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Staggered liquid phases of the one-dimensional Kondo-Heisenberg lattice model
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We describe a family of one-dimensiondlD) liquids, which we call “staggered liquids,” in the phase
diagram of the 1D Kondo-Heisenberg model. It encompasses three distinct spin-gapped liquids and a Luttinger
liquid (LL) phase. A staggered liquid is characterized by gapless modes with a large Fermi-sea signature in the
charge-density waveCDW) mode, and the superconducting order involves the near condensation of clearge-2
Cooper pairs with finite center-of-mass momentum. In particular, the conventional gagle €DV andk
=0 pairing modes are absent. We analytically derive the phase transition from an intermediate-coupling
spin-gap phase to the strong-coupling gapless LL phase of the Kondo-Heisenberg lattice model.
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[. INTRODUCTION to the staggered Lltand hence we name it the “staggered
BCS phase).

Multicomponent one-dimensional electronic systems, of We emphasize that in this paper we limit ourselves to
which the one-dimensional Kondo-Heisenberg model is #ataloguing the stable fixed points. We do not discuss the
particular example, exhibit phases that were unanticipated if@nge of their basins of attraction and the validity of the
earlier studies of the one-dimensional electron A3EG). solutions away from the quantitatively controlled limits of
The one-dimensional Kondo-Heisenberg model consists of Barameters. In other words, we defer to a future publication
1DEG interacting with a Heisenberg spinehain via spin the discussion of how exactly to construct the phase diagram

exchange interaction. In the present paper we characteriZ& 2 funct(;on of Konbdo |r|1ter.act|on ;trlength for a given dis-
the stable fixed points of this model. crftef'h('on o-gelstin erg a:tltge model at given incommensu-
In particular limits of parameters, we obtain well- ra 'e]'hlemg aenr igvl)r er)wlir;-erg gslofrtl)lllgt//vznﬁgcgéc Il we define
controlled analytical solutions that enable us to enumerat(ﬁ1 bap 9 ' B
and characterize the quantum numbers of all gapless modese mpdel and the order parame.ters_. Our results are summa-
. ' . ifTzed in Tables | and II(The derivation of these results is
Gapless modes are properties of the fixed point. Thus, o

urSresented in the ensuing sectigris. Sec. I, we review the

analysis lists the minimal set of stable fixed points in theweak-coupling limit QOg<Jy) spin-gap fixed-point

global phase diagram of the Kondo-Heisenberg model. Sursoution? In Sec. IV, we review the Toulouse limitJ{,
prisingly, we find that there is a common feature to all the<JK~EF) spin-gap fixed-point solution, with some ex-
fixed points in that charge-density wal@DW) and pairing  tended discussion of the unitary transformation. In Sec. V,
gapless modes are obtained with “unusual” wave numbersye derive the phase transition to a gapless LL away from the
and hence we give the name “staggered liquids” to the fam-Toylouse point toward stronger coupling(<Eg<Jy). In
ily of fixed points. In particular, whereas previously cata-Sec. VI we make some additional concluding remarks. In
logued liquid phases of the 1DEG have a gapless chaege-2order to facilitate the reading of the paper, a discussion and
pairing mode ak=0, in a staggered liquid this mode appearsbhosonization representation of the order parameters is given
at nonzero wave vector. Put differently, in a staggered liquidn an Appendix.
phase the dominant superconducting order involves the near
condensation of Cooper pairs with finite center-of-mass mo-
mentum. Similarly, there is no gapless CDW mode at wave
number X . Our results are summarized in Tables | and Il
below. A. The model
In previous publication$? we have already characterized
two distinct spin-gap phase@t weak coupling and at a
Toulouse point value of parametgrin the present paper we

add a gapless Luttinger liquid L) phase(labeled “stag- other an antiferromagnetic Heisenberg chain of localized

gered LL") that is obtained by going away from the Tou_hspins%, {7j}. The chains interact via a spin exchange inter-

louse point toward stronger coupling. Interestingly, although™" . . ) . . )
its mathematical form is similar to that of the commensurate-"’lctlon with an antiferromagnetic coupling constdpt>0:

incommensurate transition, we find the phase transition is _

first order. To our knowledge, this is the first analytical deri- H=H1PEC yHelsy | 1)
vation of the phase transition from an intermediate-coupling

spin-gap phase to the strong-coupling gapless LL phase in

the Kopdo Iat;ice modpl. Morgover, a third di;tinqt spin—gap HHeis:JHE T, )
phase is obtained by introducing weak attractive interactions ]

Il. KONDO-HEISENBERG MODEL
AND ITS ZERO-TEMPERATURE FIXED POINTS

The Kondo-Heisenberg mod€ll) consists of two in-
equivalent interacting chains; one is a one-dimensional elec-
tron gas(described by the HamiltonidrHPE®), and the
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1D electron gas

1 2 1 ’
HCZE Kch(X)+K_Uc(f72q)c) -
c

Jx
Ju b 7, Since in this paper we are not interested in the effects of
_ anomalous 1D exponent&{# 1), we will setkK.=1, unless
FIG. 1. Kondo-Heisenberg model. otherwise explicitly stated. The subsequent analysis and ma-
nipulations deal only with the spin sector fields. The Kondo
HKZZJKE - S(X;) 3) exchange interaction reduces to
— 7] i’
J
wheres(x;) = ¢! (x;) (0,5/2)¥5(x;) is the electron-gas spin- Hie=Jdk > 7-3(X)). (4)
i

density operator at positior; of the local spins; of the
Heisenberg chain. We focus on the low-energy and long-
distance behavior of the electron correlation functions by B. Order parameters and staggered correlations
taking the antinuqm limit Qf the electron gas a_nd I!nearizing Study of the different stable phases of the Kondo-
the 1DEG dispersion relation about the Fermi poifite-,  Hejsenberg array begins with an analysis of the gapless ex-
with corresponding right- and left-going electron fiel8§  citations of the decoupled fixed point. From there, as usual,
andL,: we sort the phases by determining which of these excitations
i _i become gapped and which remain gapless in the presence of
Po(X)= Ry (X)e TP L y(x) e P, the (Kondo) couplings between the 1DEG and the Heisen-
whereo=1,| (see Fig. 1 berg chain. Since our ultimate goal is to study the coupled
The effective Fermi wave numbetin the sense of the System, we need also to consider the character of gapless
generalized Luttinger theoréinfor the 1DEG and the spin excitations constructed_of compqute operators from the two
chain are X- and XF®= /b, respectively (where b subsystems. An extensive exposition of the order parameters
=x;;1—X; is the distance between the local spins of thelS given in the Appendix. Below, we note only the modes

