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Exact ground states, charge densities, and excitation energies are found using valence bond methods for
N-site modified Hubbard models with uniform spacing. At the neutral-ionic trangihidf), the ground state
has a symmetry crossover im4nd 4n+ 2 rings with periodic and antiperiodic boundary conditions, respec-
tively. Large site energied stabilize a paired state of the half-filled chain, while latgistabilizes a covalent
state. Finite-transfer integraishift the NIT to the covalent side & —2A. Exact results tdN= 16 in the full
basis and tdN=22 in a restricted basis for lard¢ and A are extrapolated to obtain the crossover and charge
density of extended chains. The modified Hubbard model has a continuous NIT between a diamagnetic band
insulator on the paired side and a paramagnetic Mott insulator on the covalent side. The singldStfiplet
singlet-singlet(SS, and charge gaps for finitdl indicate that the ST and SS gaps close at the NIT with
increasingU, and that the charge gap vanishes only there. FMitxcitations constrain all singularities to
+0.1t of the symmetry crossover. The NIT is interpreted as a localized ground(&8tevith finite gaps on
the paired side and an extended GS with vanishing ST and SS gaps on the covalent side. The charge gap and
charge stiffness indicate a metallic GS at the transition that, however, is unconditionally unstable to dimeriza-
tion. Finite A breaks electron-holeeth) symmetry, but the modified Hubbard model has an exteredkd
symmetry, and a strong mixing of spin and charge excitations is limited to &’'feabout the NIT. Exact
finite-size results complement other approaches to valence or ferroelectric transitions in organic charge-transfer
salts or in inorganic oxides, and to electron-vibration coupling and structural instabilities in one-dimensional
systems.
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[. INTRODUCTION to the crossover regionM~E,—E,. In this paper we
present exact solutions of finite-size systems, including low-
McConnell and co-worketsexplained the sharp separa- lying excitations.

tion of organic charge-transfé€T) complexes into diamag- The neutral-ionic transition(NIT) originates with the
netic and paramagnetic by proposing that weattonors(D) ~ TTF-CA complex studied by TorranéayhereD is tetrathi-
and acceptorgA) form neutral complexes of molecules, afulvalene and A chloranil. TTF-CA is neutral at room tem-
while strong donors and acceptors crystallize as ion radicalperature, withp~0.3, and has a transition @t-81 K to an
D" and A”~. These planar conjugated systems form oneionic state withp~0.7 that, moreover, is dimerized. The
dimensional structures, either as mixed DADA... uniform TTF-CA spacing above 81 K becomes alternating
stacks in CT complexes or as segregated stacks in ion-radic@l . .t;,t, . ..) in theionic phase, and a partial ionicity is
salts? The simplest approximation for a crossover betweerdetermined spectroscopicafiyThe structural change shows
DA andD A~ ground states i =E,;—E,, whereM isthe  the fundamental role of lattice phonons and a Peierls insta-
Madelung energyE;, is the ionization potential of the donor, bility of the paramagnetic phase. The alternating phase is
andE, is the electron affinity of the acceptor. Althoulyhis  potentially ferroelectric, and the system may be metallic at
inherently long ranged, the systems are quasi-onethe NIT. Such features are common to ferromagnetic oxides,
dimensional by virtue ofw-overlap restricted to stacks. and in this context they were recently discussederms of
Strebel and Sodsintroduced the modified Hubbard model the modified Hubbard model. The interplay of electron-
with transfer integralt=—(DA|H|D*A~) for CT com- electron €-e) ande-ph interactions can generate either con-
plexes, and studied the crossover in the random-phase afipuous or discontinuous ionicity changes. Long-range Cou-
proximation. Finitet leads to mixing and to partial ionicity lomb interactions can generété discontinuousg variations
D?* AP~ in the ground stat€GS), with Ap<<1 at the cross- at the NIT, as well as strongly affédhe dimerization insta-
over. The modified Hubbard model, E¢l) below, has bility.
proved to be extremely rich and widely applicable. It de- Rice'® pointed out the strong infrared activity of totally
scribes any valence transition, is a special case of importarslymmetric molecular vibrations through coupling to charge
solid-state models, and provides the starting point forfluctuations. These on-sit@Holstein phonons also partici-
electron-phonon €-ph) coupling. Its scope is still growing pate in the NIT. They condense at the transition, and produce
and attracting new theoretical and computational approachefiscontinuous p variations above a critical coupling
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strength® Electron-molecular-vibration coupling provides '
the basis for a spectroscopic determination of the ionigity
of theD?*A?~ GS as well as of the local symmetry, making ' ,
vibrational spectroscopy an useful tool to follow charge and J/
structural phase transitiod$.Joint theoretical and experi- /
mental analysis of electronic and vibrational spéeétral- E/N /
lowed for a systematic characterization of several galts. K
The modified Hubbard model adds site energies to a K
Hubbard chain with uniform spacing:

Ho(t,A,U)=—2 {t(a],ai11,+8]" 1,2 0)

i,o
—A(-1)'a 8 1+ 2 Ua'ata pai .
]

)

