
PHYSICAL REVIEW B, VOLUME 63, 205118
Symmetry crossover and excitation thresholds at the neutral-ionic transition
of the modified Hubbard model

Y. Anusooya-Pati and Z. G. Soos
Department of Chemistry, Princeton University, Princeton, New Jersey 08544

A. Painelli
Dipartimento Chimica G.I.A.F., Universita’ di Parma, I-43100 Parma, Italy

~Received 12 September 2000; published 8 May 2001!

Exact ground states, charge densities, and excitation energies are found using valence bond methods for
N-site modified Hubbard models with uniform spacing. At the neutral-ionic transition~NIT!, the ground state
has a symmetry crossover in 4n and 4n12 rings with periodic and antiperiodic boundary conditions, respec-
tively. Large site energiesD stabilize a paired state of the half-filled chain, while largeU stabilizes a covalent
state. Finite-transfer integralst shift the NIT to the covalent side ofU22D. Exact results toN516 in the full
basis and toN522 in a restricted basis for largeU andD are extrapolated to obtain the crossover and charge
density of extended chains. The modified Hubbard model has a continuous NIT between a diamagnetic band
insulator on the paired side and a paramagnetic Mott insulator on the covalent side. The singlet-triplet~ST!,
singlet-singlet~SS!, and charge gaps for finiteN indicate that the ST and SS gaps close at the NIT with
increasingU, and that the charge gap vanishes only there. Finite-N excitations constrain all singularities to
60.1t of the symmetry crossover. The NIT is interpreted as a localized ground state~GS! with finite gaps on
the paired side and an extended GS with vanishing ST and SS gaps on the covalent side. The charge gap and
charge stiffness indicate a metallic GS at the transition that, however, is unconditionally unstable to dimeriza-
tion. Finite D breaks electron-hole (e-h) symmetry, but the modified Hubbard model has an extendede-h
symmetry, and a strong mixing of spin and charge excitations is limited to a fewt ’s about the NIT. Exact
finite-size results complement other approaches to valence or ferroelectric transitions in organic charge-transfer
salts or in inorganic oxides, and to electron-vibration coupling and structural instabilities in one-dimensional
systems.

DOI: 10.1103/PhysRevB.63.205118 PACS number~s!: 71.30.1h, 71.10.Fd, 71.27.1a
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I. INTRODUCTION

McConnell and co-workers1 explained the sharp separ
tion of organic charge-transfer~CT! complexes into diamag
netic and paramagnetic by proposing that weakp donors~D!
and acceptors~A! form neutral complexes of molecule
while strong donors and acceptors crystallize as ion radi
D1 and A2. These planar conjugated systems form o
dimensional structures, either as mixed . . .DADA . . .
stacks in CT complexes or as segregated stacks in ion-ra
salts.2 The simplest approximation for a crossover betwe
DA andD1A2 ground states isM5EI2EA , whereM is the
Madelung energy,EI is the ionization potential of the dono
andEA is the electron affinity of the acceptor. AlthoughM is
inherently long ranged, the systems are quasi-o
dimensional by virtue ofp-overlap restricted to stacks
Strebel and Soos3 introduced the modified Hubbard mod
with transfer integralt52^DAuHuD1A2& for CT com-
plexes, and studied the crossover in the random-phase
proximation. Finitet leads to mixing and to partial ionicity
Dr1Ar2 in the ground state~GS!, with Dr,1 at the cross-
over. The modified Hubbard model, Eq.~1! below, has
proved to be extremely rich and widely applicable. It d
scribes any valence transition, is a special case of impor
solid-state models, and provides the starting point
electron-phonon (e-ph! coupling. Its scope is still growing
and attracting new theoretical and computational approac
0163-1829/2001/63~20!/205118~10!/$20.00 63 2051
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to the crossover region,M;EI2EA . In this paper we
present exact solutions of finite-size systems, including lo
lying excitations.

The neutral-ionic transition~NIT! originates with the
TTF-CA complex studied by Torrance,4 whereD is tetrathi-
afulvalene and A chloranil. TTF-CA is neutral at room tem
perature, withr;0.3, and has a transition atT;81 K to an
ionic state withr;0.7 that, moreover, is dimerized. Th
uniform TTF-CA spacing above 81 K becomes alternat
( . . . t1 ,t2 . . . ) in the ionic phase, and a partial ionicity i
determined spectroscopically.5 The structural change show
the fundamental role of lattice phonons and a Peierls in
bility of the paramagnetic phase. The alternating phase
potentially ferroelectric, and the system may be metallic
the NIT. Such features are common to ferromagnetic oxid
and in this context they were recently discussed6 in terms of
the modified Hubbard model. The interplay of electro
electron (e-e) ande-ph interactions can generate either co
tinuous or discontinuous ionicity changes. Long-range C
lomb interactions can generate7–9 discontinuousr variations
at the NIT, as well as strongly affect9 the dimerization insta-
bility.

Rice10 pointed out the strong infrared activity of totall
symmetric molecular vibrations through coupling to char
fluctuations. These on-site~Holstein! phonons also partici-
pate in the NIT. They condense at the transition, and prod
discontinuous r variations above a critical coupling
©2001 The American Physical Society18-1
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strength.9 Electron-molecular-vibration coupling provide
the basis for a spectroscopic determination of the ionicitr
of theDr1Ar2 GS as well as of the local symmetry, makin
vibrational spectroscopy an useful tool to follow charge a
structural phase transitions.11 Joint theoretical and experi
mental analysis of electronic and vibrational spectra12 al-
lowed for a systematic characterization of several salts.13

The modified Hubbard model adds site energies6D to a
Hubbard chain with uniform spacing:

H0~ t,D,U !52(
i ,s

$t~ai ,s
1 ai 11,s1ai 11,s

1 ai ,s!

