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Weak localization in disordered systems at the ballistic limit
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The weak localization contribution to the two-level correlation functionR(v) is calculated for two-
dimensional disordered conductors. Our analysis extends to the nondiffusive~ballistic! regime, where the
elastic mean path is of order of the size of the system. In this regime, the structure factorS(t) @the Fourier
transform ofR(v)] exhibits a singular behavior consisting of dips superimposed on a smooth positive back-
ground. The strongest dips appear at periods of the periodic orbits of the underlying clean system. Somewhat
weaker singularities appear at times that are sums of periods of two such orbits. The results elucidate various
aspects of the weak-localization physics of ballistic chaotic systems.
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I. INTRODUCTION

Interference effects, arising from the interplay of phas
accumulated along different paths, are particularly intere
ing in ballistic chaotic systems. It is due to the hierarchy
importance among the classical trajectories in these syst
Long trajectories exhibit a universal statistical behavi
while short ones constitute the dynamical fingerprints of
system. The stable~and therefore, usually also the shorte!
the orbit is, the stronger is its signature. This signature
pears both in the wave functions~the scar phenomenon1! as
well as in the statistical properties of the energy spectrum
the system.2 The purpose of this paper is to study the fing
prints of the classical periodic orbits on the nature of int
ference in chaotic systems.

Our best understanding of quantum interference is in
ordered systems. In these systems, interference may lea
the localization of the particle in space.3 If, however, the
disorder is too weak to localize the particle, interferen
manifests itself as an increase in the return probability co
pared to the classical value. This effect, known as weak
calization~WL!, has been observed by measuring the m
netoresistance of metallic films.4

Recent advances in nanostructure technology,5 opened the
possibility of manufacturing clean mesoscopic system
systems in which the elastic mean-free-pathl is of order of
the size of the systemL. It is natural to ask what is the
analogue of WL in such ballistic systems?

Very little is known about this issue, mainly because
the failure of periodic orbit theory to provide a simple sy
tematic procedure for calculating interference~i.e., WL!
corrections.6 This failure has been one of the main motiv
tions for constructing the supersymmetric nonlinears model
of ballistic systems.7 The hope was that this model will pro
duce a WL expansion for ballistic systems analogous to
of disordered systems. However, it turned out that WL c
cially depends on the regularization of the field integral, a
only specific cases could be worked out8. These are the case
where the dynamics is still diffusive or dictated by rando
matrix theory~RMT!.9

Usually one would choose to study the WL signature
transport properties, because they are naturally related to
experimental data. However, this choice will be inapprop
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ate for our purpose for the following reason: WL~similar to
localization! takes place on a certain manifold in pha
space. For example, in disordered systems, this manifol
the real space, while in a circular billiard with rough boun
aries, localization occurs in the angular momentum spac10

In general chaotic systems there is no preferred basis, th
fore, WL may appear on a complicated manifold in the pha
space.11 Yet, transport measurements dictate a preferred
sis, and may totally miss the WL physics we seek to d
scribe.

Nevertheless, interference effects manifest themse
also in the spectral properties of chaotic systems, which
independent of the choice of basis. Therefore, in this pa
we shall focus our attention on the WL contribution to t
simplest nontrivial spectral quantity—the two-level corre
tion function:

R~v!5D2^r~e1\v!r~e!&21. ~1!

Here,r(e)5(ad(e2ea) is the density of states,D51/̂ r&
is the mean spacing between neighboring energy levelsea ,
and the averaging,̂, . . . ,&, is over the disorder configura
tions or the energye.

To state our problem in this context, consider the dens
of states of quantum system with Hamiltonian having a cl
sical chaotic counterpart. Gutzwiller’s trace formula12 ex-
presses the density of states, in the semiclassical limit,
sum over the classical periodic orbits of the system:

r~e!.
1

D
1(

p.o.
Ape( i /\)sp(e), ~2!

wheresp(e) is the action of thepth periodic orbit, andAp is
the corresponding amplitude depending on the stability
the orbit and its period.12

The traditional way of calculating correlators such as E
~1!, within periodic orbit theory, is to use the so-called dia
onal approximation.13,2 In this approximation, one replaces
double sum over periodic orbits@such as that obtained whe
substituting Eq.~2! in Eq. ~1!# by a single sum:
©2001 The American Physical Society01-1
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K (
pp8

ApAp8
* ei /\[sp(e1\v)2sp8(e)] L → 2

b (
p

uApu2eivtp,

~3!

wheretp5]sp(e)/]e is the period of thepth orbit. The ra-
tional behind the diagonal approximation is that the coher
contributions, atv50, come from pairs of orbits (p,p8)
having precisely the same action. Thus, one should pair
bits with themselves,p5p8 @Fig. 1~a!#, as well as with other
orbits related by symmetries such as time-reversal symm
@Fig. 1~b!#. In the absence of other spatial symmetries,b in
the above formula is one for systems with time-reversal sy
metry, and two for systems that do not have this symme

The problem of WL in the context of the two-level corr
lation function can be formulated as:How can one improve
on the diagonal approximation to include interference effe
systematically?

In seeking the solution of this problem, it is natural
inquire about the situation in disordered systems where
systematic interference corrections to the diagonal appr
mation is the ‘‘weak localization’’ expansion. The diagram
matic picture of the WL correction toR(v) suggests that the
WL contribution is associated with pairs of periodic orb
crossing themselves at some point in space as shown in
1~c!.14 Thus, along one loop, the two orbits propagate in
same direction, while along the other loop they are in op
site directions. However, such orbits exist only in the pr
ence of a nonclassical scattering potential, and do not ha
direct analog in the periodic orbit theory.

Facing this difficulty, in this paper, we study WL usin
disorder diagrammatics but far from the diffusive regim
i.e., when the elastic mean free path is of order of the siz
the system. In this case, the disorder is sufficiently weak,
traces of the short periodic orbits of the underlying cle
system are still significant.

We, thus, consider a system consisting of a particle c
fined to move on a two-dimensional torus, in the landsc
of a random potential, see Fig. 2. The Hamiltonian of t
system is

H5
p2

2m
1V~r !, ~4!

FIG. 1. ~a! and~b! An illustration of pairs of orbits contributing
to the diagonal approximation:~a! an orbit with itself,~b! an orbit
with its time reversed counterpart.~c! The eight-shaped periodi
orbits associated with the WL contribution toR(v) in diffusive
systems.
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wherep is the momentum of the particle,m is its mass, and
V(r ) is a Gaussian random potential defined by

^V~r !&50, and ^V~r !V~r 8!&5
\

2pnt
d~r2r 8!. ~5!