D andA are at odd and eveanrespectively, in the context of
CT complexes, antt>0 andA= 0 can be taken without loss
of generality. The half-filled case, with one electron per site,
is by far the most important. We considdy at this filling

for uniformt and equalJ =0 for donors and acceptors. The
electron density oD sites is related to the GS energy:

g g g g S

1 JEq(t,A,U) 40,0 -2.0 00 A 20 490

I N @

FIG. 1. Ground-state energy per siEN, of the modified Hub-
The ground states of extended systems are not known exacthard model[Eq. (1)], as a function of the site energy for free

for A#0. Approximate solutions beyond the mean field have(U=0) or interacting >0) electrons in the limit of no overlap
been proposed along several lines: exact(t=0), with valence transitions aA=+U/2 in donor-acceptor
diagonalizatior?,‘g'l“ guantum Monte Carl®® stacks. The=1 curve for free electrons is EJ).
renormalization-group method8,and continuum modefs.
There is broad agreement as well as open or disputed poingince the paired GS’s in Fig. 1 are nondegenerate, we expect
mentioned below. finite gaps for spin, optical, and charge carrying excitations.
Hubbard models are readily generalized, and provide dhe covalent GS, on the other hand, has vanishing spin gaps.
unified approach to quantum cell models that need not be Hg(t,A,U), with finite t, is a one-dimensional metal at
low dimensional. In the context of E@l), we note thatA A=U=0, a band insulator foA>0 andU=0, and a Hub-
can incorporate the Madelung energy in a mean-fieltbard model forA=0 andU>0. Finitet leads to continuous
approximatiori or coupling to Holstein phonons in the adia- np at the NIT whenA is not a function ofhy . Although the
batic approximatiofi** In either case, the effectivd de- ionicity is continuous, the NIT between band and Mott insu-
pends on the GS ionicity, and the NIT becomes discontinutators is a true quantum phase transitiorTat0 K as sig-
ous above a critical coupling. The model is then nonlinearnaled by the closing of triplét and singlet® gaps and by the
and has wider applications to susceptibilitté#t A=0, ift  unconditional instabilit}® to dimerization on the covalent
is linearly expanded around the equilibrium bond length, weside. The nature of the transition between two insulators has
obtain a Peierls-Hubbard modéland a direct connection to revived interest in the modified Hubbard model in connec-
models for ion-radical salts such as TTF-TCNQ with segretion with localization and conductivity in correlated
gated stacks. Alternating transfer integril+ 8) are found  systems$”* Strong charge fluctuations induced by lattice
on the ionic sidéin many segregated stacks and in conju-motiorf2* and related structural instabilitishave been re-
gated polymerd®?! Theoretical interest iHy(t,A,U) and  discovered and underlined. Finite generates correlated
its variants lies in the interplay a-e ande-ph interactions states of the Hamiltonian in E¢l) that differ fundamentally
and their role in the structural instabilities of one-from the t=0 Ilimit. In spite of sustained
dimensional materials, broadly definkt?? researcl914-1624-3hq definitive picture has emerged for
Thet=0 GS of the Hamiltonian in Eq1) is sketched in  the T=0 K phase diagram of the simple model in Ed).
Fig. 1 to illustrate some basic features. The electrons are We present in this paper exact solutiondf(t,A,U) for
paired onD (odd) sites forA>U/2, paired oA (even sites  finite N using valence bon/B) methods! that were origi-
for A<—U/2, and singly occupy all sites in between; cova- nally develope@ifor CT complexes. The total spiis con-
lent states have;=1 at alli, and a spin degeneracy of'2  served in all versions of Eq1). VB diagrams with specified
The valence transitions & =*2A for U>0 transfer one pairing of sites withn;=1 form a large but complete basis
electron in the GS ang=2—np changes discontinuously. for any N. The scope of finiteN results is decisively ex-
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tended by using both periodic and antiperiodic boundary>0, and there is spin-charge separation at ldgdinite t
conditions and the symmetries bif. The oligomers in Sec. and U always lowers the energy in Fig. 1 comparedtto

without D** or A*~ sites, compared td~10 in previous ot be treated as a small parameter.

studies. Exact excitations near the NIT are related in Sec. lll |, Cy Symmetry, the GS of the interacting systems trans-
to the opening of gaps, and interpreted as due to localizatiopyyms ask’ = 7+ on the covalent side ofrings, and a’

on the paired side. The GS is metallic at the NIT according—q i 4n+2 rings. Site energied >0 lower the symmetry

to the charge gap and chgrge stiffness. The NIT marks thgqm Cy 10 Cyp, and yield a charge-density-wav€DW)
boundary between a localized GS the-U, and a delocal- G5, The extended system no longer has inversion centers
ized GS with vanishing excitation energies as in Hubbartyetyeen sites, which corresponds to reflection between sites
models atA=0. We shall briefly mention the role @&ph  fo finite N, but retains inversion at the sites or, for finkie
coupling and intersitee-e interactions, but defer detailed (efiectione, through the sites. With two sites per unit cell,

analysis to subsequent publications. both k'=0 and 7 transform ask=0 in the first Brillouin
zone. According to reflection through sites, the covalent GS
Il. SYMMETRY CROSSOVER AND CHARGE DENSITY of 4n+2 rings is even §,=1, A;), and that of 4 rings is

odd (o,=—1, A,). The GS of 4 rings is degenerate at
A.(U,N), where the symmetry switches frofty to A; with
increasingA, and this crossover defines the NIT. In addition
to PBC's, we use antiperiodic boundary conditiof#sP-
EI‘:QZ’S) with reversed sigrt;y=—1 for transfer between 1
andN. This corresponds tg,, , = — ¢, for the on-site wave
functions and a periodicityR. In terms of VB diagrams, we