2D~21! iai ,s
1 ai ,s%1(

i
Uai ,a

1 ai ,b
1 ai ,bai ,a

~1!

D andA are at odd and eveni, respectively, in the context o
CT complexes, andt.0 andD> 0 can be taken without los
of generality. The half-filled case, with one electron per s
is by far the most important. We considerH0 at this filling
for uniform t and equalU>0 for donors and acceptors. Th
electron density onD sites is related to the GS energy:

nD2152
1

N

]E0~ t,D,U !

]D
. ~2!

The ground states of extended systems are not known ex
for DÞ0. Approximate solutions beyond the mean field ha
been proposed along several lines: ex
diagonalization,7–9,14 quantum Monte Carlo,15

renormalization-group methods,16 and continuum models.17

There is broad agreement as well as open or disputed p
mentioned below.

Hubbard models are readily generalized, and provid
unified approach to quantum cell models that need not
low dimensional. In the context of Eq.~1!, we note thatD
can incorporate the Madelung energy in a mean-fi
approximation3 or coupling to Holstein phonons in the adi
batic approximation.9,14 In either case, the effectiveD de-
pends on the GS ionicity, and the NIT becomes disconti
ous above a critical coupling. The model is then nonline
and has wider applications to susceptibilities.18 At D50, if t
is linearly expanded around the equilibrium bond length,
obtain a Peierls-Hubbard model,19 and a direct connection to
models for ion-radical salts such as TTF-TCNQ with seg
gated stacks. Alternating transfer integralst(16d) are found
on the ionic side2 in many segregated stacks and in con
gated polymers.20,21 Theoretical interest inH0(t,D,U) and
its variants lies in the interplay ofe-e ande-ph interactions
and their role in the structural instabilities of on
dimensional materials, broadly defined.19–22

The t50 GS of the Hamiltonian in Eq.~1! is sketched in
Fig. 1 to illustrate some basic features. The electrons
paired onD ~odd! sites forD.U/2, paired onA ~even! sites
for D,2U/2, and singly occupy all sites in between; cov
lent states haveni51 at all i, and a spin degeneracy of 2N.
The valence transitions atU562D for U.0 transfer one
electron in the GS andr522nD changes discontinuously
20511
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Since the paired GS’s in Fig. 1 are nondegenerate, we ex
finite gaps for spin, optical, and charge carrying excitatio
The covalent GS, on the other hand, has vanishing spin g

H0(t,D,U), with finite t, is a one-dimensional metal a
D5U50, a band insulator forD.0 andU50, and a Hub-
bard model forD50 andU.0. Finite t leads to continuous
nD at the NIT whenD is not a function ofnD . Although the
ionicity is continuous, the NIT between band and Mott ins
lators is a true quantum phase transition atT50 K as sig-
naled by the closing of triplet23 and singlet8,9 gaps and by the
unconditional instability8,9 to dimerization on the covalen
side. The nature of the transition between two insulators
revived interest in the modified Hubbard model in conne
tion with localization and conductivity in correlate
systems.24 Strong charge fluctuations induced by latti
motion6,24 and related structural instabilities25 have been re-
discovered and underlined. Finitet generates correlate
states of the Hamiltonian in Eq.~1! that differ fundamentally
from the t50 limit. In spite of sustained
research,6–9,14–16,24–30no definitive picture has emerged fo
the T50 K phase diagram of the simple model in Eq.~1!.

We present in this paper exact solutions ofH0(t,D,U) for
finite N using valence bond~VB! methods31 that were origi-
nally developed7 for CT complexes. The total spinS is con-
served in all versions of Eq.~1!. VB diagrams with specified
pairing of sites withni51 form a large but complete bas
for any N. The scope of finite-N results is decisively ex-

FIG. 1. Ground-state energy per site,E/N, of the modified Hub-
bard model@Eq. ~1!#, as a function of the site energyD for free
(U50) or interacting (U.0) electrons in the limit of no overlap
(t50), with valence transitions atD56U/2 in donor-acceptor
stacks. Thet51 curve for free electrons is Eq.~3!.
8-2
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tended by using both periodic and antiperiodic bound
conditions and the symmetries ofH0. The oligomers in Sec
II reachN516 in the full basis orN522 in a restricted basis
without D21 or A22 sites, compared toN;10 in previous
studies. Exact excitations near the NIT are related in Sec
to the opening of gaps, and interpreted as due to localiza
on the paired side. The GS is metallic at the NIT accord
to the charge gap and charge stiffness. The NIT marks
boundary between a localized GS forD@U, and a delocal-
ized GS with vanishing excitation energies as in Hubb
models atD50. We shall briefly mention the role ofe-ph
coupling and intersitee-e interactions, but defer detaile
analysis to subsequent publications.

II. SYMMETRY CROSSOVER AND CHARGE DENSITY

We consider GS properties ofH0(t,D,U) at half-filling,
one electron per site, and uniformt51. General solutions o
the Hamiltonian in Eq.~1! are restricted to finiteN, where
eigenstates and energies are accessible. Periodic boun
conditions~PBC’s! are readily applied to noninteracting (U
50) systems, whose GS energy is

E0~D,0!

