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Weak localization in disordered systems at the ballistic limit
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The weak localization contribution to the two-level correlation functRfw) is calculated for two-
dimensional disordered conductors. Our analysis extends to the nondiffimsilistic) regime, where the
elastic mean path is of order of the size of the system. In this regime, the structureS&gtfthe Fourier
transform ofR(w)] exhibits a singular behavior consisting of dips superimposed on a smooth positive back-
ground. The strongest dips appear at periods of the periodic orbits of the underlying clean system. Somewhat
weaker singularities appear at times that are sums of periods of two such orbits. The results elucidate various
aspects of the weak-localization physics of ballistic chaotic systems.
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[. INTRODUCTION ate for our purpose for the following reason: W&imilar to
localization takes place on a certain manifold in phase

Interference effects, arising from the interplay of phasesspace. For example, in disordered systems, this manifold is
accumulated along different paths, are particularly interestthe real space, while in a circular billiard with rough bound-
ing in ballistic chaotic systems. It is due to the hierarchy ofaries, localization occurs in the angular momentum spce.
importance among the classical trajectories in these systemk} general chaotic systems there is no preferred basis, there-
Long trajectories exhibit a universal statistical behavior,fore, WL may appear on a complicated manifold in the phase
while short ones constitute the dynamical fingerprints of theSpace'’ Yet, transport measurements dictate a preferred ba-
system. The stabléand therefore, usually also the shoyter Sis, and may totally miss the WL physics we seek to de-
the orbit is, the stronger is its signature. This signature apscribe.
pears both in the wave functiotihe scar phenomendnas Nevertheless, interference effects manifest themselves
well as in the statistical properties of the energy spectrum o@!so in the spectral properties of chaotic systems, which are

the Systerﬁ_The purpose of this paper is to Study the ﬁnger-independent of the ChOiC? of basis. Therefore., iﬂ.thiS paper,
prints of the classical periodic orbits on the nature of inter-We shall focus our attention on the WL contribution to the

ference in chaotic systems. simplest nontrivial spectral quantity—the two-level correla-

Our best understanding of quantum interference is in distion function:
ordered systems. In these systems, interference may lead to
the localization of the particle in spatdf, however, the
disorder is too weak to localize the particle, interference
manifests itself as an increase in the return probability com-
pared to the classical value. This effect, known as weak loHere, p(e)=3 ,5(e—€,) is the density of states\ =1/ p)
calization (WL), has been observed by measuring the magdis the mean Spacing between neighboring energy |w@]s
netoresistance of metallic filnfs. and the averaging,, .. .,), is over the disorder configura-
Recent advances in nanostructure technofogyened the tions or the energy.
possibility of manufacturing clean mesoscopic systems— Tg state our problem in this context, consider the density
systems in which the elastic mean-free-phth of order of ¢ states of quantum system with Hamiltonian having a clas-
the size of the systerh. It is natural to ask what is the sjcal chaotic counterpart. Gutzwiller's trace formdlax-
analogue of WL in such ballistic systems? presses the density of states, in the semiclassical limit, as a

Very little is known about this issue, mainly because ofsym over the classical periodic orbits of the system:
the failure of periodic orbit theory to provide a simple sys-

tematic procedure for calculating interferenGee., WL)

corrections. This failure has been one of the main motiva- 1 (i1)5.(6)

tions for constructing the supersymmetric nonlineanodel ple)= A +2 Ape e, @)

of ballistic systemg.The hope was that this model will pro- bo

duce a WL expansion for ballistic systems analogous to that

of disordered systems. However, it turned out that WL cru-wheres,(¢€) is the action of thepth periodic orbit, and?, is

cially depends on the regularization of the field integral, andhe corresponding amplitude depending on the stability of

only specific cases could be worked bifthese are the cases the orbit and its period

where the dynamics is still diffusive or dictated by random  The traditional way of calculating correlators such as Eq.

matrix theory(RMT).° (1), within periodic orbit theory, is to use the so-called diag-
Usually one would choose to study the WL signature inonal approximatiort>? In this approximation, one replaces a

transport properties, because they are naturally related to tliouble sum over periodic orbifsuch as that obtained when

experimental data. However, this choice will be inappropri-substituting Eq(2) in Eq. (1)] by a single sum:

R(w)=A%p(e+hw)p(e)—1. (1)
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© FIG. 2. (a) An illustration of the model used in this paper for
calculating the WL effects in the ballistic limit. The system consists
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of a noninteracting electron gas on a torus with white-noise poten-
tial. This potential is sufficiently weak, such that the elastic mean
free path is of order of the size of the systefln) An equivalent

FIG. 1. (a) and(b) An illustration of pairs of orbits contributing representation of the system as a square with periodic boundary
to the diagonal approximatioria) an orbit with itself,(b) an orbit  cgnditions.

with its time reversed counterpaifc) The eight-shaped periodic
orbits associated with the WL contribution ®(w) in diffusive

wherep is the momentum of the particle is its mass, and
systems.

V(r) is a Gaussian random potential defined by

: 2 :
E ApA*,eI/fz[Sp(eJrhw)7Spr(e)] = 2 |Ap|2€|wrp, _ Sy h .
= p B4 5 (V(r)y=0, and (V(r)V(r )>_—27w75(r r'y. (5
— 2 i ;
where sy () 7c 5 the perod of thpth b, The ra-  HETe 1IN e e averaged densiy of sttes per Lo
tional behind the diagonal approximation is that the coherenf €& IS ! im enng
potential. This system has been considered earlier by Altland

contributions, atw=0, come from pairs of orbitsp,p’) : .
having precisely the same action. Thus, one should pair or‘rZmd Gefeff” and by_ Agam and F'.Shméﬁ’bl"t only in the
framework of the diagonal approximation.

