
PHYSICAL REVIEW B, VOLUME 63, 205204
Ground and doubly excited states of two-dimensionalDÀ centers

W. Y. Ruan*
Department of Applied Physics, South China University of Technology, Guangzhou 510641, People’s Republic of China

K. S. Chan
Department of Physics and Materials Science, City University of Hong Kong, Hong Kong, People’s Republic of China

E. Y. B. Pun
Department of Electronic Engineering, City University of Hong Kong, Hong Kong, People’s Republic of China

~Received 14 September 2000; revised manuscript received 5 December 2000; published 19 April 2001!

Using hyperspherical coordinates and assuming the quasiseparability of the hyperradiusR from the angular
variablesV in the wave functions, we obtain the low-lying adiabatic channel potentialsUm(R) for the two-
dimensionalD2 centers. In the large-R limit, these potential curves converge to the thresholds of the energy
levels of the neutral donor. The energy eigenstates supported by these potentials are calculated. The correlation
patterns in these channels and the effect of symmetry are investigated.
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I. INTRODUCTION

A two-dimensionalD2 center consists of a fixed positiv
ion and two electrons, all confined to thex-y plane. Its exis-
tence was first observed by Huant, Najda, and Etienne
selectively doped GaAs-Ga12xAl xAs multiple-quantum-well
structures,1 where the binding energies were measured a
function of the external magnetic field. This has stimula
numerous theoretical investigations of the system. Using
effective-mass model and the diffusion quantum Mo
Carlo approach,2 Pang and Louie calculated the ground-st
energy of theD2 center in a magnetic field, and found goo
agreement between theory and experiments. Exact solu
for a D2 center in a strong magnetic field have been o
tained independently by Larsen and McCann,3 Dzyubenko,4

and MacDonald.5 The effects of electron-phonon interactio
and of the finite width of the quantum well have been stud
by Shi, Peeters, and Devreese.6 The effect of position devia-
tion of the donor from the well center has been considere
a number of recent studies.7–10 Two well-established facts
from all these studies are that the electron correlation is v
important in this small system and that the reduced dim
sionality considerably enhances the binding energies.

The aim of this paper is not to improve the previous c
culations to bring theory closer to experiment but to prov
a comprehensive understanding of the low-lying spectr
and the associated patterns of correlation of this simp
Coulomb system with electron-electron interaction. In p
ticular, as will be shown in the following, the reduced d
mensionality not only enhances the binding but also res
in extra symmetries which do not have counterparts in th
dimensions, and thus enriches the patterns of correlation.
this purpose, in this paper we use the adiabatic hypersph
cal method to make a systematic study of the low-lying d
bly excited states of theD2 center, where the correlation i
even stronger than that in the ground state. The metho
expanding the trial wave function in terms of hyperspheri
harmonics11 suffers from extremely slow convergence f
the doubly excited states. The adiabatic hyperspher
0163-1829/2001/63~20!/205204~10!/$20.00 63 2052
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method was first introduced to the study of correlation
fects in Coulombic systems by Macek in 1968,12 and has
since developed into a powerful tool for understanding
electron correlations in the doubly excited states in the sp
tra of He and H2.13 A principal advantage of the method
the reduction of a multidimensional problem to a on
dimensional problem with a set of effective potentials. The
potentials provide qualitative and quantitative informati
about the dynamics of the system. More importantly,
method automatically projects the quantum spectrum into
brational bands inR, and thus gives a useful and convenie
classification scheme.

Mathematically, the adiabatic hyperspherical method
similar to the Born-Oppenheimer approximation in diatom
molecules~note that the mass-weighted hyperradius co
cides with the internuclear separation for diatomic system
the heavy-nucleus limit!. Hence its validity is not obvious for
D2 centers and the like. In the Born-Oppenheimer appro
mation, the wave functions of the molecules are expresse
the products of electronic and vibrational nuclear wave fu
tions. This quasiseparability is conventionally justified by t
argument that the massme of the electron is much less tha
the massM of the nucleus and thus the vibrational motion
the nuclei is adiabatic in comparison with the faster el
tronic motion. However, this argument is not substantia
supported by the actual magnitude of the nonadiab
correction.14 The correction is proportional to (me /M )1/4