N
52

1

N (
k filled

2~D214cos2k!1/2

→2
2

p
~D214!1/2E~q!. ~3!

The expression for the infinite chain is shown in Fig. 1;E(q)
is a complete elliptic integral of the second kind, withq2

54/(D214). From Eq.~2!, the GS electronic density onD
is:

nD~D,0!215
2DK~q!

p~41D2!1/2
, ~4!

whereK is the complete elliptic integral of the first kind. Th
divergence of]nD /]D at D50 signals an electronic insta
bility. The behavior of finite rings is different, and shows 4n
and 4n12 effects. The wave vector isk50,62p/N,
64p/N, . . .p. We have energies6D at k5p/2 whenN
54n, and two electrons for these orbitals. The degener
produces an energy cusp atD50; nD changes discontinu
ously, and the partial derivative in Eq.~2! is not defined.
Finite rings withN54n12 have nondegenerate GS’s atD
50, no cusp and finite (]nD /]D)0. The 4n and 4n12 se-
quences must coincide in the extended chain, and do so
cording to Eq. ~4!, with continuous nD and divergent
(]nD /]D)0. Exact U50 results illustrate the extrapolatio
problems encountered in interacting chains.

The full basis ofH0(t,D,U) increases roughly as 4N with
N, and as 3N when we exclude doubly ionized sites, i.e., tw
electrons atA sites or two holes atD sites. We use VB
methods31 to reachN516 for the full basis andN522 for
the restricted basis. The basis has over 107 singlets or 109

Slater determinants withSz50. Exact solution32,33of the ex-
tended chain is limited toD50, the Hubbard model. The G
is a nondegenerate singlet, the charge gap is finite foU
20511
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.0, and there is spin-charge separation at largeU. Finite t
and U always lowers the energy in Fig. 1 compared tot
50. The greatest changes occur atD56U/2, wheret can-
not be treated as a small parameter.

In CN symmetry, the GS of the interacting systems tra
forms ask85p on the covalent side of 4n rings, and ask8
50 in 4n12 rings. Site energiesD.0 lower the symmetry
from CN to CN/2 , and yield a charge-density-wave~CDW!
GS. The extended system no longer has inversion cen
between sites, which corresponds to reflection between s
for finite N, but retains inversion at the sites or, for finiteN,
reflectionsv through the sites. With two sites per unit ce
both k850 and p transform ask50 in the first Brillouin
zone. According to reflection through sites, the covalent
of 4n12 rings is even (sv51, A1), and that of 4n rings is
odd (sv521, A2). The GS of 4n rings is degenerate a
Dc(U,N), where the symmetry switches fromA2 to A1 with
increasingD, and this crossover defines the NIT. In additio
to PBC’s, we use antiperiodic boundary conditions~AP-
BC’s! with reversed signt1N521 for transfer between 1
andN. This corresponds tofn1N52fn for the on-site wave
functions and a periodicity 2N. In terms of VB diagrams, we
modify sv for reflection through sites 1 andN/211 to

s85sv~21!n1, ~5!

wheren1 is the occupation number of site 1. The APBC G
hass851 in 4n rings for anyD,U. The GS of 4n12 rings
have a crossover froms8521 at smallD to s851 at D
.Dc(U,N). The subspacesA18 andA28 associated withs8 do
not coincide withA1 andA2. The paired state is unique an
even for either PBC’s or APBC’s. There are two covale
states, the Kekule´ diagrams for benzene, with neares
neighbor pairing of all spins. We defineuK1& and uK2& as
pairing spins at sites 2i 21 and 2i and 2i and 2i 11, respec-
tively, for all i. The pairing in uK1& is D1A2, while the
pairing in uK2& is A2D1. The combinationuK1&1uK2&
transforms asA1 or A28 for PBC’s and APBC’s, respectively
while the out-of-phase combination transforms asA2 or A18 .

The U5D50 crossover connects electrons paired
D12A22 or DA in Fig. 1. ForU.0, the NIT shifts to posi-
tive U22Dc andtÞ0 preferentially stabilizes the paired G
over the covalent GS because the latter has finite probab
for adjacent parallel spins that cannot transfer under Eq.~1!.
The symmetry changes at6Dc(U,N) in rings with either
PBC’s or APBC’s. Exact crossovers are shown in Fig. 2
U22Dc(U,N) in the U,D.0 quadrant forU50.5, 1, 2, 3,
4, 5, and 10; the inset hasU5100, 200, 300, and̀ , the last
one corresponding to the restricted basis. At fixedU and
finite N, the crossovers are similar for 4n with PBC’s and
4n12 with APBC’s. The dashed line is an extrapolation
the infinite chain discussed below. The covalent region
very narrow and the crossovers merge atU50. The inset
shows thatDc(U,N) is nearly constant forD.5t.

We plot Dc(U,N) vs N22 in Fig. 3, and find accurate
extrapolation at largeD and U. The difference betweenU
5300 and the restricted basis is due to small admixture
A22D21 at energyU12D. The extrapolated limit isU
8-3
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22Dc51.332 in the restricted basis. It has previously be
estimated8 as 1.2–1.3 based on the singlet and triplet ga
respectively, ofN<10 rings and23 at 1.5 based on the ionic
ity up to N510. Mixing with A22D21 grows asU de-
creases, as seen forU510, and the functional dependence
closer to;N21 at smallerU;3. Kinetic contributions are
largest at smallU andD, wheret is comparable to CT ener
gies. The extrapolated~dashed! line in Fig. 2 is based on a
power law,Dc(U,N)}N2g, with 1,g,2 giving the best fit
for eachU from N58 –16.