We consider GS properties &fy(t,A,U) at half-filling,
one electron per site, and uniforns 1. General solutions of
the Hamiltonian in Eq(1) are restricted to finitdN, where
eigenstates and energies are accessible. Periodic bound
conditions(PBC’s) are readily applied to noninteractingy (
=0) systems, whose GS energy is

Eo(A,0) 1 modify o, for reflection through sites 1 ard/2+1 to
N "N ku” 2(A%+4cogk) 2
ted o' =, (1™, 5
2
- ;(A2+4)1/2E(Q)- ©) wheren, is the occupation number of site 1. The APBC GS
haso’=1 in 4n rings for anyA,U. The GS of 4+ 2 rings
The expression for the infinite chain is shown in FigeLq) have a crossover fromr’'=—1 at smallA to ¢’'=1 atA

is a complete elliptic integral of the second kind, widh ~ >A (U,N). The subspace&; andA} associated witlr’ do
;4/(A2+4). From Eq.(2), the GS electronic density dd  not coincide withA; andA,. The paired state is unique and

IS: even for either PBC’s or APBC’s. There are two covalent
states, the Kekulediagrams for benzene, with nearest-

2AK(q) neighbor pairing of all spins. We defif&1) and|K2) as

np(A,00—1= el (4)  pairing spins at sitesi2 1 and 2 and 4 and 4 + 1, respec-

T tively, for all i. The pairing in|K1) is D*A™, while the

whereK is the complete elliptic integral of the first kind. The pairing in [K2) is A"D". The combination|K1)+|K2)
divergence ofdnp/dA at A=0 signals an electronic insta- transforms a#\; or A, for PBC’s and APBC’s, respectively,
bility. The behavior of finite rings is different, and shows 4 while the out-of-phase combination transformsAgsor A; .
and +h+2 effects. The wave vector i€k=0,+27/N, The U=A=0 crossover connects electrons paired as
+47/N, ...w7. We have energiex A at k=m/2 whenN D*2A2 or DA in Fig. 1. ForU>0, the NIT shifts to posi-
=4n, and two electrons for these orbitals. The degeneracyive U—2A. andt+# 0 preferentially stabilizes the paired GS
produces an energy cusp At=0; np changes discontinu- over the covalent GS because the latter has finite probability
ously, and the partial derivative in EQ2) is not defined. for adjacent parallel spins that cannot transfer under(Eq.
Finite rings withN=4n+2 have nondegenerate GS’s/mt The symmetry changes atA.(U,N) in rings with either
=0, no cusp and finitednp /dA)q. The 4n and 4h+2 se- PBC's or APBC'’s. Exact crossovers are shown in Fig. 2 as
guences must coincide in the extended chain, and do so atk—2A.(U,N) in the U,A>0 quadrant fold=0.5, 1, 2, 3,
cording to Eq. (4), with continuousnp and divergent 4,5, and 10; the inset ha$= 100, 200, 300, anc, the last
(onp/dA),. ExactU=0 results illustrate the extrapolation one corresponding to the restricted basis. At fixédand
problems encountered in interacting chains. finite N, the crossovers are similar fom4with PBC’s and
The full basis ofHy(t,A,U) increases roughly as‘4with ~ 4n+2 with APBC’s. The dashed line is an extrapolation to
N, and as 8 when we exclude doubly ionized sites, i.e., two the infinite chain discussed below. The covalent region is
electrons atA sites or two holes aD sites. We use VB very narrow and the crossovers mergelUat 0. The inset
method$! to reachN=16 for the full basis and\=22 for  shows thatA(U,N) is nearly constant foA > 5t.
the restricted basis. The basis has ovef gidglets or 18 We plot A(U,N) vs N"2 in Fig. 3, and find accurate
Slater determinants wit8,=0. Exact solutiof¥>3of the ex-  extrapolation at large\ and U. The difference betweeb
tended chain is limited td =0, the Hubbard model. The GS =300 and the restricted basis is due to small admixtures of
is a nondegenerate singlet, the charge gap is finiteUfor A2 D2* at energyU+2A. The extrapolated limit isU
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FIG. 2. Ground state crossoveti(A,,N) of N-site modified FIG. 4. Ground-state electron density, of N-site modified

Hubbf;}rd rings{Eq. .(1)] with periodic and antiperiodic bouqdary Hubbard ringdEq. (1)] in the restricted basis. The boundary con-
conditions, respectlvely, foN:_4n and fh+2' The dashed lines ditions in(a) produce a symmetry crossoverlaf{N) (vertical line
are theN—c ex_trapolatlons dlsc_ussed |n_the text. The inset ShOW%/\/herenD increases discontinuously with and the smallest jump
a largea behavior and the restricted basis/at»o. occurs forN=20. The boundary conditions ifb), with the same