; 1
6 , while precise calculations15,16for the low-lying states of

H2
1 and H2 show that the nonadiabatic effect is only of th

order 1025. Therefore, there are other underlying dynamic
factors responsible for the validity of the adiabatic appro
mation in molecular physics. As has been pointed out
several authors,17–19 the slow variation of the strength of th
Coulombic interactions withR, and the fact that the kinetic
energy associated with the motion inR is much smaller than
that associated withV due to the limited ranges of the angu
lar variables, are responsible for the adiabaticity. There
been much work demonstrating that the eigenenergies
eigenfunctions of the doubly excited states calculated in
©2001 The American Physical Society04-1
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adiabatic hyperspherical approximation agree quite well w
the results of other theoretical calculations and w
experiments.12,20–23There has also been some work demo
strating that the validity of the approximation weakly d
pends on the masses of the particles.21,24,25In this paper, we
further assume that the reduced dimensionality should
influence the validity of the approximation.

In the following section, details of our numerical metho
are described. The numerical results are presented in Sec
Some concluding remarks are presented in Sec. IV.

II. FORMALISM

For two electrons bound to a positively charged donor
in an ideal two-dimensional quantum well, the Schro¨dinger
equation reads

F2
1

2
¹ r1

2 2
1

2
¹ r2

2 2
1

r 1
2

1

r 2
1

1

r 12
GC~r1 ,r2!5EC~r1 ,r2!,

~1!

wherer1 and r2 measure the positions of the two electro
from the donor ion. Atomic units~a.u.! are used throughou
this paper.

With r1 and r2 , the simplest hyperspherical coordinat
are obtained by substitutingr 1 and r 2 with

R5~r 1
21r 2

2!1/2, a5tan21~r 2 /r 1!. ~2!

The hyperradiusR measures the size of the system, while t
hyperanglea represents the radial correlation of the moti
of two electrons. Thus the two vectorsr1 and r2 are now
replaced by four coordinates (R,V), whereV[(a,u1 ,u2)
collectively denotes the three angles, withu i being the polar
angle of electroni.

In hyperspherical coordinates, the Schro¨dinger equation
~1! can be expressed as

H 2
1

2 F ]2

]R2 1
3

R

]

]R
2

L2~V!

R2 G1
C~V!

R J C~R,V!

5EC~R,V!, ~3!

where

L2~V!52
]2

]a22S cosa

sina
2

sina

cosa D ]

]a
1

L̂1
2

cos2 a
1

L̂2
2

sin2 a
~4!

is the grand orbital operator, and

C~V!52
1

cosa
2

1

sina
1

1

A12sin~2a!cosu12

, ~5!

where u125u22u1 . Equation~3! is similar in structure to
the Schro¨dinger equation of a hydrogen atom in four spa
dimensions, with2C(V) as the effective nuclear charg
Figure 1 is a three-dimensional plot of the potential surfa
C(V) on the plane (a,u12) in the ranges 0<a<90° and 0
<u12<360°. In the limita;0 or a;90°, a configuration
where one electron is much closer to the ion than the ot
20520
h

-

ot

III.

n

e

e

r,

the potential surface has a sharp drop caused by the elec
ion attraction. This configuration is expected to be import
in the ground state in which the total energy of the system
minimized. In the situation wherer 1'r 2 , which corresponds
to a'45°, the potential surface depends critically onu12.
Whena545° andu12'0 or 360°, the two electrons lie clos
to each other in the configuration space, where a la
electron-electron repulsion is expected. In Fig. 1 this rep
sion appears as two spikes at (a,u12)5(45°,0) and
~45°,360°!, respectively. (a,u12)5(45°,180°) is a saddle
point, over a large area around which the potential surfac
very flat. The existence of a saddle point is important for
doubly excited states to be discussed in the following.

A. The adiabatic-channel expansion method

Following Macek’s prescription,12 we expand the trial
wave function in terms of the channel functions

C~R,V!5R23/2(
m

Fm~R!Fm~R,V!, ~6!

wherem is the channel index. The channel functionsFm are
eigenfunctions of the eigenequation

ÛFm~R,V!5Um~R!Fm~R,V!, ~7!

where

Û5
1

2

L213/4

R2 1
C~V!