Heisenberg chajn It is assumed that the two systems arethat are relevant for a spin-gap system.

mutually incommensurate, and thakg2is incommensurate [N the spin-gap phases, only spin-0 modes may be gap-
with any underlying ionic lattice. The continuum limit is !€SS: Thus, we focus our investigation on singlet pairing

taken for the 1DEG while the Heisenberg chain is initially Modes(charge 2, spin  and CDW modegcharge 0, spin
left discrete(and remains so in some of the limit solution 0)- The corresponding usual 1DEG order parameters are

derivationg. Therefore, the totality of our analysis is rigor-

ously valid in the limit > «/b (i.e., where the number of 0 :i(RTLTJFLTRT) (5)
electrons is much larger than the number of local spine- Y i
ments per unit lengdh
The 1DEG spin currents are decomposed into forward- 1, :
and backscattering parts: Ocow=5L(RjLi+RiL)+H.c]. (6)
_ ot ZeB _ Modes of composite nature are a composite odd-parity sin-
= Jy(X) +ng(X), O¢.sp= —I[RL(00,) gl ] 7, (7)

where Jy(X)=Jsr(X) + I (X), Jsr= 1% R:rro-w,RU,, and anda composite particle—hole r_no@@_qDW, which will play
Jo=%LYe, /L, are the ferromagneticg=0) spin cur- & central role in the ensuing discussion,

rents of right- and left-moving electrons, respectively, and _
Oc.cow=NipEG' T (8)

ng(x)=e""2kXing(x) +e "2k Xin (x), . . . .
s(x) ROX) L) Upon evaluating the corresponding correlation functions

whereng=R! (o, ,//2)L, andn =L(o, ., /2)R, arethe xi(x,x')=(0;(x)0;(x’)), we find gapless modes with
staggered magnetizatioq € 2kg) components of the 1DEG. power-law correlations of the form

Due to the incommensurate electron filling, backscatter- o
ing interaction terms are irrelevant in the renormalization Xi(X =X = (= DU xo(x=X%;1), 9

group (RG) sense, and for our purposes may be drone(\jNhereXO~x‘“i. The staggering factor{1)! in the corre-

frreosrgnthtﬁerTAItgr?:jaghg]ratedsejég?seséégguﬂﬁd points. As Qation functions(9) effectively modulates the usual power-
' P 9 Pie, law correlations by the reciprocal lattice vectafb of the

spin chain{7;}. As a result, the gapless modes are found in
H=J’ dX[ He+ Hepinl- unusual finite momentum values: The singlet pairings have
momentumsr/b (and there is nk=0 singlet pairing with
The charge sector is described by a Gaussian model charge 2), and the gapless CDW modes are at momentum
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TABLE I. Spin-gap phases.

o
2kE =2k + b (10
OCDW OSP OC—CDW OC-SP
(and not at &g like the CDW in a free 1DEE These are the ] . -
defining characteristics of a “staggered liquid.” Weak coupling X X 2ke B
_ Insight into the gaples_s_mode properties is gained by cony g jouse point 2K k 2KkE f
sidering the so-calle@-pairing modes at momentur 2kg, b b
Staggered BCS 2k§ o X X
NR= R}LRI , b
m=LILT, (11) (1) J¢<J4<Eg: A spin-gap phase at weak-intermediate

. . N . coupling?
corresponding to right- and left-going singlet pairs. In a (2) 3=Ef>Jy: A spin-gap Toulouse point phdsat
bosonization representatideee the Appendjxit is easy t0  intermediate coupling
see that thep-pairing operators depend only on the 1DEG 3y j s E.> 3, A. aplessstagaeredLuttinaer liquid
charge sector fields. The charge sector is unaffected by t :Els)e aKt strgng gduplir?g.p 99 d q
relevant part of the Kondo and Heisenberg interactions at al (4) J>E¢>J,: A spin-gap staggeredBCS phase at
the zero-temperature fixed points. Therefore, the gaplesg ong coupling, with additional weak attractive charge inter-
7-pairing modes always exist and carry momentukp as in 4 tions.
the free 1DEG. It is instructive to define operators We comment that all the fixed-point Hamiltoniafesso-
ciated with the above noted phaséisat we derived are in
fact spin-rotation invariant, even though the bare interaction

1
= —(rt M), i i i ion invari
V2 parameters were In some cases breaklng spin-rotation invari-

7
ance. It is an example of the possibility that the ultimate
1 zero-temperature fixed point can possess higher symmetry
7°%%= — (pr—7L) (120  than the original microscopic model. Yet we emphasize
V2 again that such issues do not affect the validity of our analy-

(though in themselves they do not carry a well-defined rno_sis for cataloging the fixed points of the most general micro-

mentum quantum numberWe found that an interdepen- -colC Kondo-Heisenberg modevith or without  spin-

