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Detailed analysis of the Euler equation pertaining to the natural spin-orbital functional of the formVee

5
1
2 SpÞq@npnqJpq2V(np ,nq)Kpq#, whereVee is the electron-electron repulsion energy,$np% are the occu-

pancy numbers, and$Jpq% and$Kpq% are the respective Coulomb and exchange integrals, reveals that the large-
and small-k asymptotics of the momentum distributionn(k) of a high-density homogeneous electron gas
rigorously determine the behavior of the functionV(x,y) for each of its arguments approaching either 0 or 1.
However, since the resultingV(x,y) does not give rise ton(k) with a proper discontinuity at the Fermi level,
such functionals cannot be exact for this system.

DOI: 10.1103/PhysRevB.63.205105 PACS number~s!: 31.15.Ew
ur

in
t

d
ar

na
c
rg

s

-

n
the
s at

ith

n
nd

to
I. INTRODUCTION

There has been recent interest1–5 in a particular type of
one-electron reduced density matrix~1-matrix! functionals
for the electron-electron repulsion energy. These nat
spin-orbital functionals are of the general form

Vee@G#5 1
2 (

pÞq
@npnq^fp~x1!fq~x2!u r̂ 12

21ufp~x1!fq~x2!&

2V~np ,nq!^fp~x1!fq~x2!u r̂ 12
21ufq~x1!fp~x2!&#.

~1!

where $fp(x)% and $np% are, respectively, the natural sp
orbitals and the occupation numbers that correspond to
1-matrix G, andV(x,y) is a symmetrical function,V(y,x)
5V(x,y) @in Eq. ~1! x stands for the combined spatial an
spin coordinates; here and in the following, atomic units
employed#. The common Hartree-Fock approximation6 is re-
covered forV(x,y)5xy, whereas settingV(x,y)5(xy)1/2

yields the recently proposed Goedecker-Umrigar functio
that, despite the lack of any empirical parameters, produ
surprisingly accurate estimates of electron correlation ene
in simple Coulombic systems.1

In the absence of symmetry-breaking phenomena~such as
the Wigner crystallization!,7 the functional~1! leads to the
energy per volumee(r) of a spin-unpolarized homogeneou
electron gas equal to minn→r «@n#,

«@n#5~8p3!21E n~k!k2dk

2~16p5!21E E V„n~k!,n~k8!…uk2k8u22dk dk8,

~2!

wherer is the particle density andn[n(k) is the momentum
distribution.2,3 Extremization of«@n# under a density con
straint produces the Euler equation
0163-1829/2001/63~20!/205105~8!/$20.00 63 2051
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1
2 k22~2p2!21E Vx„n~k!,n~k8!…uk2k8u22dk85m,

~3!

wherem[m(r)5]e(r)/]r is the chemical potential. Only
those solutions of Eq.~3! that satisfy the inequalities 0
<n(k)<1 for all values ofk are admissible for fermionic
systems.8,9

For homogeneous functionsV(x,y) such as V(x,y)
5(xy)b, the solutions of Eq.~3! are unphysical for large
values ofr.2,3 This failure has prompted our investigatio
into the connections between the analytical properties of
momentum distributions of a homogeneous electron ga
the high-density limit and those of the functionV(x,y). The
resulting set of constraints uponV(x,y), which turn out to
be mutually incompatible, is presented in this paper.

II. THEORY

A. Properties of a high-density homogeneous electron gas

For a spin-unpolarized homogeneous electron gas w
densityr,10

kF5~3p2r!1/3, ~4p/3!r s
3r51, akFr s51, ~4!

where kF is the Fermi momentum,r s measures the mea
interelectron distance and thus the correlation strength, a

a5~4/9p!1/3'0.521 06. ~5!

The weakly correlated~high-density! limit corresponds to
r s→0. At this limit, the correlation energy per volumeec(r)
is given by the expansion11,12

ec~r!/r5~12 ln 2!p22 ln r s1e01¯ , e0520.047.
~6!