—2A.=1.332 in the restricted basis. It has previously beenFC(N)' result in a continuousp with increasinging /oI up toN

estimatefi as 1.2—1.3 based on the singlet and triplet gaps;ui_ié;—?: tit:rtse;re joirt <= extrapolations ofa) and (b) dis
respectively, oN<10 rings ané® at 1.5 based on the ionic- '

ity up to N=10. Mixing with A2"D?* grows asU de- o

creases, as seen for=10, and the functional dependence is —U/2 finite,” and reference the crossover 10—I'c=A
closer to~N~1 at smallerU~3. Kinetic contributions are —Ac- In the half-filled caseA —o ensures an electron at
largest at smalU and A, wheret is comparable to CT ener- €achD site and excludes two electrons at ahite. Thet
gies. The extrapolateashedl line in Fig. 2 is based on a =0 GS has energies 2I" and 0 perDA on the paired and

power law,A.(U,N)=N~?, with 1< y<2 giving the best fit covalent side, respectively, with=0 at the NIT. The re-
for eachU from N=8-16. stricted basis is almost quantitative 10r>5, makes a larger

Figures 2 and 3 indicate that, except foy U<2t, the  Value ofN accessible, and holds at the NIT. The related limit
NIT hardly varies withU/A. The relevanDA systems have With both U5 andU—2A>t leads instead to a Heisenberg
narrow bands, oxides are moddiééiwith wider bands A spin chaint® without charge degrees of freedom, and does
<t. The restricted basis captures the basic physics. We 10t apply to the NIT.

both A and U diverge inHo(t,A,U) while keepingl=A _ The GS expectation valugn,;_y), for electrons atD
sites is more accurate than the numerical derivative in Eq.
1.5 —— , | , (2). Matrix element' over correlated states can be evaluated

exactly for finite N. Results for the restricted basis of 4
rings with PBC’s and A+ 2 rings with APBC’s are shown
as a function of' —I'.(N) in Fig. 4@&). The crossover gen-
erates a jump imp . The charge density is continuousAq

1.4 U=10 — andA, for 4n rings, or inA; and A} for 4n+2 rings, but
R continuing the lines in Fig. @ through the NIT gives an
c?l i | excited-state density. All approaches to the NIT described by
> —— the Hamiltonian in Eq.(1) indicate np to be continuous
RS whent is finite. As expected, the discontinuity imy de-
1.3

] creases witlN, and vanishes in the extended chain. The GS’s

of 4n+ 2 rings with PBC'’s or 4 rings with APBC’s remain

i in A; or Aj, respectively, for anyJ andA, and the charge

density is continuous, as shown in Figb® The NIT defined

. | . by the maximum ofiny /9A is less precise numericalljpy

1600 0.01 2 0.02 ~0.02) than a crossover. The curves in Figbjhave been

adjusted to catch the extrapolation between increasing and
FIG. 3. Size dependence of the GS crossover betwseB and ~ decreasing series on either sideAgf. Results for the infinite

14 atU/t=3, 10, and 300 for the full basis of E¢l) and up to  chain are shown as stars that coincide in both panels. They

N=20 in the restricted basis with infinite. represent joint extrapolations as eitiNer® or N2, that give
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FIG. 5. Ground-state electron density of modified Hubbard FIG. 6. The singlet-singlet gaBssnear the NIT of Eq(1) up to

models[Eq. (1)], with U/t=0, 2, 5, and 10. The exatt=0 result  n=2 in the restricted basis. Boundary conditions leading to cross-
is Eq.(4); U>0 points areN— c extrapolations ohp based onthe  gyers are shown as open circles ddd is the excitation forl

full basis up toN=16; the arrows mark the neutral-ionic transition - goundary conditions without crossovers are shown as closed
found as in Fig. 3. circles. The stars are joitN—o extrapolations based on both.

the smallest mean-square deviation. Indeegl,is almost
guantitatively known from the requirements thag(22)
>np(20) on the covalent side anth(22)<np(20) on the
paired side. The present estimate fgy is 1.3142) at the
NIT, i.e., p=0.684.

The restricted basis fdy,A>t fixesnp=1.31 at the NIT
of Eq. (1). The slopedny /A is finite, but this is inconclu-
sive by itself. Hickel rings show similar # and 41+ 2 be-

paramagnetic, respectively. A singlet-triplet gag; openg®
at the NIT between a band insulator w0 and a Mott
insulator withEg1=0. The lowest singlet excitatioBgg is
betweem; andA, GS; henceEgsvanishedat the NIT. The
transition is dipole allowed, and is formally a CT excitation,
but Eggrapidly loses oscillator strength on the covalent side.
The charge degeneracy in Fig. 1 dt=2A, t=0 distin-
guishes between neutral and ionic complexes. {Th@ gaps

haviors and exady =200 and 400 results are indistinguish- near the NIT are not known, and their simultaneous opening
able fromnyp, in Eq. (4) at the resolution of Fig. 4. The origin as tacitly supposed for a single transitbR:4-is neither

must be magnified by an order of magnitude to see the di- 20 L
vergence ofing /A = (72E,/9A2)IN at A=0. This diver- assured nor agreed 6f*° We report exact excitation

gence signals the intrinsic instability of tthé=A =0 chain th;?fhg?ss%z?;gisl\lg dleﬂtget?]?f/ ﬁi;:; s:bor;/%rs. All sym-
to a site-CDW distortion that, however, is already broken at" F.y 6| l[f I\?p—yE N _E N : th ’

finite U=2A. in interacting systems. Extended chains with d'ffelr%%r(?e b:aet\?vc()are ASS{a n():i; é(S’l i %tge)r’e;?r.',cteg Eg:.rsgés
U>0 have finiteonp /9A at the NIT. By contrast, the Peierls alfunction off—T (|2\|) SintlzeE S(’,\:) increasels i rinés