. . ._rotation invariancg
dence of.the 9‘?"0'?33 modes is established by the following In Tables | and Il below, we characterize the above noted
operator identities:

fixed points in terms of the momentum quantum number of
even _ their gapless CDW and pairing modeés signifies that the
[Ocow, 7"*1=Osp (13 particular mode is gappedObviously, the gapless LL is
characterized by having also gapless spin-density-wave

oddy —
[Ocow, 7™=0, (14 (SDW) modes and triplet pairing modes.
[0 even_ g (15 Whereas previously catf';ll_oged liquid phasgs of the 1DEG
c-CDW: 77 ' have a gapless charge pairing mode ak=0, in all of the
od above noted phases this mode appears at honzero wave vec-
[Oc-cow: 7°=Oc.sp (16 tor. Similarly, there is no gapless CDW mode at wave num-

Hence, the gapless wave numbers of CDW and pairing op2®" e -

erators are always connected by momentua .2
IIl. WEAK-COUPLING LIMIT  (Jx<<Jy) SPIN-GAP FIXED

C. Main results: Staggered liquid fixed points POINT

For the purpose of characterizing fixed points, the issue of N the weak-interchain-coupling limit
counting gapless modes requires clarification. Since the Il E
n-pairing modes are gapless in all cases where the charge KSTH =R
sector is gapleséi.e., at all the fixed points of the Kondo- |t is allowed to make further approximation by taking the
Heisenberg lattice model at incommensurate fillitge in-  continuum limit also for the Heisenberg spin chésnich an
terdependence of modégiven in Eqgs.(13) and (16)] im-  approximation is not valid in the opposite limik:Jy,,
plies that formally only the CDW modes need to be countedwhich is discussed in Sec. JVThe local spin-chain field is
while the pairing mode®gp and O._gp are redundantly de-

rived from combinations of CDW ang-pairing operators. In TABLE Il. Gapless Luttinger liquid phase.
spite of that, since common discussions in the literature are
done in terms of the usual pairing order parame@¢gs and Ocow Ogp Oc.cow Oc.sp
Oc.sp, We will list them in our tables below.
We have found four distinct fixed points associated withStaggered LL 2k¢ % 2k¢ %

different parameter values.
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then also decomposed into the smo@#rromagnetic and  fixed point phas¢.Thus, we model the local spins as initially

staggeredantiferromagneticcomponents: independent, and leave the Kondo interaction in its discrete
form:
7= [IR(X) +I[ (X)) ]+ (= 1)!n.(x)). 17
. . . o,
(Note that we will consistently use the subscriptands to H=HgPEC+ ZJK; 7 P (x) TB%(X;)- (20)

distinguish the spin-chain fields from the 1DEG fields.
In order to distinguish contributions coming from various
interaction terms, we introduce distinct Kondo coupling co-In this limit, effective interaction and coherence between the
efficients for forward scatteringl¢) and mixed interactions local spins will come about explicitly mediated by the itin-
(Im): erant 1DEG (i.e., in a kind of Rudelman-Kittel-Kasuya-
Yoshida interaction which is not introduced by hand to the
Hi=31(Jz+3D)- (Jat 3) +In(— D)0, (Jp+ D). models asly,).
(18) Below, we review and discuss the Toulouse point deriva-
tion and results of Ref. 1. For the purpose of calculating

The mixed interaction, of the ferromagnetic 1DEG compo-correlation functions, we bosonize the 1DEG fermionic
nent with the staggered impurity componefite.,, the fig|gs3

Jn(—21)n,-(Ig+3I) term| has naive scaling dimensiojj
but the oscillating ¢ 1)! factor, which acts as an effective

extra derivative factordy), renders this term perturbatively (x)= Fo e IV 0,00+ (0]
irrelevant in the renormalization group sense with respect to 7 V2ma ’
the free HamiltoniarH§. The forward current-current inter-

action J¢(J.r+J,)-(Jr+J.) has scaling dimension 2, is

marginally relevant, and leads to the opening of a spin‘gap. R,(X)= e~ IV 0s(x)- 0]

(The J,, term will prove to be essential for understanding the 7 \J2ma o

Toulouse limit solution in Sec. IV .Therefore, at incommen-
surate filling in the weak-coupling limit, the Kondo- where 6, (x)=/*_dx'II,(x'), and [II,(x'),¢,(X)]=

Heisenberg Hamiltoniaft) reduces to —id(x'—x), o=1,|. The anticommuting Klein factors
{F, ,Fs}=4, , are needed for the proper anticommutation

=+ HE+ ] J dx(Jo+I7)- (54 39), of fermions with different spin. As is commonlly done, we
weal= T T+ Jy rtJ0)-( R reexpress the operators in terms of bosonic spin fields

¢s(X);(1/\/7)[¢¢— ¢, ] and charge fields ¢.(x)
1 1 =(1M2)[ ¢+ ¢,], and correspondingly defined momenta
chi[Kﬂg(xH va(axq%)z}, (19 11 andm,.

The crucial step that we introduced in Ref. 1 is to make a
unitary transformation of the fields,

21
Hy= > £ (38

3 G+,
MH=S,T
. . . U=expg —iy2 Xi 21
wherev . anduvg are the spin-wave velocities of the Heisen- [{ E Os(x) 1. D
berg chain and 1DEG, respectively & 7J,/2). For a de-
tailed derivation of the gapless modes of mod&d), we
refer the reader to Ref. 2. The end results are quoted in the U277 (d,¢s)UT= 27 (dyps) — 2772 TE8(X — X),
first line of Table I. It is remarkable that only composite
modes are gapless. (22
IV. TOULOUSE LIMIT (J;<J¢~E¢) SPIN-GAP FIXED Urte "27osyT=r*, (23
POINT
In the limit U cog V2mey(j)IUT=(—1) cog V2mos(j)]. (24
Jy<Jc~Ef In words, going across an impurity, the spin pha®er ¢, is