Figures 2 and 3 indicate that, except forD, U,2t, the
NIT hardly varies withU/D. The relevantDA systems have
narrow bands, oxides are modeled6,24 with wider bands,D
,t. The restricted basis captures the basic physics. We
both D and U diverge in H0(t,D,U) while keepingG5D

FIG. 2. Ground state crossoversU(Dc ,N) of N-site modified
Hubbard rings@Eq. ~1!# with periodic and antiperiodic boundar
conditions, respectively, forN54n and 4n12. The dashed lines
are theN→` extrapolations discussed in the text. The inset sho
a large-D behavior and the restricted basis atD→`.

FIG. 3. Size dependence of the GS crossover betweenN58 and
14 at U/t53, 10, and 300 for the full basis of Eq.~1! and up to
N520 in the restricted basis with infiniteU.
20511
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2U/2 finite,7 and reference the crossover toG2Gc5D
2Dc . In the half-filled case,D→` ensures an electron a
eachD site and excludes two electrons at anyA site. Thet
50 GS has energies22G and 0 perDA on the paired and
covalent side, respectively, withG50 at the NIT. The re-
stricted basis is almost quantitative forU.5, makes a larger
value ofN accessible, and holds at the NIT. The related lim
with both U and U22D@t leads instead to a Heisenbe
spin chain,15 without charge degrees of freedom, and do
not apply to the NIT.

The GS expectation value,^n2i 21&, for electrons atD
sites is more accurate than the numerical derivative in
~2!. Matrix elements31 over correlated states can be evalua
exactly for finite N. Results for the restricted basis of 4n
rings with PBC’s and 4n12 rings with APBC’s are shown
as a function ofG2Gc(N) in Fig. 4~a!. The crossover gen
erates a jump innD . The charge density is continuous inA1

and A2 for 4n rings, or inA18 and A28 for 4n12 rings, but
continuing the lines in Fig. 4~a! through the NIT gives an
excited-state density. All approaches to the NIT described
the Hamiltonian in Eq.~1! indicate nD to be continuous
when t is finite. As expected, the discontinuity innD de-
creases withN, and vanishes in the extended chain. The G
of 4n12 rings with PBC’s or 4n rings with APBC’s remain
in A1 or A18 , respectively, for anyU andD, and the charge
density is continuous, as shown in Fig. 4~b!. The NIT defined
by the maximum of]nD /]D is less precise numerically~by
;0.02t) than a crossover. The curves in Fig. 4~b! have been
adjusted to catch the extrapolation between increasing
decreasing series on either side ofDc . Results for the infinite
chain are shown as stars that coincide in both panels. T
represent joint extrapolations as eitherN21 or N22, that give

s

FIG. 4. Ground-state electron densitynD of N-site modified
Hubbard rings@Eq. ~1!# in the restricted basis. The boundary co
ditions in ~a! produce a symmetry crossover atGc(N) ~vertical line!
wherenD increases discontinuously withG and the smallest jump
occurs forN520. The boundary conditions in~b!, with the same
Gc(N), result in a continuousnD with increasing]nD /]G up to N
522. The stars are jointN→` extrapolations of~a! and ~b! dis-
cussed in the text.
8-4
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the smallest mean-square deviation. Indeed,nD is almost
quantitatively known from the requirements thatnD(22)
.nD(20) on the covalent side andnD(22),nD(20) on the
paired side. The present estimate fornD is 1.314~2! at the
NIT, i.e., r50.684.

The restricted basis forU,D@t fixesnD51.31 at the NIT
of Eq. ~1!. The slope]nD /]D is finite, but this is inconclu-
sive by itself. Hückel rings show similar 4n and 4n12 be-
haviors and exactN5200 and 400 results are indistinguis
able fromnD in Eq. ~4! at the resolution of Fig. 4. The origin
must be magnified by an order of magnitude to see the
vergence of]nD /]D5(]2E0 /]D2)/N at D50. This diver-
gence signals the intrinsic instability of theU5D50 chain
to a site-CDW distortion that, however, is already broken
finite U52Dc in interacting systems. Extended chains w
U.0 have finite]nD /]D at the NIT. By contrast, the Peierl
instability to a bond-CDW is unconditional9,15 for any t/U,
because dimerization breaks reflection symmetrysv , as ex-
perimentally recognized in the initial TTF-CA studies.5

The full basis of the Hamiltonian in Eq.~1! is required for
small U, and exact results fornD or Dc(U) are limited to
N516. We again have discontinuousnD(D,U)’s in 4n rings
with PBC’s, and 4n12 rings with APBC’s, and a continu
ous nD for the opposite boundary conditions. In Fig. 5 w
compare extrapolatednD values forU52,5, and 10 with the
exactU50 result in Eq.~4!. The arrows marking the NIT for
finite U are based on symmetry crossovers and extrap
tions similar to Fig. 3. We have increasingnD(Dc ,U) with U
and the limiting value of;1.3 is reached byU55. Figure 5
shows the stabilization of covalent states with increasingU
and small NIT variations forD,U.2.