R
. ~8!

Equation ~7! is equivalent to solving the Schro¨dinger
equation at constant values ofR, neglecting the derivatives
with respect toR. Therefore, the channel functions, par
metrically depending onR, represent standing waves on th
potential surfaceC(V) shown in Fig. 1. Since all the channe
functions form a complete set, the expansion in Eq.~6! con-
tains no approximation.

Substituting Eqs.~6! into ~3!, multiplying Eq. ~3! by
@Fm(R,V)#* from the left, integrating over the angular var
ables, and making use of Eq.~7!, we obtain a set of coupled
equations for determining$Fm(R)%,

FIG. 1. Three-dimensional plot ofC(a,u12) in hyperspherical
coordinates.
4-2
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2
1

2

d2Fm~R!

dR2 1Um~R!Fm~R!1(
m8

Wm,m8~R!Fm8~R!

5EFm~R!, ~9!

where

Wm,m8~R!52
1

2 K fm~R,V!U ]2

]R2Ufm8~R,V!L
2 K fm~R,V!U ]

]RUfm8~R,V!L ]

]R
~10!

are the coupling matrix elements.

B. The channel functions and channel potentials

As a first step of the approach, our task is to find out
eigensolutions of Eq.~7!. Generally speaking, exact analyt
cal solutions of Eq.~7! that are valid at anyR value do not
exist. However, its eigensolutions in the limits ofR50 and
R→` are readily obtained. From Eq.~8!, we note that when
R;0 the electrostatic potential energyC(V)/R becomes
negligible compared to the kinetic energy (L2

13/4)/(2R2). The channel functionsFm(R) approach the
eigenfunctions ofL2,

Fm~R,V!→Y$n l 1l 2%~V!5Nn
l 1l 2Pn

l 1l 2~a!eil 1u1eil 2u2,
~11!

and the channel potential is

Um~R!→ 1

2

l~l12!13/4

R2 , ~12!

wherel52n1u l 1u1u l 2u. In Eq. ~11!, Nn
l 1l 2 is the normaliza-

tion constant, andPn
l 1l 2 is a Jacobi polynomial, given by

Nn
l 1l 25S 2~2n1u l 1u1u l 2u11!n! ~n1u l 1u1u l 2u!!

4p2~n1u l 1u!! ~n1u l 2u!! D 1/2

~13!

and

Pn
l 1l 2~a!5 (

k50

n

~2 !n2kS n1u l 2u
k D S n1u l 1u

n2k D
3~cosa!2k1u l 1u~sina!2~n2k!1u l 2u. ~14!

In the limit of R→` anda→p/2 such thatr 15R cosa

remains finite andr 25R sina'R, the operatorÛ approaches
the hydrogenic HamiltonianĤ(r1), i.e.,

Û5Ĥ~r1!1
L̂2

2

R2 1
r 1 cosu12

R2 1OH 1

R3J , ~15!

andFm(R,V) andUm(R) are

Fm~R,V!→fnl1
~r1!eil 2u2, ~16!
20520
e

Um~R!→en52
1

2

1

~n11/2!2 . ~17!

In Eq. ~16!, fnl are two-dimensional hydrogenic wave fun
tions,

fnl~r !5F ~n2u l u!!
p~n11/2!3~n1u l u!! G

1/2

r u l uLn2u l u
~2u l u! ~r!e2r/2eil u,

~18!

wherer52r /(n11/2). n is the principal quantum number
n50,1,2, . . . ; en is the corresponding eigenenergy;Ln

(a) are
Laguerre polynomials. The right-hand side of Eq.~16! cor-
responds to the fact that electron 1 is in itsnl1 orbital and
electron 2 has an angular momentuml 2 . The asymptotic
results asR→` and a→0 can be obtained by exchangin
the electron coordinates (r 1 ,u1)↔(r 2 ,u2) in Eqs. ~15! and
~16!. Notice that the energy levelen is (2n11)-fold degen-
erate. The actual channel functions will be the superpositi
of (2n11) hydrogenic wave functions in the large-R limit.
The third term on the right-hand side of Eq.~15! represents
the dipole interaction between the neutral donor and
outer electron 2, which is expected to lift the degeneracy
ranges of finiteR.