By virtue of the virial theorem,13 the correlation contribu-
tions to the potential and kinetic energies per volume and
the chemical potential are
©2001 The American Physical Society05-1
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vc~r!/r52~12 ln 2!p22 ln r s1@2e01~12 ln 2!p22#

1¯ , ~7!

tc~r!/r52~12 ln 2!p22 ln r s2@e01~12 ln 2!p22#1¯ ,
~8!

and
20510
mc~r!5~12 ln 2!p22 ln r s1@e02 1
3 ~12 ln 2!p22#1¯ ,

~9!

respectively. Within the random-phase approximation~RPA!
formalism, which is valid at the high-density limit,14 the de-
pendence of the momentum distributionn(k) on r s and the
reduced momentum k5k/kF is described by the
equations15,16
n~k!512~ar s /p2!k21E
12k

11k

q dqE
0

p/2

$@q21~ar s /p2!Q„q,~k1q/2!tanw…#21

2@q21~ar s/p
2!Q„q,~12k2!tanw/2q…#21%dw2~ar s/p

2!k21E
11k

`

q dq

3E
0

p/2

$@q21~ar s/p
2!Q„q,~k1q/2!tanw…#212@q21~ar s /p2!Q„q,~q/22k!tanw…#21%dw for k,1, ~10!

n~k!5~ar s /p2!k21E
k21

k11

q dqE
0

p/2

$@q21~ar s /p2!Q„q,~k2q/2!tanw…#21

2@q21~ar s /p2!Q„q,~k221!tanw/2q…#21%dw for k.1, ~11!

where

Q~x,y!52pH 11~2x!21@11y22~x2/4!# ln
~21x!21~2y!2

~22x!21~2y!22y arctan@~21x!/~2y!#2y arctan@~22x!/~2y!#J . ~12!

Equations~10! and ~11! possess small-r s asymptotics

n~k!5H 12~ar s /p2!2F,~k!, k,1

~ar s /p2!2 F.~k!, k.1
~13!

that are valid foru12ku@(4ar s /p)1/2. The functionsF,(x) andF.(x), which are given by

F,~x!5x21E
12x

11x

q23dqE
0

p/2

@Q„q,~12x2!tanw/2q…2Q„q,~x1q/2!tanw…#dw

1x21E
11x

`

q23dqE
0

p/2

@Q„q,~q/22x!tanw…2Q„q,~x1q/2!tanw…#dw ~14!

and

F.~x!5x21E
x21

x11

q23dqE
0

p/2

@Q„q,~x221!tanw/2q…2Q„q,~x2q/2!tanw…#dw, ~15!
have the properties

F,~0!54E
1

`

q24dqE
0

p/2

Q„q,~q/2!tanw…cos 2w dw

'4.112 34, ~16!

lim
x→`

F.~x!x858p2/9'8.772 98, ~17!

and
lim
x→12

F,~x!x2~12x!2

5 lim
x→11

F.~x!x2~x21!2

54pE
1

`

q23dqE
0

p/2

@R~q21 tanw!2R~ tanw!#dw

5~p2/3!~12 ln 2!'1.009 51, ~18!
5-2
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where

R~u!5~4p!21Q~0,u!512u arctanu21. ~19!

In the region where the inequalityu12ku@(4ar s /p)1/2 is
not satisfied, the behavior ofn(k) is described by the
asymptotics16

n~k!5H 12~ar s/2p2!G„~4ar s /p!21/2~12k!…, k,1

~ar s/2p2!G„~4ar s /p!21/2~k21!…, k.1
~20!

that are valid foru12ku!1. The functionG(x), which is
given by

G~x!52E
0

`

R8~u!@R~u!2x2/u2#21

3†arctanu212xu21R~u!21/2

3arctan@R~u!1/2x21#‡du, ~21!
u
ic

ot

20510
has the properties

G~0!52E
0

`

R8~u!@R~u!#21 arctanu21du'3.353 34

~22!

and

lim
x→`

G~x!x252E
0

`

R8~u!R~u!u du

5~p/6!~12 ln 2!'0.160 67, ~23!