bits with themselvesp=p" [Fig. &)}, as well as with other In analyzing the results of the above model, it will be

orbits related by symmetries such as time-reversal Syrnrnetré’onvenient to use the spectral structure factor defined as
[Fig. 1(b)]. In the absence of other spatial symmetri@sn

the above formula is one for systems with time-reversal sym- P
metry, and two for systems that do not have this symmetry. S(t)= _J doR(w)e 't (6)
The problem of WL in the context of the two-level corre- AJw

lation function can be formulated adow can one improve ) )
on the diagonal approximation to include interference effectdJSingS(t), one can relate the quantum spectral properties of

systematically? the system to the behayior of its clas_sicgl ana_log. In particu-
In seeking the solution of this problem, it is natural to &% S(t) form a connection to the periodic orbits of the sys-
inquire about the situation in disordered systems where thiem: Substituting Eq(3) in Eq. (6) one sees that, within the
systematic interference corrections to the diagonal approxidiagonal approximation, the structure factor takes the form
mation is the “weak localization” expansion. The diagram- ©f & sum over peaks located at times that equal to the periods
matic picture of the WL correction tB(w) suggests that the ©f the classical periodic orbits:
WL contribution is associated with pairs of periodic orbits
crossing themselves at some point in space as shown in Fig.
1(c).** Thus, along one loop, the two orbits propagate in the
same direction, while along the other loop they are in oppo-
site directions. However, such orbits exist only in the presdt has been noticed by Argamaet al!’ that the right-hand
ence of a nonclassical scattering potential, and do not haveside of the above equation can also be interpreted| pét),
direct analog in the periodic orbit theory. wherep(t) is the classical return probability at timeThe
Facing this difficulty, in this paper, we study WL using notion of return probability has been further developed by
disorder diagrammatics but far from the diffusive regime,Chalkeret al. to obtain a more accurate description of the
i.e., when the elastic mean free path is of order of the size d$tructure factor for diffusive electror§.
the system. In this case, the disorder is sufficiently weak, and A disorder potential usually erases thesingularities of
traces of the short periodic orbits of the underlying cleanS(t) associated with the classical orbits of the clean system.
system are still significant. But, if it is sufficiently weak, it will leave traces of them.
We, thus, consider a system consisting of a particle contndeed,S(t) calculated, in the diagonal approximation, for
fined to move on a two-dimensional torus, in the landscapaveak disorder, shows a series of pedksee inset of Fig. B
of a random potential, see Fig. 2. The Hamiltonian of theThe locations of these peaks along the time axis are precisely
system is the periods of the orbits of the clean systeffihese orbits
are defined by pairs of winding numbers that count the times
the trajectory winds around the torus in each direction, see
Fig. 4)

2hA
S="5~ 2 [Al*a(t=1p). v

p2
H=ﬁ+V(r), (4
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ground for our derivation by reviewing the standard results
of disorder diagrammatics in the diffusive limit. This way,

8 we set the basis for extending the diagrammatic approach to
the ballistic regime. In Sec. lll, we derive our central formu-
(1,9) las for the WL contribution tdR( w), and the structure factor
S(t). In Sec. IV, we analyze these results and derive an
asymptotic expression fdg(t). Finally, we summarize and

\ present our conclusions in Sec. V.

II. BACKGROUND
[ /0 : 4
ol ==
0

20 The purpose of this section is to lay the technical back-

th,, ground, and set the nomenclature for the analysis that will be

carried out in the forthcoming sections. We shall review the

FIG. 3. The structure factor of chaotic systems with time- main ideas of disorder diagrammatic technique for diffusive

reversal symmetry. The solid line represents the results of randorgystems-® present the basic building blocks, discuss the ap-
matrix theory. Magnified is the regime where perturbation theoryproximations involved, and the limits of applicability. Fi-

applies and nonuniversal corrections, which are the main focus Oiflally, we summarize the results for the WL contribution to

this paper, are important. Here we depict only the results of theR(w) within RMT framework, and for diffusive systems.

contribution of the “diagonal approximation.” The peaks, indicated These results will form a reference point for the analysis of

by pairs of winding numbers, are the signatures of the periodicy iy the pallistic limit, which will be carried out in the
orbits of the clean systelisee Fig. 4. Both, the Fermi velocity and next section ’

the system sizé are set to unity. The elastic mean free path, in . . . . .
these units, is 1/2,=2=#/A is the Heisenberg time. The dlso.rder dlagrgmmatlc approach fqr Hamiltonians of
the type(4) is an efficient way of constructing the perturba-
) ) o tion expansion, in the weak potenti&l(r), for quantities

_In view of the behavior shown in Fig. 3, and the results ofayeraged over the disorder configurations. Examples of such
disorder diagrammatics, one may naively speculate that thguantities arer-point spectral correlation functions, the mag-
WL contribution to the structure factor adds up in a similarpetic susceptibility, and various properties of the conduc-
way. Namely, it consists of a series of singularities located afance of disordered metals.
periods of the eight-shaped orbits illustrated in Fig) 10ne This diagrammatic approach is a semiclassical approxi-
may also expect this contribution to be positive, as in diffu-mation in which the ratio of the particle wavelengtp to the
sive systems, since it should reflect an increase in the returglastic mean-free-pathis assumed to be small. Therefore, it
probability compared to the classical valie., the diagonal  takes the formal form of an asymptotic series in powers of
approximation. . . 1Kkel, whereke=2m/\¢ is the Fermi wave number. Yet,

However, as we show here, this picture is inaccurate. Inysyally there will also be nonperturbative contributions,

deed, in the ballistic regime, some singularities do appear gjhich are important when trying to resolve features on the
times that can be interpreted as periods of eight-shaped orbitg.51e of the mean level spacidgor over time scales longer
[Fig. 1(¢)]. But these contributions are rather weak. A largeihan the Heisenberg timg,=274/A. Therefore, the appli-
negativecontribution comes from the original periodic or- capjlity range of disorder diagrammatic is also limited to
bits. It is superimposed on a smooth positive background thgfyes smaller than the Heisenberg time, and energies larger
is not related to properties of the clean system. At certaifnan the mean level spacing.
cases, the WL contribution to the structure factor can even agq g first example, consider the average of the retarded
become altogether negative. Thus, in ballistic systems, igreen function:
does not have, necessarily, a definite sign.

