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Staggered liquid phases of the one-dimensional Kondo-Heisenberg lattice model

Oron Zachar
ICTP, 11 Strada Costiera, Trieste 34100, Italy

~Received 20 November 2000; published 13 April 2001!

We describe a family of one-dimensional~1D! liquids, which we call ‘‘staggered liquids,’’ in the phase
diagram of the 1D Kondo-Heisenberg model. It encompasses three distinct spin-gapped liquids and a Luttinger
liquid ~LL ! phase. A staggered liquid is characterized by gapless modes with a large Fermi-sea signature in the
charge-density wave~CDW! mode, and the superconducting order involves the near condensation of charge-2e
Cooper pairs with finite center-of-mass momentum. In particular, the conventional gapless 2kF CDW andk
50 pairing modes are absent. We analytically derive the phase transition from an intermediate-coupling
spin-gap phase to the strong-coupling gapless LL phase of the Kondo-Heisenberg lattice model.

DOI: 10.1103/PhysRevB.63.205104 PACS number~s!: 71.10.Hf, 71.10.Pm, 71.27.1a, 74.70.Tx
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I. INTRODUCTION

Multicomponent one-dimensional electronic systems,
which the one-dimensional Kondo-Heisenberg model i
particular example, exhibit phases that were unanticipate
earlier studies of the one-dimensional electron gas~1DEG!.
The one-dimensional Kondo-Heisenberg model consists
1DEG interacting with a Heisenberg spin-1

2 chain via spin
exchange interaction. In the present paper we characte
the stable fixed points of this model.

In particular limits of parameters, we obtain we
controlled analytical solutions that enable us to enume
and characterize the quantum numbers of all gapless mo
Gapless modes are properties of the fixed point. Thus,
analysis lists the minimal set of stable fixed points in t
global phase diagram of the Kondo-Heisenberg model. S
prisingly, we find that there is a common feature to all t
fixed points in that charge-density wave~CDW! and pairing
gapless modes are obtained with ‘‘unusual’’ wave numbe
and hence we give the name ‘‘staggered liquids’’ to the fa
ily of fixed points. In particular, whereas previously cat
logued liquid phases of the 1DEG have a gapless chargee
pairing mode atk50, in a staggered liquid this mode appea
at nonzero wave vector. Put differently, in a staggered liq
phase the dominant superconducting order involves the
condensation of Cooper pairs with finite center-of-mass m
mentum. Similarly, there is no gapless CDW mode at wa
number 2kF . Our results are summarized in Tables I and
below.

In previous publications,1,2 we have already characterize
two distinct spin-gap phases~at weak coupling2 and at a
Toulouse point value of parameters!. In the present paper w
add a gapless Luttinger liquid~LL ! phase~labeled ‘‘stag-
gered LL’’! that is obtained by going away from the To
louse point toward stronger coupling. Interestingly, althou
its mathematical form is similar to that of the commensura
incommensurate transition, we find the phase transition
first order. To our knowledge, this is the first analytical de
vation of the phase transition from an intermediate-coupl
spin-gap phase to the strong-coupling gapless LL phas
the Kondo lattice model. Moreover, a third distinct spin-g
phase is obtained by introducing weak attractive interacti
0163-1829/2001/63~20!/205104~10!/$20.00 63 2051
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to the staggered LL~and hence we name it the ‘‘staggere
BCS phase’’!.

We emphasize that in this paper we limit ourselves
cataloguing the stable fixed points. We do not discuss
range of their basins of attraction and the validity of t
solutions away from the quantitatively controlled limits
parameters. In other words, we defer to a future publicat
the discussion of how exactly to construct the phase diag
as a function of Kondo interaction strength for a given d
crete Kondo-Heisenberg lattice model at given incommen
rate filling and with spin-rotation invariance.

The paper is organized as follows. In Sec. II, we defi
the model and the order parameters. Our results are sum
rized in Tables I and II.~The derivation of these results i
presented in the ensuing sections.! In Sec. III, we review the
weak-coupling limit (JK!JH) spin-gap fixed-point
solution.2 In Sec. IV, we review the Toulouse limit (JH
!JK;EF) spin-gap fixed-point solution, with some ex
tended discussion of the unitary transformation. In Sec.
we derive the phase transition to a gapless LL away from
Toulouse point toward stronger coupling (JH!EF!JK). In
Sec. VI we make some additional concluding remarks.
order to facilitate the reading of the paper, a discussion
bosonization representation of the order parameters is g
in an Appendix.

II. KONDO-HEISENBERG MODEL
AND ITS ZERO-TEMPERATURE FIXED POINTS

A. The model

The Kondo-Heisenberg model~1! consists of two in-
equivalent interacting chains; one is a one-dimensional e
tron gas ~described by the Hamiltonian3 H1DEG!, and the
other an antiferromagnetic Heisenberg chain of localiz
spins 1

2, $tj%. The chains interact via a spin exchange int
action with an antiferromagnetic coupling constantJK.0:

H5H1DEG1HHeis1HK , ~1!

HHeis5JH(
j

tj•tj 11 , ~2!
©2001 The American Physical Society04-1
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ORON ZACHAR PHYSICAL REVIEW B 63 205104
HK52JK(
j

tj•s~xj !, ~3!

wheres(xj )5ca
†(xj )(sab/2)cb(xj ) is the electron-gas spin

density operator at positionxj of the local spintj of the
Heisenberg chain. We focus on the low-energy and lo
distance behavior of the electron correlation functions
taking the continuum limit of the electron gas and linearizi
the 1DEG dispersion relation about the Fermi points6kF ,
with corresponding right- and left-going electron fieldsRs

andLs :

cs~x!5Rs~x!e1 ikFx1Ls~x!e2 ikFx,

wheres5↑,↓ ~see Fig. 1!.
The effective Fermi wave numbers~in the sense of the

generalized Luttinger theorem4! for the 1DEG and the spin
chain are 2kF and 2kF

Heis5p/b, respectively ~where b
5xj 112xj is the distance between the local spins of t
Heisenberg chain!. It is assumed that the two systems a
mutually incommensurate, and that 2kF is incommensurate
with any underlying ionic lattice. The continuum limit i
taken for the 1DEG while the Heisenberg chain is initia
left discrete~and remains so in some of the limit solutio
derivations!. Therefore, the totality of our analysis is rigo
ously valid in the limit 2kF@p/b ~i.e., where the number o
electrons is much larger than the number of local spin-1

2 mo-
ments per unit length!.

