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Detailed analysis of the Euler equation pertaining to the natural spin-orbital functional of theVigrm
= % 2 pqlNpNgdpg—2(Ny,Ng)Kpgl, WhereV, is the electron-electron repulsion energy,} are the occu-
pancy numbers, and,,} and{K 4} are the respective Coulomb and exchange integrals, reveals that the large-
and smallk asymptotics of the momentum distributior(k) of a high-density homogeneous electron gas
rigorously determine the behavior of the functirfx,y) for each of its arguments approaching either 0 or 1.
However, since the resultind(x,y) does not give rise ta(k) with a proper discontinuity at the Fermi level,
such functionals cannot be exact for this system.
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I. INTRODUCTION Lo b1 -

b= 29 1| 0,000 n(k DIk—K'| 2k =,
There has been recent intefestin a particular type of (3)

one-electron reduced density matiix-matriX functionals

for the electron-electron repulsion energy. These naturalvhere u=u(p)=de(p)/dp is the chemical potential. Only

spin-orbital functionals are of the general form those solutions of Eq(3) that satisfy the inequalities 0
<n(k)=<1 for all values ofk are admissible for fermionic
. - systems"®
VedI']=3 ; [NpNg(dp(X1) dg(X2) [T 15| Pp(X1) Pg(X2)) For homogeneous function€(x,y) such asQ(x,y)
pra =(xy)?, the solutions of Eq(3) are unphysical for large
_Q(np1nq)<¢p(xl)¢q(x2)|FIZl|¢q(xl)¢p(x2)>]' values ofp.2® This failure has prompted our investigation

into the connections between the analytical properties of the
1) momentum distributions of a homogeneous electron gas at
the high-density limit and those of the functiéX(x,y). The
resulting set of constraints upda(x,y), which turn out to
e mutually incompatible, is presented in this paper.

where{¢,(x)} and{n,} are, respectively, the natural spin
orbitals and the occupation numbers that correspond to th
1-matrix I', and Q(x,y) is a symmetrical function{}(y,x)
=Q(x,y) [in Eg. (1) x stands for the combined spatial and
spin coordinates; here and in the following, atomic units are Il. THEORY
employed. The common Hartree-Fock_apprOXImaﬁos re- A. Properties of a high-density homogeneous electron gas
covered forQ(x,y)=xy, whereas setting)(x,y)= (xy)*? _ _ _
yields the recently proposed Goedecker-Umrigar functional For al%pm-unpolarlzed homogeneous electron gas with
that, despite the lack of any empirical parameters, produce@ens'typ’
surprisingly accurate estimates of electron correlation energy 13 3
in simple Coulombic systens. ke=(37p)™",  (4m3)rgp=1, akers=1, (4

In the absence of symmetry-breaking phenomenah as
the Wigner crystallization’ the functional(1) leads to the
energy per volume(p) of a spin-unpolarized homogeneous
electron gas equal to mjn, e[n],

where kg is the Fermi momentunr,g measures the mean
interelectron distance and thus the correlation strength, and

a=(4/97)3~0.521 06. (5)
s[n]=(87-r3)*1f n(k)k2dk The weakly correlatedhigh-density limit corresponds to
r— 0. At this limit, the correlation energy per volunag(p)

is given by the expansidh?

—(167r5)‘1JJQ(n(k),n(k’))|k—k’|‘2dkdk’,
edp)lp=(1—In2)7 ?Inrgt+ey+-+-, e,=—0.047.

2 (6)

wherep is the particle density ang=n(k) is the momentum By virtue of the virial theorent? the correlation contribu-
distribution?® Extremization ofs[n] under a density con- tions to the potential and kinetic energies per volume and to
straint produces the Euler equation the chemical potential are
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ve(p)lp=2(1—In2)7 2Inrg+[2eo+(1—In2) 7 2] we(p)=(1—In2)m 2Inrg+[eg—3 (1—-IN2)7 2]+---,

9
+ee (7) ( )
respectively. Within the random-phase approximati@RA)
t(p)p=—(1—In2)7 2Inr—[ep+(1—In2) 7 2]+--- formalism, which is valid at the high-density linfit,the de-

(é) pendence of the momentum distributiofk) on rg and the
reduced momentum k=k/kg is described by the
and equation$>

00 =1-(ars/w2e [ “ada[ " {102+ (ar /7 0, e+ gD tang)]

