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Optical matrix elements in tight-binding calculations
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Calculations of the optical properties of solids require knowledge of momentum matrix elements. Within the
tight-binding method, these are not readily available since wave functions are expanded in an unknown basis.
A popular solution to this problem is based on taking thek-space gradient of the tight-binding Hamiltonian.
This technique was previously claimed to be exact, but is in fact only approximate since intra-atomic contri-
butions are emitted. We highlight the reason for this misconception. By comparison to exact results from a
simple model it is demonstrated, however, that thek-gradient term provides a good approximation to the
interatomic contribution. Subsequently, we demonstrate that adding ak-independent intra-atomic term to the
momentum matrix leads to excellent agreement with exact results for momentum matrix elements and dielec-
tric spectra.
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I. INTRODUCTION

Tight-binding calculations of the electronic properties
solids have become increasingly popular ever since the w
of Slater and Koster.1 The method was originally develope
as a simplified method for the description of localizedd-band
electronic states. It is, however, quite general provided
adequate basis set is adopted and it has been shown that
highly delocalizeds-p states are accurately described in t
non-orthogonal version of the tight-binding scheme.2 Hence,
the method combines versatility and simplicity. In additio
under the assumption of transferability of the Slater-Kos
parameters, the method is readily applied to systems w
broken translational invariance such as low-dimensio
structures and clusters.3 Among the quantities, which ar
successfully calculated by the tight-binding approach,
elastic constants, phonon spectra, vacancy formation en
and surface energy2,4 as well as cluster formation energie
and magnetic moments.5

The application of tight-binding methods to optical pro
erties of bulk materials dates back several decades. Am
the earliest examples, dielectric spectra of semiconduc
were calculated by Dresselhaus and Dresselhaus6 and photo-
emission spectra of metals were calculated by Smith usin
scheme combining tight-bindingd orbitals and plane-wave
s-p orbitals.7 The calculation of optical properties is consi
erably more complicated since momentum matrix eleme
~MMEs! between initial and final states in the entire fir
Brillouin zone are needed in addition to the band structu
In Refs. 6 and 7 this complication was circumvented by
‘‘substitution’’ p→(m0 /\)¹kH (m0 being the free-electron
mass! which relates the momentum operator to the Hamil
operator. Hence, once the matrix elements ofH are deter-
mined from a fit to the experimental band structure or a fi
principles calculation, the MMEs are readily available.
Ref. 6 this substitution was introduced as an approxima
whereas its usage in Ref. 7 was regarded as exact. L
work has added to this confusion. Xu8 and Chang and
Aspnes9 derived expressions for MMEs between Bloch sta
in terms of MMEs between atomic states localized on
same atom~intra-atomic! or states localized on neighborin
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atoms~interatomic!. By exploiting symmetry arguments th
number of independent parameters was greatly redu
From a fit to an empirical pseudopotential calculation, Cha
and Aspnes obtained intra-atomic MMEs for GaAs, whi
exceeded interatomic ones.9 Quite surprisingly, a work by
Lew Yan Voon and Ram-Mohan,10 which was later extended
by Graf and Vogl,11 then claimed to provide solid proof fo
the substitutionp→(m0 /\)¹kH in tight-binding calcula-
tions. Apart from computational convenience, the con
quence of such a proof would be that intra-atomic MM
must be exactly zero, as argued by Cruz and co-workers12

In the present paper, we aim to resolve this confusion
~i! highlighting the source of the erroneous conclusions
Refs. 10 and 11, and by~ii ! providing a direct comparison o
the approximate tight-binding results with exact results fro
a model for which an analytical solution exists. The simp
one-dimensional Kronig-Penney model is applied for t
purpose. As a starting point, we briefly repeat the derivat
of the tight-binding MMEs following the line in Ref. 12. To
this end we consider a general tight-binding eigenstate,

un,k&5(
a

cna~k!ua,k&; ua,k&5
1

AN
(
R

eik•Rua,R),

~1!

whereR is the lattice vector,N is the number of lattice sites
and ua,R) is an atomic orbital centered at positionR and
characterized by the labela. This label specifies the symme
try of the orbital (s, p, etc.! and, in the case of severa
atoms per unit cell, accounts for the relative position with
the unit cell. For simplicity, this case will not be explicitl
considered here, but all results may readily be generalize
cover this case as well. The basic assumption of Ref. 1
that the overlap between atomic orbitals on differe
sites is negligibly small. In this situation, it follow
that (b,R8ur ua,R)5$Rdab1dba%dRR8, where dba
5(b,0ur ua,0) is the intra-atomic contribution. These tw
terms, in turn, produce two contributions to the MME via t
commutator relationp5 im0 /\@H,r #, i.e.,
©2001 The American Physical Society01-1
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^n,kupum,k&5
im0

\N
(
a,b

cnb* ~k!cma~k! (
R,R8

eik•~R2R8!