To make the paper self-contained, we organized it as fol- 1
lows: In the next section we prepare the mathematical back- G?(k)= T
etin— —V(r)
o1 @€n 12 2m
(a) (b) ©) . . .
Here,(, ...,) denotes an averaging over the configurations

of the disordered potentialy is an infinitesimal positive
number, andp is the particle momentum. Expanding the
Green function in powers df(r), and changing representa-
tion to momentum space yields

FIG. 4. Periodic orbits of a particle moving on a tours are de- G?(k)=Gg(e,k)+G§(e,k)<Vo>G§(e,k)
fined by pairs of integer numbers,(,n,). These “winding num-
bers” count the number of times the trajectory winds around the
torus in thex and in they directions, respectively. Some particular
examples are(a) the orbit(0,1) with lengthL, (b) the orbit(1,1) of
length 22, and(c) the orbit(1,2) of length 5/2L_. +,...,

+ >, GR(e,k)GR(e,k")GR(€,k) (Vi Vi)
k!
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FIG. 5. Example of diagrams contributing to the average Green

function,G?(k) (represented by the bold lipnerhin lines represent
the free Green functiofi.e., in the absence of disordeand dashed
lines represents impurity scatterers.

whereV —1/L2fd2re('/ﬁ)q "'V(r) is the Fourier transform of
the potentlaI(S) and G}(e,k)=1[e+in— (h?k?/2m)] is

FIG. 6. (a) The diagrammatic representation of Dyson’s equa-
tion for the average Green functig8). The bold and thin lines
represents the dressed and the bare Green functions, respectively.
(b) The self energy, given as a sum of irreducible diagrams.

ized near. We assume that this wave packet is composed of

the free Green function. Terms containing an odd number oéigenstates centered at the Fermi enesggnd ranging over
V’s vanish upon averaging, while those having an even numan energy band of widthi/r. In the semiclassical limiti/

ber are calculated by Wick’s theordgsince the potentiaV is

<eg, these conditions imply that the particle velocity is

Gaussiah Thus, the average is equal to the product of averwell defined, and the wave-packet width is of order of the

ages of all possible pairs, such @¢,V_,). The various

terms of this expansion can be represented diagrammaticalfgr finding the particle at pointr’

as shown in Fig. 5.

elastic mean free path,=vgr7. The probability density
after time t is
given by P(r',r;t)=L2U(r’,r;t)|]> where U(r’,r;t)

A partial summation of the infinite series of the diagrams= (r’|e~(/"H{|r: ¢.) is the propagator of the system. Using
in Fig. 5, is achieved using Dyson’s equation, and summathe convolution theorem, one obtains

tion over the irreducible diagranithose that cannot be sepa-

rated into two disconnected diagrams by cutting one internal

propagator line, e.g.(b) (d) and (e) in Fig. 5]. Thus, the
averaged Green function satisfies the relation

GR(k)=GH(e,k)+GR(K)ZGH(e,k), ®)

whereX, is the self energy given by the sum over all irreduc-
ible diagrams, see Fig. 6. To the leading order kell/ 2, is
the contribution of the first diagram in Fig(k§. Thus,

Ezg (VgV_)Go(€,k+0)
p(é) | im

PV(J’ ge Etiyg A

whereP.V. denotes the principle value of the integral. The
real part ofY can be absorbed into the definition of the
reference energy, thus the solution of Dyson’s Eq8)
yields

1
R —
6—6( )+Z_

where e(k)=(%k)?/2m. Similarly, the average of the ad-
vanced Green function is given I/ (k) =[GR(k)]*.
Consider, next, the probability of a particle to arriverto

P(r’,r;t)zhf dwe*i‘”tf deD(r',r;w), 9)

where

D(r' r;0)=L%GR(r',r;ep+hw)GA(r,r';e)), (10)

and GR(r’,r;e) and GA(r’,r;€) are the exact Green func-
tions of the system for particular realization of the disordered

potential. Notice that under our assumptiori(r’,r; )
weakly depends os, therefore, the integration overresults
in a factor off/ .

The diagrammatic expansion oP(r’,r;w) proceeds
along the same lines described above. It is convenient to
perform the calculation in Fourier space, i.e., for

2TVvT

21 L
D(q,w)z( ) Ff dre'® D(r'r'+r;w). (11

The leading contribution t®(q; w), known as thealiffusion
is given by the set of diagrams shown in Figa)7 The
Dyson equation summing this set of diagrams yields

fi 1
27v7 1-1l(w,q)’

D(q,

w)=

in time t, when its initial stater;eg) is a wave packet local- where

T T T ™7
@ VWA = raot ot t ©
~7 —~Tr  ~vr-
(b)MMIV\=T LI A - S d
- —_ L) el (@

FIG. 7. The diagrams of the
diffusion (a) and the Cooperon
(b), and their interpretations as the
contribution of pairs of classical
orbits associated with the retarded
and the advanced Green functions:
(c) An orbit with itself (diffusion)
and (d) an orbit with its time-
reversed counterpat€Cooperoi.

205101-4



WEAK LOCALIZATION IN DISORDERED SYSTEMS A . .. PHYSICAL REVIEW B 63 205101

b Ak N @
H(w’q)_ZWVTf (ZT)ZGe+ﬁw(k+q)Ge(k)’

_h f déde 1 1
- 2mr)] 2w if ih’ b
E+ho—hveqcosh+ — £— — (b)
27 27 qm
(12) h, h.  h,
To obtain the second line of the above formula, we have ‘o q‘of <> + +
expanded K+q)? to linear order ing, and approximated 9 ’
2k-q by 2keq cosf, wherekg is the Fermi wave number, qo
and@ is the angle between the vectérandq. This approxi-
mation is valid whermg<kg . FIG. 8. The Hikami box associated with the interaction between
In the diffusive limit, additional approximations can be diffusions and Cooperonga) Its pictorial view in terms of “clas-
made. Namely, one may use the small parameters sical” trajectories.(b) Its diagrammatic expansion.
gl<l and w7<1, (13

P r’yrvt ZLZ B 25 t—7 y
to expandlI(w,q) in w7, andgl. The result takes the form ( ) 2,;‘ [BI"o( u)
(w,q)=1+iwr—Dg?r, whereD=1%2r is the diffusion

constant, thus where 7, is the time that it takes for the particle to travel
from r to r’ along theuth trajectory. Using classical sum
1 rules, one can sum over the classical trajectdfi@e result
D(q,w)= (14 for diffusive systems is that of the diagrammatic calculation.