The 1DEG spin currents are decomposed into forwa
and backscattering parts:

s~x!5ca
†~xj !

sab

2
cb~xj !

5Js~x!1ns~x!,

where Js(x)5JsR(x)1JsL(x), JsR5 1
2 Rs

†sss8Rs8, and
JsL5 1

2 Ls
†sss8Ls8 are the ferromagnetic (q50) spin cur-

rents of right- and left-moving electrons, respectively, an

ns~x!5e2 i2kFxjnR~x!1e1 i2kFxjnL~x!,

wherenR5Rs
†(ss,s8/2)Ls8 andnL5Ls

†(ss,s8/2)Rs8 are the
staggered magnetization (q52kF) components of the 1DEG

Due to the incommensurate electron filling, backscat
ing interaction terms are irrelevant in the renormalizat
group ~RG! sense, and for our purposes may be dropp
from the Hamiltonian that describes the fixed points. As
result, the spin and charge sectors decouple,

H5E dx@Hc1Hspin#.

The charge sector is described by a Gaussian model3

FIG. 1. Kondo-Heisenberg model.
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2 FKcPc
2~x!1

1

Kc
vc~]zFc!

2G .
Since in this paper we are not interested in the effects
anomalous 1D exponents (KcÞ1), we will setKc51, unless
otherwise explicitly stated. The subsequent analysis and
nipulations deal only with the spin sector fields. The Kon
exchange interaction reduces to

HK5JK(
j

tj•J~xj !. ~4!

B. Order parameters and staggered correlations

Study of the different stable phases of the Kond
Heisenberg array begins with an analysis of the gapless
citations of the decoupled fixed point. From there, as us
we sort the phases by determining which of these excitati
become gapped and which remain gapless in the presen
the ~Kondo! couplings between the 1DEG and the Heise
berg chain. Since our ultimate goal is to study the coup
system, we need also to consider the character of gap
excitations constructed of composite operators from the
subsystems. An extensive exposition of the order parame
is given in the Appendix. Below, we note only the mod
that are relevant for a spin-gap system.

In the spin-gap phases, only spin-0 modes may be g
less. Thus, we focus our investigation on singlet pair
modes~charge 2e, spin 0! and CDW modes~charge 0, spin
0!. The corresponding usual 1DEG order parameters are

OSP5
1

&
~R↑

†L↓
†1L↑

†R↓
†!, ~5!

OCDW5
1

2
@~R↑

†L↑1R↓
†L↓!1H.c.#. ~6!

Modes of composite nature are a composite odd-parity
glet pairing

Oc-SP52 i @Ra
†~ssz!abLb

† #•t, ~7!

and a composite particle-hole modeOc-CDW, which will play
a central role in the ensuing discussion,

Oc-CDW5n1DEG•t. ~8!

Upon evaluating the corresponding correlation functio
x i(x,x8)5^Oi(x)Oi(x8)&, we find gapless modes with
power-law correlations of the form

x i~xj2xj 8!5~21!~ j 2 j 8!x0~xj2xj 8!, ~9!

wherex0;x2a i. The staggering factor (21) j in the corre-
lation functions~9! effectively modulates the usual powe
law correlations by the reciprocal lattice vectorp/b of the
spin chain$t j%. As a result, the gapless modes are found
unusual finite momentum values: The singlet pairings h
momentump/b ~and there is nok50 singlet pairing with
charge 2e!, and the gapless CDW modes are at moment
4-2
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2kF* 52kF1
p

b
~10!

~and not at 2kF like the CDW in a free 1DEG!. These are the
defining characteristics of a ‘‘staggered liquid.’’

Insight into the gapless mode properties is gained by c
sidering the so-calledh-pairing modes at momentum62kF ,

hR5R↑
†R↓

† ,

hL5L↑
†L↓

† , ~11!

corresponding to right- and left-going singlet pairs. In
bosonization representation~see the Appendix! it is easy to
see that theh-pairing operators depend only on the 1DE
charge sector fields. The charge sector is unaffected by
relevant part of the Kondo and Heisenberg interactions a
the zero-temperature fixed points. Therefore, the gap
h-pairing modes always exist and carry momentum 2kF as in
the free 1DEG. It is instructive to define operators

heven[
1

&
~hR1hL!,

hodd[
1

&
~hR2hL! ~12!

~though in themselves they do not carry a well-defined m
mentum quantum number!. We found that an interdepen
dence of the gapless modes is established by the follow
operator identities:

@OCDW,heven#5OSP, ~13!

@OCDW,hodd#50, ~14!

@Oc-CDW,heven#50, ~15!

@Oc-CDW,hodd#5Oc-SP. ~16!

Hence, the gapless wave numbers of CDW and pairing
erators are always connected by momentum 2kF .

C. Main results: Staggered liquid fixed points

For the purpose of characterizing fixed points, the issu
counting gapless modes requires clarification. Since
h-pairing modes are gapless in all cases where the ch
sector is gapless~i.e., at all the fixed points of the Kondo
Heisenberg lattice model at incommensurate filling!, the in-
terdependence of modes@given in Eqs.~13! and ~16!# im-
plies that formally only the CDW modes need to be count
while the pairing modesOSP andOc-SP are redundantly de
rived from combinations of CDW andh-pairing operators. In
spite of that, since common discussions in the literature
done in terms of the usual pairing order parametersOSP and
Oc-SP, we will list them in our tables below.