III. ENERGY GAPS AND LOCALIZATION AT THE NIT

The excitations ofH0(t,D,U) provide other evidences o
the NIT. The paired and covalent states are diamagnetic

FIG. 5. Ground-state electron densitynD of modified Hubbard
models@Eq. ~1!#, with U/t50, 2, 5, and 10. The exactU50 result
is Eq.~4!; U.0 points areN→` extrapolations ofnD based on the
full basis up toN516; the arrows mark the neutral-ionic transitio
found as in Fig. 3.
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paramagnetic, respectively. A singlet-triplet gapEST opens23

at the NIT between a band insulator withEST.0 and a Mott
insulator withEST50. The lowest singlet excitationESS is
betweenA1 andA2 GS; henceESSvanishes8 at the NIT. The
transition is dipole allowed, and is formally a CT excitatio
but ESS rapidly loses oscillator strength on the covalent sid
The charge degeneracy in Fig. 1 atU52D, t50 distin-
guishes between neutral and ionic complexes. Thet.0 gaps
near the NIT are not known, and their simultaneous open
as tacitly supposed for a single transition,7–9,14–17is neither
assured nor agreed on.24–30 We report exact excitation
thresholds near the NIT defined by GS crossovers. All sy
metry considerations apply to the full basis forD.0.

Figure 6 reportsESS(N)5E2(N)2E1(N), i.e., the energy
difference betweenA2 andA1 GS’s, in the restricted basis a
a function ofG2Gc(N). SinceESS(N) increases in 4n rings
for G.Gc and decreases in 4n12 rings, we have finiteESS
on the paired side. On the covalent side,ESS(N) decreases
with N in rings whose GS remains inA1 or A18 , and in-
creases in rings whose GS is inA2 or A28 . Joint extrapola-
tions yield stars that are consistent with vanishingESS in the
extended system. Exact results toN522 in Fig. 6, are the
most stringent limits to date, withESS,0.05t on the covalent
side and finiteESS(N) for G2Gc,0.05t. We note that at
D50, far on the covalent side, Ovchinnikov33 found nonpo-
lar singlets with a zero gap for anyU.0. Far on the paired
side, we haveESS;2G by inspection. Hence increasingD at
fixed U in the extended system clearly opens a singlet-sin
~SS! gap that is seen to coincide in Fig. 6, with the N
defined by the symmetry crossover. The unconditional ins
bility for dimerization on the covalent side is closely relat
to vanishingESS; the instability is conditional for a finite
gap.

The magnetic gapEST is to the lowest triplet for either
PBC’s or APBC’s. As shown in Fig. 7,EST increases rapidly

FIG. 6. The singlet-singlet gapESSnear the NIT of Eq.~1! up to
N522 in the restricted basis. Boundary conditions leading to cro
overs are shown as open circles anduESSu is the excitation forG
,Gc . Boundary conditions without crossovers are shown as clo
circles. The stars are jointN→` extrapolations based on both.
8-5
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with G.Gc in the restricted basis, and is small on the cov
lent side. Open circles represent boundary conditions w
crossovers and systems whoseEST increases withN at larger
G2Gc . Closed circles are for boundary conditions witho
crossovers, and show decreasingEST with N. The stars in
Fig. 7 are joint extrapolations. The bound onEST is EST
,0.1t for G,Gc , and the gap opens atGc or slightly on the
covalent side. At finiteU, the extended system is rigorous
known to be paramagnetic34 at D50, with EST50, and dia-
magnetic withEST;2D2U for D@U. The opening of a
singlet-triplet~ST! gap with increasingD is assured, and the
results in Fig. 7 are consistent withEST.0 at the NIT. The
concomitant dimerization on the covalent side opens a m
netic gap, as it is well known in spin chains2 with regular or
alternating exchanges and triplet spin excitons.

The charge gap of the Hamiltonian in Eq.~1! is I 2A,
since there is not an explicit Madelung contribution.I 2A is
related to the GS of the cation and anion radicals,E1(N)
andE2(N), respectively, and corresponds to charge disp
portionation or electron transfer between noninteracting s
tems:

I ~N!2A~N!5E1~N!1E2~N!22E0~N!. ~6!

At t50 andD.0, we have a paired GS forU,2D with I
5D2U and A52D; the lines cross at the NIT, and th
covalent side hasI 52D and A5D2U for U.2D. For t
.0, the charge gap of free electrons,u2Du, follows from the
valence and conduction bands in Eq.~3!; the extendedU
50 system is metallic atD50, and insulating otherwise
Although not known exactly forU.0, the charge gap is
readily shown to be large, roughlyu2D2Uu, far from the
NIT. On the covalent side, it becomes the Lieb-Wu gap32 at
D50, and increases asU for U.4t; on the paired side, al
gaps increase as 2D2U for D@U. Finite N leads to charge
gaps at the NIT in systems with discrete energies.

FIG. 7. The singlet-triplet gapEST near the NIT of Eq.~1! up to
N518 in the restricted basis. Open and closed circles refe
boundary conditions with and without crossovers, respectively,
stars are jointN→` extrapolations based on both.
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Both e-h symmetry35 and sb are broken forD.0, but
their product remains a symmetry operation. Extendede-h
symmetry36 cuts the basis, either full or restricted, roughly
half, and corresponds in theS50 manifold to theAg

1
% Bu

2

and Ag
2

% Bu
1 subspaces ofH0(t,0,U). The GS symmetry

does not change at the NIT.e-h symmetry relates the GS an
excited states of the radical ions.35,36 In particular, we have
E2(N)5E1(N)1U, a general result that holds on addin
any spin-independent potential toH0(t,D,U). It follows that
Eq. ~6! reduces toI (N)1A(N)52U for evenN and arbi-
trary t,D,U. Table I reportsI (N)2A(N) at U andDc up to
N514 in the full basis andN518 in the restricted basis. Th
U50 gaps vanish at the crossover, where the electron tr
fer described in Eq.~6! involves degenerate orbitals. Th
charge gaps increase withU, but remain small at the cross
over even for divergentU. The gaps in Table I follow power
laws N2g, with g,0.6, and place a rough bound of;0.2t
on the extended system. The charge gap vanishes at mo
a single point,Dc(U) or Uc(D), that coincides with the NIT
within the accuracy of finite systems.