(07 (ar/7)Q(@, (1 k) tangl20)] Jdo—(ardn?)x [ ada

1+«

X W/Z{[q2+(arS/Trz)Q(q,(KJrq/2)tanzp)]*1—[q2+(ar5/w2)Q(q,(q/2—K)tamp)]*l}d(p for «k<1, (10
0

k+1 w2
k)= (ars/n) [ "ada] " {07+ (ar./ w70, (- ai2tane))
k—1 0

—[9?+ (ars/m?)Q(q,(x*— D)tane/2q)] Nde for «>1, (11
where
(2+x)2+(2y)?
(2—x)%+(2y)?

Q(x,y)=2m 1+ (2x) " 1+y?—(x?/4)]In y arctafi(2+x)/(2y)]—y arctafi(2—x)/(2y)]{. (12

Equations(10) and (11) possess smails asymptotics

‘ 1—(arg/m®)?F_(k), k<1
=1 (argmd? Fo(x), x>1 (13
that are valid forl1— «|> (4ar¢/7)Y2 The functionsF _(x) andF-(x), which are given by
1 1+x /2 5
Fo(x)=x" L q‘3dqf0 [Q(g,(1—-x)tane/2q) —Q(g,(x+a/2)tane)]de
—X
1 o /2
+x° L+ q_3dQJ0 [Q(,(g/2—x)tang) — Q(q,(x+g/2)tane)]d¢ (14
X
and
1 x+1 3 /2 "
F>(x)=X’f a4 dclf0 [Q(g,(x*—1)tane/2q) — Q(q,(x—a/2)tane) ]de, (15
.
|
have the properties lim F_(x)x?(1—x)?
o /2 x—1
F<(0)=4f1 q“‘oquO Q(qg,(a/2)tang)cos 2p dg = lim F=(x)x3(x—1)2
x—1%
~4.112 34, (16) - ml2
=47Tf q‘3dqf [R(q™*tane) —R(tane)]de
lim F-(x)x8=8?/9~8.772 98, (17 1 0
- = (7%/3)(1—In2)~1.009 51, (18)
and
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where

R(u)=(4m) 'Q(0,u)=1—uarctaru*. (19

In the region where the inequalityl — «|> (4ar/7)'? is
not satisfied, the behavior ofi(k) is described by the
asymptotic®®

B 1—(ard2m?)G((4arg/m) " YA1-k)), k<1
n(k)= (arJ2m2)G((dar g/ m) YA k—1)), k>1
(20

that are valid for|1— «|<1. The functionG(x), which is
given by

G(X)=—f:R’(u)[R(u)—XZ/uz]-l

X [arctanu™t—xu~*R(u) %2
X arctafiR(u)Y?x~]]du, (21)

1—(arg/m®)2F (k)

1—(ard2m?)k °G((4arg/m) Y41—«))
(ar 27k 2G((4arg/m) " YA k—1))

n(k)=

(arS/TrZ)ZF>(k)

whereé is an arbitrary cutoff such that @& /) *?<¢<1.

It is easy to show that this stitched momentum distribu-affect the constarg, in Egs. (6)—(9
tion is properly normalized and yields a correct logarithmic

term in Eq.(8). On the other hand, sinagk) given by Egs.

(10) and (11) arises from the RPA formalism that does not

include exchange effects, its largeasymptotics[compare

Eq. (17)]

lim n(k)k8=82p? (25
K— o0
is incompatible with the well-known relationsfip'8
limn(k)k8=2 (arslw)zg(O)kE=8772p2g(0), (26)

k— o0

whereg(0) is the pair correlation function with the smal-
asymptotic

g(0)=3-57" Y 7?+6In2—3)ar,— (3— 7%/4)
X(3aryd2m)?Inrg+0(r2).