shifted by =, i.e., transformed fields with opposite spins
the intrachain interactiod,, is small compared with the in- acquire a phase shift af, =+ 7/2. It is reminiscent of the
terchain interactionli , and it is incorrect to take the con- unitarity limit scattering we expect from the low-energy
tinuum limit for the spin chain prior to accounting for the physics of the single-impurity Kondo effetfTherefore we
effect of the interaction)y . For simplicity, sincel,<<Jy, interpret the unitary transformation as going to a Kondo
we will first take the limitJy=0. (We shall find that bring-  strong-coupling basis.
ing backJy<Jk is an irrelevant perturbation, in the renor-  The resulting transformed Kondo lattice Hamiltonian is
malization group sense, due to the spin gap of the Toulousgiven by
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_ 2 spin fields which develop an expectation value are
UTHU=H,+ AJz\[;Z T{dxps(X;) (7(—=1)1)#0 and(cog2m¢4(j)1)#0. In calculating cor-
! relation functions, it is important to remember the effect of
J, _ _ the unitary transformations, which lead to
+— 2 (=1 cof\2mey(i)], (25 o
‘ (cog \2mhs(x)]cod V2mg(x')])~(~ 1))

[j (x) is defined as thgimpurity site to the left of positionx].
The bare impurity correlation&}‘ﬁ‘,) decay exponentially.
However, the transformed impurity spin§}‘=UTT}‘U
exhibit staggered long-range order &ak=0, <~ﬁ-}‘,)

AJ,=J,— mUE. (27)  =constx(—1)U71"); this nonlocal order parameter character-

. . . _ izes the coherent ground state. That is all the information
n .E.q. (25 we have mtroducgd mdepen.den.t INteraction Co-peeqeq for deducing the correlation functions of all order
efficientsJ, andJ, for the Ising and spin-flip parts of the ., .2 meters, and thus determining the gapless modes as was
Kondo exc_hgnge mteractleK_. Hence, formally We aré  gone in Ref. 1 and summarized in the second line of Table I.
here examining a generalization of the Kondo-Heisenberg e ake this opportunity to elaborate on the significance
model (1) to non-spin-rotation-invariant interactions. of the field transformation. Ther phase shift of the field

Ihe transformed fields constitute the low-energy spectrum\/ﬂd)S across an impurity sité22) gives rise to a staggered
of Ho, into which part of the interaction energy has beencoefficient (—1)! in the Hamiltonian(30) since

incorporated. The transformed fields are taking advantage of
the Ising part of the magnetic Kondo interaction at the cost i
of kinetic energy[due to twisting of the spin fieldbg(x)]. ex;{i2w2 T
These are originally high-energy states of the bare free =1
1DEG HamiltonianH 1DEG. For the transformed fields to be- Note that the factor-(—l)j is eﬁective|y “Counting” impu_
come low-energy states due to interactions, it is clear that thgties, and is obtained irrespective of the order of the bare

Kondo interaction strength needs to be on the order of th?TIZ} themselvegimagine an Ising chain of77}; there is a
1DEG bandwidth. To this effect, note the shift of the ground-fzctore*iv= — 1 per impurity. Indeed, the correlation func-

state energy per impuritgirrespective of the existence of a
spin gap in Eq. (26):

~ 1
Ho=HS+HG -+ A% 2 ()% (29

whereH$= (v4/2) fdX[TI2+ (dyps)?], and

:(_1)1'_

tion (7f;,) is short range.
It is interesting to trace back the relevant interaction in the
1 Toulouse fixed-point Hamiltonian in terms of the continuum
AEj=—-(J,+AJ) 52 (rjz)2 limit of the Heisenberg spin chaii8). Due to the additional
J (—1)! phase factor, in the transformed basis, the relevant
1 slowly varying interaction is now,n.- (Jg+J.), while the
=8—(2J,— mvE) TS (28) interactiond;(—1)"(J,g+J,.) - (Jr+J.) is now also rapidly
oscillating and irrelevant. Thus, Toulouse fixed-point physics
It represents the absorption of a part of the Kondo interactio®riginates from the interactiod, that couples the conduc-
energy —2J,/4b (equal to the gain from forming an Ising tion electrons to the staggered component of the impurity
singley into the transformed free-field Hamiltonid@6), at ~ array, an interaction that is relevant only with respect to the
the cost of kinetic energyt+ wvg/4b. Hence, for strong transformed fixed-point HamiltoniaHd,, and was irrelevant
enough interactions the transformed free fields have lowein the untransformed basis. This possibility would be
energy than the bare 1DEG free fields, and therefore detemissed in the continuum limit if we had dropped the
mine the low-frequency correlations of various order paramdJ,,(—1)'n,- (Jg+J.) term at the outsefas is usually done,
eters. Thus, the Toulouse point solution is an outcome oé.g., in Ref. 5. The perturbative relevance of various inter-
finite “strong enough” interactions and cannot be reachedaction terms is changed after a transformation to the
by perturbative methods about the noninteracting basis.  “proper” strong-coupling basis of fields about which pertur-

For a special value of the coupling constants, bative RG analysis is performed. The notatibpis not ac-
cidental, and it is exactly the one that is responsible for the
J,=mE=A4J,=0 (290 nontrivial fixed point of the two-impurity Kondo problefn.
(the Toulouse point we are left with an exactly solvable
fixed-point Hamiltoniart, V. STRONGER-COUPLING (Jy<E-<Jy) STAGGERED
LUTTINGER LIQUID FIXED POINT
~ Jr _ . . -
H* = H8+ H(S)+ %; TT(_ 1)l cog /27T¢S(J )] A. Phase transition away from the Toulouse limit

(30 In a previous paper,we analyzed the commensurate-
incommensuratéC-l) transition in the charge sector at the