The SS, ST, and charge gaps are all finite on the pa
side, G.Gc . They differ on the covalent side, howeve
where only the charge gap is finite. We associate gaps on
paired side with localization. The GS for theuDu@U limit
has paired spins on either odd or even sites, and is manife
localized. Since gapless triplets and singlets are firm
established33 at D50, the GS ofHe(t,D,U) for U,t.0 is
extended atD50, and localized atD@U. A localization-
delocalization transition between two insulators incorpora
all aspects of the NIT, and the vanishing charge gap sugg
a metal at the transition. We develop these ideas below.

To show localization on the covalent side, we partitionH0
in the restricted basis intoh0 for transfers between sites 2n
21 and 2n, as in uK1&, and a perturbationV for transfers
between 2n and 2n11. We takeG5D2U/2.0 in units of
t, and solve the 232 dimer problem in the singlet subspac
of h0. The exact GS ofh0 is

uG0~G!&5)
i 51

N/2

@a2i 21,a
1 a2i 21,b

1 cosf1A2~a2i 21,a
1 a2i ,b

1

2a2i 21,b
1 a2i 21,a

1 !sinf#u0&, ~7!

where u0& is the vacuum state and tan 2f5A2/G governs
the mixing of uDA& and the singlet linear combination o

to
d

TABLE I. Exact charge gapI 2A in Eq. ~6!, at the neutral-ionic
transition of the model in Eq.~1!, for rings of N sites, witht51,
variableU, and Dc(N) at the crossover of 4n(4n12) rings with
periodic ~antiperiodic! boundary conditions.

N U52 10 ` ~restricted basis!

8 0.1893 0.7162 0.8486
10 0.1803 0.6548 0.7614
12 0.1718 0.6010 0.6909
14 0.1614 0.5555 0.6342
16 0.5874
18 0.5469
8-6
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uD1A2&. The zeroth-order energy is2G2(G212)1/2 per
dimer. The opposite choice of 2n and 2n11 for dimers has
the same energy but admixesuA2D1& singlets, as inuK2&.
Each dimer has a triplet with excitation energyeT5G1(G2

12)1/2, a singlet ateS52(G212)1/2, and strictly confined
electrons. The perturbation

V52(
i ,s

~a2i ,s
1 a2i 11,s1a2i 11,s

1 a2i ,s! ~8!

is necessarily small whenG is large. To second order inV,
the energy per dimer is

e (0)1e (2)52G2~G212!1/22
cos4f1~sin4f/4!

~G212!1/2
. ~9!

Electrons are now confined to adjacent dimers that are c
nected by virtual excitations. As shown in Table II, Eq.~9! is
nearly quantitative as close to the NIT asG52. Localization
to adjacent dimers approximates the exact solution of
~1!, which for N522 is a linear combinations of over 107

singlets. Rapid convergence withN also points to localiza-
tion on the paired side, and is seen fornD in Fig. 4, ESS in
Fig. 6, andEST in Fig. 7. Successive orders inV increase the
number of coupled dimers by one. Such an expansion fai
the NIT or on the covalent side.

To see if the system is metallic at the transition, we co
pute the charge stiffness37 relevant to the Hamiltonian in Eq
~1!. This property has been applied to interacti
fermions38–40 in one dimension. The perturbation is a pha
factor exp(6if ) in Eq. ~1! for transfers to the right and left:39

V~ f !5~12cosf !n11 in2sin f . ~10!

The first term of Eq.~1! is 2n1 , while n2 has oppositely
signed transfers to the right and left and connectsA1 andA2
states for PBC’s. We now haveE0(G,t, f ) in units of t. The
charge stiffness per site isxcs5(]2E0 /] f 2)0 /N. It is finite
in conductors, and vanishes in insulators. At the crosso
the proper zeroth-order GS of 4n rings is the odd linear
combination of theA1 andA2 GS’s and

xcs~Gc!5S ]2E0

N] f 2D
0

5p(1)1p(2)

5
uE0u
N

1
Gc~nD

(1)1nD
(2)22!

2
. ~11!

TABLE II. Approximate ground-state energy per dimer@Eq.
~9!#, of the infinite chain, and exact results for Eq.~1! with N
512, t51, G5D2Dc(12,U), andU510, and` ~the restricted ba-
sis!.

G U510, exact U5`, exact U5` , Eq. ~9!

0.5 22.4706 22.3757 22.3148
2.0 24.8129 24.7795 24.7871
5.0 210.3848 210.3788 210.3814
10.0 220.1981 220.1971 220.1975
20511
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HerenD
(1) andnD

(2) are the electron densities at donor sites
the A1 andA2 subspaces, respectively, andp(1) andp(2) are
the corresponding bond orders, with 2p defined as the GS
expectation value ofn1 , which we evaluate in the restricte
basis. The donor densities at the NIT are shown in Fig. 4
have oppositeN dependences inA1 and A2. The value of
Gc5U/22Dc520.666 follows from Fig. 3. We have a poo
metal: xcs(Gc);0.74 is ;60% of 4/p value for free elec-
trons atD5U50 in Eq. ~1!. For GÞGc , second-order per-
turbation theory inf becomes exact.39 Figure 8 shows that
xcs(G) is exponentially small on either side of the NIT. Th
charge stiffness38 of the Hubbard model has a similar peak
U50 that narrows withN, and becomes ad function in the
infinite chain. Hence we expectxcs(G) to vanish except at
Gc in the extended system.