Here, n51/DL2 is the averaged density of states per u
area, andt is the elastic mean free time for scattering on t
potential. This system has been considered earlier by Altl
and Gefen15 and by Agam and Fishman,16 but only in the
framework of the diagonal approximation.

In analyzing the results of the above model, it will b
convenient to use the spectral structure factor defined as

S~ t !5
\

DE2`

`

dvR~v!e2 ivt. ~6!

UsingS(t), one can relate the quantum spectral properties
the system to the behavior of its classical analog. In parti
lar, S(t) form a connection to the periodic orbits of the sy
tem: Substituting Eq.~3! in Eq. ~6! one sees that, within the
diagonal approximation, the structure factor takes the fo
of a sum over peaks located at times that equal to the per
of the classical periodic orbits:

S~ t !.
2hD

b (
p

uApu2d~ t2tp!. ~7!

It has been noticed by Argamanet al.17 that the right-hand
side of the above equation can also be interpreted asutup(t),
wherep(t) is the classical return probability at timet. The
notion of return probability has been further developed
Chalker et al. to obtain a more accurate description of t
structure factor for diffusive electrons.18

A disorder potential usually erases thed singularities of
S(t) associated with the classical orbits of the clean syst
But, if it is sufficiently weak, it will leave traces of them
Indeed,S(t) calculated, in the diagonal approximation, f
weak disorder, shows a series of peaks16 ~see inset of Fig. 3!.
The locations of these peaks along the time axis are preci
the periods of the orbits of the clean system.~These orbits
are defined by pairs of winding numbers that count the tim
the trajectory winds around the torus in each direction,
Fig. 4.!

FIG. 2. ~a! An illustration of the model used in this paper fo
calculating the WL effects in the ballistic limit. The system consi
of a noninteracting electron gas on a torus with white-noise po
tial. This potential is sufficiently weak, such that the elastic me
free path is of order of the size of the system.~b! An equivalent
representation of the system as a square with periodic boun
conditions.
1-2
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In view of the behavior shown in Fig. 3, and the results
disorder diagrammatics, one may naively speculate that
WL contribution to the structure factor adds up in a simi
way. Namely, it consists of a series of singularities located
periods of the eight-shaped orbits illustrated in Fig. 1~c!. One
may also expect this contribution to be positive, as in dif
sive systems, since it should reflect an increase in the re
probability compared to the classical value~i.e., the diagonal
approximation!.

However, as we show here, this picture is inaccurate.
deed, in the ballistic regime, some singularities do appea
times that can be interpreted as periods of eight-shaped o
@Fig. 1~c!#. But these contributions are rather weak. A lar
negativecontribution comes from the original periodic o
bits. It is superimposed on a smooth positive background
is not related to properties of the clean system. At cert
cases, the WL contribution to the structure factor can e
become altogether negative. Thus, in ballistic systems
does not have, necessarily, a definite sign.

To make the paper self-contained, we organized it as
lows: In the next section we prepare the mathematical ba

FIG. 3. The structure factor of chaotic systems with tim
reversal symmetry. The solid line represents the results of ran
matrix theory. Magnified is the regime where perturbation the
applies and nonuniversal corrections, which are the main focu
this paper, are important. Here we depict only the results of
contribution of the ‘‘diagonal approximation.’’ The peaks, indicat
by pairs of winding numbers, are the signatures of the perio
orbits of the clean system~see Fig. 4!. Both, the Fermi velocity and
the system sizeL are set to unity. The elastic mean free path,
these units, is 1/2.tH52p\/D is the Heisenberg time.

FIG. 4. Periodic orbits of a particle moving on a tours are d
fined by pairs of integer numbers (nx ,ny). These ‘‘winding num-
bers’’ count the number of times the trajectory winds around
torus in thex and in they directions, respectively. Some particul
examples are:~a! the orbit~0,1! with lengthL, ~b! the orbit~1,1! of
length 21/2L, and~c! the orbit ~1,2! of length 51/2L.
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ground for our derivation by reviewing the standard resu
of disorder diagrammatics in the diffusive limit. This wa
we set the basis for extending the diagrammatic approac
the ballistic regime. In Sec. III, we derive our central form
las for the WL contribution toR(v), and the structure facto
S(t). In Sec. IV, we analyze these results and derive
asymptotic expression forS(t). Finally, we summarize and
present our conclusions in Sec. V.

II. BACKGROUND

The purpose of this section is to lay the technical ba
ground, and set the nomenclature for the analysis that wil
carried out in the forthcoming sections. We shall review t
main ideas of disorder diagrammatic technique for diffus
systems,19 present the basic building blocks, discuss the
proximations involved, and the limits of applicability. F
nally, we summarize the results for the WL contribution
R(v) within RMT framework, and for diffusive systems
These results will form a reference point for the analysis
R(v) in the ballistic limit, which will be carried out in the
next section.

The disorder diagrammatic approach for Hamiltonians
the type~4! is an efficient way of constructing the perturb
tion expansion, in the weak potentialV(r ), for quantities
averaged over the disorder configurations. Examples of s
quantities aren-point spectral correlation functions, the ma
netic susceptibility, and various properties of the cond
tance of disordered metals.

This diagrammatic approach is a semiclassical appro
mation in which the ratio of the particle wavelengthlF to the
elastic mean-free-pathl is assumed to be small. Therefore,
takes the formal form of an asymptotic series in powers
1/kFl , where kF52p/lF is the Fermi wave number. Yet
usually there will also be nonperturbative contribution
which are important when trying to resolve features on
scale of the mean level spacingD or over time scales longe
than the Heisenberg timetH52p\/D. Therefore, the appli-
cability range of disorder diagrammatic is also limited
times smaller than the Heisenberg time, and energies la
than the mean level spacing.

As a first example, consider the average of the retar
Green function:

Ge
R~k!5K 1

e1 ih2
\2k2

2m
2V~r !L .

Here,^, . . . ,& denotes an averaging over the configuratio
of the disordered potential,h is an infinitesimal positive
number, andp is the particle momentum. Expanding th
Green function in powers ofV(r ), and changing representa
tion to momentum space yields

Ge
R~k!5G0

R~e,k!1G0
R~e,k!^V0&G0

R~e,k!