We have found four distinct fixed points associated w
different parameter values.
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~1! JK!JH!EF : A spin-gap phase at weak-intermedia
coupling.2

~2! JK*EF@JH : A spin-gap Toulouse point phase1 at
intermediate coupling.

~3! JK@EF@JH : A gaplessstaggeredLuttinger liquid
phase at strong coupling.

~4! JK@EF@JH : A spin-gap staggeredBCS phase at
strong coupling, with additional weak attractive charge int
actions.

We comment that all the fixed-point Hamiltonians~asso-
ciated with the above noted phases! that we derived are in
fact spin-rotation invariant, even though the bare interact
parameters were in some cases breaking spin-rotation in
ance. It is an example of the possibility that the ultima
zero-temperature fixed point can possess higher symm
than the original microscopic model. Yet we emphas
again that such issues do not affect the validity of our ana
sis for cataloging the fixed points of the most general mic
scopic Kondo-Heisenberg model~with or without spin-
rotation invariance!.

In Tables I and II below, we characterize the above no
fixed points in terms of the momentum quantum number
their gapless CDW and pairing modes~X signifies that the
particular mode is gapped!. Obviously, the gapless LL is
characterized by having also gapless spin-density-w
~SDW! modes and triplet pairing modes.

Whereas previously cataloged liquid phases of the 1D
have a gapless charge-2e pairing mode atk50, in all of the
above noted phases this mode appears at nonzero wave
tor. Similarly, there is no gapless CDW mode at wave nu
ber 2kF .

III. WEAK-COUPLING LIMIT „JK™JH… SPIN-GAP FIXED
POINT

In the weak-interchain-coupling limit

JK!JH ,EF .

It is allowed to make further approximation by taking th
continuum limit also for the Heisenberg spin chain~such an
approximation is not valid in the opposite limitJK@JH ,
which is discussed in Sec. IV!. The local spin-chain field is

TABLE I. Spin-gap phases.

OCDW OSP Oc-CDW Oc-SP

Weak coupling X X 2kF*
p

b
Toulouse point 2kF*

p

b
2kF*

p

b
Staggered BCS 2kF*

p

b
X X

TABLE II. Gapless Luttinger liquid phase.

OCDW OSP Oc-CDW Oc-SP

Staggered LL 2kF*
p

b
2kF*

p

b

4-3



us
o

o

e
y
t
-
s
p.
he
-
-

n-

t
te

-
-
e

r-
u

y
ete

the
-

-
he

va-
ing
ic

on
e
lds

ta

e a

s

y

do

is

ORON ZACHAR PHYSICAL REVIEW B 63 205104
then also decomposed into the smooth~ferromagnetic! and
staggered~antiferromagnetic! components:

tj5@JR
t ~xj !1JL

t ~xj !#1~21! jnt~xj !. ~17!

~Note that we will consistently use the subscriptst ands to
distinguish the spin-chain fields from the 1DEG fields.!

In order to distinguish contributions coming from vario
interaction terms, we introduce distinct Kondo coupling c
efficients for forward scattering (Jf) and mixed interactions
(Jm):

HK5Jf~JR
t 1JL

t !•~JR
s 1JL

s !1Jm~21! jnt•~JR
s 1JL

s !.
~18!

The mixed interaction, of the ferromagnetic 1DEG comp
nent with the staggered impurity component@i.e., the
Jm(21) jnt•(JR1JL) term# has naive scaling dimension32,
but the oscillating (21) j factor, which acts as an effectiv
extra derivative factor (]x), renders this term perturbativel
irrelevant in the renormalization group sense with respec
the free HamiltonianH0

s . The forward current-current inter
action Jf(JtR1JtL)•(JR1JL) has scaling dimension 2, i
marginally relevant, and leads to the opening of a spin ga2,5

~TheJm term will prove to be essential for understanding t
Toulouse limit solution in Sec. IV.! Therefore, at incommen
surate filling in the weak-coupling limit, the Kondo
Heisenberg Hamiltonian~1! reduces to

Hweak5Hc1H0
s1JfE dx~JR

t 1JL
t !•~JR

s 1JL
s !,

Hc5
1

2 FKPc
2~x!1

1

K
vc~]xFc!

2G , ~19!

H0
s5 (

m5s,t

2pvm

3
~ :JR

mJR
m :1:JL

mJL
m : !,

wherevt andvs are the spin-wave velocities of the Heise
berg chain and 1DEG, respectively (vt5pJH/2). For a de-
tailed derivation of the gapless modes of model~19!, we
refer the reader to Ref. 2. The end results are quoted in
first line of Table I. It is remarkable that only composi
modes are gapless.

IV. TOULOUSE LIMIT „JH™JKÈEF… SPIN-GAP FIXED
POINT

In the limit

JH!JK;EF

the intrachain interactionJH is small compared with the in
terchain interactionJK , and it is incorrect to take the con
tinuum limit for the spin chain prior to accounting for th
effect of the interactionJK . For simplicity, sinceJH!JK ,
we will first take the limitJH50. ~We shall find that bring-
ing backJH!JK is an irrelevant perturbation, in the reno
malization group sense, due to the spin gap of the Toulo
20510
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he
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fixed point phase.! Thus, we model the local spins as initiall
independent, and leave the Kondo interaction in its discr
form:

H5H0
1DEG12JK(

j
t j•ca

†~xj !
sab

2
cb~xj !. ~20!

In this limit, effective interaction and coherence between
local spins will come about explicitly mediated by the itin
erant 1DEG ~i.e., in a kind of Rudelman-Kittel-Kasuya
Yoshida interaction which is not introduced by hand to t
models asJH!.

