplet states.

From the structures of these basis functions, we mention
the following properties(a) SinceU is an even function of
61,, the hybridization of the basis sgnvl,l,+ )¢} with set From Eq.(8), we note that the relative magnitude of the
{Inwl1l,=)°} will never occur. Hence &’ and “o” are kinetic energy (\?+3/4)/(2R?) and the electrostatic poten-
good quantum numbers for the system. They can be used t@l energy C(Q)/R scales linearly withR. This slow
label an eigenstate. Here we would like to point out thatyvariation in relative magnitude of the two energy terms is
unlike in a three-dimensional system, the parity, now givercharacteristic of Coulomb interactions. The adiabatic ap-
by (—1)", is not useful in labeling a statéb) In the states proximation in this context assumes that the channel func-
represented bynvl,l,—)®or|[nvl;l1,—)° a=45°isanodal tions® ,(R,{) show only a slow variation with respect )
line. It prohibits the two electrons from penetrating close tothat is, to the first order of approximation, we can neglect the
the donor ion simultaneously and induces an energetic mazhannel couplings given by E@10). In this paper, unless
tion across the ridge in Fig. 1. This implies that the radialstated, we confine ourselves to this approximation. The wave
motions of the two electrons must be out of step. In the statefiinction then factorizes according to
represented bjnvll,+ )¢ or [nvlyl,+)°, a=45° is an an-
tinodal line. The radial motions of the two electrons are in v, (RQ)=F,(R)P,(RQ). (21
step.(c) In the states represented by basis functipnd |,
+)¢ with an odd value ofL or in states represented by All information about particle correlation is contained in the
[nvl;1,%)° with an even value of, #;,=180° is a nodal channel functions® ,(R,(2). The radial wave functions
line. It prohibits the two electrons from remaining on the F,(R) and the eigenenergies can be obtained by solving the
opposite sides of the donor ion. A swing motion along thedecoupled equations

C. The adiabatic approximation
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FIG. 4. Three-dimensional surface charge-dengif§R, «, 61,)
plots for thew=(1,1) and(1,2) channels of symmetryS®.
1 d%F ,(R) R (a.u.)

3 dR2 +U,(RF,(R)=EF,(R). (22
FIG. 5. Potential curves fofS® channels converging to the,

The channel potentiald ,(R) then have the physical mean- limit: n=(a) 0, (b) 1. The horizontal line marks the bound states
ing of potentials that control the motion along the coordinatesupported by the potential.

R. With a channel potentidll ,(R), by solving Eq.(22) we
generally obtain a series of eigenstates with their eigenener-
gies converging t&,, the threshold OUM(R) For a differ-
entU ,(R), we obtain a different series of eigenstates. States
within a series have similar correlation patterns. we define the surface charge density as

f |®,(R,Q)|?sina cosa dadf;,d0=1, (25

R,a,0:,)=|® (R,Q)|%sinacosa. 26
Ill. NUMERICAL RESULTS po(R.x, 01 =[P (R Q)["sina cosa 26

The a dependence o is defined as the radial correlation;
the #,, dependence op is defined as the angular correla-
tion.

In this section, to avoid tediousness, we limit our numeri-
cal analysis to theL=0 states with various symmetries.
Then the basis functions are simplified to

Invl i>e:[e—Rcosm(n+ 1/2) A. The 'S® channels

The channel functions in théS® symmetry can be ex-
pressed as superpositions of the basis functiond + ).
They are the channels with no inherent nodal lines. Hence,
among the channels with various symmetries, they are ex-

I +>0:[e,RCOSa,(n+1,2) pected to be lowest in energy. Figure 2 presents the potential
curvesU ,(R) that converge to the thresholdg and e,
ie—Rsina/(n+1/2)]P|J(a,)sin(|012)_ (24  where a symbolu=(n,j) has been used to label th¢h
channel converging to thath excited state of the neutral
After obtaining the channel potentials and channel functionsgonor.
to understand the particle correlation, from the normalization Figure Za) is the potential curve for the ground channel
condition of the channel functions, of the 1S® symmetry, which exhibits an attractive well in the

iefRSina/(nJrl/Z)]Plll(a)coil 012) (23)

and
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FIG. 7. Three-dimensional surface charge-dengifiR, «, 61,)
plots for thex=(1,1) and,(1,2) channels of symmetryS®.