1(
k8

G0
R~e,k!G0

R~e,k8!G0
R~e,k!^VkÀk8Vk8Àk&

1, . . . ,

-
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y
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e
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ASSAF ATER AND ODED AGAM PHYSICAL REVIEW B63 205101
whereVq51/L2*d2re( i /\)q•rV(r ) is the Fourier transform o
the potential~5!, and G0

R(e,k)51/@e1 ih2(\2k2/2m)# is
the free Green function. Terms containing an odd numbe
V’s vanish upon averaging, while those having an even nu
ber are calculated by Wick’s theorem~since the potentialV is
Gaussian!. Thus, the average is equal to the product of av
ages of all possible pairs, such as^VqV2q&. The various
terms of this expansion can be represented diagrammati
as shown in Fig. 5.

A partial summation of the infinite series of the diagram
in Fig. 5, is achieved using Dyson’s equation, and summ
tion over the irreducible diagrams@those that cannot be sep
rated into two disconnected diagrams by cutting one inte
propagator line, e.g.,~b! ~d! and ~e! in Fig. 5#. Thus, the
averaged Green function satisfies the relation

Ge
R~k!5G0

R~e,k!1Ge
R~k!SG0

R~e,k!, ~8!

whereS is the self energy given by the sum over all irredu
ible diagrams, see Fig. 6. To the leading order in 1/kFl , S is
the contribution of the first diagram in Fig. 6~b!. Thus,

S.(
q

^VqV2q&G0~e,k1q!

5
\D

2pt FP.V.S E dj
r~j!

e2j1 ih D2
ip

D G ,
whereP.V. denotes the principle value of the integral. T
real part of S can be absorbed into the definition of th
reference energye, thus the solution of Dyson’s Eq.~8!
yields

Ge
R~k!5

1

e2e~k!1
i\

2t

,

where e(k)5(\k)2/2m. Similarly, the average of the ad
vanced Green function is given byGe

A(k)5@Ge
R(k)#* .

Consider, next, the probability of a particle to arrive tor 8
in time t, when its initial stateur ;eF& is a wave packet local

FIG. 5. Example of diagrams contributing to the average Gr
function,Ge

R(k) ~represented by the bold line!. Thin lines represent
the free Green function~i.e., in the absence of disorder!, and dashed
lines represents impurity scatterers.
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ized nearr . We assume that this wave packet is composed
eigenstates centered at the Fermi energyeF and ranging over
an energy band of width\/t. In the semiclassical limit\/t
!eF , these conditions imply that the particle velocityvF is
well defined, and the wave-packet width is of order of t
elastic mean free path,l 5vFt. The probability density
for finding the particle at pointr 8 after time t is
given by P(r 8,r ;t)5L2uU(r 8,r ;t)u2 where U(r 8,r ;t)
5^r 8ue2( i /\)Htur ;eF& is the propagator of the system. Usin
the convolution theorem, one obtains

P~r 8,r ;t !5\E dve2 ivtE deD̃~r 8,r ;v!, ~9!

where

D̃~r 8,r ;v!5L2^GR~r 8,r ;eF1\v!GA~r ,r 8;eF!&, ~10!

and GR(r 8,r ;e) and GA(r 8,r ;e) are the exact Green func
tions of the system for particular realization of the disorde
potential. Notice that under our assumptions,D̃(r 8,r ;v)
weakly depends one, therefore, the integration overe results
in a factor of\/t.

The diagrammatic expansion ofD̃(r 8,r ;v) proceeds
along the same lines described above. It is convenien
perform the calculation in Fourier space, i.e., for

D~q,v!5S \

2pnt D 2 1

L2E dreiq•rD̃~r 8,r 81r ;v!. ~11!

The leading contribution toD(q;v), known as thediffusion,
is given by the set of diagrams shown in Fig. 7~a!. The
Dyson equation summing this set of diagrams yields

D~q,v!5
\

2pnt

1

12P~v,q!
,

where

FIG. 6. ~a! The diagrammatic representation of Dyson’s equ
tion for the average Green function~8!. The bold and thin lines
represents the dressed and the bare Green functions, respec
~b! The self energyS given as a sum of irreducible diagrams.

n

e
l
d
s:
FIG. 7. The diagrams of the
diffusion ~a! and the Cooperon
~b!, and their interpretations as th
contribution of pairs of classica
orbits associated with the retarde
and the advanced Green function
~c! An orbit with itself ~diffusion!
and ~d! an orbit with its time-
reversed counterpart~Cooperon!.
1-4
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WEAK LOCALIZATION IN DISORDERED SYSTEMS AT . . . PHYSICAL REVIEW B 63 205101
P~v,q!5
\

2pntE d2k

~2p!2
Ge1\v

R ~k1q!Ge
A~k!,

5
\

2ptE djdu

2p

1

j1\v2\vFq cosu1
i\

2t

1

j2
i\

2t

.

~12!

To obtain the second line of the above formula, we ha
expanded (k1q)2 to linear order inq, and approximated
2k"q by 2kFq cosu, wherekF is the Fermi wave number
andu is the angle between the vectorsk andq. This approxi-
mation is valid whenq!kF .

In the diffusive limit, additional approximations can b
made. Namely, one may use the small parameters

ql!1 and vt!1, ~13!

to expandP(v,q) in vt, andql. The result takes the form
P(v,q).11 ivt2Dq2t, whereD5 l 2/2t is the diffusion
constant, thus

D~q,v!5
\

2pnt

1

2 ivt1Dq2t
. ~14!

This formula shows that the diffusion is the kernel of t
diffusion equation:]n/]t5D¹2n, wheren(r ) is the density
of particles in real space. The diffusion is, therefore,
classical mode of a disordered system in the limit of lo
time (vt!1) and large spatial scale (ql!1).

It is instructive to relate the diffusion to classical orbits20

For this purpose, we turn to calculateD(r ,v) using the van-
Vleck approximation for the Green functions. A comment
now in order. The use of the van Vleck propagator for
system with a white-noise potential is unjustified, since
scattering is not semiclassical. Therefore, here, we ass
the disorder potential to be in the form of randomly locat
hard scatterers of size larger than the particle wave len
This potential is semiclassical, and produces diffusion
large scales of time and space.

The van Vleck formula for the Green function
GR,A(r 8,r ;e) is expressed as a sum over the class
trajectories21 from r to r 8 with energye:

GR~r 8,r ;e!.
1

A2p\
(
m

Bme( i /\)sm(r8,r ;e),

GA~r ,r 8;e!.
1

A2p\
(
m

Bm* e2( i /\)sm(r8,r ;e). ~15!