The spin part of the fixed-point Hamiltonian has a discreteToulouse point, as a function of the filling factor, and found

sine-Gordon form, and therefore a spin gap. The transformed phase transition from an insulating ph&aéh both charge
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and spin gapsto a conducting phase with only a spin gap. transition in our Hamiltonian(31) is unusual because the
Here, we are interested only in the case of incommensuratearameterss andh are themselves not constants, but instead
filling (for which there is no charge gagn this section, we are dynamic fields that need to be determined self-
analyze the phase transitions in the spin sector by varying théonsistently by an additional mean-field minimization condi-
taining the same incommensurate charge filling factor. ground-state solutions for the Hamiltoni&3e).
We ir_1vestigat9 thg phase transitions .v_vithin the trans-" ppase 1 A uniform spin-gap phase, identical to the Tou-
]I((C))Lrg]sdli;?:dfiisygt;:;agfa' The) I?scaelnsstife”(;ltyb?/f :22 L?(:JS louse point solution, with no finite gradients afos(x;),
z ~ TUF T i —1)i —
tence of a spin gap. This is all that can be deduced fromy© <C05{@¢S(J)]>¢O’ ((=1)'7)#0, {3x$)=0, and
perturbative renormalization group calculations. Thus, th&ence aISG(TJ>:O' , o
phase transition can be established only via nonperturbative F,’,hase 2 A gaple_ss incommensurate spin soliton lat-
methods. Below, we determine analytically the finite param-IC€" ground state with periodic steplike kinks in tla(x;)
eter space region characterized by the Toulouse fixed-poidi€!d- I~ such ~a  phase, <5X.¢§>¢0’ but  still
solution, i.e., the zero-temperature stability of the spin gap 1§08 V2w g(j)1)#0, and both((— 1)/ 7) 0 and(rf)#0.
finite deviationsAJ,=(J,— mvg)>0 away from the Tou- Phase 3 A free gapless SDW phase(d,es)#0,
louse line toward stronger coupling. We find an electronic{C0$v2m¢4(j)1)=0. In that phasé)=0 and(})#0.
gapless phase beyond a finite distance from the Toulouse The name “soliton lattice” comes from the classical so-
point. lution, which has long-range periodic order. Quantum fluc-
Treating the transformed impurity spins in self-consistentuations turn the long-range order into power-law correla-
mean-field approximation, we replace them by their expections, and thus the quantum ground state should properly be
tation values in the transformed Hamiltonian, termed a soliton liquid. Nevertheless, this does not change
the qualitative distinctiongin terms of nonzero expectation
values between the various phases. For simplicity, | will
UTHU —H3+ H+ AJ2m 2 (T 0xbs(x)) discuss the phases in classical terms.
To find the transition points between the phases we need
J, : , to compare, for a give\J,=(J,— wvg)#0, the ground-
t A ; (=1Ir)eog\2mes(D]. (B grare energy of the spin-gap phdpbase 1with those of the
gapless phases. The wusual result for commensurate-
The spin sector of the Hamiltoniai31) has a form familiar  incommensurate transitions, where the parameteasid &
from the study of commensurate-incommensurate transiare constant, is that the soliton lattice solutiphase 2 has
tions, lower energy than the SDW solution, and the transition is
_ second order. This is not the case here, due to the fact that
H® 1 ) ) the parametery and § are themselves interdependent dy-
U_S_EJ AX[II5+ (dxps— ) HhJ dxcod B¢s(X)], namic variables. Thus, we need to minimized the ground
(32 state energy with respect to both the soliton spadirigs
usually don¢ and also the mean-field parameter

where 8= 2, The resulting commensurate-incommensurate transition in
. the transformed 1D Kondo lattice Hamiltoni&82) is first
5= 68, Sin(,y):AJza [217( ), order. The argument is the following. Remember tHaand

TJ?‘ are noncommuting. Therefore, if there is a second-order
c transition to the soliton lattice phase, at the transition point
h=hycosy)=J, [(7)] 57— 33 O=(4m) Vhg both 6~(})#0 andh~[(r})| #0 are less by
2ma‘vs a finite amount than their respective maximum valigand
hy. The energy of the soliton lattice at the second-order tran-

c=Db/a, and or 0 .
sition is equal to the energy of the commensurate phase with
(-1)i7)=1 cog y), the same value di, which is always less than the maximum
energy of the commensurate phasédr which h=h, and
(%=1 sin(y) (34) 0=0). Thus we establish that the commensurate-
J .

incommensurate transition is necessarily first order.
The general character of the phase transition in the Hamil- But what is the incommensurate phase? There is no
tonian(32) is well known® The system remains commensu- closed expression for the soliton lattice energy away from
rate until|§ exceeds a finite critical valué®. Therefore, the the dilute limit(i.e., far from the putative second-order tran-
Toulouse limit is proved to be stable over a finite range ofsition). Yet we can analyze the competition between phase 2
parameter spac&J,# 0. and phase 3 in the dense soliton lattice lifwithen the dis-

Yet care should be taken to identify the exact nature otance between soliton centers is less than a single soliton
the transition and the character of the ensuing gapless phaseidth). In that limit, the commensurate energy contribution
The ground state of Eq32) is determined by the field con- (due toh#0) is exponentially small, while the, ¢, term
figuration that minimizes the energy. As we shall see@He contribution is approximately linear i< §,. Thus(again in
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contrast with the usual case of constant coefficiéhits# 0), a conventional weak attractive interaction<0 (e.g., due to
the dense soliton lattice energy is less favorable than thphonon$ to the 1 DEG Hamiltonian. The singlet pairing
SDW phase 3in which h=0 and §= &;). takes the form
The above argument leads to two possible scenarios: Ei-
ther there is a sequence of two first-order transitions 5 1 - .
(phase - phase 2-phase 3), or there is one first-order Osp=—[LR;+R;L ]
transition (phase4 phase 3). We conjecture that the sec- V2
ond possibility is the correct one, and hence the phase tran-

sition occurs aBs"*=\2h,, i.e., :(_l)J(X)g[LTRL"_RTLL]:(_]‘)](X)OSE- (38)