FIG. 6. Three-dimensional surface charge-dengif§R, «, 61,)

inr 1,=R[1—sin Y2 asa~0 or a~90°,
plots for thew=(0,1) channel of symmetryS®. change inr;,=R[1 - sin(22)cost;,] ™ as *

there is no noticeablé,, dependence of the surface charge
density in Fig. ). This quick loss of angular correlation
vicinity of R=0.25 and converges t@=—2 at largeR. The  causes the electric dipole moment of the neutral donor,
potential well is strong enough to support one bound stateyhich governs the interaction between the neutral core and
corresponding to the ground state of e center. With this  the outer electron, to vanish quickly with increaseRofFor
potential curve as the input of E(R2), we obtain a ground- this reason, the attractive well exhibited in FigaRis very
state energy—2.262 [marked by a horizontal line in Fig. narrow.
2(a)], and —2.239 if the diagonal coupling matrix element  In Fig. 2b), there are two channels converging dp=
W, ,.(R) is included. These values compare well with the — 5~ —0.222. Channel1,1) has an attractive well in the
exact variational result-2.240?° Further improvement can vicinity of R=4, which supports one bound state. This is the
be made by considering the couplings of different channelsSowest doubly excited state of the system. It is stable within
In Fig. 3, we present the surface charge-density plots ofhe adiabatic approximation. Chanri&l2) is entirely repul-
channel(0, 1) for R=0.5, 1.0, and 4.0, to illustrate how the sijve.
correlation pattern changes as the system evolves from the The surface charge-density plots for these two channels
overcompressed state at smRlito the fragmented state at are displayed in Fig. 4 foR=4, 10, and 20. As we proceed
large R. Note that wherR is small the kinetic energy term from the ground channéD,1) to higher channels, the chan-
A?/(2R?) is dominant, which can be minimized by smooth nel functions® «(R,Q) at eachR may exhibit nodal lines
distribution of the wave function; wheR is large, the Cou- which arise from kinematics and characterize different
lomb termC(£)/R is dominant, which can be minimized by modes of internal motion, like different normal modes of
concentrating the wave function at the minimum @©f(2) standing waves on a drumhead. Remember that the distribu-
and in its vicinity. In Figs. 8) and 3b), whereR is small,  tion of the higher channel functions is determined by both
the surface charge density spreads smoothly over the whotee minimization of energy and orthogonality to lower chan-
(a,0,5) plane. There is a pronounced peak at,€f;,) nels. In Figs. 4a)—4(c), we first notice that thél,1) channel
=(45°,180°) in Fig. 8a), which favors the reduction of the has most of the charge density in the region €@,
electron-electron Coloumb repulsion. In FigcBwhereRis ~ <270°, and peaks at;,=180°; i.e., the two electrons tend
relatively large, the surface charge density concentrates it stay on opposite sides of the donor ion. In Figa) 4chan-
distribution in the valleys of the potential surfacy()) nel (1,2) minimizes the kinetic energy and electron-electron
shown in Fig. 1. Since a change #, amounts to little repulsion by concentrating the charge distribution at
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FIG. 8. Potential curves fofS° channels converging to the,

limit: n=(a) 1, (b) 2. The horizontal lines mark the bound states

supported by the potentials.

(a,0:5)=(45°,180°) and in its vicinity. AR increases, the
charge distribution begins to shift to the=0 and 90° re-
gions and the charge density neg~45° drops as channel
(0,1) does. However, unlike in chann€0,1), the angular
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FIG. 9. Three-dimensional surface charge-dengifR, «, 61,)
plots for theu=(1,1) channel of symmetrys°.

and (1,1). Forcing the distribution of charge density to the
central region of thed, 61,) plane(i.e., forcing the two elec-
trons to opposite sides of the donor jamould require addi-
tional nodal lines in order to achieve orthogonality to chan-

correlation in channe(l,1) remains almost unchanged. This nels (0,1) and (1,1). For R=20, the central region is left
pertinacious angular correlation results in the slower convergngccupied by channel®,1) and (1,1), but channel(1,2)
gence of the corresponding potential curve to its thresholipes not shift to this region since at these laRyealues the

than channe(0,1) asR—«~. Comparing Fig. &) with Fig.
4(a), we notice that the space occupied by char(i€l) is
that unoccupied by chann@, 1); additionally, there are two
less conspicuous nodal lines near=0 and 90°, respec-
tively, in channel(1,1). From these factors, channél,l)
achieves its orthogonality to chanr(@,1).

The surface charge-density plots for chanfiel 2) are
displayed in Figs. @)—4(f). We notice that this repulsive
channel has most of its charge density in the regiéps

regions wherew~0 or 90° are more favorable in order to
minimize the Coulomb potential energy. For this reason, the
0., dependence of the charge density remains almost un-
changed aR increases.