The asymptotics~13! and ~20! are readily reconciled by the
following stitching:
n~k!55
12~ar s /p2!2F,~k! 0<k<12j

12~ar s/2p2!k22G„~4ar s /p!21/2~12k!… 12j,k,1

~ar s/2p2!k22G„~4ar s /p!21/2~k21!… 1,k,11j

~ar s /p2!2F.~k! 11j<k,`

~24!
wherej is an arbitrary cutoff such that (4ar s /p)1/2!j!1.
It is easy to show that this stitched momentum distrib

tion is properly normalized and yields a correct logarithm
term in Eq.~8!. On the other hand, sincen(k) given by Eqs.
~10! and ~11! arises from the RPA formalism that does n
include exchange effects, its large-k asymptotics@compare
Eq. ~17!#

lim
k→`

n~k!k858p2r2 ~25!

is incompatible with the well-known relationship17,18

lim
k→`

n~k!k85 8
9 ~ar s /p!2g~0!kF

858p2r2g~0!, ~26!

whereg(0) is the pair correlation function with the small-r s
asymptotics19

g~0!5 1
2 25p21~p216 ln 223!ar s2~32p2/4!

3~3ar s/2p!2 ln r s1O~r s
2!. ~27!

Combining Eqs.~26! and ~27! yields

lim
k→`

n~k!k854p2r2@1210p21~p216 ln 223!ar s

2~62p2/2!~3ar s/2p!2 ln r s1¯#, ~28!

which at the limit ofr s→0 produces only half of the RPA
value given by the right-hand side rhs of Eq.~25!, as ex-
-
pected from the influence of the exchange effects15 that also
affect the constante0 in Eqs.~6!–~9!.12

B. Constraints upon V„x,y… imposed by the large-k
asymptotics of the momentum distribution

Stringent constraints are imposed uponV(x,y) by the
large-k asymptotics ofn(k). At the large-k limit, Eq. ~3!
affords3

lim
k→`

n~k!k4/~12b!5Fbp22E v„n~k8!…dk8G1/~12b!

,

~29!

where

v~y!5 lim
x→0

V~x,y!x2b, 0,uv~y!u,`. ~30!

Comparison of Eq.~29! with Eq. ~28! immediately yields

b5 1
2 ~31!

and
5-3
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E v„n~k!…dk54p3r@125p21~p216 ln 223!ar s

2~32p22/4!~3ar s/2p!2 ln r s1¯#

~32!

as a constraint forv(x). In turn, settingr s50 in Eq. ~32!
produces

E
0

kF
v~1!k2dk1E

kF

`

v~0!k2dk5p2r, ~33!

from which one readily infers that

v~1!51, v~0!50. ~34!
20510
Since V(x,y) is a symmetrical function, Eq.~30! implies
that

C15 lim
x→0

v~x!x2b, 0,uC1u,` ~35!

from which the latter of the conditions~34! also follows. On
the other hand, the former of these conditions is consis
with the asymptotic behavior

lim
x→1

@12v~x!#~12x!2g5C2 , 0,uC2u,`. ~36!

Thus, at the limit of smallr s @compare Eq.~24!#,
E v„n~k!…dk5~4p/3!kF
324pC2E

0

kF
@12n~k!#gk2dk14pC1E

kF

`

@n~k!#1/2k2dk

54p3rH 123C2~ar s /p2!2gE
0

12j

@F,~k!#gk2dk

23C2~ar s/2p2!gE
12j

1

@k22G„~4ar s /p!21/2~12k!…#gk2dk

13C1~ar s/2p2!1/2E
1

11j

@k22G„~4ar s /p!21/2~k21!…#1/2k2dk13C1~ar s /p2!E
11j

`

@F.~k!#1/2k2dkJ .

~37!