Heresm(r 8,r ;e) is the classical action of themth trajectory,
while Bm is the corresponding amplitude that can be int
preted as the square root of the classical probability to ar
to r 8, after timet, starting fromr . Substituting Eq.~15! in
Eq. ~10!, yieldsD̃(r 8,r ;v) as a double sum over the classic
trajectories fromr to r 8. Approximating the average of thi
double sum by the diagonal part, and substituting the re
in Eq. ~9! we obtain
20510
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P~r 8,r ,t !.L2(
m

uBmu2d~ t2tm!,

wheretm is the time that it takes for the particle to trav
from r to r 8 along themth trajectory. Using classical sum
rules, one can sum over the classical trajectories.20 The result
for diffusive systems is that of the diagrammatic calculatio
This implies that the set of diagrams associated with
diffusion is equivalent to the diagonal approximation of pa
of orbits as shown in Fig. 7~c!.

In systems with time-reversal symmetry there is an ad
tional classical mode called Cooperon. It comes from
infinite sum over the maximally crossed diagrams shown
Fig. 7~b!. These diagrams are obtained by reversing the
rection of the momentum in one of the Green function lin
The classical picture of the Cooperon is, therefore, that o
orbit paired with its time-reversed counterpart as shown
Fig. 7~d!. It can be easily checked that the Cooperon h
precisely the same analytical form of the diffusion.

The issue of WL, in the language of diagrammatics, is
interaction between diffusion and Coopron modes. Picto
ally, this interaction is the switching between the directio
of the momenta of two trajectories, as shown in Figs. 1~c!
and 8~a!. The diagrammatic entity accounting for this switc
ing is the Hikami box,22 see Fig. 8~b!. It is a function of the
incoming and outgoing momenta and frequencies of the
fusion and the Cooperon. For the particular choice of m
menta and frequencies shown in Fig. 8~b! one has
h(q,q8,v)5h01h21h1 , where

h05(
k

Ge1\v
R ~k!Ge1\v

R ~k2q2q8!Ge
A~k2q!Ge

A~k2q8!,

h25
\D

2pt
h1/2~q,2q8;e,e1\v!h1/2~2q,q8;e,e1\v!,

~16!

h15
\D

2pt
h1/2* ~q,q8;e1\v,e!h1/2* ~2q8,2q;e1\v,e!,

while

FIG. 8. The Hikami box associated with the interaction betwe
diffusions and Cooperons:~a! Its pictorial view in terms of ‘‘clas-
sical’’ trajectories.~b! Its diagrammatic expansion.
1-5
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ASSAF ATER AND ODED AGAM PHYSICAL REVIEW B63 205101
h1/2~q,q8;e,e8!5(
k

Ge
A~k!Ge8

R
~k1q8!Ge8

R
~k1q!.

~17!

The calculation of the above diagrams in the diffusive lim
~13! ~the corresponding integrals are provided in Appen
A!, gives

h~q,q8,v!5
4pt4

\3D
@D~q21q82!2 iv#.

Having the basic ingredients of the disorder diagramm
ics, we turn now to calculate the two-level correlation fun
tion defined by Eq. ~1!. Using the relation r(e)
5Im$TrGR(e)%/p, we have

R~v!5
D2

2p2
Re@^TrGR~e1v!TrGA~e!&2^TrGR~e1v!&

3^TrGA~e!&#.

This formula can be used as a starting point for diagra
matic expansion. However, it produces a large numbe
diagrams. A convenient way of reducing this number is
expressR(v) in terms of a generating function that has
simpler diagrammatic expansion. This generating funct
F(v) has been found by Smith, Lerner and Altshuler.14 It
satisfies the relation:

R~v!52
D2

2p2\2

]2

]v2
ReF~v!, ~18!

and has the form of a free energy. The diagrammatic exp
sion of F(v) can be loosely pictured as an expansion in
number of diffusions and Cooperons loops:

F~v!5F1~v!1F2~v!1F3~v!1, . . . ,. ~19!

Thus, the leading termF1(v) is the contribution of the one
loop diagram~see Fig. 9!, F2(v) is the two-loop contribu-
tion ~plus two additional terms whose role it is to remove t
ultraviolet divergence in the first diagram!, F3(v) comes
from three-loop diagrams, etc.14 In the periodic orbit picture,

FIG. 9. Diagrams of the free energy:F1(v) is the leading con-
tribution associated with the diagonal approximation of the perio
orbit theory.F2(v) is the WL contribution to the free energy ass
ciated with the eight-shaped orbits of Fig. 1~c!. Dashed impurity
lines represent large momentum transferk.1/l , dotted lines repre-
sent small momentum transferk,1/l .
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F1(v) is the contribution of orbits shown in Figs. 1~a! and
1~b!, while F2(v) is, in essence, the contribution of th
eight-shape orbits illustrated in Fig. 1~c!.

The small parameter of the loop expansion~19! is 1/g,
whereg is the dimensionless conductance of the systemg
}tH /tc is the ratio of the Heisenberg time,tH52p\/D, to
the classical relaxation time of particles in the systemtc . In
diffusive systems,tc5L2/D ~known as the Thouless time23!
is the time that it takes for a classical particle to diffu
across the system.

The form of the free energy~19! together with Eq.~18!
induces a similar expansion for the two-level correlator:

R~v!5R1~v!1R2~v!1R3~v!1, . . . ,

where

Rj~v!52
D2

2p2\2

]2

]v2
ReF j~v!, j 51,2,3, . . . ,.

~20!

Thus,R1(v) is the result of diagonal approximation,R2(v)
is the WL contribution, and additional terms give higher W
corrections.

The leading contribution to the two-level correlation fun
tion R1(v) has been discussed extensively by Altshuler a
Shklovskii.24 It is straightforwardly calculated using Eq
~20!. Taking into account the 1/n symmetry factor of then
ladder diagram definingF1(v) ~see Fig. 9! we obtain
F1(v)52(q ln(Dq2t2ivt), where the diffusive approxima
tion ~13! has been assumed. Notice that although this s
does not converge, its second derivative with respect tov
does. Moreover, one can check that, in two dimensio
R1(v)50 for v.0. Thus, the leading term in this case
the WL contribution.25

In this paper we focus our attention on the WL contrib
tion to R(v) of two-dimensional ballistic systems. As a re
erence point, however, it will be instructive to review resu
of RMT, and disorder diagrammatics in the diffusive lim
In both cases, our starting point is the diffusive form of t
WL contribution to the free energy~obtained from the dia-
grams shown in Fig. 9!:

F2~v!5
D

\p (
q,q8

iv

~Dq22 iv!~Dq822 iv!
. ~21!