In the hydrogenic wave functionsfnl(r), whenr is re-
placed by hyperspherical coordinates, the polynomial p

r u l uLn2u l u
(2u l u) (r) are readily reexpressed as the superposition

finite set of hyperspherical harmonics, while the expon
tially decaying factore2r/2, which changes drastically with
a when R is large, cannot be reproduced by a small set
hyperspherical harmonics. Due to this fact, any calculati
with hyperspherical harmonics as basis functions alone
inaccurate. Taking into account this fact and the excha
symmetry, we choose a model space spanned by the fol
ing nonorthogonal functions:

unn l 1l 26&e5$Pn
l 1l 2~a!e2R cosa/~n11/2!

6Pn
l 2l 1~a!e2R sin a/~n11/2!%

3cosF l 22 l 1

2
u12GeiLQ ~19!

and

unn l 1l 26&o5$Pn
l 1l 2~a!e2R cosa/~n11/2!

6Pn
l 2l 1~a!e2R sin a/~n11/2!%

3sinF l 22 l 1

2
u12GeiLQ ~20!

to diagonalize the operatorÛ to obtain the channel function
and channel potentials at each intermediateR value. In Eqs.
~19! and ~20!, L5 l 11 l 2 and Q5(u11u2)/2. The super-
script ‘‘e’’ indicates that the functions are even aboutu12,
while the superscript ‘‘o’’ indicates that the functions are
odd aboutu12. Throughout this paper, we do not write o
the spin function explicitly. It is sufficient to remember th
the spatially symmetric wave functions~e.g.,unn l 1l 21&e and
4-3
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unn l 1l 22&o! describe the spin-singlet states, while the s
tially antisymmetric wave functions~e.g., unn l 1l 22&e and
unn l 1l 21&o! describe the spin-triplet states.

From the structures of these basis functions, we men
the following properties.~a! SinceÛ is an even function of
u12, the hybridization of the basis set$unn l 1l 26&e% with set
$unn l 1l 26&o% will never occur. Hence ‘‘e’’ and ‘‘ o’’ are
good quantum numbers for the system. They can be use
label an eigenstate. Here we would like to point out th
unlike in a three-dimensional system, the parity, now giv
by (21)L, is not useful in labeling a state.~b! In the states
represented byunn l 1l 22&e or unn l 1l 22&o, a545° is a nodal
line. It prohibits the two electrons from penetrating close
the donor ion simultaneously and induces an energetic
tion across the ridge in Fig. 1. This implies that the rad
motions of the two electrons must be out of step. In the sta
represented byunn l 1l 21&e or unn l 1l 21&o, a545° is an an-
tinodal line. The radial motions of the two electrons are
step.~c! In the states represented by basis functionsunn l 1l 2
6&e with an odd value ofL or in states represented b
unn l 1l 26&o with an even value ofL, u125180° is a nodal
line. It prohibits the two electrons from remaining on th
opposite sides of the donor ion. A swing motion along t

FIG. 2. Potential curves for1Se channels converging to theen

limit: n5~a! 0, ~b! 1. The horizontal lines mark the bound stat
supported by the potentials.
20520
-

n

to
t,
n

o-
l
es

e

ridge of Fig. 1 is expected in these states. The nodal lines
discuss here arise from symmetries. They appear at exa
the same positions in any systems with the same symmet
They will be called inherent nodal lines hereafter. It w
soon be clear that these nodal lines primarily determine
correlation pattern and the energy level of a channel.

C. The adiabatic approximation

From Eq.~8!, we note that the relative magnitude of th
kinetic energy (L213/4)/(2R2) and the electrostatic poten
tial energy C(V)/R scales linearly withR. This slow
variation in relative magnitude of the two energy terms
characteristic of Coulomb interactions. The adiabatic
proximation in this context assumes that the channel fu
tionsFm(R,V) show only a slow variation with respect toR;
that is, to the first order of approximation, we can neglect
channel couplings given by Eq.~10!. In this paper, unless
stated, we confine ourselves to this approximation. The w
function then factorizes according to

Cm~R,V!5Fm~R!Fm~R,V!. ~21!