Below, we review and discuss the Toulouse point deri
tion and results of Ref. 1. For the purpose of calculat
correlation functions, we bosonize the 1DEG fermion
fields,3

Ls~x!5
Fs

A2pa
e2 iAp@us~x!1fs~x!#,

Rs~x!5
Fs

A2pa
e2 iAp@us~x!2fs~x!#,

where us(x)5*2`
x dx8Ps(x8), and @Ps(x8),fs(x)#5

2 id(x82x), s5↑,↓. The anticommuting Klein factors
$Fs ,Fs8%5ds,s8 are needed for the proper anticommutati
of fermions with different spin. As is commonly done, w
reexpress the operators in terms of bosonic spin fie
fs(x)5(1/&)@f↑2f↓# and charge fields fc(x)
5(1/&)@f↑1f↓#, and correspondingly defined momen
Ps andPc .

The crucial step that we introduced in Ref. 1 is to mak
unitary transformation of the fields,

U5expF2 iA2p(
j

t j
zus~xj !G , ~21!

UA2p~]xfs!U
†5A2p~]xfs!22p(

l
t l

zd~xl2x!,

~22!

Ut1e2 iA2pusU†5t1, ~23!

U cos@A2pfs~ j !#U†5~21! j cos@A2pfs~ j !#. ~24!

In words, going across an impurity, the spin phaseA2pfs is
shifted by 6p, i.e., transformed fields with opposite spin
acquire a phase shift ofds56p/2. It is reminiscent of the
unitarity limit scattering we expect from the low-energ
physics of the single-impurity Kondo effect.6 Therefore we
interpret the unitary transformation as going to a Kon
strong-coupling basis.

The resulting transformed Kondo lattice Hamiltonian
given by
4-4
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U†HU5H̃01DJzA2

p (
j

t j
z]xfs~xj !

1
J'

pa (
j

t j
x~21! j cos@A2pfs~ j !#, ~25!

H̃05H0
s1H0

c2~Jz1DJz!
1

b (
j

~t j
z!2, ~26!

whereH0
s5(vs/2)*dx@Ps

21(]xfs)
2#, and

DJz5Jz2pvF . ~27!

In Eq. ~25! we have introduced independent interaction c
efficientsJz and J' for the Ising and spin-flip parts of th
Kondo exchange interactionJK . Hence, formally we are
here examining a generalization of the Kondo-Heisenb
model ~1! to non-spin-rotation-invariant interactions.

The transformed fields constitute the low-energy spectr
of H̃0 , into which part of the interaction energy has be
incorporated. The transformed fields are taking advantag
the Ising part of the magnetic Kondo interaction at the c
of kinetic energy@due to twisting of the spin fieldfs(x)#.
These are originally high-energy states of the bare f
1DEG HamiltonianH1DEG. For the transformed fields to be
come low-energy states due to interactions, it is clear that
Kondo interaction strength needs to be on the order of
1DEG bandwidth. To this effect, note the shift of the groun
state energy per impurity~irrespective of the existence of
spin gap! in Eq. ~26!:

DEj52~Jz1DJz!
1

b (
j

~t j
z!2

582~2Jz2pvF!
1

4b
. ~28!

It represents the absorption of a part of the Kondo interac
energy22Jz/4b ~equal to the gain from forming an Isin
singlet! into the transformed free-field Hamiltonian~26!, at
the cost of kinetic energy1pvF/4b. Hence, for strong
enough interactions the transformed free fields have lo
energy than the bare 1DEG free fields, and therefore de
mine the low-frequency correlations of various order para
eters. Thus, the Toulouse point solution is an outcome
finite ‘‘strong enough’’ interactions and cannot be reach
by perturbative methods about the noninteracting basis.

For a special value of the coupling constants,

Jz5pvF⇒DJz50 ~29!

~the Toulouse point!, we are left with an exactly solvabl
fixed-point Hamiltonian,1

H̃* 5H0
c1H0

s1
J'

f

pa (
j

t j
x~21! j cos@A2pfs~ j !#.

~30!

The spin part of the fixed-point Hamiltonian has a discr
sine-Gordon form, and therefore a spin gap. The transform
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spin fields which develop an expectation value a
^t j

x(21) j&Þ0 and^cos@A2pfs( j )#&Þ0. In calculating cor-
relation functions, it is important to remember the effect
the unitary transformations, which lead to

^cos@A2pfs~x!#cos@A2pfs~x8!#&;~21! j 2 j 8

@j (x) is defined as thej impurity site to the left of positionx#.
The bare impurity correlationŝt j

xt j 8
x & decay exponentially.

However, the transformed impurity spinst̃ j
x5U†t j

xU
exhibit staggered long-range order atT50, ^t̃ j

xt̃ j 8
x &

5const3(21)(j2j8); this nonlocal order parameter characte
izes the coherent ground state. That is all the informat
needed for deducing the correlation functions of all ord
parameters, and thus determining the gapless modes as
done in Ref. 1 and summarized in the second line of Tabl

We take this opportunity to elaborate on the significan
of the field transformation. Thep phase shift of the field
A2pfs across an impurity site~22! gives rise to a staggere
coefficient (21) j in the Hamiltonian~30! since

expF i2p(
l 51

j

t l
zG5~21! j .

Note that the factor (21) j is effectively ‘‘counting’’ impu-
rities, and is obtained irrespective of the order of the b
$t l

z% themselves~imagine an Ising chain of$t l
z%; there is a

factore6 ip521 per impurity!. Indeed, the correlation func
tion ^t j

zt j 8
z & is short range.