A metallic point connecting insulating phases was
cently discussed forH0(t,D,U),24 and for the following half-
filled system of spinless fermions40:

H52(
i

~ai
1ai 111ai 11

1 ai !1(
i

~Vnini 111Wnini 12!.

~12!

Large V.0 favors a GS without adjacent occupied site
while largeW favors one with adjacent filled and empty sit
along the chain. Thet50 crossover occurs atV52W, with
adjacent electrons and holes forV,2W that resembleD and
A sites, respectively. TheV.2W GS has alternating filled
and empty sites that, taken in pairs, correspond toD1 and
A2. The crossover is not precisely atV52W, presumably
due to different bond orders in the two GS’s. It shifts toW
2V/2;20.6 in units of t, very close toGc . Transfers be-
tween two sites in Eq.~12! differ from spin degeneracy in
Eq. ~1!, however, and the models do not map into each oth
Exact results40 to N540 for Eq. ~12! are comparable toN
520 for the full basis of Eq.~1!. The striking similarity

FIG. 8. Charge stiffness,xcs(G) in Eq. ~12! and as discussed in
the text, near the NIT of theN-site model@Eq. ~1!#, in the restricted
basis;xcs(Gc) is ;60% of the free-fermion value.
8-7
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between Fig. 8 and the charge stiffness of Eq.~12! up to N
540 suggests a similar interpretation.

IV. DISCUSSION

The modified Hubbard model in Eq.~1! has many appli-
cations to both theory and experiment. With variations, i
suitable for modeling valence transitions, excitation thre
olds, and electronic or structural instabilities, among ot
topics. Its two parametersU/t andD/t encompass the Hub
bard model (D50) at half-filling or other filling, two bands
at U50, and localized dimers forD@U. At fixed U and t,
increasingD.0 generates a neutral-ionic transition who
characterization is the principal goal of this paper. The N
of the Hamiltonian in Eq.~1! has a continuous ionicity given
by Eq. ~2! and excitation gaps for singlets, triplets, a
charges that are not known exactly. Previous approximat
were separately developed fornD , ESS, EST, the charge
gap, the GS at the NIT, instabilities, etc. Our collecti
analysis of symmetry crossovers, excitation thresholds,
GS properties incorporates computational advances,
yields better estimates for extended systems.

Finite-size results require extrapolations whose accur
improves with N. We followed the NIT of H0(t,D,U)
through the symmetry crossover of the GS, the charge d
sity nD , the excitationsESSandEST, and the charge gap an
stiffness. LargerN is accessible in the restricted basis, allo
ing for an accurate estimate ofGc520.666t from the cross-
over and setting stringent limits of;0.1t for the opening of
all three gaps at this position. Thus the numerical res
point to a single transition. The NIT of the modified Hubba
model is continuous, as previously found, and is marked
the opening of singlet, triplet, and charge gaps on the pa
side. There is no gap in the singlet or triplet manifold on t
covalent side. The interacting system is known to hav
delocalized GS atD50, the Hubbard limit, and a localize
GS for D@U, the paired limit. We identify the NIT a
6Dc(U,t) as the appearance of a localized GS.

Resta and Sorella24 discussed polarization and metall
behavior at the NIT in the context of oxides, witht0
53.5 eV,D852.0 eV and variableU in Eq. ~1!. The cross-
over in N58 rings, atU/t052.27, is used to estimate th
polarization of extended systems. SinceD8/t050.571 corre-
sponds to larget, the crossover is near the origin of theD
and U plane in Fig. 2, and there are substantial finite-s
effects. TheN58 result in Fig. 2 yieldsUc52.27, in quan-
titative agreement with Ref. 24, but largerN’s up to 16 ex-
trapolate to largerUc /t52.70 for the extended system. Su
corrections are consistent withN;10 results on CT com-
plexes. The GS polarizability is a new approach, to o
knowledge, different from the charge stiffness, to the ide
fication of metallic behavior.

The GS density isnD51.314 at the NIT of the restricted
basis, when one electron is always confined toD. The spin
degeneracy ofD1 or A2 spoils an exact analysis. The d
generacy of charge and spin excitations at the NIT give
simple, heuristic interpretation:nD54/3 is the result for
equal weights of molecules and spin-1/2 radical ions. Eq
weights at the NIT can be justified rigorously atU50 for
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electrons or spinless fermions, but not in the restricted ba
We found Gc520.666 in the restricted basis and use th
value in uG0(G)&, the dimer GS in Eq.~7!; the paired-state
amplitude is cos2 f50.287, which corresponds tonD
51.287. Dimers capture most of the configuration mixing
the extended system. The full basis has contributions fr
D21 andA22 diagrams, which, as seen in Fig. 5, reducenD
compared to the restricted basis.

Peierls-Hubbard models are widely applied to structu
instabilities. The stability of the GS to a perturbation can
formulated in terms of susceptibilitiesx that are formally
given by the exact eigenstatesuF& and energiesEF of the
Hamiltonian in Eq.~1!. The perturbation is written as th
productuQ, whereu is the relevant operator for coupling t
Q, and the correspondingx is

x}2S ]2EG

]Q2 D
0

52(
F

z^GuuuF& z2

EF2EG
. ~13!