All information about particle correlation is contained in th
channel functionsFm(R,V). The radial wave functions
Fm(R) and the eigenenergies can be obtained by solving
decoupled equations

FIG. 3. Three-dimensional surface charge-densityrs(R,a,u12)
plots for them5(0,1) channel of symmetry1Se.
4-4
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2
1

2

d2Fm~R!

dR2 1Um~R!Fm~R!5EFm~R!. ~22!

The channel potentialsUm(R) then have the physical mean
ing of potentials that control the motion along the coordin
R. With a channel potentialUm(R), by solving Eq.~22! we
generally obtain a series of eigenstates with their eigene
gies converging toen , the threshold ofUm(R). For a differ-
entUm(R), we obtain a different series of eigenstates. Sta
within a series have similar correlation patterns.

III. NUMERICAL RESULTS

In this section, to avoid tediousness, we limit our nume
cal analysis to theL50 states with various symmetrie
Then the basis functions are simplified to

unn l 6&e5@e2R cosa/~n11/2!

6e2R sin a/~n11/2!#Pn
l l ~a!cos~ lu12! ~23!

and

unn l 6&o5@e2R cosa/~n11/2!

6e2R sin a/~n11/2!#Pn
l l ~a!sin~ lu12!. ~24!

After obtaining the channel potentials and channel functio
to understand the particle correlation, from the normalizat
condition of the channel functions,

FIG. 4. Three-dimensional surface charge-densityrs(R,a,u12)
plots for them5(1,1) and~1,2! channels of symmetry1Se.
20520
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E uFm~R,V!u2 sina cosa da du12dQ51, ~25!

we define the surface charge density as

rs~R,a,u12!5uFm~R,V!u2 sina cosa. ~26!

The a dependence ofrs is defined as the radial correlation
the u12 dependence ofrs is defined as the angular correla
tion.

A. The 1Se channels

The channel functions in the1Se symmetry can be ex-
pressed as superpositions of the basis functionsunn l 1&e.
They are the channels with no inherent nodal lines. Hen
among the channels with various symmetries, they are
pected to be lowest in energy. Figure 2 presents the pote
curvesUm(R) that converge to the thresholdse0 and e1 ,
where a symbolm5(n, j ) has been used to label thej th
channel converging to thenth excited state of the neutra
donor.

Figure 2~a! is the potential curve for the ground chann
of the 1Se symmetry, which exhibits an attractive well in th

FIG. 5. Potential curves for3Se channels converging to theen

limit: n5~a! 0, ~b! 1. The horizontal line marks the bound stat
supported by the potential.
4-5
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vicinity of R50.25 and converges toe0522 at largeR. The
potential well is strong enough to support one bound st
corresponding to the ground state of theD2 center. With this
potential curve as the input of Eq.~22!, we obtain a ground-
state energy22.262 @marked by a horizontal line in Fig
2~a!#, and 22.239 if the diagonal coupling matrix eleme
Wmm(R) is included. These values compare well with t
exact variational result22.240.26 Further improvement can
be made by considering the couplings of different chann

In Fig. 3, we present the surface charge-density plots
channel~0, 1! for R50.5, 1.0, and 4.0, to illustrate how th
correlation pattern changes as the system evolves from
overcompressed state at smallR to the fragmented state a
large R. Note that whenR is small the kinetic energy term
L2/(2R2) is dominant, which can be minimized by smoo
distribution of the wave function; whenR is large, the Cou-
lomb termC(V)/R is dominant, which can be minimized b
concentrating the wave function at the minimum ofC(V)
and in its vicinity. In Figs. 3~a! and 3~b!, whereR is small,
the surface charge density spreads smoothly over the w
(a,u12) plane. There is a pronounced peak at (a,u12)
5(45°,180°) in Fig. 3~a!, which favors the reduction of the
electron-electron Coloumb repulsion. In Fig. 3~c! whereR is
relatively large, the surface charge density concentrate
distribution in the valleys of the potential surfaceC(V)
shown in Fig. 1. Since a change inu12 amounts to little

FIG. 6. Three-dimensional surface charge-densityrs(R,a,u12)
plots for them5(0,1) channel of symmetry3Se.
20520
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change inr 125R@12sin(2a)cosu12#
1/2 asa;0 or a;90°,

there is no noticeableu12 dependence of the surface char
density in Fig. 3~c!. This quick loss of angular correlatio
causes the electric dipole moment of the neutral don
which governs the interaction between the neutral core
the outer electron, to vanish quickly with increase ofR. For
this reason, the attractive well exhibited in Fig. 2~a! is very
narrow.