(AJ2) critica= VI 120 6@ (35) . . . Lo
The resulting pair correlation function is staggefed de-

In conclusion, at a finite deviationAQ,)giica from the  fined in Eq.(9)], with nodes at the Kondo impurity period-
Toulouse point toward strong coupling, there is a first-ordercity. It corres_pond§ t01 a negative Josephson cogplmg across
commensurate-incommensurate transition in the spin fiel@ach Kondo impurity* We stress that the node in the pair
¢, in conjunction with a transformed impurity spin-flop correlation function due to negative Josephson coupling is a
transition from{(7})#0, (7})=0} to {(7})=0, () #0}. The node in the pair center-of-mass motion. It should not be con-

phase 3, with no soliton lattice region. gaplessk=0 pairing mode. _ _
On the other hand, all the composite modes are now in-

coherent. In order to see this, note that in the gapless stag-
gered LL phase the gapless composite pairing modep
The transition in the spin sector to the gapless SDW phasgame from the component sif@m ¢.) 77 [see Eq(A11) in

The staggered LL is expressed in terms of the transformegcos(\/ﬁ(ﬁs»io, and thus the correlation function

B. Staggered Luttinger liquid: A strong-coupling phase

fermion fields, which have composite phase fields (sir’{\/ﬂgﬁs(x)]sir'{\/ﬁqss(x’)]), is exponentially decay-
ing. Moreover, as in the staggered L{5)#0 and thus the

~R(,(x)zUR(,(x)UT=R(,(x)exp< +i2m sza'), part RILI7~ —R[L[7") of O.spis also exponentially de-
Xj<x caying. These results are summarized in line 3 of Table I.

(36) Our analysis suggests a different possibility: An uncon-

ventional staggered BCS pairing phase may arise out of a
[U(X)EULU(X)UT:LU(X)eXp( —i27 >, Tiz‘f>' (37)  two-step process, where the staggered LL is a precursor to
Xj <X the staggered BCS phase. First, at a temperafyreset by
the renormalized Kondo interaction there is a crossover to a
staggered LL phase, characterized by the unitarity limit
phase shifts. Then, at a much lower temperafye a con-
entional BCS pairing mechanisie.g., phononsleads to
he unconventional finite momentum BCS pairing state. The
above demonstrates the importance of considering the cross-
over effects, due to strong interactions, prior to the consid-
oeration of pairing mechanisms.

where o=+ 1 is the electron spin, and? is the impurity
operator, which can take values; (so 2r %o =+ 7/2).

As for the Toulouse point, we calculate the correlation
functions with respect to the spectrum of the transforme
Hamiltonian. All the order parameters, which in bosonic
form depend on theé; field, have staggered correlation func-
tions[as defined in Eq(9)] irrespective of the impurity con-
figuration{rjz}. Since there is no spin gap, there are now als
gapless spin-density-wave and triplet pairing modes. In the

bosonization representation, both o@g$s) and V1. CONCLUDING REMARKS
sin(y2m¢s) have power-law decay of correlatiofisith an The main results of this paper af® the identification of
added staggered factor-(L)! 7/ ] the staggered liquid family of fixed points, as summarized in

The sz order of the transformed impurity array requires Tables | and II;(2) derivation of the phase transition from a
further clarification. The interimpurity interactions generatedspin-gap phase at intermediate coupling to a gapless stag-
by integrating out the transformed 1 DEG degrees of freegered LL at strong coupling;3) the commutation relations
dom in the residual Kondo interactioAJgEjeraxj%, are (13—(16) that relate CDW and pairing modes. Below we

long rangedi.e., well beyond nearest-neighbor interaciion Make some additional comments on our results. _
Honner and Gulac¥isuggest that the effective interaction is At weak coupling, the Kondo-Heisenberg model consists

ferromagnetic, and thus at least conforms with strong-Of a free-electron gas coupled to a spin-density-wave system.
coupling calculationd? One would naturally expect a BCS mechanism leading to a

state ofk=0 BCS pairing of conduction electrons mediated

by spin waves of the Heisenberg chain. We find it quite

surprising that such a state does not materialize at any stable
It is interesting to investigate what would be the form of afixed point of the one-dimensional problem.

BCS pairing of a composite staggered LL, i.e., we introduce Previous numerical simulations in the strong-coupling

C. Staggered BCS phase: A third spin-gap phase?
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limit'° have found that the “dominant” gapless CDW mode TABLE lil. Gapless SDW excitations.

(in a gapless strong-coupling LL phadeas large Fermi-sea

wave number Rf . Pairing modes were never evaluated. Operator Wave number
Yet, from our commutation relationd3) and(16) it is clear ng 2K,

that the pairing correlations must be staggered. We comment
that, following the analysis in this paper, it is important that
numerical simulations establish the existence of O
and O..cpw gapless CDW modes. The pairing modes then
follow automatically as we explained. For the density-wave excitations, we count only the num-
The numerical simulations were performed in the extreméer of finite momentum excitations. It follows by symmetry
strong-coupling limit on a particular lattice structure for that, for finite momentum, if there is a gapless mode at mo-
which our analytical methods are not rigorously valid. There-mentumq then there is also a gapless mode with momentum
fore, it is important to establish whether the gapless strong=g. We count them as one mode. To summarize, the gapless
coupling LL phase in the numerical simulations is identicalspin-1 excitation of the 1DEG and the Heisenberg spin
to the one we derived analytically by a phase transition fronchain, and the operator whose correlation function is most

n

T

™
b

the Toulouse limit solutioA. directly sensitive to it, are listed in Table Ill.
The incommensurate 1DEG has one CDW excitation
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APPENDIX: DISCUSSION OF ORDER PARAMETERS o
~ etV 2T bt 2kex] cog \[2 7 b)) (A6)