Since the sum is over the excited states of the unpertur
system, the eigenstates of the uniform chain in Eq.~1! suffice
for the stability of the modified Hubbard model. The char
stiffness in Eq.~12! is x with respect to a magnetic field
perpendicular to the ring,39 and gives information about cur
rent flow. Structural transitions are investigated by introdu
ing phonons as theQ perturbation. The Peierls instability fo
dimerization involvesk50 phonons, withu representing the
staggered bond-order operator@the first term in Eq.~1!, aug-
mented by a (21)i factor#. This operator breaks inversio
symmetry at the sites and mixesA1 and A2 singlets.8 Van-
ishing ESS on the covalent side of the NIT then indicates
divergentx and the unconditional instability of a lattice wit
harmonic potentials.9 On-site~Holstein! phonons couple in-
stead to a CDW operatornD . SincexD5]nD /]D is finite at
the NIT, except forD50, the corresponding instability is
conditional;9 the NIT marks the maximumxD , i.e., the
maximum]nD /]D, as discussed in Fig. 4.

We turn next to open or controversial aspects of the N
of the modified Hubbard model. Some authors25,29 proposed
two transitions related to the closing of charge and spin ga
respectively; a spontaneously dimerized phase then sepa
a band insulator corresponding to the paired GS and M
insulator on the covalent side.25 The suggestions25 for an-
other transition rest on the analogy with spin-1/2 Heisenb
antiferromagnetic chains with frustration due to a seco
neighbor exchangeJ2. The Kekule diagramuK1& or uK2& is
the exact GS atJ25J1/2, as recognized by Majumdar an
Ghosh.41 There is no exact mapping of Eq.~1! into such a
spin chain, not even at largeU, but the GS’s of related mod
els with, for example, second-neighbor transfers, have
been studied in detail. Our exact results forH0(t,D,U) with
finite N show that the maximum of]r/]D, the closing of the
singlet and triplet gaps, and the vanishing of the charge
coincide at the NIT within;0.1t. Finite systems canno
specify transitions, but provide some constraints. The M
insulator dimerizes spontaneously for anyt/U, as discussed
for the spin-Peierls instability42 of Heisenberg antiferromag
netic chains. The dimerization amplitude becomes very sm
8-8
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for U@t and J5t2/U, since the electronic stabilization i
less thanJ, but the singularity actually increases;43 the GS
energy in Eq.~3! at U5D50 goes asd2 ln d for alternating
t(16d) along the chain, while the GS of the spin chain w
alternatingJ(16d) goes asd4/3 ln d.44 Such considerations
apply to Eq.~1! in the covalent limitG5U22D@t where,
as noted originally,1,2 we have a Heisenberg chain withJ
5t2/G.

The charge gap is a recent topic, and is expected to h
a minimum at NIT.29,30,45We find finite minima in interact-
ing systems with finite N. As already noted, the
polarizability24 and charge stiffness in Eq.~12! and Fig. 8
give independent indications of a metallic GS at the NIT. W
consequently expect a vanishing charge gap there. The m
separating two insulating phases is extremely fragile:
only is it restricted to a single pointDc(U), but it is uncon-
ditionally unstable to dimerization. Moreover, extending t
model in Eq.~1! to include intersitee-e interactions or on-
site phonons produces a discontinuous NIT above some c
cal coupling, which excludes a metallic phase even fo
rigid lattice. By contrast, a metallic GS at the NIT of Eq.~1!
is fairly robust. We have a simple half-filled band atU50,
and a correlated metal persists to an arbitrarily largeU. At
the NIT, D counterbalancesU: the charge distributionsDA
and D1A2 are almost degenerate, and hence are stron
mixed by any finitet. A metallic state at NIT is not consis
tent with finite triplet excitation there.

The degeneracy of charge and spin excitations is cha
teristic of the NIT, and appears already in thet50 limit of
Fig. 1. FiniteD completely spoils the spin-charge separat
at the NIT of Eq.~1!. The vanishingEST is closely linked to
the magnetic susceptibility of the Hubbard or Heisenb
chains. Since a singlet can always be constructed from
triplets, a vanishingESS follows immediately, and is assoc
ated with even-parity spin waves inD50 systems withe-h
symmetry. This symmetry is broken in Eq.~1! or its exten-
tl.

y

s
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sions, and the CT excitation connecting theA1 andA2 GS’s
is dipole allowed. Spin-charge separation is regained on
covalent side when the charge gap exceeds a fewt, much as
in Hubbard models forU.t: Exact separation requires infi
nite U, but U.4t suffices in practice.

To summarize, we have extended exact solutions of
modified Hubbard model in Eq.~1! to larger systems, iden
tified the NIT with symmetry crossovers in rings with per
odic or antiperiodic boundary conditions, and found t
charge density, excitation thresholds, and susceptibilitie
the NIT. We find a continuous NIT, and considerably tight
the extrapolated limits for the infinite chain. Our results i
dicate aT50 K transition with vanishing singlet and triple
gaps on the covalent side, a vanishing charge gap and m
lic GS at the NIT, and finite singlet, triplet, and charge ga
on the paired side, whose localized GS is confirmed.
associate the NIT of the model in Eq.~1! with a transition
from a delocalized GS~smallD) to a localized GS~largeD).
An accurate analysis of the Hamiltonian in Eq.~1! is re-
quired to model valence transition in charge-transfer salts
metal oxides where long-range Coulomb interactions a
e-ph coupling have to be considered explicitly.
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