Combining Eqs(26) and(27) yields

(27)

limn(k)k8=472p?[1— 107 Y(7?+6In2—3)ar,

k— o0

—(6—722)(3ard2m)?Inr+---], (28)

which at the limit ofr¢—0 produces only half of the RPA

value given by the right-hand side rhs of E&5), as ex-
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has the properties

G(0)=- f:R’(u)[R(u)Tl arctanu~'du~3.35334

(22
and
lim G(x)x%= — me'(u)R(u)u du
X— 00 0
=(7/6)(1-In2)~0.16067, (23

The asymptotic§13) and (20) are readily reconciled by the
following stitching:

Osk=<1-¢
1-¢é<k<1
1<k<1l+§¢
1+ésk<oo

(24)

pected from the influence of the exchange effedisat also
).12

B. Constraints upon Q(x,y) imposed by the largek
asymptotics of the momentum distribution

Stringent constraints are imposed up@r{x,y) by the
largek asymptotics ofn(k). At the largek limit, Eq. (3)
affords’

(29

1/(1-p)
lim n(k)k“’(lﬂ):[ﬁwzf w(n(k'))dk'}

k*?OC
where

o(y)=lmQ(x,y)x 4,

x—0

0<|w(y)| <. (30

Comparison of Eq(29) with Eq. (28) immediately yields

B=7 (31)

and
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Since Q(x,y) is a symmetrical function, Eq.30) implies
J o(n(k))dk=473p[1-57 Y(7?+6In2—3)ar, that
—(3—7 24 (3ar2m)?Inrg+---] Ci=limw(x)x B, 0<|Cy<w (35)
(32) x—0
as a constraint fow(X). In turn, settingrs=0 in Eq. (32 from which the latter of the conditior84) also follows. On
produces the other hand, the former of these conditions is consistent
ke . with the asymptotic behavior
f w(l)kzdk-l—f w(0)k?dk=7?p, (33
0 ke im[1—w(x)](1-X)"7=C,, 0<|C,/<x=. (36)
from which one readily infers that x—1
w(l)=1, w(0)=0. (349  Thus, at the limit of smalts [compare Eq(24)],

f w(n(k))dk=(477/3)k§—477szkF[1—n(k)]7k2dk+47TC1f:[n(k)]l’2k2dk
0 F
1-¢
=4773p(1—3C2(ar5/772)27f [F_(k)]"k?dk

0

1

—3C2(ars/2ﬂ'2)VJ [k 2G((4arg/m) Y(1—k))]"k?dk
1-¢

1+¢ o
+3cl(ars/2w2)l’zf [K*ZG((4ars/w)*1’2(K—1))]1’2K2d,<+3cl(ars/w2)f [F-(x)]Y2k?dk}.
1 1+¢&

(37

Owing to the asymptotic€l8) and (23), the following estimates are valid for smal:
1+¢
J [k 2G((4ars/m) YAk—1))]Yk%dk
1
v [(darsim ™2 u 12
=(4arglm) [G(k)]Y] (4ars/m)Yk+1]dk
0

=(4ar /m)Ygo+gi(dars/m)Y?]+ (4ar/m)Y (7/6)(1—In 2)]Y?

(4arglm)~ Y2
f s kY (4arg/m)Yk+1]dk

=(4arg/m)Y g+ g1(4ar sl m) Y2+ (dar o/ m) Y (m16)(1—In2) 1Y E+In[ (4ar ¢/ )~ Y2]} (39)

and

fw [F>(K)]l/2K2dK=f2>+[(772/3)(1—|n2)]1/2J (K—l)*lxdK=f2>+[(w2/3)(1—|n2)]1’2J kY k+1)dk
1+¢ 1+¢ é

=f; —[(7*13)(1-In2)]"(£+In &), (39

wheregg, g;, andf, are integration constants. Consequently,

1+¢& o
3C1(ars/2772)1/2j [K*ZG((4wrs/w)*1’2(K—1))]1’2K2d,<+3cl(ars/w2)f [F-(x)]Y%k%dk
1 1+¢&
=3C{(2/7%)Y2ar [ go+ g1(4ar g/ m) Y2+ (37%) " YA 1—In2)Y2arIn[ (4ar g/ 7m) Y2+ 15 (arg/w?)}. (40)
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Inspection of Eq.(32) reveals that the term proportional tergInrg in the rhs of Eq.(40) has to be canceled out by an
analogous term in the remaining two contributions to the rhs of &8, hencey= 3. Upon insertion of the smalis estimates

folig[F<(K)]1’2K2dK=f2<—[(772/3)(1— INn2)]Y34(—&+1In &) (41)

and

fl [k 2G((4arg/m) YA 1—k))]Yk?dx= (4ar /7)Y gy— g1 (4ar g/ m)Y?]
1-¢

+(darg/m)Y (wl6)(1—In2) 1Y — é+In[(4ar/m) Y2}, (42

these contributions become

1-¢ 1
3C2(ar3/772)27f [F<(K)]7K2dl<+3C2(al’5/27T2)7J [k 2G((4arg/m) Y(1—k))]"k?dk
0 1-¢