The RMT result corresponds to the zero-mode contri
tion (q5q850) in the above sum, namelyF2(v).
2 iD/\pv. It is purely imaginary, therefore, that Eq.~20!
implies thatR2(v)50 in the RMT limit. Since RMT ac-
counts for the universal behavior of the chaotic system,
conclude thatR2(v) is a purely nonuniversal quantity.26

Turning to the diffusive limit, we first note that the sum
Eq. ~21! diverges logarithmically, even after differentiatin
twice with respect tov. Thus, one has to introduce an upp
cutoff on the momentum, which is usually taken to be 1l ,
wherel is the elastic mean free path. As will be shown in t
next section this artificial cutoff can be avoided if the a
proximations~13! are not used in the calculations.

c
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To evaluateF2 in the regime 1/tc!v!1/t, one can also
use dimensional regularization:14 Replacing the sums overq
andq8 by integrals, and evaluating them ind521h dimen-
sions yields

F2~v!5
ivL4D

p\ F E ddq

~2p!d

1

Dq22 iv
G 2

. ~22!

Changing variables fromq to (iD /v)1/2q and using the for-
mula ~see Appendix A!

E ddq

11q2
5pd/2GS 12

d

2D ,

one arrives at

F2~v!5
iL 4D

\p~4pD !2 S 2 i

4pD D h

G2S 2h

2 Dv11h.

R2(v) is now obtained by taking the second derivative w
respect to v, as follows from Eq. ~20!. Thus, using
G(11h/2)G(2h/2)5p/sin(2hp/2) we have

R2~v!52
Dp~11h!h Re@~2 iv!h21#

2\g2~4pD !h sin2~2hp/2!G2~11h/2!
,

whereg54p2\D/L2D is the dimensionless conductance
the system. Finally, we leth→0, and obtain

R~v!.R2~v!52
D

g2\v
,

1

tc
!v!

1

t
.

Note that the domain of validity of the above formula va
ishes in the ballistic limit since the classical relaxation tim
tc is smaller or equal to the scattering time,t.

III. WEAK LOCALIZATION IN THE NONDIFFUSIVE
REGIME

In this section we calculate the WL contribution to th
two-point correlator in the ballistic regime. By ballistic w
refer to the situation in which the elastic mean-free-pathl is
of order of the size of the systemL.27 To understand wha
kind of changes are needed in order to extend the diagr
matic calculation into the ballistic regime, recall that the d
fusive approximation~13! corresponds to the leading ord
result in the small parameterl /L ~sinceql!1, q is of order
1/L, and l !L). In the ballistic regime, this approximatio
cannot be used, and one has to evaluate integrals, suc
Eqs.~12! and~16!, to all orders inl /L. Moreover, diagrams
having a small number of impurity lines form the domina
contribution~unlike in the diffusive regime!, therefore, pos-
sible cancellations among diagrams, as well as double co
ing should be examined carefully. The outcome of this
amination is that diffusions and Cooperons contributing
F2(v) should start from two impurity lines. Apart from thi
point, the WL contribution is given by the same diagram
shown in Fig. 9, but evaluated to all orders inl /L.

We begin by deriving an expression for the diffusio
20510
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~starting from two impurity lines! in the ballistic regime.28

Dyson’s equation, in this case, yields

D~q,v!5
\

2pnt

P~v,q!

12P~v,q!
,

whereP(v,q) is the integral given by Eq.~12!. To avoid the
expansion inql and vt, here we first integrate overj ~by
closing the contour in the complex plain!, and then integrate
over the angleu exactly. The result isP(v,q)51/Qv(q),
where

Qv~q!5A~12 ivt!21~ lq !2.

Thus, the generalized formula for the diffusion is

D~q,v!5
\

2pnt

1

Qv~q!21
. ~23!

A similar calculation for the Cooperon produces the sa
analytical expression.

The above formula is correct to all orders inl /L. It can be
easily checked that an expansion of the denominator of
~23! in vt andql, yields the result of the diffusive limit~14!.

The calculation of the Hikami box@Fig. 8~b!, Eq. ~16!#, in
the ballistic limit, follows along the same lines. Namely, o
first integrates over the modulus ofk, and then the remaining
angular integration is performed exactly. For example, a
integration over the modulus ofk, Eq. ~17! reduces to an
integral of the form

I~x1 ,x2 ,w!5
1

2pE0

2p du

~11x1 cosu!@11x2 cos~u2w!#
.

~24!

The result of the integration over the angleu ~see Appendix
A! is

I~x1 ,x2 ,w!5S 1

y1
1

1

y2
D 1

11y1y22x1x2 cos~w!
, ~25!

where

yi5A12xi
2, i 51,2.

With the help of this function, the various terms of th
Hikami box @see Eq.~16! and Fig. 8~b!# take the form:

h652
2pt3

\3~12 ivt!4D
I 2F i lq 1

12 ivt
,

6 i lq 2

12 ivt
,w12G ,

wherew12 is the angle betweenq1 andq2, and

h05
4pt3~12 ivt!

\3f 1
2f 2

2D
IF S lq1

A2 f 1
D 2

,S lq2

A2 f 2
D 2

,2w12G ,

where

f i5A~12 ivt!21~qi l !
2/2, i 51,2.

Collecting the diagrams ofF2(v) ~Fig. 9! we obtain
1-7
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F2~v!5
\2D2

4p2t2 (
1,2

D1D2Fh01~h11h2!S 1

D1
1

1

D2
11D G ,

where we use the notation

Di52pntD~qi ,v!/\,

and the sum is over the vectorsq1 and q2. The periodic
boundary conditions in our system imply thatqi52pmi /L,
wheremi is an integer vector of two components.

The above formula is our central result. Performing t
sum over momenta and substituting it in Eq.~20! gives the
exact WL contribution to the two-level correlation functio
in the semiclassical limit. The applicability range of our r
sult goes beyond the diffusive limit and includes the ballis
regime as well. In contrast with the formula in the diffusiv
limit ~Eq. 21!, here the momenta sum converges, and ther
no need to introduce an arbitrary cutoff or regularizatio
The results that will be shown below were obtained by p
forming the momenta sum numerically with a cutoff chos
such that contribution of additional terms is of order of t
numerical error.

In presenting our results, it will be convenient to empl
the spectral structure factor defined in Eq.~6!. We denote by
S2(t) the corresponding WL contribution,

S2~ t !5
\

DE dvR2~v!e2 ivt, ~26!

and rescale its magnitude by a factor of 2p3g2, where g
}tH /tc is the dimensionless conductance of the system. N
that in the ballistic regime, the relaxation timetc is no longer
the diffusion time. It is approximately the traversal tim
across the system,tc5L/vF wherevF is the velocity of the
particle, andL is the size of the system. Therefore, from no
on, we defineg to be

g5
\vF

DL
. ~27!