. . _ . " 5 — 1 . S

instability to a bond-CDW is unconditiortal® for any t/U, for T>T, and decreases inndr 2 rings, we have finit€ g

because dimerization breaks reflection symmetry as ex- . . .
perimentally recognized in the initial TTF-CA studies. on the palr_ed side. On the covalgnt .S'&%S(N), decrea;es
with N in rings whose GS remains iA; or A;, and in-

The full basis of the Hamiltonian in E@Ll) is required for S i h )
small U, and exact results fon, or A,(U) are limited to  Creases in rings whose GS is Ay or A, . Joint extrapola-

N=16. We again have discontinuong(A,U)’s in 4n rings tions yield stars that are consistent with.van.isHt‘rgg;in the
with PBC’s, and 4+ 2 rings with APBC’s, and a continu- ©xtended system. Exact resultsNo=22 in Fig. 6, are the
ousnp for the opposite boundary conditions. In Fig. 5 we Moststringent limits to date, with5<<0.0% on the covalent
compare extrapolatett, values forU=2,5, and 10 with the Side and finittEs{N) for I'~1'c<0.03. We note that at
exactU =0 result in Eq(4). The arrows marking the NIT for 4 =0, far on the covalent side, Ovchinnikbiound nonpo-
finite U are based on symmetry crossovers and extrapold@' Singlets with a zero gap for any>0. Far on the paired
tions similar to Fig. 3. We have increasing(A.,U) with U Side, we havé&ss~2I" by inspection. Hence increasidgat

and the limiting value of-1.3 is reached by =5. Figure 5 fixed U in the extended system clearly opens a singlet-singlet

shows the stabilization of covalent states with increasing (SS gap that is seen to coincide in Fig. 6, with the NIT
and small NIT variations foA ,U>2. defined by the symmetry crossover. The unconditional insta-

bility for dimerization on the covalent side is closely related
to vanishingEgs; the instability is conditional for a finite
gap.

The excitations oH(t,A,U) provide other evidences of The magnetic gajEsy is to the lowest triplet for either
the NIT. The paired and covalent states are diamagnetic an@BC'’s or APBC’s. As shown in Fig. Egtincreases rapidly

Ill. ENERGY GAPS AND LOCALIZATION AT THE NIT
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0.8

TABLE I. Exact charge gap— A in Eq. (6), at the neutral-ionic
transition of the model in Eq.1), for rings of N sites, witht=1,
variableU, and A (N) at the crossover of @(4n+2) rings with
periodic (antiperiodig boundary conditions.

EST

N u=2 10 o (restricted basijs

8 0.1893 0.7162 0.8486
10 0.1803 0.6548 0.7614
12 0.1718 0.6010 0.6909
14 0.1614 0.5555 0.6342
16 0.5874
18 0.5469

0.4

% * Both e-h symmetry® and o, are broken forA>0, but
(')2 . 00 . 0'2 their product remains a symmetry operation. Extendédd
e : r-r, ' symmetry® cuts the basis, either full or restricted, roughly in
. . half, and corresponds in tf8=0 manifold to theA; ©B,
FIG. 7. The singlet-triplet gagst near the NIT of Eq(1) up to and A-@B* subspaces ofy(t,0U). The GS symmetry
N=18 in the restricted basis. Open and closed circles refer t%ioes rgot Cﬁan e at the NI&-h symmetry relates the GS and
boundary conditions with and without crossovers, respectively, an 4, cited Statesgof the radicail io%%36 In garticular we have
stars are joinN—o extrapolations based on both. E_(N)=E. (N)+U, a general result that holds on adding

. . : : . _any spin-independent potential fty(t,A,U). It follows that
with 1“.>1“C in the restrlcted basis, and is small on 'the cova Eq. (6) reduces td (N)+A(N)=—U for evenN and arbi-
lent side. Open circles represent boundary conditions with

crossovers and systems whdsg; increases withN at larger traryt,A,U. Table | reportd (N) ~A(N) atU andA, up to

F—T. Closed circles are for boundary conditions without ™ — +4 in the full basis and= 18 in the restricted basis. The
¢ iy . U=0 gaps vanish at the crossover, where the electron trans-
crossovers, and show decreasiBgr with N. The stars in

. L . . fer described in Eq(6) involves degenerate orbitals. The
Fig. 7 are joint extrapolations. The bound &yt is Est . : : i
<0.1t for P'<T',, and the gap opens By, or slightly on the charge gaps increase with, but remain small at the cross

covalent side. At finitdJ, the extended system is rigorously Ic;\\/s; ﬁlv_eyn I/Si:hd ';/ggegﬂégg%gizs:rgjgb:]eggggzw ef%ovzver
Known tt_o bgtﬁgamazggif{‘(ja;A?O; \L'JV'ﬂ]rEST:O' a_md d|fa- on the extended system. The charge gap vanishes at most at
magnetic with =g~ - for a=4. The opening of a a single pointA.(U) or U.(A), that coincides with the NIT
singlet-triplet(ST) gap with increasin@\ is assured, and the within the accuracy of finite systems

results in Fig. 7 are consistent wils>0 at the NIT. The The SS, ST, and charge gaps are all finite on the paired
concomitant dimerization on the covalent side opens a magy; T

i it I Kk . i chafnsith | de, I'>T.. They differ on the covalent side, however,
NEtic gap, as It 1S WEll Known In spin chainsith reguiar or -, pee only the charge gap is finite. We associate gaps on the
alternating exchanges and triplet spin excitons.