27T —iwr+DQ’r This implies that the set of diagrams associated with the
This formula shows that the diffusion is the kernel of thediffusion is equivalent to the diagonal approximation of pairs
diffusion equationzn/ot=DV?2n, wheren(r) is the density  Of orbits as shown in Fig. (). _ _
of particles in real space. The diffusion is, therefore, the In Systems with time-reversal symmetry there is an addi-
classical mode of a disordered system in the limit of longtional classical mode called Cooperon. It comes from the
time (wr<1) and large spatial scale(<1). infinite sum over the maximally crossed diagrams shown in

It is instructive to relate the diffusion to classical orits. Fig- 7(b). These diagrams are obtained by reversing the di-
For this purpose, we turn to calculd®dr, ) using the van- rection of the momentum in one of the Green function lines.
Vleck approximation for the Green functions. A comment is The classical picture of the Cooperon is, therefore, that of an
system with a white-noise potential is unjustified, since the™ig- 7(d). It can be easily checked that the Cooperon has
scattering is not semiclassical. Therefore, here, we assunf¥ecisely the same analytical form of the diffusion.
the disorder potential to be in the form of randomly located  The issue of WL, in the language of diagrammatics, is the
hard scatterers of size larger than the particle wave lengtintéraction between diffusion and Coopron modes. Pictori-

This potential is semiclassical, and produces diffusion orflly. this interaction is the switching between the directions
large scales of time and space. of the momenta of two trajectories, as shown in Figg) 1

The van Vleck formula for the Green function, and &a). The diagrammatic entity accounting for this switch-
GRA(r'r:€) is expressed as a sum over the classicand is the Hikami bo.xz,2 see Fig. &). It is a function of the
trajectoried! from r to r’ with energye: incoming and outgoing momenta and fr_equenmes_ of the dif-
fusion and the Cooperon. For the particular choice of mo-
menta and frequencies shown in Fig(bB one has

1 : )
GR(r',r;e)= > B eli/Msulrrie) h(q,q9',w)=hy+h_+h, , where
NP e
_ R R N~ A, Ay, At
Ao LS gre s g ho=2 GZ.4u(KIGE 1, (k—a=0) Gk a)GL(k—0),
2mh w *
Heres,(r',r;e€) is the classical action of theth trajectory, h = hA h —d e ethohi—a.a e etk
while I§M is the corresponding amplitude that can be inter- 277 1A g6 et i)l 6,056 et ),
preted as the square root of the classical probability to arrive (16)

to r’, after timet, starting fromr. Substituting Eq(15) in

Eq. (10), yieldsD(r',r; w) as a double sum over the classical
trajectories fronr to r’. Approximating the average of this
double sum by the diagonal part, and substituting the result
in Eq. (9) we obtain while

hA
h*':ﬁ.h’lklz(qu,;f'i‘ fiw,e)hi(—q',—Q;ethho,e),
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FIG. 9. Diagrams of the free energy;(w) is the leading con-
tribution associated with the diagonal approximation of the periodi
orbit theory.F,(w) is the WL contribution to the free energy asso-
ciated with the eight-shaped orbits of Figcll Dashed impurity
lines represent large momentum trander1/l, dotted lines repre-
sent small momentum transfler 1/.

hl,xq,q':e,e'>=; GAK)GR (k+9")GY (k+0q).
(17)

The calculation of the above diagrams in the diffusive limit
(13 (the corresponding integrals are provided in Appendix

A), gives

4t

h3A

h(g,9",0)= [D(9°+q'?)—iw].

Having the basic ingredients of the disorder diagrammat
ics, we turn now to calculate the two-level correlation func-

tion defined by Eq. (1.
=Im{TrGR(€)}/ =, we have

Using the relation p(e)

AZ
R(w)= FRG[(TrGR(ewL 0)TrG(e)) —(TrGR(e+ w))
T

X{(TrG*(e))].

PHYSICAL REVIEW B63 205101

F,(w) is the contribution of orbits shown in Figs(al and
1(b), while F,(w) is, in essence, the contribution of the
eight-shape orbits illustrated in Fig(c).

The small parameter of the loop expansid®) is 1/,
whereg is the dimensionless conductance of the systgm.
oty /t. is the ratio of the Heisenberg timg,=27w#/A, to
the classical relaxation time of particles in the systemin
diffusive systemst.=L2/D (known as the Thouless tirfi
is the time that it takes for a classical particle to diffuse
across the system.

The form of the free energyl9) together with Eq.(18)
Cinduces a similar expansion for the two-level correlator:

R(w)=Ri(w)+Ry(w)+Rz(w)+, ...,
where
AZ

32

Rj(w)="— —ReF(0), j=123...,.

27212 Jw?
(20)

Thus,R,(w) is the result of diagonal approximatioRy( )
is the WL contribution, and additional terms give higher WL
corrections.

The leading contribution to the two-level correlation func-
tion R;(w) has been discussed extensively by Altshuler and
Shklovskii?* It is straightforwardly calculated using Eq.
(20). Taking into account the &/symmetry factor of then
ladder diagram defining=,(w) (see Fig. 9 we obtain
Fi(w)=—34In(DeP7—iw7), where the diffusive approxima-
tion (13) has been assumed. Notice that although this sum
does not converge, its second derivative with respeab to
does. Moreover, one can check that, in two dimensions,
Ri(w)=0 for ®>0. Thus, the leading term in this case is
the WL contributior?®

In this paper we focus our attention on the WL contribu-
tion to R(w) of two-dimensional ballistic systems. As a ref-
erence point, however, it will be instructive to review results

This formula can be used as a starting point for diagramof RMT, and disorder diagrammatics in the diffusive limit.
matic expansion. However, it produces a large number ofn both cases, our starting point is the diffusive form of the
diagrams. A convenient way of reducing this number is toWL contribution to the free energfobtained from the dia-
expressR(w) in terms of a generating function that has agrams shown in Fig. )9

simpler diagrammatic expansion. This generating functio
F(w) has been found by Smith, Lerner and Altshutit
satisfies the relation:

2 [72

27212 dw?

R(w)= & (w), (18

and has the form of a free energy. The diagrammatic expa

n
i

% (Dg*—iw)(Dq'?~iw)

A
Fal@)= 72— e

The RMT result corresponds to the zero-mode contribu-
tion (q=qg’'=0) in the above sum, namelf,(w)=
—iAlhmw. It is purely imaginary, therefore, that ECRO)
Nmplies thatR,(w)=0 in the RMT limit. Since RMT ac-

sion of F(w) can be loosely pictured as an expansion in theé;qnts for the universal behavior of the chaotic system, we

number of diffusions and Cooperons loops:
F(w)=Fi(o)+Fyw)+Fz(w)+,...,. (19

Thus, the leading terrr;(w) is the contribution of the one-
loop diagram(see Fig. 9, F,(w) is the two-loop contribu-

conclude thaR,(w) is a purely nonuniversal quantit$.
Turning to the diffusive limit, we first note that the sum in
Eq. (21) diverges logarithmically, even after differentiating
twice with respect tav. Thus, one has to introduce an upper
cutoff on the momentum, which is usually taken to bg 1/

tion (plus two additional terms whose role it is to remove thewherel is the elastic mean free path. As will be shown in the

ultraviolet divergence in the first diagramF;(w) comes
from three-loop diagrams, etéIn the periodic orbit picture,

next section this artificial cutoff can be avoided if the ap-
proximations(13) are not used in the calculations.