In Fig. 2~b!, there are two channels converging toe15
2 2

9 '20.222. Channel~1,1! has an attractive well in the
vicinity of R54, which supports one bound state. This is t
lowest doubly excited state of the system. It is stable wit
the adiabatic approximation. Channel~1,2! is entirely repul-
sive.

The surface charge-density plots for these two chann
are displayed in Fig. 4 forR54, 10, and 20. As we procee
from the ground channel~0,1! to higher channels, the chan
nel functionsFm(R,V) at eachR may exhibit nodal lines
which arise from kinematics and characterize differe
modes of internal motion, like different normal modes
standing waves on a drumhead. Remember that the distr
tion of the higher channel functions is determined by bo
the minimization of energy and orthogonality to lower cha
nels. In Figs. 4~a!–4~c!, we first notice that the~1,1! channel
has most of the charge density in the region 90°,u12
,270°, and peaks atu125180°; i.e., the two electrons ten
to stay on opposite sides of the donor ion. In Fig. 4~a!, chan-
nel ~1,1! minimizes the kinetic energy and electron-electr
repulsion by concentrating the charge distribution

FIG. 7. Three-dimensional surface charge-densityrs(R,a,u12)
plots for them5(1,1) and,~1,2! channels of symmetry3Se.
4-6
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(a,u12)5(45°,180°) and in its vicinity. AsR increases, the
charge distribution begins to shift to thea'0 and 90° re-
gions and the charge density neara'45° drops as channe
~0,1! does. However, unlike in channel~0,1!, the angular
correlation in channel~1,1! remains almost unchanged. Th
pertinacious angular correlation results in the slower conv
gence of the corresponding potential curve to its thresh
than channel~0,1! asR→`. Comparing Fig. 3~c! with Fig.
4~a!, we notice that the space occupied by channel~1,1! is
that unoccupied by channel~0, 1!; additionally, there are two
less conspicuous nodal lines neara50 and 90°, respec
tively, in channel~1,1!. From these factors, channel~1,1!
achieves its orthogonality to channel~0,1!.

The surface charge-density plots for channel~1, 2! are
displayed in Figs. 4~d!–4~f!. We notice that this repulsive
channel has most of its charge density in the regionsu12
,90° andu12.270°; i.e., the two electrons tend to stay o
the same side of the donor ion. In Fig. 4~d!, where the kinetic
energy dominates, the charge density shows a conside
smooth spread over the full (a,u12) plane with two peaks a
(a,u12)5(45°,0) and~45°,360°!, respectively. These are th
positions where the two spikes ofC(V) are located. Thus
the two electrons experience large electron-electron inte
tion in channel~1,2!. These regions are preferable to t
central region since they are unoccupied by channels~0, 1!

FIG. 8. Potential curves for3So channels converging to theen

limit: n5~a! 1, ~b! 2. The horizontal lines mark the bound stat
supported by the potentials.
20520
r-
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and ~1,1!. Forcing the distribution of charge density to th
central region of the (a,u12) plane~i.e., forcing the two elec-
trons to opposite sides of the donor ion! would require addi-
tional nodal lines in order to achieve orthogonality to cha
nels ~0,1! and ~1,1!. For R>20, the central region is lef
unoccupied by channels~0,1! and ~1,1!, but channel~1,2!
does not shift to this region since at these largeR values the
regions wherea'0 or 90° are more favorable in order t
minimize the Coulomb potential energy. For this reason,
u12 dependence of the charge density remains almost
changed asR increases.