AL N paired side with localization. The GS for tha|>U limit
. The charge gap of th? _Hamlltoman In E@) IS I A has paired spins on either odd or even sites, and is manifestly
since there is not an explicit Madelung contributibr. A is

. . . localized. Si I ipl ingl firml
related to the GS of the cation and anion radic&s(N) ocalized. Since gapless triplets and singlets are firmly

4E (N iivel d ds 1o ch e establishe® at A=0, the GS ofH(t,A,U) for U,t>0 is
andE_(N), respectively, and corresponds to charge disprog, o qeq at\ =0, and localized ath>U. A localization-

porthnatlon or electron transfer between noninteracting SYSdelocalization transition between two insulators incorporates
tems: all aspects of the NIT, and the vanishing charge gap suggests
a metal at the transition. We develop these ideas below.

To show localization on the covalent side, we partititg
in the restricted basis inth, for transfers between sites2
—1 and h, as in|K1), and a perturbatio¥ for transfers
between 2 and 2h+1. We takel'=A—U/2>0 in units of
t, and solve the X2 dimer problem in the singlet subspaces
of hy. The exact GS ohg is

0.0 *

[(N)—A(N)=E, (N)+E_(N)—2E4(N). (6)

At t=0 andA>0, we have a paired GS fdJ <2A with |
=A—-U and A=—A; the lines cross at the NIT, and the
covalent side hat=—A andA=A—-U for U>2A. Fort
>0, the charge gap of free electroh®)|, follows from the
valence and conduction bands in ES); the extendedJ
=0 system is metallic ah=0, and insulating otherwise. N/2

Although not known exactly fol>0, the charge gap is |GO(F)):H (851,485 —1,5COSP+ \/E(az*i,l’aa;'ﬁ
readily shown to be large, roughli2A —U|, far fromﬁthe =1

NIT. On the covalent side, it becomes the Lieb-Wu Gagt o+ + .
A=0, and increases as for U>4t; on the paired side, all i 1,581 -1,4)SIN$]|0), (7
gaps increase as\2-U for A>U. Finite N leads to charge where|0) is the vacuum state and taw2 J2IT governs
gaps at the NIT in systems with discrete energies. the mixing of [DA) and the singlet linear combination of
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TABLE II. Approximate ground-state energy per dimlgq.
(9)], of the infinite chain, and exact results for E@) with N
=12,t=1,I'=A—-A(12V), andU =10, and= (the restricted ba-
Sis).

r U=10, exact U=, exact U=, Eq.(9)
0.5 —2.4706 —2.3757 —2.3148
2.0 —4.8129 —4.7795 —4.7871
5.0 —10.3848 —10.3788 —10.3814
10.0 —20.1981 —20.1971 —20.1975

IDTA™). The zeroth-order energy is ' —(I'?+2)Y2 per
dimer. The opposite choice oin2and 2n+ 1 for dimers has
the same energy but admixps~ D ™) singlets, as ifK2).

Each dimer has a triplet with excitation energy=T"+ (I'2

+2)Y2 a singlet ates=2(I'>+2)Y?, and strictly confined
electrons. The perturbation

+ +
V=— 2 (821 62+ 1,0 T 82 41,221 ,5) 8
I,o

is necessarily small wheh is large. To second order i,
the energy per dimer is

cod p+ (sint pl4)

(O)+ (2)— _ 2 1/2
€ € r r<+2
( ) (1’*2 2)1/2

9
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FIG. 8. Charge stiffnesg.{(I") in Eq. (12) and as discussed in
the text, near the NIT of thh-site mode[Eq. (1)], in the restricted
basis;x.(I'¢) is ~60% of the free-fermion value.

Heren{ andn(?) are the electron densities at donor sites in
the A; andA, subspaces, respectively, apd’ andp® are

the corresponding bond orders, witlp 2lefined as the GS
expectation value o, , which we evaluate in the restricted

basis. The donor densities at the NIT are shown in Fig. 4 and

have oppositeN dependences ih; and A,. The value of

Electrons are now confined to adjacent dimers that are corFF = U/2— A .= —0.666 follows from Fig. 3. We have a poor

nected by virtual excitations. As shown in Table Il, E8).is
nearly quantitative as close to the NITBs-2. Localization

metal: y.o(I'c) ~0.74 is~60% of 4/r value for free elec-
trons atA=U=0 in Eq.(1). ForI'#1I., second-order per-

to adjacent dimers approximates the exact solution of Ecuurbation theory inf becomes exacf Figure 8 shows that
(1), which for N=22 is a linear combinations of over 10 ,_(T') is exponentially small on either side of the NIT. The

singlets. Rapid convergence wilhh also points to localiza-

tion on the paired side, and is seen fgy in Fig. 4, Eggin
Fig. 6, andEgt in Fig. 7. Successive orders \hincrease the

charge stiffnes® of the Hubbard model has a similar peak at
U=0 that narrows witiN, and becomes & function in the
infinite chain. Hence we expegt.(I") to vanish except at

number of coupled dimers by one. Such an expansion fails gt _ in the extended system.

the NIT or on the covalent side.