B. The 3S° channels

The low-lying potential curves in théS® symmetry are
displayed in Fig. 5. They shift their wells to ranges of larger

<90° and#,,>270°; i.e., the two electrons tend to stay on R than their counterparts in thES® symmetry, due to stron-

the same side of the donor ion. In Figd# where the kinetic

ger centrifugal barriers. For th@®,1) channel, the potential

energy dominates, the charge density shows a considerabderve converges to its limit very quickly and the potential
smooth spread over the fulk(6,,) plane with two peaks at well is ambiguous. The other channels are also less attractive
(@, 6,5 = (45°,0) and45°,3609, respectively. These are the (or more repulsive than their counterparts in thés®

positions where the two spikes @f({)) are located. Thus

symmetry.

the two electrons experience large electron-electron interac- The corresponding surface charge-density plots are dis-
tion in channel(1,2). These regions are preferable to theplayed in Figs. 6 and 7. The channel functions in ftg¢

central region since they are unoccupied by chan(@l4)

symmetry, which can be expressed as superpositions of the
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basis functiongnvl — )¢, differ from the channel functions in FIG. 11. Potential curves fofS° channels converging to the,

the 1S® symmetry by the existence of an inherent nodal linelimit: n=(a) 1, (b) 2.

along a=45°. Because of this nodal line, the potential

curvesU ,(R) are significantly higher than their counterparts symmetry 33° it is because the angular correlation is so
in the 1S° symmetry in the ranges of smaR A drastic  Strong that the posi;ion vectors of the two electrons are main-
internal motion across the ridge &(Q) is induced. The tained on average in vertical directions, as will b(_a shown in
distribution of charge density is driven away from=45°  the following. There are two channels converging €g

and its vicinity. In the ranges of largR where the distribu- channel(2,1) shows an attractive well and supports one
tions of charge density shifts to the~0 and 90° regions bound state and chann@,2) is entirely repulsive.

and the charge density drops to zero near45°, whether _ The surfacg charge-density plots for thesg ch:_;mnels are
there is a nodal line along=45° or not makes no differ- displayed in Figs. 9 and 10. The channel functions !”3[5%
ence. Thus the corresponding potential curves in both symSymmetry, which can be expressed as superpositions of the
metries tend to coincide. The similarity between g8 and = basis functiongnvl +)?, are characterized by the existence
the 3S° channel functions at largR values is visualized by ©f two inherent nodal lines along,,=180° and O(or 61,

comparing, for example, Fig.(@ with Fig. 7(c), and Fig. =360°), respectively. These nodal lines prohibit the two
4(f) with Fig. 7(f), etc. electrons from staying on the same side or on opposite sides

of the donor ion to form a collinear structure. In channel
(1,2), the two electrons tend to stay in a configuration with
01,=90° (or 0,,=270°) andr;=r, (i.e., «=45°) whenR is
The low-lying potential curves for théS® symmetry are  small [see Fig. 9a)]. As R increases, the charge density
presented in Fig. 8. In thS° symmetry, there is no channel shifts to the regionsr~0 and 90°, but the influence of the

C. The 33° channels

converging toep. There is one channel converging ¢, inherent nodal lines and thus the pattern of angular correla-
which exhibits a narrow attractive well because the dipoletion is maintainedsee Figs. &) and 9c)].
interaction vanishes, like th®,1) channel of symmetry S°. In Figs. 1@a)—-10c), where the surface charge-density

But the physical pictures in the two cases are entirely differplots for channel2,1) are displayed, the charge density is
ent: In the(0,1) channel of symmetry'S?, the dipole inter-  distributed mostly in the regions 96°,,<180° and 180°
action vanishes because there is no angular correlation when,,<270°, such that c@$,,),<0, i.e., the dipole interac-

R is up to a certain value, while in thél,1) channel of tion is attractive in the channel, although the two electrons