B. The 3Se channels

The low-lying potential curves in the3Se symmetry are
displayed in Fig. 5. They shift their wells to ranges of larg
R than their counterparts in the1Se symmetry, due to stron-
ger centrifugal barriers. For the~0,1! channel, the potentia
curve converges to its limit very quickly and the potent
well is ambiguous. The other channels are also less attrac
~or more repulsive! than their counterparts in the1Se

symmetry.
The corresponding surface charge-density plots are

played in Figs. 6 and 7. The channel functions in the3Se

symmetry, which can be expressed as superpositions o

FIG. 9. Three-dimensional surface charge-densityrs(R,a,u12)
plots for them5(1,1) channel of symmetry3So.
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basis functionsunn l 2&e, differ from the channel functions in
the 1Se symmetry by the existence of an inherent nodal l
along a545°. Because of this nodal line, the potent
curvesUm(R) are significantly higher than their counterpa
in the 1Se symmetry in the ranges of smallR. A drastic
internal motion across the ridge ofC(V) is induced. The
distribution of charge density is driven away froma545°
and its vicinity. In the ranges of largeR where the distribu-
tions of charge density shifts to thea'0 and 90° regions
and the charge density drops to zero neara545°, whether
there is a nodal line alonga545° or not makes no differ-
ence. Thus the corresponding potential curves in both s
metries tend to coincide. The similarity between the1Se and
the 3Se channel functions at largeR values is visualized by
comparing, for example, Fig. 4~c! with Fig. 7~c!, and Fig.
4~f! with Fig. 7~f!, etc.

C. The 3So channels

The low-lying potential curves for the3So symmetry are
presented in Fig. 8. In the3So symmetry, there is no channe
converging toe0 . There is one channel converging toe1 ,
which exhibits a narrow attractive well because the dip
interaction vanishes, like the~0,1! channel of symmetry1Se.
But the physical pictures in the two cases are entirely diff
ent: In the~0,1! channel of symmetry1Se, the dipole inter-
action vanishes because there is no angular correlation w
R is up to a certain value, while in the~1,1! channel of

FIG. 10. Three-dimensional surface charge-densityrs(R,a,u12)
plots for the3So, m5(2,1) and~2,2! channels.
20520
l

-

e
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en

symmetry 3So it is because the angular correlation is
strong that the position vectors of the two electrons are m
tained on average in vertical directions, as will be shown
the following. There are two channels converging toe2 ;
channel ~2,1! shows an attractive well and supports o
bound state and channel~2,2! is entirely repulsive.

The surface charge-density plots for these channels
displayed in Figs. 9 and 10. The channel functions in the3So

symmetry, which can be expressed as superpositions o
basis functionsunn l 1&o, are characterized by the existen
of two inherent nodal lines alongu125180° and 0~or u12
5360°!, respectively. These nodal lines prohibit the tw
electrons from staying on the same side or on opposite s
of the donor ion to form a collinear structure. In chann
~1,1!, the two electrons tend to stay in a configuration w
u12590° ~or u125270°! andr 15r 2 ~i.e.,a545°! whenR is
small @see Fig. 9~a!#. As R increases, the charge densi
shifts to the regionsa'0 and 90°, but the influence of th
inherent nodal lines and thus the pattern of angular corr
tion is maintained@see Figs. 9~b! and 9~c!#.

In Figs. 10~a!–10~c!, where the surface charge-densi
plots for channel~2,1! are displayed, the charge density
distributed mostly in the regions 90°,u12,180° and 180°
,u12,270°, such that cos^u12&m,0, i.e., the dipole interac-
tion is attractive in the channel, although the two electro

FIG. 11. Potential curves for1So channels converging to theen

limit: n5~a! 1, ~b! 2.
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and the donor are prohibited from forming a collinear stru
ture. In addition, there are two additional nodal lines alo
a5const, which shift their locations towarda50 and 90°,
respectively, asR increases.

In Figs. 10~d!–10~f!, where the surface charge-dens
plots for channel~2,2! are displayed, the charge density
distributed mostly in the regions 0°,u12,90° and 270°
,u12,360°. A repulsive dipole interaction is expected
the channel. There are two additional nodal lines alongu12
5const, the locations of which remain unchanged asR in-
creases.

D. The 1So channels

The low-lying potential curves for the1So symmetry are
presented in Fig. 11. As in the3So symmetry, there is no
channel converging toe0 . There is one channel convergin
to e1 , which is entirely repulsive and converges quickly
its threshold. There are two channels converging toe2 . The
attractive potential well exhibited by channel~2,1! is am-
biguous. Channel~2,2! is entirely repulsive. Comparing Fig
11 with Figs. 2, 5, and 8, one will find that channels in t
1So symmetry are higher than their counterparts in any ot
symmetries discussed above.