=3C,{f5 (ars/m?)+ (2lw%)Yar J go— g1(darg/m) Y2+ (37w2) " YA 1—In2)YVar In[ (4arg/m) Y2}, (43)
Combining Eqgs(37), (40), and(43) yields

f w(n(k))dk=473p{1+ (3/7%)YA(C,;— C,)(1—In2)Y2arIn[(4ar ¢/ m) Y2+ (18/7%)Y(C,— Cy)goars

+(72/m*) YA C1+ Co)g1(ar ) ¥+ (3/m%)(C1f; —Cof 5 ) ar g}, (44)

from which one immediately concludes th&;=C,=C, . .
where -7 [ 0,0 0k Fdk =, (38

C=—(57/3)(m?+6In2—3)(f, —f5) 1~ —16.594 7. _ . ,
(45  which follows from the Euler equatiof8) upon settingk

) =0. The chemical potential of a high-density homogeneous
Since exchange effects reduegk) for k>kg (see the pre- glectron gas is given by the equation

ceding sectio)) the actual value of the constaftis slightly

more positive(by at most a few percenthan that given by

the above equation. wip)=3%(ary) >—7 Yary) *+(1—-In2)7 2Inrg

In summary, the larg&-asymptotics of the momentum _

distribution furnishes the following constraints upon the +leo=3 (1=In2)m 2]+, (49)

function Q(x,y):
where the first two terms arise from the kinetic and exchange

Q(x,y)—C(xy)¥2 for x—0, y—0 (46)  energy components, respectively. It should be emphasized

that Eq.(48) is satisfied only for functionals that yield ad-
missible momentum distributions as solutions of E8§).

QxY)—[1-C(1—x)¥2y for x—1, y—0, Thus, as the Ihs of the constraid8), the Hartree-Fock func-

(47) tional yields

and

where, quite unexpectedly, the const&htturns out to be
negative. N _ -1 -1
-2 Q,(n(0),n(k))dk=—27""(ars)” -, (50
0
C. Constraints upon Q(x,y) imposed by the smallk

asymptotics of the momentum distribution rather than the first two terms of EG9).

The asymptotic behavior d(x,y) for both of its argu- With the help of the asymptotic$46) and (47), the
ments approaching unity is readily derived from the con-k>kg contribution to the integral that enters E¢8) is eas-
straint ily evaluated as
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—2w-1f Q,(n(0),n(k))dk
ke

= —C7T[F<(O)]l/2(ars)2{ (ars/2w2)1’2f“§[K*ZG((4ars/w)*l’Z(K— 1))]1/2d;<+(ars/772)fx [F>(K)]1/2dK]
1 1+¢

=—C[F_(0)] Y argy) Ya s+ (2im)Y go—gi(4ar s/ 7)Y+ 37 YA(1-In2)Y2In[ (4ar 4/ m) " V?]}. (51)

Thus, the term proportional toof ) ~2 in the rhs of Eq.(49), has to stem from th&<kg contribution, implying that, as
x—1 andy—1, either

Q(x,y)—[1-D(1-x)*[1-D(1-y)*3 (52
or

Q(x,y)—=1-D(1—-x)¥(1-y)¥4 (53

whereD andD are constants. For the former asymptotics,

~271 "0,m(0)n(k k= - WD[F<<°>]”Z<“S)2< | a-piar e o1

+ ' {1-D(ar2m?) Y k 2G((4arg/m) YH1-k))1¥3dk
1-¢

=—7D[F(0)] " ary) 1-D(ars/7*)f5 —Dary(2/m®)" go+gi(4ars/m)"?]
—Dary37?) YA1-In2)Y2In[(4ar/7) Y2}, (54)
which fixes the value oD,
D=—(27) Y{F_-(0)]¥?>~—0.32275. (55)

On the other hand, upon insertion of the snralkestimates
1-¢ ~
fo [Fo(r)]"dr=T5 — (713" (1-In2)Y 2+ 5 £37) (56)
and
1
f [k 2G((4arg/m) YA1—k))]¥dk
1-¢