The study of the different stable phases of the Kondo-
Heisenberg array begins with an analysis of the gapless eshe generalized Luttinger theorémsserts that there must be
citations of the decoupled fixed point. From there, as usuak gapless CDW mode atk@ =2kr+ «/b. It is realized by
we sort the phases by determining which of these excitationthe existence of composite CDW order paramétengich
become gapped, and which remain gapless in the presenceae formed by combining a spin-1 SDW of the 1DEG with a
the (Kondo) couplings between the 1DEG and the Heisen-spin-1 SDW of the Heisenberg chain into a composite singlet
berg chain. In order to facilitate the readability of the Paperd  ow,
we give below the explicit expressions of various order pa-

rameters.
Oc.cow=8'7
1. Density-wave modes =ng-7=3 (N7 +n" 1)+ n’7 (A7)
The low-energy spin currents of the 1DE&X), can be _ o
decomposed into two parts, =Js:J +Js N (— 1) +[eFng- I, +H.c]
_ i2kexp i
S(x)=J¢(X) + [ ng(x)e'?*F*+ H.c], (A1) e g n A H.cJ(=1)% (A8)
where To summarize, the noninteracting two-chain system of a Lut-
tinger liquid and a Heisenberg spin chain has gapless finite
o momentum CDW modes at three wave vectOrable V).
J= >, np;“'a% N (A2)  Note that the composite CDW excitations at wave vectors
N0 /b and Xg+ 7/b are not independent, since they can be
related through a multiplication by the 1DBEXzp,y (Which
Og,q' has wave vector2-). Thus, there are only three independent
— t %o,
ns—?;,, Re 2 Lo (A3) gapless CDW modes.
are, respectively, th&=0 and thek=2kr components of TABLE IV. Gapless CDW excitations.
the SDW modegcharge 0, spin Jlof the 1DEG.(The index
A=R,L corresponds to right- and left-going electron fields. Operator Wave number
The Heisenberg chain spin curret may be similarly -
decomposed into &=0 partJ, and a finite momentunk Ns-N; ket 5
=x/b part (—1)'n, (where 27/b is the reciprocal lattice Ocow 2k
vector of the Heisenberg chain ne-J, 2ke
. JS' n, %
7=3,0¢) + (= 1)In,(x)). (A4)
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2. Singlet pairing modes dependence. The corresponding order parameter on a dis-

The charge-2 singlet pairing modes also require careful crete lattice(e.g., on a zigzag laddets
consideration. In addition to the usua+ 0 BCS even-parity i
singlet pairing, Ocsi=— 5 (~V(yjoosy] 1)

[The factor (- 1)! is needed so that both odd and eysasites

will conform in the continuum limit representatign.

o There is a qualitative difference between the commutation
~e* 1270 cog 2T ¢b), (A9)  relation(14) and previous commutation relations ©f.sp in

the literature. As elaborated below, we generated the com-
posite singletO..sp by a combination of Rf composite

1
oSP=E[L{R]+ RIL]]

we note also the existence of appairing mode at momen-

tum = 2kg, : - .
F particle-hole moder{z- ¥) and finite momenturk= 2k sin-
TR= R%ij e+ ZThog—ilNZT o+ 2Kex] glet (%, pairing:
=Lt 27 a il V2Tt 2k g,
p=LIL]~e"emlegtilamdct 2kex], (A10) NR=O2_-spw= RI—% Lg,
corresponding to right- and left-going singlet pairs.
As with the CDW modes, in addition to the singlet pairing Occow=Nr-7™=2(n" T +no Tl.*) + nZTJ.Z, (A14)
modes of the 1DEG, it is necessary to consider the composite
singlet pairingO,.gp (@ product of a triplet pairing in the Oc.s7=[ 7L ,Oc-cowl-
1DEG with a spin-1 mode of the Heisenberg chaihich
turns out to be of odd parity® Note that the above generation of the composite singlet
pairing is different from the usual way in which it is
Ocs=—i 2 (Rtoo,L Y- 7 generatetf using the /b momentum composite particle-
_ hole mode {i-7) andk=0 momentum singletOgp pair-
=HRIL -RLD-RUSRILDA ing:
2wl @—iV2m 0 iN2mos, —
~gti 0C[e iV2mo T;ZX)"'GJ” 0, Titx) L Oug
o 5 Jr=R, Rg,
+2i sin(\2m¢g) 7. (A11) 2
(Note: If we do not take the Klein factors carefully into ac- 1
count than the bosonized form of the singlet and triplet com- oSP:_[Rp_I_ RILH' (A15)
posite pairing is erroneously exchangeldl.can be decom- V2
posed into two momentum components: a unifoks 0
composite singlet O¢.s=[Ogp,Jr: 7]
2 k= . Jr- 7is an interaction term in the Hamiltonian, which devel-
k=0 —_;1 T . R ’
Oc.s#(X) iz (Rlgol ) J; (A12) ops a nonzero expectation val(éz- 7)# 0 in the spin-gap
and ak= /b, i.e., a staggered, composite singlet phase of the Kondo lattice Hamiltonian. Thus, the relation
O¢.sp=[Ogp,Jr- 7]=[Ogp,H] is important for establishing
O%ag9ex) = —i } (RToro,LT)-n(—1)l.  (A13) the time-reversal symmetry @, sp as determined by the