It is interesting to trace back the relevant interaction in
Toulouse fixed-point Hamiltonian in terms of the continuu
limit of the Heisenberg spin chain~18!. Due to the additional
(21) j phase factor, in the transformed basis, the relev
slowly varying interaction is nowJmnt•(JR1JL), while the
interactionJf(21) j (JtR1JtL)•(JR1JL) is now also rapidly
oscillating and irrelevant. Thus, Toulouse fixed-point phys
originates from the interactionJm that couples the conduc
tion electrons to the staggered component of the impu
array, an interaction that is relevant only with respect to
transformed fixed-point HamiltonianH̃0 , and was irrelevant
in the untransformed basis. This possibility would
missed in the continuum limit if we had dropped th
Jm(21) jnt•(JR1JL) term at the outset~as is usually done,
e.g., in Ref. 5!. The perturbative relevance of various inte
action terms is changed after a transformation to
‘‘proper’’ strong-coupling basis of fields about which pertu
bative RG analysis is performed. The notationJm is not ac-
cidental, and it is exactly the one that is responsible for
nontrivial fixed point of the two-impurity Kondo problem.7

V. STRONGER-COUPLING „JH™EF™JK… STAGGERED
LUTTINGER LIQUID FIXED POINT

A. Phase transition away from the Toulouse limit

In a previous paper,1 we analyzed the commensurat
incommensurate~C-I! transition in the charge sector at th
Toulouse point, as a function of the filling factor, and fou
a phase transition from an insulating phase~with both charge
4-5
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ORON ZACHAR PHYSICAL REVIEW B 63 205104
and spin gaps! to a conducting phase with only a spin ga
Here, we are interested only in the case of incommensu
filling ~for which there is no charge gap!. In this section, we
analyze the phase transitions in the spin sector by varying
parameter values away from the Toulouse point, while ma
taining the same incommensurate charge filling factor.

We investigate the phase transitions within the tra
formed field Hamiltonian~25!. The local stability of the Tou-
louse limit fixed point (Jz* 5pvF) is ensured by the exis
tence of a spin gap. This is all that can be deduced fr
perturbative renormalization group calculations. Thus,
phase transition can be established only via nonperturba
methods. Below, we determine analytically the finite para
eter space region characterized by the Toulouse fixed-p
solution, i.e., the zero-temperature stability of the spin gap
finite deviationsDJz5(Jz2pvF).0 away from the Tou-
louse line toward stronger coupling. We find an electro
gapless phase beyond a finite distance from the Toulo
point.

Treating the transformed impurity spins in self-consist
mean-field approximation, we replace them by their exp
tation values in the transformed Hamiltonian,

U†HU→H0
s1H0

c1DJzA2/p (
j

^t j
z&]xfs~xj !

1
J'

pa (
j

^~21! jt j
x&cos@A2pfs~ j !#. ~31!

The spin sector of the Hamiltonian~31! has a form familiar
from the study of commensurate-incommensurate tra
tions,

H̃s

vs
5

1

2 E dx@Ps
21~]xfs2d!2#1hE dx cos@bfs~x!#,

~32!

whereb5A2p,

d5d0 sin~g!5DJz

c

a
A2/p^t j

z&,

h5h0 cos~g!5J'u^t j
x&u

c

2pa2vs
, ~33!

c5b/a, and

^~21! jt j
x&5 1

2 cos~g!,

^t j
z&5 1

2 sin~g!. ~34!

The general character of the phase transition in the Ha
tonian~32! is well known:8 The system remains commens
rate until udu exceeds a finite critical valuedc. Therefore, the
Toulouse limit is proved to be stable over a finite range
parameter spaceDJzÞ0.

Yet care should be taken to identify the exact nature
the transition and the character of the ensuing gapless ph
The ground state of Eq.~32! is determined by the field con
figuration that minimizes the energy. As we shall see, theC-I
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transition in our Hamiltonian~31! is unusual because th
parametersd andh are themselves not constants, but inste
are dynamic fields that need to be determined s
consistently by an additional mean-field minimization con
tion on ^t j

z& and^t j
x&. There are, in principle, three possib

ground-state solutions for the Hamiltonian~32!.
Phase 1: A uniform spin-gap phase, identical to the To

louse point solution, with no finite gradients of]xfs(xj ),
i.e., ^cos@A2pfs( j )#&Þ0, ^(21) jt j

x&Þ0, ^]xfs&50, and
hence alsôt j

z&50.
Phase 2: A gapless incommensurate spin ‘‘soliton la

tice’’ ground state with periodic steplike kinks in thefs(xj )
field. In such a phase, ^]xfs&Þ0, but still
^cos@A2pfs( j )#&Þ0, and botĥ (21) jt j

x&Þ0 and^t j
z&Þ0.

Phase 3: A free gapless SDW phase,̂]xfs&Þ0,
^cos@A2pfs( j )#&50. In that phasêt j

x&50 and^t j
z&Þ0.

The name ‘‘soliton lattice’’ comes from the classical s
lution, which has long-range periodic order. Quantum flu
tuations turn the long-range order into power-law corre
tions, and thus the quantum ground state should properl
termed a soliton liquid. Nevertheless, this does not cha
the qualitative distinctions~in terms of nonzero expectatio
values! between the various phases. For simplicity, I w
discuss the phases in classical terms.

To find the transition points between the phases we n
to compare, for a givenDJz5(Jz2pvF)Þ0, the ground-
state energy of the spin-gap phase~phase 1! with those of the
gapless phases. The usual result for commensur
incommensurate transitions, where the parametersh and d
are constant, is that the soliton lattice solution~phase 2! has
lower energy than the SDW solution, and the transition
second order. This is not the case here, due to the fact
the parametersh and d are themselves interdependent d
namic variables. Thus, we need to minimized the grou
state energy with respect to both the soliton spacingl ~as
usually done! and also the mean-field parameterg.