Owing to the asymptotics~18! and ~23!, the following estimates are valid for smallr s :

E
1

11j

@k22G„~4ar s /p!21/2~k21!…#1/2k2dk

5~4ar s /p!1/2E
0

~4ar s /p!21/2j
@G~k!#1/2@~4ar s /p!1/2k11#dk

5~4ar s /p!1/2@g01g1~4ar s /p!1/2#1~4ar s /p!1/2@~p/6!~12 ln 2!#1/2E ~4ar s /p!21/2j
k21@~4ar s /p!1/2k11#dk

5~4ar s /p!1/2@g01g1~4ar s /p!1/2#1~4ar s /p!1/2@~p/6!~12 ln 2!#1/2$j1 ln@~4ar s /p!21/2j#% ~38!

and

E
11j

`

@F.~k!#1/2k2dk5 f 2
.1@~p2/3!~12 ln 2!#1/2E

11j
~k21!21k dk5 f 2

.1@~p2/3!~12 ln 2!#1/2E
j
k21~k11!dk

5 f 2
.2@~p2/3!~12 ln 2!#1/2~j1 ln j!, ~39!

whereg0 , g1 , and f 2
. are integration constants. Consequently,

3C1~ar s/2p2!1/2E
1

11j

@k22G„~4pr s /p!21/2~k21!…#1/2k2dk13C1~ar s /p2!E
11j

`

@F.~k!#1/2k2dk

53C1$~2/p3!1/2ar s@g01g1~4ar s /p!1/2#1~3p2!21/2~12 ln 2!1/2ar s ln@~4ar s /p!21/2#1 f 2
.~ar s /p2!%. ~40!
5-4
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Inspection of Eq.~32! reveals that the term proportional toar s ln rs in the rhs of Eq.~40! has to be canceled out by a
analogous term in the remaining two contributions to the rhs of Eq.~37!, henceg5 1

2 . Upon insertion of the small-r s estimates

E
0

12j

@F,~k!#1/2k2dk5 f 2
,2@~p2/3!~12 ln 2!#1/2~2j1 ln j! ~41!

and

E
12j

1

@k22G„~4ar s /p!21/2~12k!…#1/2k2dk5~4ar s /p!1/2@g02g1~4ar s /p!1/2#

1~4ar s /p!1/2@~p/6!~12 ln 2!#1/2$2j1 ln@~4ar s /p!21/2j#%, ~42!

these contributions become

3C2~ar s /p2!2gE
0

12j

@F,~k!#gk2dk13C2~ar s/2p2!gE
12j

1

@k22G„~4ar s /p!21/2~12k!…#gk2dk

53C2$ f 2
,~ar s /p2!1~2/p3!1/2ar s@g02g1~4ar s /p!1/2#1~3p2!21/2~12 ln 2!1/2ar s ln@~4ar s /p!21/2#%. ~43!

Combining Eqs.~37!, ~40!, and~43! yields

E v„n~k!…dk54p3r$11~3/p2!1/2~C12C2!~12 ln 2!1/2ar s ln@~4ar s /p!21/2#1~18/p3!1/2~C12C2!g0ar s

1~72/p4!1/2~C11C2!g1~ar s!
3/21~3/p2!~C1f 2

.2C2f 2
,!ar s%, ~44!
he

n

us

nge
ized
-

from which one immediately concludes thatC15C25C,
where

C52~5p/3!~p216 ln 223!~ f 2
.2 f 2

,!21'216.594 7.
~45!

Since exchange effects reducen(k) for k@kF ~see the pre-
ceding section!, the actual value of the constantC is slightly
more positive~by at most a few percent! than that given by
the above equation.

In summary, the large-k asymptotics of the momentum
distribution furnishes the following constraints upon t
function V(x,y):

V~x,y!→C~xy!1/2 for x→0, y→0 ~46!

and

V~x,y!→@12C~12x!1/2#y1/2 for x→1, y→0,
~47!

where, quite unexpectedly, the constantC turns out to be
negative.