The corresponding surface charge-density plots are
played in Figs. 12 and 13. The channel functions in t
symmetry can be expressed as superpositions of the b

FIG. 12. Three-dimensional surface charge-densityrs(R,a,u12)
plots for them5(1,1) channel of symmetry1So.
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functionsunn l 2&o and have all three inherent nodal lines w
have found above, i.e., the nodal lines alonga545°, u12
50 ~or 360°!, and u125180°. The coexistence of thes
nodal lines, especially the ones alonga545° and u12
5180°, leaves little space for the minimization of energy.
the ground channelm5(1,1), where the inherent nodal line
are the only nodal lines of the channel function~see Fig. 12!,
the charge density is concentrated into four identical peak
order to avoid the nodal lines. Evidently, this channel h
coŝu12&m50 in all ranges ofR and the dipole interaction
vanishes. In the~2, 1! channel@see Figs. 13~a!–13~c!#, there
are two additional nodal lines associated with the variation
a. The distribution of charge density is mostly in the regio
90°,u12,180° and 180°,u12,270° such that cos^u12&m
,0, i.e., the dipole interaction is attractive. In the repulsi
~2, 2! channel@see Figs. 13~d!–13~f!#, the number of nodal
lines is the same as in channel~2, 1!, but the charge density
shifts mostly to the regions 0°,u12,90° and 270°,u12
,360°, such that the dipole interaction is repulsive. In t
ranges of largeR, the charge distributions for the1So chan-
nels are similar to their counterparts in the3So symmetry,
which can be seen by comparing, for example, Fig. 9~c! with
Fig. 12~c!, etc.

IV. SUMMARY

In this paper, we have demonstrated the adiabatic po
tial curves and corresponding correlation patterns for t
electrons in the low-lyingL50 states. Four different sym

FIG. 13. Three-dimensional surface charge-densityrs(R,a,u12)
plots for them5(2,1) and~2,2! channels of symmetry1So.
4-9
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metries have been covered. The1,3Se symmetries have thei
counterparts in three dimensions,13 but the 1,3So symmetries
do not. Our main findings can be summarized as follows

~a! The correlation pattern of a channel is determined
three competing factors: the minimization of energy, the
thogonality to the lower channels, and the symmetry c
straints. The minimization of energy is achieved by smo
spread of the charge density whenR is small and by gradua
concentration of the charge density in the potential valleys
R increases. There are two different ways to achieve ortho
nality to lower channels, i.e., by occupying areas unoccup
by the lower channels or by introducing more nodal lines
the channel function. The role of symmetry is embodied
the existence of certain inherent nodal lines in the chan
functions.

~b! The angular correlations in the ground channels of
1,3Se symmetries are weak and tend to vanish quickly asR
increases, while the angular correlations in the doubly
cited channels are strong and, once established at smaR,
the patterns remain nearly unchanged asR increases.

~c! Whether the channels in a symmetry are high or l
lying in comparison with their counterparts in other symm
tries is determined by the number of inherent nodal lines
the channel functions. Among the four symmetries we ha
studied, the channel functions in the1Se symmetry have no
inherent nodal lines, while the channel functions in the1So

symmetry have the biggest number of inherent nodal line
B
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~d! There is a connection between the features of a po
tial curve and the corresponding pattern of angular corre
tion. If the two electrons are maintained at small angl
Um(R) exhibits a long repulsive tail, and no attractive pote
tial well is expected. If the two electrons are maintained
large angles,Um(R) exhibits a potential well with a long
attractive tail. If there is no angular correlation or the po
tion vectors of the two electron are maintained in vertic
directions,Um(R) is flat over a wide range ofR; whether an
attractive well is then exhibited or not depends on the nu
ber of nodal lines in the channel function.

Although we have confined our study to four symmetr
with L50, these do exhaust all possible combinations
inherent nodal lines. Therefore, anyLÞ0 state must have
exactly the same inherent nodal lines as one of the four s
metries studied here and have similar patterns of correlat
However, in the case ofLÞ0, there is the additional effect o
collective rotation, which tends to maintain the system in
collinear structure. This will be discussed elsewhere.
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