=(4ars/ MY Go+ (ars/m) MG, ]+ (4ar/m) Y (7/6)(1-In2) Y] 2612+ 5 £, (57)

the latter asymptotics leads to

—2w‘1ijQX(n(0),n(k))dk= —(w2/2)5(ars)_5/2[F<(0)]_3/4[ (ars/wz)lfzflfg[a(K)]lf“dK
0 0

+(01fs/2772)1/4f1 [KZG((4arS/77)1/2(1_K))]1/4dK]
1-¢

=—(m/2)D(arg) [F-(0)] ¥{F5 +2(ary2)V[Go+ (ars/m) 7,1} (58)

The rhs of Eq.(58) contains an unphysical term proportional ter{) ~"* that cannot be canceled out by the kg contri-

butions[Eqg. (51)]. For this reason, the asymptoti¢g3) has to be ruled out in favor of expressions consistent with(&2).
One of such expressions, which reads
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Q(x,y)—=[1=(D/N)(1=) Y [1=(D/N)(1-y) ], (59
produces
u=—aD[F(0)]" Y ary) "2+ 7 [F_(0)] " (1-N"1H)D?[F_(0)]"*+(D*f5 — Cfy)+(2m) (D>~ C)go}(ars) *

+(D?=C)3" Y41 -In2)"{F (0)] M arg) " In[ (4ars/m) ~V7|+ (D2+C)(8/m%) gy F(0)] ¥ arg) V24 -,

(60)
which, upon setting
N=(1+D F(0)]"Y4(D*f —Cfg)+(2m) (D2~ C)go+[F(0)]) ~*, (61)
yields the first two terms in the rhs of EGL9). On the other [ll. DISCUSSION AND CONCLUSIONS
hand, the unphysical term that scales liker) tinrg
would be canceled out only if The large- and smak-asymptotics of the momentum dis-

tribution n(k) rigorously determine the behavior of the func-
tion Q(x,y) for each of its arguments approaching either O
. . . ._or 1. Unfortunately, the resultin@ (x,y) does not give rise

Although for obvious reasons this condition cannot be satlsfo n(k) with a proper discontinuit lution of the Euler
fied, it is clear that, in principle, asymptotic expressions go- k proper discontinuity as a solution ot the tule
ing beyond that given by Eq59) would be capable of not equation(3). Consequently, functionals of the form given by

only eliminating this spurious term but also furnishing Eq. (1) cannot be exact for a high-density homogeneous

proper constant and logarithmic contributions in the expan€l€Ction gas. T _
sion (49). In principle, this problem can be rectified in two different

ways. One possibility is to consider more involved function-
als in which the functiorf) does not depend on the occupan-
cies of the two spin orbitals in question but also on those of
) . , the others, i.e.)=Q(n,,nq,{n}). Such a function would
Having established the asymptotics@®(x,y) for xandy  «ynow~ the value of ke, circumventing the scaling argu-

. o Tments presented in the above derivations. Another possibility
strate that such a function cannot give rise to the momenturRlouId be to abandon the concept of the natural spin-orbital

distributionn(k) with a discontinuity ak=kg . The location : : :
of this discontinuity is unaffected by exchange effects be_{ync{l?nzgls altogether in favor of alternative approaches to
e .

yond RPA (Ref. 20 that contribute to its magnitude only
through orders higher than linear m.?! Since the Euler
equation(3) has to be satisfied &sapproache&g from both
below and above, one has

D?=C. (62)

D. A constraint upon Q(x,y) imposed by the discontinuity
of the momentum distribution at k=Kkg

In light of the above discussion, the remarkable perfor-
mance of the functionall) with Q(x,y)= (xy)*? for simple
Coulombic systentsremains unexplained. The present find-
ings appear to imply that either the satisfaction of the con-

straints imposed by the properties of a homogeneous electron
J Q,(n(kg),n(k"))|k—k'|2dk’ gas is of little relevance to the accuracy of predictions for
atoms or that poor performance of such functionals should be
expected for systems with narrow gaps or degeneracies at the
ZJ Q,(n(kg),n(k")Ik—k'|7?dk’, (63)  Fermi level. The research aiming at the elucidation of these

) ) issues is in progress.
where |k|=kg . Integrating out the angular coordinates and

inserting the aforederived asymptotit$6), (47), and (52)
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