In Fig. 10 we plotS2(t), for various values of the ratio
between the elastic mean free path and the size of the sys
These values range from diffusive (l /L50.01) to ballistic
( l /L51.5) dynamics. Several features ofS2(t) are evident:
First, the WL contribution appears only within a finite inte
val of time. It vanishes both att50 and whent→`. Second,
in both limits l !L and l @L the WL contribution diverges
Third, in the ballistic regime,l;L, S2(t) exhibits a distinc-
tive singular behavior consisting of a series of dips. Th
dips are located at times that are combinations of period
the periodic orbits of the clean system. In Fig. 11 we dep
S2(t) for l 5L/2 and indicate the singularities with the co
responding combinations of periodic orbits.

IV. ANALYSIS

In analyzing the above results, it is instructive to stud
first, the convergence behavior of the momenta sum of
WL contribution. In Fig. 12 we depict the results forS2(t)
calculated in the following approximations: The dash-dot
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line is the contribution coming from the zero mode,q15q2
50. Clearly this mode dictates the gross behavior ofS2(t).
In particular, it determines the interval of time where WL
significant. The dashed line is the result obtained by tak
into account the next lowest momentum modes, i.e., su
ming overq1 andq2 within the radiusq1 ,q2<A8p. In this
approximation some additional features ofS2(t) are re-
solved. The solid line is the result of the full momenta su
Thus, the singular behavior of the structure factor com
from the tail of the sum.

To obtain a simple analytic characterization of the W
contribution to the structure factor, we proceed in the follo
ing way. First, we derive a formula for the smooth part
S2(t) given by the contribution of the zeroth modeq15q2

FIG. 10. The results for the WL contribution to the structu
factor at various values of the ratio of the elastic mean free patl,
to the size of the systemL. The WL effect, in this system, become
stronger in two limits:~a! the diffusive regime,ł !L, where the
particle approaches localization in real space, and~b! the extreme
ballistic limit, l @L, where the particle becomes localized in m
mentum space.

FIG. 11. The weak localization contribution to the structure fa
tor, in the ballistic regime, exhibits a singular behavior. The sing
larities are located at times which are linear combinations of peri
of two orbits of the clean system~see Fig. 4!. Heret(nx ,ny)5(nx

2

1ny
2)1/2L/vF denote the period of the periodic orbit defined by t

pair of winding numbers (nx ,ny).
1-8
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50. This formula will give us the main parameters chara
terizing the WL contribution in the ballistic limit. Then, w
evaluate the momenta sum in the asymptotic limit of largev.
The result of this calculation provide the local behavior
S2(t) in the vicinity of the singularities.

To calculate the smooth part ofS2(t), denoted hereinafte
by S̄2(t), we start by evaluating the zero mode contributi
to R2(v). A straightforward calculation of the termq15q2
50 yields

R2~v;q50 contrib.!5
4t3D3@5254~vt!2121~vt!4#

\3p3@11~vt!2#6
.

Taking, now, the Fourier transform we obtain

S̄2~ t !5
l 2

12p2g2L2
e2 t̃ t̃ 2~ t̃ 313 t̃ 216 t̃ 16!, ~28!

where t̃ 5t/t. We remark, here, that the above formula a
plies only in the ballistic regime,l;L, where the zeroth
mode is dominant. In both other regimes, the diffusiveł
!L and the extreme ballisticl @L the neglect of higher
modes for the smooth contribution ofS2(t) is not justified.
E.g. in the diffusive regime, allq modes within 1/L,q
!1/l give a smooth contribution.

Formula ~28! allows one to characterize the major fe
tures of the WL contribution to the structure factor: The tim
t* whereS̄2(t) is maximal; its value at this pointS2* and the
width of the time interval where the WL effects are app
ciableW* . The results are

t* 54.24t,

W* 52.46t,

and

S2* 50.353S l

LgD 2

50.353S tD

\ D 2

,

FIG. 12. The convergence behavior of the momenta sum of
structure factor in the ballistic regime. The smooth part~dash-
dotted! is determined by the zero mode,q15q250. The dashed line
is the result of a sum over momenta within radius of 2.83p. Higher
q terms build up singularities along the time axis as demonstra
by the solid line where the momenta sum extends to radius of 8p.
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where the interval width is defined by (W* )25*dtS̄2(t)(t
2t* )2/*dtS̄2(t). Thus, WL effects, in the ballistic limit, are
pronounced within a time interval of width 2.46t centered at
t54.24t, and the typical value of the WL contribution i
proportional tot2.

Note that these results are independent of the size of
system. Therefore the gross behavior ofS2(t) is not influ-
enced by the periodic orbits of the clean system. Is it natu
to ask what is the role of the classical orbits of the syste
As we show below, these orbits lead to the singular featu
decorating the smooth part of the structure factorS̄2(t) as
demonstrated in Fig. 12.

In analyzing this singular behavior, we first notice that
main part comes from largev or equivalently large values o
the momentaq1 and q2. Therefore, to calculate this contr
bution, it is sufficient to approximate the discrete angu
sum of F2(v) ~over the phase between the vectorsq1 and
q2) by an integral. The small parameter of this approxim
tion is 1/vt. From Eq.~25! one finds that the angular ave
age of the WL contribution to the free energy, denoted
F̄2(v), is

F̄2~v!5
tD

p\ (
q1 ,q2

A1B1C

Q1Q2~Q11Q2!~Q121!~Q221!
,

where

A5
1

12 ivt
, B5

12 ivt

Q1Q2
, C52B~Q11Q2!,

and

Qi5Qv~qi !.

At asymptotically large values ofvt the leading contribution
comes fromC. This is evident once noticing that whenvt
→`, Qi→vt, and thereforeA,B5O(1/vt), whereasC
5O(1).

Next we apply the Poisson summation formula to conv
the sum overq1 andq2 into an integral. The free energy i
then expressed as

F2~v!.F̄2~v!5(
m,n

F2
(m,n) , ~29!

wherem andn are integer vectors. As will be shown below
these integer vectors are associated with winding number
the periodic orbits of the clean system. Each term in form
~29! is of the form

F2
(m,n)52

tDL4

p\
~12 ivt!K~m!K~n!, ~30!

where

K~m!5E
0

` dq

2p

qJ0~mqL!