3~R2R8!~b,R8uHua,R!

1
im0

\N
(
a,b

cnb* ~k!cma~k!

3 (
R,R8

eik•~R2R8!(
g

$~b,R8uHug,R!dga

2dbg~g,R8uHua,R!%. ~2!

By substituting eik•(R2R8)(R2R8)52 i¹ke
ik•(R2R8) and

utilizing the fact thatHun,k&5En,kun,k& the relation above
reduces to

^n,kupum,k&5
m0

\
(
a,b

cnb* ~k!cma~k!¹k^b,kuHua,k&

1
im0

\
$En,k2Em,k%(

a,b
cnb* ~k!cma~k!dba .

~3!

It is the latter, intra-atomic term, which is claimed to b
exactly zero in Refs. 10 and 11. It is quite clear from t
above derivation that this is not the case, however. Also
this claim were correct it would imply that all MMEs in
periodic system of well-separated atoms should vanish. T
is because the gradient¹k^b,kuHua,k& vanishes in a system
of well-separated atoms due to the lacking overlap betw
orbitals or, equivalently, due to the perfectly flat bands o
tained in this case. This clearly demonstrates that
‘‘proofs’’ of Refs. 10 and 11 are false and it also highligh
the source of the error: only interatomic transitions a
treated ink space in the tight-binding formalism. Henc
only these contributions to the MME are retained using
substitutionp→(m0 /\)¹kH. The erroneous conclusions o
Refs. 10 and 11 can be traced to the implied ‘‘operator id
tity’’ r52 i¹k . While this relation clearly holds for matrix
elements between basis states of the formun,k&5eik•run&,
with un& independent ofk, it is in fact incorrect for tight-
binding basis states of the form given in Eq.~1!. This is
readily seen from the matrix element of the difference

^b,ku~r1 i¹k!ua,k&5(
R

eik•R~b,0u~r2R!ua,R!, ~4!

which does not vanish. In fact, if the separation betwe
atoms is much greater than the spatial width of the ato
orbitals so that we may neglect all inter-atomic contributio
in Eq. ~4! it follows that

^b,ku~r1 i¹k!ua,k&'~b,0ur ua,0!5dba . ~5!

Hence, the missing term is precisely the intra-atomic con
bution in this case. In a connected paper, Boykin13 has re-
derived the erroneous results of Refs. 10 and 11 by expa
ing of the phase-factor of the electromagnetic fieldeiq•r in
the tight-binding basis. In Eq.~15! of this paper, however
the author incorrectly uses an argument concerningk-vector
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conservation to exclude intra-atomic coupling by the fie
which explains the agreement with Refs. 10 and 11.

II. KRONIG-PENNEY MODEL AND TIGHT-BINDING
APPROXIMATION

We now turn to a comparison between approximate a
exact results for which we consider the one-dimensio
Kronig-Penney model,14 which provides quasi-analytical re
sults for the band structure as well as MMEs. Subsequen
a two-state tight-binding description is fit to the Kronig
Penney model allowing approximate tight-binding MMEs
be derived. By comparison to the exact result, the accur
of the p→(m0 /\)¹kH substitution may then be assesse
The Kronig-Penney model is the simplest electronic mo
incorporating a periodic potential. It is comprised of a ser
of potential wells of widtha separated by barriers of widthb
and heightV0 , c.f. Fig. 1. A virtue of this simple model is
that the coupling between neighboring wells can be adjus
to resemble both strong-coupling (b!a) and weak-coupling
(b;a) situations. The band structure relating an eigenva
E to a wave numberk is obtained from the dispersio
relation14

cos~kL!5cosh~k0b!cos~k1a!1
k0

22k1
2

2k0k1

sinh~k0b!sin~k1a!,

~6!

where L5a1b, \k05A2m0(V02E), and \k15A2m0E.
Throughout, we only consider the lowest and first excit
band and in order to adhere to usual notation these are
noted the ‘‘s’’ and ‘‘ p’’ bands, respectively. An example o
these band states is shown in Fig. 1.