C. Constraints upon V„x,y… imposed by the small-k
asymptotics of the momentum distribution

The asymptotic behavior ofV(x,y) for both of its argu-
ments approaching unity is readily derived from the co
straint
20510
-

2~2p2!21E Vx„n~0!,n~k8!…k822dk85m, ~48!

which follows from the Euler equation~3! upon settingk
50. The chemical potential of a high-density homogeneo
electron gas is given by the equation

m~r!5 1
2 ~ar s!

222p21~ar s!
211~12 ln 2!p22 ln r s

1@e02 1
3 ~12 ln 2!p22#1¯ . ~49!

where the first two terms arise from the kinetic and excha
energy components, respectively. It should be emphas
that Eq.~48! is satisfied only for functionals that yield ad
missible momentum distributions as solutions of Eq.~3!.
Thus, as the lhs of the constraint~48!, the Hartree-Fock func-
tional yields

22p21E
0

`

Vx„n~0!,n~k!…dk522p21~ar s!
21, ~50!

rather than the first two terms of Eq.~49!.
With the help of the asymptotics~46! and ~47!, the

k.kF contribution to the integral that enters Eq.~48! is eas-
ily evaluated as
5-5
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22p21E
kF

`

Vx„n~0!,n~k!…dk

52Cp@F,~0!#21/2~ar s!
22H ~ar s/2p2!1/2E

1

11j

@k22G„~4ar s /p!21/2~k21!…#1/2dk1~ar s /p2!E
11j

`

@F.~k!#1/2dkJ
52C@F,~0!#21/2~ar s!

21$p21f 0
.1~2/p!1/2@g02g1~4ar s /p!1/2#1321/2~12 ln 2!1/2 ln@~4ar s /p!21/2#%. ~51!

Thus, the term proportional to (ar s)
22 in the rhs of Eq.~49!, has to stem from thek,kF contribution, implying that, as

x→1 andy→1, either

V~x,y!→@12D~12x!1/2#@12D~12y!1/2# ~52!

or

V~x,y!→12D̃~12x!1/4~12y!1/4, ~53!

whereD and D̃ are constants. For the former asymptotics,

22p21E
0

kF
Vx„n~0!,n~k!…dk52pD@F,~0!#21/2~ar s!

22S E
0

12j

$12D~ar s /p2!@F,~k!#1/2%dk

1E
12j

1

$12D~ar s/2p2!1/2@k22G„~4ar s /p!21/2~12k!…#1/2%dk D
52pD@F,~0!#21/2~ar s!

22$12D~ar s /p2! f 0
,2Dar s~2/p3!1/2@g01g1~4ar s /p!1/2#

2Dar s~3p2!21/2~12 ln 2!1/2 ln@~4ar s /p!21/2#%, ~54!

which fixes the value ofD,

D52~2p!21@F,~0!#1/2'20.322 75. ~55!

On the other hand, upon insertion of the small-r s estimates

E
0

12j

@F,~k!#1/4dk5 f̃ 0
,2~p2/3!1/4~12 ln 2!1/4@2j1/21 1

3 j3/2# ~56!

and

E
12j

1

@k22G„~4ar s /p!21/2~12k!…#1/4dk

5~4ar s /p!1/2@ g̃01~ar s /p!1/2g̃1#1~4ar s /p!1/4@~p/6!~12 ln 2!#1/4@2j1/21 1
3 j3/2#, ~57!

the latter asymptotics leads to

22p21E
0

kF
Vx„n~0!,n~k!…dk52~p2/2!D̃~ar s!

25/2@F,~0!#23/4H ~ar s /p2!1/2E
0

12j

@F,~k!#1/4dk

1~ar s/2p2!1/4E
12j

1

@k22G„~4ar s /p!21/2~12k!…#1/4dkJ
52~p/2!D̃~ar s!

22@F,~0!#23/4$ f̃ 0
,12~ar s/2!1/4@ g̃01~ar s /p!1/2!g̃1#%. ~58!