A metallic point connecting insulating phases was re-

To see if the system is metallic at the transition, we com—ently discussed fdl4(t,A,U),%* and for the following half-
pute the charge stiffne¥srelevant to the Hamiltonian in Eq. fijled system of spinless fermioffs

(1). This property has been applied to

interacting

fermions®*in one dimension. The perturbation is a phase

factor exp(if) in Eq. (1) for transfers to the right and lef?:

V(f)=(1—cod)v, +iv_sinf. (10

The first term of Eq(1) is — v, , while v_ has oppositely
signed transfers to the right and left and conndgtandA,
states for PBC’s. We now have,(I,t,f) in units oft. The
charge stiffness per site jg.q= (9°Eq/df%)o/N. It is finite

in conductors, and vanishes in insulators. At the crossove
the proper zeroth-order GS ofndrings is the odd linear

combination of theA; andA, GS’s and

2

)= =pM 4 p2)
Xes(T'o) Nof2 ) p p
e e
N 2 '

HI—Z (arai+1+ai++1ai)+2i (Vninj ..+ Wning . 5).

(12

Large V>0 favors a GS without adjacent occupied sites,
while large)V favors one with adjacent filled and empty sites
along the chain. Thé=0 crossover occurs at=2W, with
f';\djacent electrons and holes i3 2)V that resembl® and

A sites, respectively. Th&>2WW GS has alternating filled
and empty sites that, taken in pairs, correspon® to and
A~. The crossover is not precisely &t 2)V, presumably
due to different bond orders in the two GS's. It shifts\t
—VI2~—0.6 in units oft, very close tol'.. Transfers be-
tween two sites in Eq(12) differ from spin degeneracy in
Eq. (1), however, and the models do not map into each other.
Exact result® to N=40 for Eq.(12) are comparable td\
=20 for the full basis of Eq(1). The striking similarity
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between Fig. 8 and the charge stiffness of B@) up toN electrons or spinless fermions, but not in the restricted basis.

=40 suggests a similar interpretation. We foundI'.=—0.666 in the restricted basis and use this
value in|Ggy(T')), the dimer GS in Eq(7); the paired-state
IV. DISCUSSION amplitude is co5¢=0.287, which corresponds tap

=1.287. Dimers capture most of the configuration mixing of

The modified Hubbard model in E@l) has many appli- the extended system. The full basis has contributions from
cations to both theory and experiment. With variations, it isD2* andA?~ diagrams, which, as seen in Fig. 5, reduge
suitable for modeling valence transitions, excitation threshcompared to the restricted basis.
olds, and electronic or structural instabilities, among other Peierls-Hubbard models are widely applied to structural
topics. Its two parameterd/t and A/t encompass the Hub- instabilities. The stability of the GS to a perturbation can be
bard model A =0) at half-filling or other filling, two bands formulated in terms of susceptibilitieg that are formally
atU=0, and localized dimers foA>U. At fixed U andt,  given by the exact eigenstat@s) and energie€, of the
increasingA>0 generates a neutral-ionic transition whoseHamiltonian in Eq.(1). The perturbation is written as the
characterization is the principal goal of this paper. The NITproductéQ, where@ is the relevant operator for coupling to
of the Hamiltonian in Eq(1) has a continuous ionicity given Q, and the corresponding is
by Eq. (2) and excitation gaps for singlets, triplets, and
charges that are not known exactly. Previous approximations
were separately developed fop, Egs, Egy, the charge Xoc—(
gap, the GS at the NIT, instabilities, etc. Our collective
analysis of symmetry crossovers, excitation thresholds, and
GS properties incorporates computational advances, an@ince the sum is over the excited states of the unperturbed
yields better estimates for extended systems. system, the eigenstates of the uniform chain in(Egsuffice

Finite-size results require extrapolations whose accuracfor the stability of the modified Hubbard model. The charge
improves with N. We followed the NIT of Hy(t,A,U) stiffness in Eq.(12) is y with respect to a magnetic field
through the symmetry crossover of the GS, the charge derperpendicular to the ringf, and gives information about cur-
sity np , the excitation&EgsandEg, and the charge gap and rent flow. Structural transitions are investigated by introduc-
stiffness. LargeN is accessible in the restricted basis, allow-ing phonons as th® perturbation. The Peierls instability for
ing for an accurate estimate bf=—0.66@ from the cross- dimerization involvek=0 phonons, with¥ representing the
over and setting stringent limits of 0.1t for the opening of  staggered bond-order operaftite first term in Eq(1), aug-
all three gaps at this position. Thus the numerical resultgnented by a £ 1)' factor]. This operator breaks inversion
point to a single transition. The NIT of the modified Hubbard symmetry at the sites and mixés and A, singlets® Van-
model is continuous, as previously found, and is marked byshing Eggon the covalent side of the NIT then indicates a
the opening of singlet, triplet, and charge gaps on the pairedivergenty and the unconditional instability of a lattice with
side. There is no gap in the singlet or triplet manifold on theharmonic potentiald.On-site (Holstein phonons couple in-
covalent side. The interacting system is known to have atead to a CDW operatar, . Sincey,=dnp/JA is finite at
delocalized GS aA =0, the Hubbard limit, and a localized the NIT, except forA=0, the corresponding instability is
GS for A>U, the paired limit. We identify the NIT at conditional? the NIT marks the maximumy,, i.e., the
+A.(U,t) as the appearance of a localized GS. maximumdng /A, as discussed in Fig. 4.