The resulting commensurate-incommensurate transitio
the transformed 1D Kondo lattice Hamiltonian~32! is first
order. The argument is the following. Remember thatt j

z and
t j

x are noncommuting. Therefore, if there is a second-or
transition to the soliton lattice phase, at the transition po
d'(4/p)Ah0 both d;^t j

z&Þ0 andh;u^t j
x&uÞ0 are less by

a finite amount than their respective maximum valuesd0 and
h0 . The energy of the soliton lattice at the second-order tr
sition is equal to the energy of the commensurate phase
the same value ofh, which is always less than the maximu
energy of the commensurate phase 1~for which h5h0 and
d50!. Thus we establish that the commensura
incommensurate transition is necessarily first order.

But what is the incommensurate phase? There is
closed expression for the soliton lattice energy away fr
the dilute limit ~i.e., far from the putative second-order tra
sition!. Yet we can analyze the competition between phas
and phase 3 in the dense soliton lattice limit~when the dis-
tance between soliton centers is less than a single so
width!. In that limit, the commensurate energy contributi
~due to hÞ0! is exponentially small, while the]xfs term
contribution is approximately linear ind,d0 . Thus~again in
4-6
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contrast with the usual case of constant coefficientsd,hÞ0!,
the dense soliton lattice energy is less favorable than
SDW phase 3~in which h50 andd5d0!.

The above argument leads to two possible scenarios:
ther there is a sequence of two first-order transitio
(phase 1→phase 2→phase 3), or there is one first-ord
transition (phase 1→phase 3). We conjecture that the se
ond possibility is the correct one, and hence the phase t
sition occurs atd0

critical5A2h0, i.e.,

~DJz!critical5AJ'/2vsa. ~35!

In conclusion, at a finite deviation (DJz)critical from the
Toulouse point toward strong coupling, there is a first-or
commensurate-incommensurate transition in the spin fi
fs , in conjunction with a transformed impurity spin-flo
transition from$^t j

x&Þ0, ^t j
z&50% to $^t j

x&50, ^t j
z&Þ0%. The

transition is from the spin-gap phase 1 to the gapless S
phase 3, with no soliton lattice region.

B. Staggered Luttinger liquid: A strong-coupling phase

The transition in the spin sector to the gapless SDW ph
leads to a state that we call the staggered Luttinger liq
The staggered LL is expressed in terms of the transform
fermion fields, which have composite phase fields

R̃s~x![URs~x!U†5Rs~x!expS 1 i2p (
xj ,x

t j
zs D ,

~36!

L̃s~x![ULs~x!U†5Ls~x!expS 2 i2p (
xj ,x

t j
zs D , ~37!

where s56 1
2 is the electron spin, andtz is the impurity

operator, which can take values6 1
2 ~so 2ptzs56p/2!.

As for the Toulouse point, we calculate the correlati
functions with respect to the spectrum of the transform
Hamiltonian. All the order parameters, which in boson
form depend on thefs field, have staggered correlation fun
tions @as defined in Eq.~9!# irrespective of the impurity con
figuration$t j

z%. Since there is no spin gap, there are now a
gapless spin-density-wave and triplet pairing modes. In
bosonization representation, both cos(A2pfs) and
sin(A2pfs) have power-law decay of correlations@with an
added staggered factor (21) j 2 j 8#

The t j
z order of the transformed impurity array requir

further clarification. The interimpurity interactions generat
by integrating out the transformed 1 DEG degrees of fr
dom in the residual Kondo interaction,DJz

f ( jt j
z]xj

fs , are
long ranged~i.e., well beyond nearest-neighbor interactio!.
Honner and Gulacsi9 suggest that the effective interaction
ferromagnetic, and thus at least conforms with stro
coupling calculations.10

C. Staggered BCS phase: A third spin-gap phase?

It is interesting to investigate what would be the form o
BCS pairing of a composite staggered LL, i.e., we introdu
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a conventional weak attractive interactionU,0 ~e.g., due to
phonons! to the 1 DEG Hamiltonian. The singlet pairin
takes the form

ÕSP5
1

&
@ L̃↑R̃↓1R̃↑L̃↓#

5~21! j ~x!
1

&
@L↑R↓1R↑L↓#5~21! j ~x!OSE. ~38!

The resulting pair correlation function is staggered@as de-
fined in Eq.~9!#, with nodes at the Kondo impurity period
icity. It corresponds to a negative Josephson coupling ac
each Kondo impurity.11 We stress that the node in the pa
correlation function due to negative Josephson coupling
node in the pair center-of-mass motion. It should not be c
fused with a node in the relative pair state.12 There is no
gaplessk50 pairing mode.

On the other hand, all the composite modes are now
coherent. In order to see this, note that in the gapless s
gered LL phase the gapless composite pairing modeOc-SP

came from the component sin(A2pfs)t j
z @see Eq.~A11! in

the Appendix#. Due to the singlet pairing interactio
^cos(A2pfs)&Þ0, and thus the correlation functio
^sin@A2pfs(x)#sin@A2pfs(x8)#&, is exponentially decay-
ing. Moreover, as in the staggered LL,^t j

z&Þ0 and thus the
part (R↑

†L↑
†t22R↓

†L↓
†t1) of Oc-SP is also exponentially de-

caying. These results are summarized in line 3 of Table
Our analysis suggests a different possibility: An unco

ventional staggered BCS pairing phase may arise out o
two-step process, where the staggered LL is a precurso
the staggered BCS phase. First, at a temperatureTh f set by
the renormalized Kondo interaction there is a crossover
staggered LL phase, characterized by the unitarity lim
phase shifts. Then, at a much lower temperatureTc , a con-
ventional BCS pairing mechanism~e.g., phonons! leads to
the unconventional finite momentum BCS pairing state. T
above demonstrates the importance of considering the cr
over effects, due to strong interactions, prior to the cons
eration of pairing mechanisms.