205101-6
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To evaluater, in the regime 1.<w<1/7, one can also
use dimensional regularizatidfiReplacing the sums over
andq’ by integrals, and evaluating themdi=2+ % dimen-
sions yields

iwL*A

Folw)=

PHYSICAL REVIEW B 63 205101

(starting from two impurity linesin the ballistic regimé?®
Dyson’s equation, in this case, yields

(w,q)
27vr 1-1l(w,q)’

D(q,0)=

wherell(w,q) is the integral given by Eq12). To avoid the

ddq 1 7
f — - (22
2m)9Dg’—iw
Changing variables from to (iD/w)Y%q and using the for-
mula (see Appendix A

wh expansion inql and w7, here we first integrate ovey (by

closing the contour in the complex plajrand then integrate
over the angled exactly. The result idl(w,q)=1/Q,(q),
where

Qu(@)=V(1-iwn*+(Iq)%

. Thus, the generalized formula for the diffusion is
one arrives at

h 1
- .~ s
Fo(w)= IL°A 2( ! )771"2(_77])&,14”7_ 27vT Q,(q)—1°
hm(4wD)? | 47D A similar calculation for the Cooperon produces the same
R,(w) is now obtained by taking the second derivative withanalytical expression.
respect tow, as follows from Egq.(20). Thus, using The above formula is correct to all orderslih.. It can be
T'(1+ 5/2)T'(— 9/2)= wlsin(— pml2) we have easily checked that an expansion of the denominator of Eq.
(23) in w7 andql, yields the result of the diffusive limitl4).
Am(1+ ) pR(—iw)7 1] The calculation of the Hikami bopFig. 8(b), Eq.(16)], in
> 7 sir > , the ballistic limit, follows along the same lines. Namely, one
2hg°(4mD)7sint(— nml2)I'(1+ 7/2) first integrates over the moduluslofand then the remaining
whereg=4724D/L2A is the dimensionless conductance of @ngular integration is performed exactly. For example, after

the system. Finally, we leg—0, and obtain integration over the modulus &, Eq. (17) reduces to an
integral of the form

D(q, ) (23

Ro(w)=—

1<w<£_ 1 fzw de
T

TP -
g’hw o X1 X2, @)= 50 | (4%, cos)[ 1+ x, Cod 0—9)]"
Note that the domain of validity of the above formula van- (24)

ishes in the ballistic limit since the .clas.sical relaxation timeThe result of the integration over the angldsee Appendix
t. is smaller or equal to the scattering time, A) is

R(w)=Ry(w)=—

1 1 1

I1l. WEAK LOCALIZATION IN THE NONDIFFUSIVE N )
Y1 Y2/ 1+Y1¥2—X1X; COS @)

REGIME

I(X11X21(P):( ’ (25)
In this section we calculate the WL contribution to the ywhere

two-point correlator in the ballistic regime. By ballistic we

refer to the situation in which the elastic mean-free-gath Vi= /1_Xi21

of order of the size of the system?’ To understand what

kind of changes are needed in order to extend the diagram- With the help of this function, the various terms of the

matic calculation into the ballistic regime, recall that the dif- Hikami box[see Eq(16) and Fig. 8b)] take the form:

fusive approximation(13) corresponds to the leading order

result in the small parametéfL (sinceql<<1, qis of order

i=1,2.

2w
h.=— _ 72
13 (1—iwn)*A

ilg; =ilg,

l-iwr'l—iwTt

P12

1/L, andI<L). In the ballistic regime, this approximation

cannot be used, and one has to evaluate integrals, such as

ECIS(lZ) and (16), to all orders inl/L. Moreover, diagrams, Where@lz is the ang|e betweeql and Uz, and

having a small number of impurity lines form the dominant

contribution(unlike in the diffusive regimg therefore, pos- 4r(l—iw7) I, \2 [ g, \? ]

sible cancellations among diagrams, as well as double count-  hg= 3002 ( ) ( ) 201

ing should be examined carefully. The outcome of this ex- nefifoA V2t "\ 2t ]

amination is that diffusions and Cooperons contributing O here

F,(w) should start from two impurity lines. Apart from this

point, the WL contribution is given by the same diagrams _ — 2 2 P

shown in Fig. 9, but evaluated to all ordersl|ii.. fi=V@-ion®+(qh%2, i=12
We begin by deriving an expression for the diffusion Collecting the diagrams df,(w) (Fig. 9) we obtain

205101-7
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7i2A2
Fo(w)= —— >, DiD;

1 1
= —+—+1
47 1.2

ho+ (. +ho)| 5+

where we use the notation

Di=2mvrD(q; ,w)lh,

and the sum is over the vectorg and g,. The periodic
boundary conditions in our system imply trgt=2m7m; /L,
wherem; is an integer vector of two components.

The above formula is our central result. Performing the -5
sum over momenta and substituting it in EQ0) gives the 6
exact WL contribution to the two-level correlation function n=0.3
in the semiclassical limit. The applicability range of our re- 0
sult goes beyond the diffusive limit and includes the ballistic
regime as well. In contrast with the formula in the diffusive
limit (Eq. 21, here the momenta sum converges, and there is 0 5
no need to introduce an arbitrary cutoff or regularization. /L /L
The results that will be shown below were obtained by per-
forming the momenta sum numerically with a cutoff chosen
such that contribution of additional terms is of order of theto the size of the systein The WL effect, in this system, becomes

nurlnerlcal ertr_or. its. it will b ient t | stronger in two limits:(a) the diffusive regime}<L, where the
n presenting our resutts, it will be convenient 1o employ particle approaches localization in real space, @dhe extreme

the spectral structure_ factor defingd in_ [6). We denote by ballistic limit, I>L, where the particle becomes localized in mo-
S,(t) the corresponding WL contribution, mentum space.