We now introduce the tight-binding approximation to th
Kronig-Penney model. To fit the two bands we use a tw
state basis formed by the ‘‘atomic’’s and p states, i.e., the
two lowest eigenstates of an isolated potential well. If w
restrict ourselves to interactions between nearest neigh
the two-state Hamiltonian is given by

HJ5S ES12ESScos~kL! 2iESPsin~kL!

22iESPsin~kL! EP12EPP cos~kL!
D

[S HSS iH SP

2 iH SP HPP
D . ~7!

Hence, neglecting the complications arising from non
thogonal basis states, the tight-binding approximation
uniquely determined by the five parametersES , EP , ESS,
EPP , andESP. By requiring an exact match to the Kronig

FIG. 1. The one-dimensional Kronig-Penney potential and the two lo
est Bloch states.
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Penney eigenvalues atkL50 andkL5p, all parameters bu
the last are determined. Since only a single parameter is
we cannot require an exact match to both eigenvalues
e.g., kL5p/2. However, we have found that the followin
expression forESP approximately minimizes the total erro

ESP5 1
4 @Ep/2

2 2Ep/2~ES1EP!1ESEP#1/2, ~8!

where Ep/2 is the lowest Kronig-Penney eigenvalue atkL
5p/2. This expression corresponds to half the value nee
to matchEp/2 exactly. As an example of the agreement b
tween the exact calculation and the tight-binding approxim
tion we have plotted the two band structures in Fig. 2. T
parameters used in the figure (a58 Å andb51 Å! represent
a strong-coupling case and the fit is seen to be quite satis
tory. The fit can be improved by the inclusion of overla
parameters but these are neglected here.

In order to distinguish between the different contributio
to the MME we introduce the notationpk5(m0 /\)]H/]k.
The matrix elements of this operator are readily obtain
from the eigenvectors of the tight-binding approximati
Hamiltonian Eq.~7!,

^1,kupku2,k&5
2 i

~HSS2E1,k!
21HSP

2 S iH SP

HSS2E1,k
D

3S m0

\
HSS8 i

m0

\
HSP8

2 i
m0

\
HSP8

m0

\
HPP8

D S HPP2E2,k

iH SP
D ,

~9!

whereE1,k and E2,k are the eigenvalues and the prime de
ignates]/]k. The eigenvectors have been chosen so a
make the result real-valued. Obviously, the MME in Eq.~9!
approaches zero as the separation between potential we
increased sinceHSS8 , HPP8 , andHSP8 vanishes if there is no
overlap between adjacent ‘‘atomic’’ orbitals.

III. COMPARISON AND RESULTS

From the solution of the Kronig-Penney model the ex
MME is available. Hence, a direct comparison between ex

FIG. 2. The exact band structure obtained from the solution to
Kronig-Penney model~solid lines! in comparison to the fitted tight-binding
approximation~dashed lines!.
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and approximate results is possible. In Fig. 3 the results
shown for a strong-coupling (a58 Å andb51 Å! case and
weak-coupling (a58 Å and b54 Å! case. The MME ob-
tained from Eq.~9! is shown as the curve labeled ‘‘tigh
binding.’’ Clearly, there is a significant discrepancy with th
exact result. It may be noticed that the shapes of the tig
binding curves are similar to the exact results but displa
vertically. The discrepancy is especially pronounced in
weak-coupling case. In this situation, the tight-binding MM
is close to zero as expected from the above arguments. C
versely, the exact result is essentially equal to the MM
obtained for an ‘‘intra-atomic’’ transition betweens and p
states belonging to the same potential well. Hence, the
tical displacement simply represents the omitted intra-ato
term. It is noted that the displacements in the weak- a
strong-coupling cases are approximately equal in agreem
with this explanation.