Resta and Soreff4 discussed polarization and metallic ~ We turn next to open or controversial aspects of the NIT
behavior at the NIT in the context of oxides, with  of the modified Hubbard model. Some auttors proposed
=3.5 eV,A'=2.0 eV and variablé&J in Eq.(1). The cross- two transitions related to the closing of charge and spin gaps,
over in N=8 rings, atU/ty=2.27, is used to estimate the respectively; a spontaneously dimerized phase then separates
polarization of extended systems. Sink&t,=0.571 corre- a band insulator corresponding to the paired GS and Mott
sponds to large, the crossover is near the origin of the  insulator on the covalent sidé.The suggestios for an-
and U plane in Fig. 2, and there are substantial finite-sizeother transition rest on the analogy with spin-1/2 Heisenberg
effects. TheN=8 result in Fig. 2 yieldd&J.=2.27, in quan- antiferromagnetic chains with frustration due to a second-
titative agreement with Ref. 24, but larglis up to 16 ex-  neighbor exchangé,. The Kekule diagramiK1) or |K2) is
trapolate to larget) . /t=2.70 for the extended system. Such the exact GS afd,=J,/2, as recognized by Majumdar and
corrections are consistent witi~10 results on CT com- Ghosh*! There is no exact mapping of E¢l) into such a
plexes. The GS polarizability is a new approach, to ourspin chain, not even at lard¢, but the GS’s of related mod-
knowledge, different from the charge stiffness, to the identi-els with, for example, second-neighbor transfers, have not
fication of metallic behavior. been studied in detail. Our exact results fog(t,A,U) with

The GS density isip=1.314 at the NIT of the restricted finite N show that the maximum afp/JA, the closing of the
basis, when one electron is always confinedtoThe spin  singlet and triplet gaps, and the vanishing of the charge gap
degeneracy oD* or A~ spoils an exact analysis. The de- coincide at the NIT within~0.1t. Finite systems cannot
generacy of charge and spin excitations at the NIT gives apecify transitions, but provide some constraints. The Mott
simple, heuristic interpretatiomnp=4/3 is the result for insulator dimerizes spontaneously for ayJ, as discussed
equal weights of molecules and spin-1/2 radical ions. Equalor the spin-Peierls instabilify of Heisenberg antiferromag-
weights at the NIT can be justified rigorously dt=0 for  netic chains. The dimerization amplitude becomes very small

2 2
aEG) oz Kelop "
0

9Q? Er—Eg
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for U>t and J=t?/U, since the electronic stabilization is sions, and the CT excitation connecting theandA, GS'’s
less thanJ, but the singularity actually increas&sthe GS s dipole allowed. Spin-charge separation is regained on the
energy in Eq(3) atU=A=0 goes as5’In & for alternating  covalent side when the charge gap exceeds atfemuch as
t(1= 5) along the chain, while the GS of the spin chain with in Hubbard models fotJ>t: Exact separation requires infi-
alternatingd(1+ 6) goes as6*®In 8.** Such considerations nite U, but U> 4t suffices in practice.

apply to Eq.(1) in the covalent limitl'=U —2A>t where, To summarize, we have extended exact solutions of the
as noted originally;> we have a Heisenberg chain with modified Hubbard model in Eq1) to larger systems, iden-
=t2T. tified the NIT with symmetry crossovers in rings with peri-

The charge gap is a recent topic, and is expected to hawvedic or antiperiodic boundary conditions, and found the
a minimum at NIT?2%45Wwe find finite minima in interact- charge density, excitation thresholds, and susceptibilities at
ing systems with finite N. As already noted, the the NIT. We find a continuous NIT, and considerably tighten
polarizability’* and charge stiffness in Eq12) and Fig. 8 the extrapolated limits for the infinite chain. Our results in-
give independent indications of a metallic GS at the NIT. Wedicate aT=0 K transition with vanishing singlet and triplet
consequently expect a vanishing charge gap there. The metgéps on the covalent side, a vanishing charge gap and metal-
separating two insulating phases is extremely fragile: notic GS at the NIT, and finite singlet, triplet, and charge gaps
only is it restricted to a single poimt.(U), but it is uncon- on the paired side, whose localized GS is confirmed. We
ditionally unstable to dimerization. Moreover, extending theassociate the NIT of the model in EfL) with a transition
model in Eq.(1) to include intersitee-e interactions or on- from a delocalized G&mallA) to a localized GSlargeA).
site phonons produces a discontinuous NIT above some critAn accurate analysis of the Hamiltonian in EQ) is re-
cal coupling, which excludes a metallic phase even for ajuired to model valence transition in charge-transfer salts or
rigid lattice. By contrast, a metallic GS at the NIT of E4)  metal oxides where long-range Coulomb interactions and
is fairly robust. We have a simple half-filled bandlat=0, e-ph coupling have to be considered explicitly.
and a correlated metal persists to an arbitrarily lddgeAt
the NIT, A counterbalancel): the charge distribution® A
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