Qv
2 ~q!@Qv~q!21#

. ~31!

e

d
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Here, J0(x) is the Bessel function of zero order, andm
5umu is the magnitude of the vectorm. For m50, this in-
tegral yields

K~0!5
1

2p l 2~12 ivt!
1O~1/v2!.

For mÞ0 the integral~31! can be calculated using the stee
est descents method~see Appendix B!, and in the largem
limit it gives

K~m!;2
e3/2

A72p l 2

e2mL/ l (12 ivt)

12 ivt
. ~32!

The above results imply the following form of the stru
ture factor in the ballistic regime:

S2~ t !;S̄2~ t !1(
n,m

S2
(n,m)~ t !,

where

S2
(n,m)~ t !52BnmS L

gl D
2

Q@ t2tnm# t̃ 2e2 t̃ ,

is the contribution associated with orbits characterized by
winding vectors n and m. Here, t̃ 5t/t, tnm5(n
1m)L/vF , andQ(x) is the step function. The amplitude o
each contribution,Bnm , depends on the valuesn andm. For
cases where eithern or m vanish,B0m5Bn,0.e3/2/12A2p4,
while if n andm are large,Bnm.e3/144\2p4.

Thus, S2(t) is composed of a smooth contribution~28!
and a sequence of singular functions, of the fo
2t2e2(t2tmn)/tQ(t2tmn), wheretmn is the period of a com-
posite orbit, i.e., the sum of periods of two periodic orbits
the clean system. Each singular contribution is negative,
its magnitude at timetmn is proportional totmn

2 e2tmn /t/ l 4.
The contribution associated with single orbits~i.e., when ei-
ther n or m vanish! is considerably larger than that of com
posite orbit~in which bothn andm differ from zero!. In any
case, the singular contribution decreases exponentiall
time , and as a power law in 1/l ~whenL, l ). This behavior
is indeed observed in Figs. 10, 11, and 12.

V. SUMMARY AND CONCLUDING REMARKS

In this paper we have calculated the WL contributions
the two-level correlation function and its Fourier transfor
the structure factor. These are the leading quantum inte
ence effects that affect the spectral statistical propertie
the system defined in Eq.~4!.

Our theory generalizes previous calculations of the W
contribution to the spectral statistics of diffusive system25

by extending them into the ballistic regime where the ela
mean-free pathl is of order of the size of the systemL. Here
the disorder is weak enough to leave traces of the dynam
of the underlying clean system, which appear as singular
in the structure factor~Figs. 10, 11, and 12!.

Our paper has focused on spectral rather than dynam
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characteristics to avoid the problem of specifying the ma
fold on which WL takes place. Indeed, Fig. 10 demonstra
that the WL contribution is pronounced in two limits. Pan
~a! of Fig. 10 is a representative example of the results d
in the diffusive regimel !L, while panel~b! shows the typi-
cal behavior in the ballistic limit,l 51.5L. In both cases, the
system approaches the strong localization limit, but the
calization is of a different nature. In the diffusive case, it
localization in real space,3 whereas in the ballistic case, th
localization is on a quasi-one-dimensional annulus in
momentum space.~This is evident once noticing that o
clean torus, eigenstates are plain waves, and therefore
particle is localized in momentum space.! In the latter case, it
is suggestive that the effective dynamics is associated w
Levy flights29 rather than diffusion, since the disorde
couples, predominantly, momentum states with degene
eigenvalues, which may lie far away along the moment
annulus.30

A simple semiclassical interpretation of our results, with
periodic orbit theory, is not straightforward. The resul
clearly, cannot be obtained from a diagonal approximation
which higher-order\ corrections are added to Gutzwiller’
trace formula~e.g., diffracting orbits, creeping orbits, etc.!.
One can easily verify that such approximation yields only
positive contribution, in contrast with our results. This ty
of correction might explain the smooth positive part of t
WL contribution S̄2(t). However, a correct analysis withi
the periodic orbit theory must go beyond the diagonal
proximation, and take into account pairing of orbits that a
not related by symmetry, but have actions exponentia
close, one to the other~up to a constant phasep that is
needed in order to explain the negative contribution of
periodic orbits!. The fact that the WL contribution may be
come negative at certain times implies that the system ex
its antiweak localization at certain regions in phase spa
This may be related to antiscarring effects observed in w
functions of chaotic billiards.31

Nevertheless, our work still elucidates several features
the leading WL effects in ballistic chaotic systems. First,
shows that it appears within a finite interval of time; secon
it has a singular behavior associated with periodic orbits
linear combinations of periodic orbits; third, it can have d
ferent signs at different points in phase space.

These results have important consequences: First,
show that the dominant contribution to the WL, in the ba
listic regime, does not come from the eight-shaped orb
@Fig. 1~c!#, as suggested by the diagrammatic picture. T
main contribution comes from diffracting orbits~which are
not related to the classical periodic orbits of the system!, as
well as from the original periodic orbits of the system. Mor
over, the zero-mode contribution, definingS̄2(t), plays a
dominant role here, while according to the results of t
ballistic s model it should vanish~since the zero mode of th
s model is identical to RMT!. The apparent contradiction
between our results and those of the ballistics model is
probably due to the fact that the ballistics model does not
account correctly for the return probability. This is als
manifested by the so-called ‘‘repetition problem,’’ which is
1-10
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WEAK LOCALIZATION IN DISORDERED SYSTEMS AT . . . PHYSICAL REVIEW B 63 205101
small mismatch, associated with repetitions of periodic
bits, between the exact asymptotic results of periodic o
theory and those of the ballistics model. Ideas associate
with memory effects in long-range random potential32 may
be useful in resolving this problem.
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APPENDIX A: USEFUL INTEGRALS

In this appendix we calculate useful integrals frequen
encountered when calculating diagrams that appear in
paper. The first type of such integrals appear when integ
ing products of retarded and advanced Green functions
the energy. The integral is of the form:

Yn,m5E
2`

`

dhS 1

h1
i

2t
D nS 1

h2
i

2t
D m

,

wheren and m are nonzero integers. Applying the Cauc
theorem, and using the fact that the coefficienta21 of a
Laurent series,( la2 l(z2z0)2 l of a function with an
nth order pole is a215(1/(n21)!)(dn21/dzn21)@(z
2z0)nf (z)#z5z0

, one immediately gets

Yn,m5
2p~m1n22!! i m2nt m1n21

~n21!! ~m21!!
.