A much better approximation to the exact MME may
obtained by explicitly adding an intra-atomic contribution
the momentum operator. In fact, Eq.~3! shows that the intra-
atomic correction has an explicitk dependence due to th
presence of the factorEn,k2Em,k . For simplicity, however,
we neglect this dependence and simply add ak-independent
term to the momentum matrix. With this modification th
matrix element reads

p12~k!5
2 i

~HSS2E1,k!
21HSP

2 S iH SP

HSS2E1,k
D

3S m0

\
HSS8 i

m0

\
HSP8 2iPSP

2i
m0

\
HSP8 1iPSP

m0

\
HPP8

D•SHPP2E2,k

iH SP
D

5^1,kupku2,k&1
HSP

2 2~HSS2E1,k!
2

HSP
2 1~HSS2E1,k!

2
PSP. ~10!

e

FIG. 3. Comparison between exact, tight-binding, and corrected tig
binding momentum dispersion curves. Notice the constant vertical displ
ment of the tight-binding curves.
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We adjustPSP by fitting to the exact MME atkL50. The
curves obtained in this way are shown as the dashed
labeled ‘‘corrected tight-binding’’ in Fig. 3. The agreeme
with the exact results is improved dramatically. In fact, ov
all errors are now generally less than a few percent. The e
is slightly larger if extreme strong-coupling cases are con
ered and, conversely, the error is essentially zero in
weak-coupling regime. Hence, by adding an intra-atom
contribution, a reliable tight-binding scheme for calculatio
of optical properties is obtained. It should be noted that t
modification amounts to introducing a singlek-independent
number. Hence, the added complication of the correc
model is not a serious one.

As a demonstration of the implications for actual calcu
tions of optical properties we turn to the dielectric respon
We assume that the Kronig-Penney model describes a s
conductor electronic system with the lower and upper ba
filled and empty, respectively. As the model is on
dimensional the results apply immediately to simplistic c
culations for, e.g., quantum wires with a periodic poten
along the direction of the wire. We expect the trends to
generally valid, however. For simplicity, we limit our stud
to the imaginary part of the dielectric constant given by

« I~v!5CE
2p/L

p/L up12~k!u2

$~E21~k!2\v!21~\g!2%E21
2 ~k!

dk, ~11!

whereE21(k)5E2,k2E1,k , \g50.1 eV is the linewidth and

FIG. 4. Normalized spectra of the imaginary part of the dielectric c
stant for the three different models. The example illustrates the cas
strong coupling between neighboring potential wells.
hy
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C is a material dependent constant. In Fig. 4 a compari
between exact, tight-binding and corrected tight-bindi
spectra is shown. As expected, the agreement between
exact and corrected tight-binding curves is excellent. T
characteristic broadened square-root singularity around
band-gap energy is seen in all three curves. When norm
ized by the maximum value, the dielectric spectra all agre
this spectral range since the peak position is solely de
mined by the band gap. At higher photon energies, howe
the uncorrected tight-binding curve deviates significan
from the exact result. This is a consequence of the incor
momentum dispersion curve. At this point we wish to stre
that the uncorrected tight-binding calculation may, in fact,
a reasonable approximation for real solids provided int
atomic coupling is sufficiently strong that interatomic tran
tions are the dominating ones. As an example, the pre
authors have found the uncorrected tight-binding method
be in reasonable agreement with a pseudopotential calc
tion for Si. This agrees with Ref. 12, in which the intra
atomic term was found to contribute only 25% to the abso
tion in porous Si. Generally, the intra-atomic contribution
expected to be less important for transitions between (s,p)
bands than for transitions involvingd bands due to the local
ized nature of the atomicd orbitals.

IV. CONCLUSION

In this paper, the question of how momentum matrix e
ments~MMEs! are obtained in tight-binding calculations
addressed. It is stressed that the substitutionp
→(m0 /\)¹kH for the momentum operator is generally in
valid since it completely neglects intra-atomic transitions.
order to judge the error, we have compared exact MM
obtained from a one-dimensional Kronig-Penney model
matrix elements of (m0 /\)¹kH calculated within the tight-
binding approximation. In this manner, it is demonstrat
that a significant error is introduced by omitting the intr
atomic contribution. The discrepancy increases with
separation between neighboring potential wells since
leads to an increasingly dominating intra-atomic contrib
tion. We find, however, that by adding ak-independent intra-
atomic term to the momentum matrix, agreement with
exact results is restored. This correction should generally
prove tight-binding calculations of the optical properties
real solids.
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