FIG. 10. The results for the WL contribution to the structure
factor at various values of the ratio of the elastic mean free path,

h _
Sy(t)= Kf dwRy(w)e™", (260 line is the contribution coming from the zero modg=0q,
=0. Clearly this mode dictates the gross behavioBt).
and rescale its magnitude by a factor ofr%?, whereg In particular, it determines the interval of time where WL is
«ty /t; is the dimensionless conductance of the system. Notsignificant. The dashed line is the result obtained by taking
that in the ballistic regime, the relaxation tiryeis no longer  into account the next lowest momentum modes, i.e., sum-
the diffusion time. It is approximately the traversal time ming overq, andq, within the radiusq; ,q,=< /8. In this
across the systemi,=L/vg wherev is the velocity of the  approximation some additional features 8f(t) are re-
particle, and. is the size of the system. Therefore, from now solved. The solid line is the result of the full momenta sum.

on, we defingy to be Thus, the singular behavior of the structure factor comes
from the tail of the sum.
g= hoe 27) To obtain a simple analytic characterization of the WL
AL contribution to the structure factor, we proceed in the follow-

ing way. First, we derive a formula for the smooth part of

In Fig. 10 we plotSy(t), for various values of the ratio S,(t) given by the contribution of the zeroth mode=q,
between the elastic mean free path and the size of the system.
These values range from diffusivé/lL=0.01) to ballistic , ,
(I/L=1.5) dynamics. Several features $f(t) are evident: 10F - 1
First, the WL contribution appears only within a finite inter- =08 t(1,tcz)24:(t)()c<) HO.1)(11)
val of time. It vanishes both at=0 and whert—oc. Second,
in both limits|<L andl>L the WL contribution diverges.
Third, in the ballistic regimel~L, S,(t) exhibits a distinc-
tive singular behavior consisting of a series of dips. Thesed
dips are located at times that are combinations of periods o
the periodic orbits of the clean system. In Fig. 11 we depict
S,(t) for I=L/2 and indicate the singularities with the cor-
responding combinations of periodic orbits.

°9°S,(t)

ML

IV. ANALYSIS FIG. 11. The weak localization contribution to the structure fac-
tor, in the ballistic regime, exhibits a singular behavior. The singu-
In analyzing the above results, it is instructive to study,jarities are located at times which are linear combinations of periods
first, the convergence behavior of the momenta sum of thgf two orbits of the clean systefisee Fig. 4 Heret(nx,ny):(nﬁ
WL contribution. In Fig. 12 we depict the results f8p(t) +n2)Y2 /v denote the period of the periodic orbit defined by the
calculated in the following approximations: The dash-dottedpair of winding numbersrg,,n,).

205101-8
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where the interval width is defined by\(*)2= [dtS,(t)(t
—t*)2/fdtS,(t). Thus, WL effects, in the ballistic limit, are
pronounced within a time interval of width 2.4@entered at
t=4.24r, and the typical value of the WL contribution is
proportional tor?.

Note that these results are independent of the size of the
system. Therefore the gross behavior$ft) is not influ-
enced by the periodic orbits of the clean system. Is it natural
to ask what is the role of the classical orbits of the system?
As we show below, these orbits lead to the singular features
decorating the smooth part of the structure fac®ft) as

FIG. 12. The convergence behavior of the momenta sum of théiemonstrate_)d n l_:lg._ 12. . ) . .
structure factor in the ballistic regime. The smooth pafash- In analyzing this singular behavior, we first notice that its
dotted is determined by the zero modg,=g,=0. The dashed line Main part comes from large or equivalently large values of
is the result of a sum over momenta within radius of 2:8Bligher ~ the momentay; andq,. Therefore, to calculate this contri-

q terms build up singularities along the time axis as demonstrate®ution, it is sufficient to approximate the discrete angular
by the solid line where the momenta sum extends to radius of 80 sum of F,(w) (over the phase between the vectgisand

g,) by an integral. The small parameter of this approxima-
=0. This formula will give us the main parameters charac-tion is lkw. From Eq.(25) one finds that the angular aver-
terizing the WL contribution in the ballistic limit. Then, we age of the WL contribution to the free energy, denoted by
evaluate the momenta sum in the asymptotic limit of lange F,(w), is
The result of this calculation provide the local behavior of
S,(t) in the vicinity of the singularities. — TA A+B+C

To calculate the smooth part 8(t), denoted hereinafter Falw)= oh Q%2 Q,0,(Q;+Q,)(Q;—1)(Q,—1)°

by §2(t), we start by evaluating the zero mode contribution
to Ry(w). A straightforward calculation of the teroy=q;, where

=0 yields
1 B l-iwT 3
_ APA[5-54w7)?+ 2 wT)*] A TTier BT, T BT
R,(w;q=0 contrib)= 3 3 pavs .
[ 1+ (w7)7] and
Taking, now, the Fourier transform we obtain
Qi=Q.(Ti)-
2
§2(t)= I—e—T T2(13+ 312+ 61+ 6) (28) At asymptotically large values @b 7 the leading contribution
127%g%L2 ’ comes fromC. This is evident once noticing that whesr

_ —o, Q—wr, and thereforeA,B=0(1l/w7), whereasC
wheret=t/7. We remark, here, that the above formula ap-=0(1).
plies only in the ballistic regimel~L, where the zeroth Next we apply the Poisson summation formula to convert
mode is dominant. In both other regimes, the diffustve the sum oveig; andq, into an integral. The free energy is
<L and the extreme ballistit>L the neglect of higher then expressed as
modes for the smooth contribution 8(t) is not justified.
E.g. in the diffusive regime, alff modes within 1/ <q — ()
<1/l give a smooth contribution. ':2(‘0):':2(‘0):;1 F2m, (29