VI. CONCLUDING REMARKS

The main results of this paper are~1! the identification of
the staggered liquid family of fixed points, as summarized
Tables I and II;~2! derivation of the phase transition from
spin-gap phase at intermediate coupling to a gapless s
gered LL at strong coupling;~3! the commutation relations
~13!–~16! that relate CDW and pairing modes. Below w
make some additional comments on our results.

At weak coupling, the Kondo-Heisenberg model consi
of a free-electron gas coupled to a spin-density-wave syst
One would naturally expect a BCS mechanism leading t
state ofk50 BCS pairing of conduction electrons mediat
by spin waves of the Heisenberg chain. We find it qu
surprising that such a state does not materialize at any st
fixed point of the one-dimensional problem.

Previous numerical simulations in the strong-coupli
4-7
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ORON ZACHAR PHYSICAL REVIEW B 63 205104
limit 10 have found that the ‘‘dominant’’ gapless CDW mod
~in a gapless strong-coupling LL phase! has large Fermi-sea
wave number 2kF* . Pairing modes were never evaluate
Yet, from our commutation relations~13! and~16! it is clear
that the pairing correlations must be staggered. We comm
that, following the analysis in this paper, it is important th
numerical simulations establish the existence of bothOCDW
and Oc-CDW gapless CDW modes. The pairing modes th
follow automatically as we explained.

The numerical simulations were performed in the extre
strong-coupling limit on a particular lattice structure f
which our analytical methods are not rigorously valid. The
fore, it is important to establish whether the gapless stro
coupling LL phase in the numerical simulations is identic
to the one we derived analytically by a phase transition fr
the Toulouse limit solution.2
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APPENDIX: DISCUSSION OF ORDER PARAMETERS

The study of the different stable phases of the Kon
Heisenberg array begins with an analysis of the gapless
citations of the decoupled fixed point. From there, as us
we sort the phases by determining which of these excitat
become gapped, and which remain gapless in the presen
the ~Kondo! couplings between the 1DEG and the Heise
berg chain. In order to facilitate the readability of the pap
we give below the explicit expressions of various order
rameters.

1. Density-wave modes

The low-energy spin currents of the 1DEG,s(x), can be
decomposed into two parts,

s~x!5Js~x!1@ns~x!ei2kFx1H.c.#, ~A1!

where

Js5 (
l,s,s8

cl,s
† ss,s8

2
cl,s8 , ~A2!

ns5 (
s,s8

Rs
† ss,s8

2
Ls8 ~A3!

are, respectively, thek50 and thek52kF components of
the SDW mode~charge 0, spin 1! of the 1DEG.~The index
l5R,L corresponds to right- and left-going electron field!

The Heisenberg chain spin currenttj may be similarly
decomposed into ak50 part Jt and a finite momentumk
5p/b part (21) jnt ~where 2p/b is the reciprocal lattice
vector of the Heisenberg chain!:

tj5Jt~xj !1~21! jnt~xj !. ~A4!
20510
.

nt
t

n

e

-
g-
l

-
x-
l,
s
of

-
,
-

For the density-wave excitations, we count only the nu
ber of finite momentum excitations. It follows by symmet
that, for finite momentum, if there is a gapless mode at m
mentumq then there is also a gapless mode with moment
2q. We count them as one mode. To summarize, the gap
spin-1 excitation of the 1DEG and the Heisenberg s
chain, and the operator whose correlation function is m
directly sensitive to it, are listed in Table III.

The incommensurate 1DEG has one CDW excitat
~charge 0 spin 0! with momentum, 2kF , created by the op-
erator

OCDW5
1

2 (
l,s

cl,s
† c2l,s ~A5!

;e1 i @A2pfc12kFx# cos~A2pfs!. ~A6!

The generalized Luttinger theorem4 asserts that there must b
a gapless CDW mode at 2kF* 52kF1p/b. It is realized by
the existence of composite CDW order parameters13 which
are formed by combining a spin-1 SDW of the 1DEG with
spin-1 SDW of the Heisenberg chain into a composite sing
Ôc-CDW,

Oc-CDW5s•t

5nR•t5 1
2 ~n1t j

21n2t j
1!1nzt j

z ~A7!

5Js•Jr1Js•nr~21! j1@ei2kFxns•Jt1H.c.#

1@ei2kFxns•nt1H.c.#~21! j . ~A8!

To summarize, the noninteracting two-chain system of a L
tinger liquid and a Heisenberg spin chain has gapless fi
momentum CDW modes at three wave vectors~Table IV!.
Note that the composite CDW excitations at wave vect
p/b and 2kF1p/b are not independent, since they can
related through a multiplication by the 1DEGOCDW ~which
has wave vector 2kF!. Thus, there are only three independe
gapless CDW modes.

TABLE III. Gapless SDW excitations.

Operator Wave number

ns 2kF

nt
p

b

TABLE IV. Gapless CDW excitations.

Operator Wave number

ns•nt 2kF1
p

b
OCDW 2kF

ns•Jt 2kF

Js•nt
p
b

4-8
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2. Singlet pairing modes

The charge-2e singlet pairing modes also require caref
consideration. In addition to the usualk50 BCS even-parity
singlet pairing,

OSP5
1

&
@L↑

†R↓
†1R↑

†L↓
†#

;e1 iA2puc cos~A2pfs!, ~A9!

we note also the existence of anh-pairing mode at momen
tum 62kF ,

hR5R↑
†R↓

†;e1 iA2puce2 i @A2pfc12kFx#,

hL5L↑
†L↓

†;e1 iA2puce1 i @A2pfc12kFx#, ~A10!

corresponding to right- and left-going singlet pairs.
As with the CDW modes, in addition to the singlet pairin

modes of the 1DEG, it is necessary to consider the compo
singlet pairingOc-SP ~a product of a triplet pairing in the
1DEG with a spin-1 mode of the Heisenberg chain! which
turns out to be of odd parity14,15

Oc-SP52 i 1
2 ~R†ss2L†!•t

5 1
2 @~R↑

†L↑
†t j

22R↓
†L↓

†t j
1!2~R↑

†L↓
†1R↓

†L↓
†!t j

z#

;e1 iA2puc@e2 iA2pust j ~x!
1 1e1 iA2pust j ~x!