The second type of integral appears when integrating o
momenta ind dimensions, e.g. in the calculation of the W
contribution to the free energy~22! in the diffusive limit.
This family of integrals is of the form

I n,d5E ddq

~11q2!n
,

where n is an integer, d is a real number, andddq
5dVqd21 denotes the measure ind dimensions. Since the
integrand is independent of the angles, the angular inte
yields *dV5dpd/2/G(11d/2). This formula should be un
derstood as an analytic continuation of a function defined
an infinite set of integer values ofd. Changing the integration
variable tox5q2 yields
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I n,d5
pd/2d

2G~11d/2!
E

0

`

dx
xd/221

~11x!n

5
pd/2d

2GS 11
d

2D
~21!n21]n21

~n21!! ]bn21

3E
0

`

djE
0

`

dxx(d/2)21e2j(x1b)ub51.

Integrating overx, then changing the integration variable
y5jb, and integrating overy we obtain

I n,d5
pd/2G~d/2!G~12d/2!~21!n21

G~n!G~11d/22n!
.

As the last step, we use the relationG(x11)5xG(x) to
simplify the expression. The result is:

I n,d5pd/2
G~n2d/2!

G~n!
.

We turn now to evaluate the integral that appears wh
calculating diagrams in the ballistic limit, namely the integr
defined by Eq.~24!. It will be calculated in the regime
ux1u,ux2u,1 ~corresponding to the diffusive limit! and then
analytically continued to the full complex plain. It is natur
to substitutez5eiu, which immediately transforms Eq.~24!
into the contour integral

I ~x1 ,x2 ,w!5
22i

px1x2

3 R
uzu51

zdz

S z21
2

x1
z11D S z2e2 iw1

2

x2
z1eiwD

5
22ieiw

px1x2
R

uzu51

zdz

~z2z1!~z2z2!~z2z3!~z2z4!
,

wherezi are

z152
1

x1
1A 1

x1
2

21, z25
1

z1
,

z352S 1

x2
1A 1

x2
2

21D eiw,z45
ei2w

z3
. ~A1!

Only the polesz1 and z3, which lie inside the unit circle,
contribute to the integral. Thus, using the residue theorem
get

I ~x1 ,x2 ,w!5
4

x1x2
F z1

~z12z2!~z12z3!~z12z4!

1
z3

~z32z1!~z32z2!~z32z4!G . ~A2!
1-11
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Finally, we substitute Eq.~A1! in Eq. ~A2! and arrived at
Eq. ~25!.

APPENDIX B: ASYMPTOTICS OF K„m…

In this appendix, we evaluate the integral~31! in the
asymptotic limitm@1 andvt@1. We begin by changing
variables toh5 lq/ i 1vt and taking the leading term in
1/(i 1vt). The result is

K~m!.
1

2p l 2~ i 1vt!
E hJ0S mL

l
~ i 1vt!h Ddh

~h221!3/2
.

Being interested in the leading order expansion in 1/vt, we
further approximate the integral by substituting t
asymptotic formula of the Bessel function:J0(x)
.A2/px cos(x2p/4) asx→`. Representing the cosine as
sum of two exponents we arrive at

K~m!.
1

AmL~2p l !3~ i 1vt!3

3(
6

E hdh

~h221!3/2
e6 i [mL/ l ( i 1vt)h2p/4].

~B1!

The two terms in the above sum will be handled separat
Later, it will become clear, that the leading contribution
the integral comes from the plus-sign term. Therefore, for
time being, we ignore the term with the minus sign. Usi
the Cauchy theorem we can deform the contour of the in
grals such that its direction near the edge ath50 is a
steepest-descent direction. The contour is further deform
to follow steepest-descent curves as illustrated in Fig.
Thus, the contour consists of four segments:~a! from 0 to
i`/(11 i /vt), ~b! the part surrounding the cut,~c! an arc

FIG. 13. The contour of integration for the asymptotic evalu
tion of K(m). It is composed of steepest descent paths~a! and ~b!,
connected by arcs,~c! and~d!, which give vanishing contributions
The dashed lines represent cuts of the integrand in the com
plain ~see Eq. B1!.
20510
y.

e
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connecting these two segments at infinity, and~d! an arc
connecting the end of the~b! path and the original end poin
at (vt2 i )`.

It is straightforward to check that the contribution fro
part ~a! is of order 1/(vt)7/2. This contribution will turn out
to be negligible compared to the one coming from segm
~b!. It is also clear that the contributions of arcs~c! and ~d!
vanish, when their distance from the origin approaches in
ity. Thus, we focus our attention on segment~b!.

To evaluate the integral, we exponentiate the p
exponent factor in Eq.~B1!, and write the integral in the
form

K~m!.
e2 i (p/4)

AmL~2p l !3~ i 1vt!3E eA(h)dh,

where

A~h!5 i
mL

l
~ i 1vt!h2

3

2
ln~h21!.

The steepest-decent contour is found in the usual way: F
one takes the derivative ofA(h) with respect toh,

A8~h!5 i
mL

l
~ i 1vt!23/2

1

h21
,

and find the saddle pointh* , satisfying A8(h* )50. The
result is

h* 5u* 1 iv* 512
3l

2mL~12 ivt!
,

whereu* andv* are real numbers. Second, one substitu
h5(u2u* )1 i (v2v* ), where u and v are real, and solv
for the curve that satisfies the condition

Im@A~h!#5Im@A~h* !#.

The formula for this curve is

v2vu

u1vv2
3

2

5tan
2

3
~vu2v !.

Rotating the axis asx5v2vu andy5u1vv, one obtains

y5
3

2
2

x

tan
2

3
x

.

This exact form shows that the contour can indeed be
formed as shown in Fig. 13. It also provides the possibility
constructing the full asymptotic expansion of the integr
However, in view of the approximations that already ha
been made, we are interested only in the leading term.

Thus, taking the quadratic approximation for the actio
A(h).A(h* )1 1

2 A9(h* )(h2h* )2, with

A9~h!5
3

2

1

~h21!2
,

-

ex
1-12
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and evaluating the resulting Gaussian integral we arrive
Eq. ~32!. Notice that the result is proportional to 1/vt. Thus,
the edge contribution@which is of order 1/(vt)7/2] can be
indeed neglected. This calculation also shows thatA9(h* )
}m2, and therefore the small parameter of this saddle p
approximation is 1/m.
h-
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The contribution of the second term in the sum~B1!, i.e.,
the one with the minus sign, is calculated following along t
same lines. However, it turns out that in this case the
formed contour does not pass through a saddle point, and
only contribution comes from the edge ath50. It is, again,
of order 1/(vt)7/2, and therefore can be neglected.
ing
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