Formula (28) allows one to characterize the major fea- ’

tures of the WL contribution to the structure factor: The timeWherem andn are integer vectors. As will be shown be'ow'

t* whereS,(t) is maximal; its value at this poir®; and the these integer vectors are associated with winding numbers of
width of the time interval where the WL effects are appre-the periodic orbits of the clean system. Each term in formula

ciable W* . The results are (29 is of the form
t* =4.24r, AL
Fimm = — ——(1-iwn)K(mK(n), (30
W* =2.46r,
where
and
=d Jo(mglL
5;;035 |_2:035 22 K(m)=f2—q 2q0( au . (31)
“Lg ' ho) 04T Qy(a)[Qu(q)—1]
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Here, Jo(X) is the Bessel function of zero order, amd  characteristics to avoid the problem of specifying the mani-
=|m| is the magnitude of the vectan. For m=0, this in-  fold on which WL takes place. Indeed, Fig. 10 demonstrates
tegral yields that the WL contribution is pronounced in two limits. Panel
(a) of Fig. 10 is a representative example of the results deep
in the diffusive regimé <L, while panel(b) shows the typi-
cal behavior in the ballistic limit,=1.5_. In both cases, the
system approaches the strong localization limit, but the lo-
Form#0 the integral31) can be calculated using the steep- calization is of a different nature. In the diffusive case, it is
est descents methadee Appendix B and in the largem  |ocalization in real spacéwhereas in the ballistic case, the
limit it gives localization is on a quasi-one-dimensional annulus in the

momentum space(This is evident once noticing that on
. _ (32) clean torus, eigenstates are plain waves, and therefore, the
J72m2 l-ior particle is localized in momentum spack the latter case, it

is suggestive that the effective dynamics is associated with

The above results imply the following form of the struc- Levy flights?® rather than diffusion, since the disorder

1
- 2
K(0) Zwlz(l_in)JrO(l/w).

e32  a-mUl(l-iwn)

e
K(m)~—

ture factor in the ballistic regime: couples, predominantly, momentum states with degenerate
eigenvalues, which may lie far away along the momentum
S 0
Sy(H)~Sy(t)+ >, S (1), annulus®
n,m

A simple semiclassical interpretation of our results, within
periodic orbit theory, is not straightforward. The results,
clearly, cannot be obtained from a diagonal approximation in

2 L which higher-orderi corrections are added to Gutzwiller's
—|> Ot—t,,|t2%e trace formula(e.g., diffracting orbits, creeping orbits, etc.
9 One can easily verify that such approximation yields only a

is the contribution associated with orbits characterized by th@0sitive contribution, in contrast with our results. This type
winding vectors n and m. Here, T=t/7, t,,=(n of correction might explain the smooth positive part of the
. ’ ’ nm

+m)L/ve, and®(x) is the step function. The amplitude of WL contribution S,(t). However, a correct analysis within
each contributionB,,,, depends on the valuesandm. For ~ the periodic orbit theory must go beyond the diagonal ap-
cases where either or m vanish,Bo= B, ;=€%%1227% proximation, and take into account pairing of orbits that are
while if n andm are large Bnm263/144ﬁ2;74_ not related by symmetry, but have actions exponentially
Thus, S,(t) is composed of a smooth contributi¢gag) ~ CloSe, one to the othefup to a constant phase that is
and a sequence of singular functions, of the formneeded in order to explain the negative contribution of the
—t2e~(=tmd/7@ (t—t,. ), wheret,, is the period of a com- Periodic orbity. The fact that the WL contribution may be-
posite orbit, i.e., the sum of periods of two periodic orbits of ©©Me Negative at certain times implies that the system exhib-
the clean system. Each singular contribution is negative, anti antiweak localization at certain regions in phase space.
its magnitude at time, ., is proportional tot2 e~ tmn/7/|4 This may be related to antiscarring effects observed in wave
mn "

. . oy 1
The contribution associated with single orbit®., when ei- funﬁtlonstr?flchaotlc b|II|arkd§£_" ucidat | eat .
thern or mvanish is considerably larger than that of com- evertneless, our work stll elucidates several leatures o

posite orbit(in which bothn andm differ from zerg. In any the leading .WL effects ?n .baIIis.tic.: chaotic systgms_. First, it
case, the singular contribution decreases exponentially iﬁhows th‘f"t It appears v_v|th|n af'h"e mtgrval Of. time; sgcond,
time , and as a power law inll{whenL<l). This behavior '.t has a S'”g.“'a'f behavior gsspmatgd _W'th pe'I’IOdIC orbits ".’md
is indeed observed in Figs. 10, 11, and 12. linear cc_me|nat|c_>ns of per|_0d|c_orb|ts, third, it can have dif-
ferent signs at different points in phase space.
These results have important consequences: First, they
show that the dominant contribution to the WL, in the bal-

In this paper we have calculated the WL contributions toliStic régime, does not come from the eight-shaped orbits
the two-level correlation function and its Fourier transform,[Fig- 1C)], as suggested by the diagrammatic picture. The
the structure factor. These are the leading quantum interfefin contribution comes from diffracting orbitavhich are
ence effects that affect the spectral statistical properties dot related to the classical periodic orbits of the systeas
the system defined in E¢4). well as from the original periodic orbits of the system. More-

Our theory generalizes previous calculations of the WLover, the zero-mode contribution, definirg(t), plays a
contribution to the spectral statistics of diffusive systéins dominant role here, while according to the results of the
by extending them into the ballistic regime where the elastidallistic o model it should vanisksince the zero mode of the
mean-free pathis of order of the size of the system Here o model is identical to RMT. The apparent contradiction
the disorder is weak enough to leave traces of the dynamidsetween our results and those of the ballisticmodel is
of the underlying clean system, which appear as singularitieprobably due to the fact that the ballisic model does not
in the structure facto(Figs. 10, 11, and 12 account correctly for the return probability. This is also

Our paper has focused on spectral rather than dynamicahanifested by the so-called “repetition problem,” which is a

where

SS™(t)=—Bom

V. SUMMARY AND CONCLUDING REMARKS

205101-10



WEAK LOCALIZATION IN DISORDERED SYSTEMS AT . .. PHYSICAL REVIEW B 63 205101
small mismatch, associated with repetitions of periodic or- 7924 o di2—1
bits, between the exact asymptotic results of periodic orbit
theory and those of the ballistie model. Ideas associated
with memory effects in long-range random poteriiahay

be useful in resolving this problem. _

X
'”'dzzr(1+d/2) 0 dx(1+x)n

7Td/2d (_1)n71&n71

d _ | n—-1
2r| 1+ 5| (NP
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APPENDIX A: USEFUL INTEGRALS —
gp L (N—d72)

I'(n)