2

12i sin~A2pfs!t
2#. ~A11!

~Note: If we do not take the Klein factors carefully into a
count than the bosonized form of the singlet and triplet co
posite pairing is erroneously exchanged.! It can be decom-
posed into two momentum components: a uniformk50
composite singlet

Ôc-SF
k50~x!52 i 1

2 ~R†ss2L†!•Jt ~A12!

and ak5p/b, i.e., a staggered, composite singlet

Ôc-SP
stagger~x!52 i 1

2 ~R†ss2L†!•nt~21! j . ~A13!

The commutation relations~13!–~16! relate to each gaples
CDW mode a corresponding gapless pairing mode. Th
fore, formally, only theh-pairing modes need to be counte
The concomitant ‘‘trivial’’ existence of the usual BCS pai
ing OSP and composite pairingOc-SP modes should be im
plicitly understood.

The operatorOc-SP is odd under spin-inversion operatio
(R↑

†↔R↓
† ,t2↔t1,tz↔2tz), as expected for a single

Note that its spin-inversion parity is odd, even though
conduction electron part is in triplet pairing. In that sense
order parameter is a composite singlet. The operato
clearly odd under space-inversion operationP ~exchangingR
andL!. The composite singlet operatorOc-SP, can be arrived
at by taking the time derivative of the BCS singlet ord
parameter,14 ]OSP/]t}@HK ,OSP#5Oc-SP where HK is the
Kondo-Heisenberg Hamiltonian~20!. Therefore, Oc-SP is
odd under time reversal, or, alternatively, has only oddw
20510
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dependence. The corresponding order parameter on a
crete lattice~e.g., on a zigzag ladder! is

Oc-SP52
i

2
~21! j~c j

†ss2c j 11
† !•tj

@The factor (21) j is needed so that both odd and evenj sites
will conform in the continuum limit representation.#

There is a qualitative difference between the commutat
relation~14! and previous commutation relations ofOc-SP in
the literature. As elaborated below, we generated the c
posite singletOc-SP by a combination of 2kF* composite
particle-hole mode (nR•t) and finite momentumk52kF sin-
glet ~hL pairing!:

nR5O2kF-SDW5Ra
† sab

2
Lb ,

Oc-CDW5nR•t5 1
2 ~n1t j

21n2t j
1!1nzt j

z , ~A14!

Oc-SP5@hL ,Oc-CDW#.

Note that the above generation of the composite sin
pairing is different from the usual way in which it i
generated14 using thep/b momentum composite particle
hole mode (JR•t) and k50 momentum singlet~OSP pair-
ing!:

JR5Ra
† sab

2
Rb,

OSP5
1

&
@R↑

†L↓
†2R↓

†L↑
†#, ~A15!

Oc-SP5@OSP,JR•t#.

JR•t is an interaction term in the Hamiltonian, which deve
ops a nonzero expectation value^JR•t&Þ0 in the spin-gap
phase of the Kondo lattice Hamiltonian. Thus, the relat
Oc-SP5@OSP,JR•t#5@OSP,H# is important for establishing
the time-reversal symmetry ofOc-SP as determined by the
Hamiltonian. The (JR•t) operator is not one of the gaples
modes. In contrast,Oc-CDW5nR•t is a gapless mode in th
spin-gap phase. Thus, our relationOc-SP5@hL ,Oc-CDW# es-
tablishes the interdependence of gapless modes in the
gap phase.

The commutation relations~13!–~16! indicate that there
must be some symmetry difference between the us
CDW(OCDW) mode of the 1DEG and the composi
CDW(Oc-CDW) mode, and that the composite CDW cann
be used in combination withhever to construct a BCS single
modeD ~as can be done with the usual CDW!. Clearly, there
is no difference in the global symmetry properties of the t
CDW modes~this would have been a violation of the gene
alized Luttinger theorem!. The difference is in a relative in
ternal symmetry of the two chain system; ap relative spin
rotation around thez axis of the 1DEG with respect to th
Heisenberg spin chain. This effect is best seen from
bosonized spin field dependence of the operators:
4-9
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D;cos~A2pf1s!,

OCDW;cos~A2pf1s!,

Oc-CDW;cos~A2p@u1s2u2s# !

~where subscripts 1 and 2 refer to the 1DEG and the impu
spin chain, respectively!. A p relative spin rotation around
the z axis is shiftingA2p@u1s2u2s# by p and leavingf1s
unaffected. Thus under this operation, which we la
Rz

Srel(p),

h→1h,

D→1D,

OCDW→1OCDW,

Oc-CDW→2Oc-CDW. ~A16!
nd

,
n.

20510
ty

l

From these transformation properties~A16! it is clear that
the composite CDW cannot be used in combination w
heven to construct a BCS singlet mode, since und
Rz

S rel(p)D→1D, while hevenOc-CDW→2hevenOc-CDW.
Hence, our final conclusion is that the Toulouse point ph
and the weak-coupling limit spin-gap phase of the Kond
Heisenberg model are distinct phases~as summarized in
Table I!.

There is a simple physical interpretation for the distin
tion made by theRz

S rel(p) symmetry operation. The com
posite CDW(Oc-CDW) is actually constructed out of two
spin-1 SDW modes which are coherently combined into
total spin singlet. Therefore, the mode is sensitive to
coherent relative phases of the spin fields between the 1D
and the Heisenberg chain, which is probed byRz

S rel(p). In
contrast, the ‘‘pure’’ CDW mode (OCDW) of the 1DEG is
independent of any relative state of the Heisenberg chai
y
ys.
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