The rhs of Eq.~58! contains an unphysical term proportional to (ar s)
27/4 that cannot be canceled out by thek.kF contri-

butions@Eq. ~51!#. For this reason, the asymptotics~53! has to be ruled out in favor of expressions consistent with Eq.~52!.
One of such expressions, which reads
205105-6
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V~x,y!→@12~D/l!~12x!1/2#l@12~D/l!~12y!1/2#l, ~59!

produces

m52pD@F,~0!#21/2~ar s!
221p21@F,~0!#21/2$~12l21!D2@F,~0!#1/21~D2f 0

,2C f0
.!1~2p!1/2~D22C!g0%~ar s!

21

1~D22C!321/2~12 ln 2!1/2@F,~0!#21/2~ar s!
21 ln@~4ar s /p!21/2#1~D21C!~8/p2!1/2g1@F,~0!#21/2~ar s!

21/21¯ ,

~60!

which, upon setting

l5„11D22@F,~0!#21/2$~D2f 0
,2C f0

.!1~2p!1/2~D22C!g01@F,~0!#1/2%…21, ~61!
tis
o

t
g

an

o
tu

be
y
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-
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0
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y
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n-
n-
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d-
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a-
06.
rt
I

yields the first two terms in the rhs of Eq.~49!. On the other
hand, the unphysical term that scales like (ar s)

21 ln rs
would be canceled out only if

D25C. ~62!

Although for obvious reasons this condition cannot be sa
fied, it is clear that, in principle, asymptotic expressions g
ing beyond that given by Eq.~59! would be capable of no
only eliminating this spurious term but also furnishin
proper constant and logarithmic contributions in the exp
sion ~49!.

D. A constraint upon V„x,y… imposed by the discontinuity
of the momentum distribution at kÄkF

Having established the asymptotics ofV(x,y) for x andy
approaching either 0 or 1, one may now proceed to dem
strate that such a function cannot give rise to the momen
distributionn(k) with a discontinuity atk5kF . The location
of this discontinuity is unaffected by exchange effects
yond RPA ~Ref. 20! that contribute to its magnitude onl
through orders higher than linear inr s .21 Since the Euler
equation~3! has to be satisfied ask approacheskF from both
below and above, one has

E Vx„n~kF
2!,n~k8!…uk2k8u22dk8

5E Vx„n~kF
1!,n~k8!…uk2k8u22dk8, ~63!

where uku5kF . Integrating out the angular coordinates a
inserting the aforederived asymptotics~46!, ~47!, and ~52!
produces

E
0

kF

$~D21!1~C2D2!@12n~k!#1/2%k lnUk1 f F

k2kF
Udk50,

~64!

which immediately impliesD51 together with the condition
~62!, thus contradicting Eq.~55!.
20510
-
-

-

n-
m

-

III. DISCUSSION AND CONCLUSIONS

The large- and small-k asymptotics of the momentum dis
tribution n(k) rigorously determine the behavior of the fun
tion V(x,y) for each of its arguments approaching either
or 1. Unfortunately, the resultingV(x,y) does not give rise
to n(k) with a proper discontinuity as a solution of the Eul
equation~3!. Consequently, functionals of the form given b
Eq. ~1! cannot be exact for a high-density homogeneo
electron gas.

In principle, this problem can be rectified in two differe
ways. One possibility is to consider more involved functio
als in which the functionV does not depend on the occupa
cies of the two spin orbitals in question but also on those
the others, i.e.,V[V(np ,nq ,$nr%). Such a function would
‘‘know’’ the value of kF , circumventing the scaling argu
ments presented in the above derivations. Another possib
would be to abandon the concept of the natural spin-orb
functionals altogether in favor of alternative approaches
Vee@G#.22

In light of the above discussion, the remarkable perf
mance of the functional~1! with V(x,y)5(xy)1/2 for simple
Coulombic systems1 remains unexplained. The present fin
ings appear to imply that either the satisfaction of the c
straints imposed by the properties of a homogeneous elec
gas is of little relevance to the accuracy of predictions
atoms or that poor performance of such functionals should
expected for systems with narrow gaps or degeneracies a
Fermi level. The research aiming at the elucidation of th
issues is in progress.
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