. . . lhg=
In this appendix we calculate useful integrals frequently nd= "

encountered when calculating diagrams that appear in this

paper. The first type of such integrals appear when integrat- We turn now to evaluate the integral that appears when

ing products of retarded and advanced Green functions ove&alculating diagrams in the ballistic limit, namely the integral

the energy. The integral is of the form: defined by Eq.(24). It will be calculated in the regime
[X4],|X2| <1 (corresponding to the diffusive limitand then
analytically continued to the full complex plain. It is natural

” n m A
v :f dy 1 : 1 : ’ to substitutez=e'?, which immediately transforms E¢24)
SR b i into the contour integral
K™ 27 )
—2i
. . I(XllXZI(p):
wheren and m are nonzero integers. Applying the Cauchy TX1X2
theorem, and using the fact that the coefficiant; of a d
Laurent series,3ja_(z—z,)~' of a function with an % ﬁ; 2dz
nth order pole is a_;=(1/(n—1))(d""YdZ" H[(z l7=1 22+32+1 Sa-iey EHGW
—zo)“f(z)]Z:Zo, one immediately gets X1 X
—2ie'¢ 3g zdz
_ m— +n—1 — 1
v 2m(mtn= 2t XX J1-1(2-21)(2-20) (2~ 2) (2 24)
n,m (n—1)!(m—1)!
wherez; are
The second type of integral appears when integrating over 1 1 1
momenta ind dimensions, e.g. in the calculation of the WL z=——+\/5-1 2=,
contribution to the free energ§22) in the diffusive limit. X1 X1 2

This family of integrals is of the form

1 [1 . e'2¢
Z3=—|—+\/—=—-1]|e%z,=—. (A1)
f diq ° X2 X3 Yz
A= | T oo o L
) (1+g)" Only the polesz, and z;, which lie inside the unit circle,
contribute to the integral. Thus, using the residue theorem we

where n is an integer,d is a real number, andiq  9e€t
=dQq® ! denotes the measure thdimensions. Since the

integrand is independent of the angles, the angular integral 1(Xq, %, 0)= 21

yields fdQ=d#%T(1+d/2). This formula should be un- Lo X1X2 [ (21— 22)(21—23) (21— 24)
derstood as an analytic continuation of a function defined on

an infinite set of integer values df Changing the integration + 3 ) (A2)
variable tox=q? yields (23— 21)(23—2,) (23— 24)

205101-11
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FIG. 13. The contour of integration for the asymptotic evalua-
tion of K(m). It is composed of steepest descent paghsand (b),
connected by arcgg) and(d), which give vanishing contributions.
The dashed lines represent cuts of the integrand in the compl
plain (see Eq. Bl

Finally, we substitute Eq(Al) in Eq. (A2) and arrived at
Eq. (25).
APPENDIX B: ASYMPTOTICS OF K(m)

In this appendix, we evaluate the integr@l) in the
asymptotic limitm>1 andw7>1. We begin by changing
variables ton=I1q/i+ o7 and taking the leading term in
1/(i+w7). The result is

mL
nJo(l—(l+wT)7l)d77

(772_ 1)3/2

1

U P Er—

J

PHYSICAL REVIEW B63 205101

connecting these two segments at infinity, gug an arc
connecting the end of thi) path and the original end point
at (wr—i)o.

It is straightforward to check that the contribution from
part(a) is of order 1/g7)"’% This contribution will turn out
to be negligible compared to the one coming from segment
(b). It is also clear that the contributions of an@s and (d)
vanish, when their distance from the origin approaches infin-
ity. Thus, we focus our attention on segméii

To evaluate the integral, we exponentiate the pre-
exponent factor in Eq(B1), and write the integral in the
form

e i(m4)

T UmL2a) it @)

K(m)

f eA(”’])d 7,

e\gyhere

.mL 3
A(77)=||—(|+w7')77—§|n(77—1).

The steepest-decent contour is found in the usual way: First,
one takes the derivative @&(#) with respect toz,

A’ L 3/2 !
(7])—||—(|+w7)— —
and find the saddle poing*, satisfyingA'(#%*)=0. The
result is
*=u*+iv*=1——3|
n 2ml(l-iw7)’

whereu* andv* are real numbers. Second, one substitutes
n=(u—u*)+i(v—v*), where u and v are real, and solve

for the curve that satisfies the condition

Being interested in the leading order expansion 7/we
further approximate the integral by substituting the
asymptotic formula of the Bessel functionJy(x)

=/2/mx cosk—ml4) asx—o0. Representing the cosine as a
sum of two exponents we arrive at

K(m)=

JmL27)3(i+w1)®

>

The two terms in the above sum will be handled separately,
Later, it will become clear, that the leading contribution to
the integral comes from the plus-sign term. Therefore, for th
time being, we ignore the term with the minus sign. Using

ndn

eii[lel(i+wT)nf‘n'/4].
(7]2_ 1)3/2

(B1)

grals such that its direction near the edgeat0 is a
steepest-descent direction. The contour is further deform

Thus, the contour consists of four segmerigs: from 0 to
ioo/(1+i/w7), (b) the part surrounding the cutc) an arc

205101-

the Cauchy theorem we can deform the contour of the intep

Im[A(7)]=Im[A(7*)].

The formula for this curve is

v—wU

3
u+wv—§

2
—tang(mu—v).

Rotating the axis ag=v — wu andy=u+ wv, one obtains

B 3 X
y=3 o2
an§x

This exact form shows that the contour can indeed be de-
formed as shown in Fig. 13. It also provides the possibility of

onstructing the full asymptotic expansion of the integral.
owever, in view of the approximations that already have

een made, we are interested only in the leading term.
Thus, taking the quadratic approximation for the action:

AN =A(7*)+3A"(7*)(n— 7*)?, with
to follow steepest-descent curves as illustrated in Fig. 13.

n 3
A'(n)=3

Lt
(p—1)%

12
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and evaluating the resulting Gaussian integral we arrive at The contribution of the second term in the sy#l), i.e.,

Eqg. (32). Notice that the result is proportional toud#. Thus,  the one with the minus sign, is calculated following along the
the edge contributiofiwhich is of order 1/ 7)? can be same lines. However, it turns out that in this case the de-
indeed neglected. This calculation also shows #dtr*) formed contour does not pass through a saddle point, and the
«m?, and therefore the small parameter of this saddle poinonly contribution comes from the edge at=0. It is, again,

approximation is Ih. of order 1/@7) ", and therefore can be neglected.
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