205204-8



GROUND AND DOUBLY EXCITED STATES OF TWG. .. PHYSICAL REVIEW B 63 205204

s
y lll"lll!l"'}'};f/f!l‘l‘l,!"!lll

(0]
1807 g5

FIG. 13. Three-dimensional surface charge-densitR, «, 61,)
plots for theu=(2,1) and(2,2 channels of symmetryS°.
FIG. 12. Three-dimensional surface charge-densitR, «, 6,,)
plots for thew=(1,1) channel of symmetryS°. functions|nvl —)° and have all three inherent nodal lines we
have found above, i.e., the nodal lines alomg 45°, 6,
and the donor are prohibited from forming a collinear struc-=0 (or 3609, and 6,,=180°. The coexistence of these
ture. In addition, there are two additional nodal lines alongnodal lines, especially the ones along=45° and 6,
a=const, which shift their locations toward=0 and 90°, =180°, leaves little space for the minimization of energy. In
respectively, aR increases. the ground channgk=(1,1), where the inherent nodal lines
In Figs. 1Gd)—10(f), where the surface charge-density are the only nodal lines of the channel functisee Fig. 12
plots for channel2,2) are displayed, the charge density is the charge density is concentrated into four identical peaks in
distributed mostly in the regions 8°6,,<90° and 270° order to avoid the nodal lines. Evidently, this channel has
<6,,<360°. A repulsive dipole interaction is expected in C0g61,),=0 in all ranges ofR and the dipole interaction
the channel. There are two additional nodal lines alépg Vvanishes. In thé2, 1) channelsee Figs. 1&-13c)], there
=const, the locations of which remain unchangedRas-  are two additional nodal lines associated with the variation of
creases. a. The distribution of charge density is mostly in the regions
90°< 6,,<<180° and 180%#,,<270° such that cd$,,),
<0, i.e., the dipole interaction is attractive. In the repulsive
(2, 2 channel[see Figs. 1@1)-13f)], the number of nodal
The low-lying potential curves for théS° symmetry are lines is the same as in chanr@| 1), but the charge density
presented in Fig. 11. As in th&S° symmetry, there is no shifts mostly to the regions 6°6,,<90° and 270% 6,
channel converging tey. There is one channel converging <360°, such that the dipole interaction is repulsive. In the
to e;, which is entirely repulsive and converges quickly to ranges of large, the charge distributions for th&s° chan-
its threshold. There are two channels convergingtoThe nels are similar to their counterparts in tA&° symmetry,
attractive potential well exhibited by chann@,l) is am-  which can be seen by comparing, for example, Fig) @ith
biguous. Channg2,2) is entirely repulsive. Comparing Fig. Fig. 12c), etc.
11 with Figs. 2, 5, and 8, one will find that channels in the
1s° symmetry are higher than their counterparts in any other
symmetries discussed above.
The corresponding surface charge-density plots are dis- In this paper, we have demonstrated the adiabatic poten-
played in Figs. 12 and 13. The channel functions in thistial curves and corresponding correlation patterns for two
symmetry can be expressed as superpositions of the basectrons in the low-lying_=0 states. Four different sym-

D. The 1S° channels

IV. SUMMARY
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metries have been covered. ThéS® symmetries have their (d) There is a connection between the features of a poten-
counterparts in three dimensiohishut the 1°3° symmetries  tial curve and the corresponding pattern of angular correla-
do not. Our main findings can be summarized as follows. tion. If the two electrons are maintained at small angles,

(@) The correlation pattern of a channel is determined by ,(R) exhibits a long repulsive tail, and no attractive poten-
three competing factors: the minimization of energy, the ortial well is expected. If the two electrons are maintained at
thogonality to the lower channels, and the symmetry confarge anglesU ,(R) exhibits a potential well with a long
straints. The minimization of energy is achieved by smoothattractive tail. If there is no angular correlation or the posi-
spread of the charge density whRrs small and by gradual tion vectors of the two electron are maintained in vertical
concentration of the charge density in the potential valleys adirections,U ,(R) is flat over a wide range d®; whether an
Rincreases. There are two different ways to achieve orthogaattractive well is then exhibited or not depends on the num-
nality to lower channels, i.e., by occupying areas unoccupiether of nodal lines in the channel function.
by the lower channels or by introducing more nodal lines in  Although we have confined our study to four symmetries
the channel function. The role of symmetry is embodied bywith L=0, these do exhaust all possible combinations of
the existence of certain inherent nodal lines in the channahherent nodal lines. Therefore, ahy#0 state must have
functions. exactly the same inherent nodal lines as one of the four sym-

(b) The angular correlations in the ground channels of thanetries studied here and have similar patterns of correlation.
1.35® symmetries are weak and tend to vanish quicklyjRas However, in the case df# 0, there is the additional effect of
increases, while the angular correlations in the doubly exeollective rotation, which tends to maintain the system in a
cited channels are strong and, once established at $tnall collinear structure. This will be discussed elsewhere.
the patterns remain nearly unchangedragacreases.

(c) Whether the channels in a symmetry are high or low
lying in comparison with their counterparts in other symme-
tries is determined by the number of inherent nodal lines in  This work was supported by the National Natural Science
the channel functions. Among the four symmetries we havd-oundation of China, Grant No. 19875018, and also in part
studied, the channel functions in tH&® symmetry have no by the Natural Science Foundation of Guangdong Province
inherent nodal lines, while the channel functions in #8  and the Natural Science Foundation of Guangzhou City, P.
symmetry have the biggest number of inherent nodal lines.R. China.
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