Hamiltonian. The Jg- 7) operator is not one of the gapless
The commutation relation€l3)—(16) relate to each gapless modes. In contrastD..cpw=Ng- 7 is a gapless mode in the
CDW mode a corresponding gapless pairing mode. Therespin-gap phase. Thus, our relati@n._sp=[ 7, ,O¢.cow] €S-
fore, formally, only thez-pairing modes need to be counted. tablishes the interdependence of gapless modes in the spin-
The concomitant “trivial” existence of the usual BCS pair- gap phase.
ing Ogp and composite pairin@..sp modes should be im- The commutation relationél3)—(16) indicate that there
plicitly understood. must be some symmetry difference between the usual
The operatoO,_gp is odd under spin-inversion operation CDW(O¢py) mMode of the 1DEG and the composite
(R}rHRT,r*HT*,TZH—rZ), as expected for a singlet. CDW(O¢.cpw) mode, and that the composite CDW cannot
Note that its spin-inversion parity is odd, even though thebe used in combination witly*'*'to construct a BCS singlet
conduction electron part is in triplet pairing. In that sense thanodeA (as can be done with the usual CDMClearly, there
order parameter is a composite singlet. The operator i no difference in the global symmetry properties of the two
clearly odd under space-inversion operatibfexchangingqR ~ CDW modes(this would have been a violation of the gener-
andL). The composite singlet operatOr._sp, can be arrived alized Luttinger theorejn The difference is in a relative in-
at by taking the time derivative of the BCS singlet orderternal symmetry of the two chain system;marelative spin
parametet? 9Ogp/dtc[Hy ,Osp]=0..sp WhereHy is the  rotation around the axis of the 1DEG with respect to the
Kondo-Heisenberg Hamiltoniafi20). Therefore, O..cp is  Heisenberg spin chain. This effect is best seen from the
odd under time reversal, or, alternatively, has only edd- bosonized spin field dependence of the operators:
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A~cog\27ys), From these transformation propertiésl6) it is clear that

the composite CDW cannot be used in combination with

Ocpw~CoS V27 1s), 7" to construct a BCS singlet mode, since under
R;(m)A—+A, while 7**Oc.cow——~ 7**Oc.cow-

Oc.cow~ €O V27 15— 02]) Hence, our final conclusion is that the Toulouse point phase

nd the weak-coupling limit spin-gap phase of the Kondo-
eisenberg model are distinct phas@s summarized in
Table ).
There is a simple physical interpretation for the distinc-

(where subscripts 1 and 2 refer to the 1DEG and the impurit
spin chain, respectively A = relative spin rotation around
the z axis is shifting 27 6,5— 6,5] by 7 and leavinge s
unaffected. Thus under this operation, which we label

R ), tion made by theRS () symmetry operation. The com-
posite CDWQ..cpw) is actually constructed out of two

n—+ 7, spin-1 SDW modes which are coherently combined into a

total spin singlet. Therefore, the mode is sensitive to the

A—+A, coherent relative phases of the spin fields between the 1DEG

and the Heisenberg chain, which is probed7y!(=). In
contrast, the “pure” CDW mode Qcpy) of the 1DEG is
Oc.cow——Oc.cou- (A16) independent of any relative state of the Heisenberg chain.

Ocpw— +Ocopw;

10. Zachar, S. A. Kivelson, and V. J. Emery, Phys. Rev. LE&ff. 9G. Honner and M. Gulacsi, Phys. Rev. Let8, 2180(1997.

1342(1996. 104, Tsunetsugu, M. Sigrist, and K. Ueda, Phys. RevB 8345
2Zachar Oron and A. M. Tsvelik, cond-mat/9909296npub- (1993; Rev. Mod. Phys69, 809 (1997; M. Sigrist, H. Tsunet-
lished. sugu, K. Ueda, and T. M. Rice, Phys. Rev48 13 838(1992;
%For a review, see V. J. Emery, ihlighly Conducting One- H. Tsunetsugu, Y. Hatsugai, K. Ueda, and M. Sigrisig. 46,

Dimensional Solidsedited by J. T. Devreese, R. P. Evrard, and  3175(1992.
V. E. van Doren(Plenum, New York, 1979 A. O. Gogolin, A.  11zachar Oron, Phys. Rev. 81, 95 (2000.
A. Nersesyan, and A. M. TsvelikBosonization Approach t0 12c M varma Physica B48 17 (1987.

Strongly Correlated System&Cambridge University Press, 13p_ Coleman, A. George, and A. Tsvelik, Phys. Rev4® 8955
Cambridge, 1998 Jan von Delft and Herbert Schoeller, Ann. 1 9g4 ' ' '

4MP'$’S'(Le'plf'g)'\;’ 202?]_(;998' 41 Affeck. Phys. Rev. (g, V- L Berezinskil, Pisma Zh. Eksp. Teor. Fi20, 628 (1974
1.11?)?12”9617)& - oshikawa, and 1. Alleck, Fhys. Rev. i [JETP Lett.20, 287(1974]. For recent interest in odd-frequency
5S. R. White and I. Affleck, Phys. Rev. B4, 9862(1996: A. E. composite pairing, see E. Ab.rahams, and A. V. Balatsky, Phys.

Rev. B45, 13125(1992; F. Mila and E. Abrahams, Phys. Rev.

Sikkema, |I. Affleck, and S. R. White, Phys. Rev. L&t§, 929 . latsk h h
(1997; S. Fujimoto and N. Kawakami, J. Phys. Soc. JB8, Lett. 67, 2379(199)); A. Balatsky and E. Abrahams, Phys. Rev.

4322(1994). B 45, 13125(1992; E. Abrahams, A. Balatsky, J. R. Schrieffer,
5P. Nozieres, J. Low Temp. Phys6, 31 (1974, and P. B. Allen,ibid. 47, 513 (1993.
7Junwu Gan, Phys. Rev. Left4, 2583(1995. 15p_ Coleman, E. Miranda, and A. M. Tsvelik, Phys. Rev. L&g.
8A. L. Fetter and M. J. Stephen, Phys. R&68, 475 (1969; B. 2960(1993; Phys. Rev. B49, 8955(1994); Phys. Rev. Lett74,
Sutherland, Phys. Rev. 8, 2514(1973. 1653(1995.

205104-10



