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Optical matrix elements in tight-binding calculations
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Calculations of the optical properties of solids require knowledge of momentum matrix elements. Within the
tight-binding method, these are not readily available since wave functions are expanded in an unknown basis.
A popular solution to this problem is based on taking khspace gradient of the tight-binding Hamiltonian.

This technique was previously claimed to be exact, but is in fact only approximate since intra-atomic contri-
butions are emitted. We highlight the reason for this misconception. By comparison to exact results from a
simple model it is demonstrated, however, that kigradient term provides a good approximation to the
interatomic contribution. Subsequently, we demonstrate that addinm@ependent intra-atomic term to the
momentum matrix leads to excellent agreement with exact results for momentum matrix elements and dielec-
tric spectra.
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[. INTRODUCTION atoms(interatomig. By exploiting symmetry arguments the
number of independent parameters was greatly reduced.
Tight-binding calculations of the electronic properties of From a fit to an empirical pseudopotential calculation, Chang
solids have become increasingly popular ever since the worgnd Aspnes obtained intra-atomic MMEs for GaAs, which
of Slater and Kostet.The method was originally developed exceeded interatomic on&LQuite surprisingly, a work by
as a simplified method for the description of localizedand ~ Lew Yan Voon and Ram-Mohal,which was later extended
electronic states. It is, however, quite general provided a®y Graf and Vogf,* then claimed to provide solid proof for
adequate basis set is adopted and it has been shown that eBf substitutionp—(mg/%)VH in tight-binding calcula-
highly delocalizeds-p states are accurately described in thetions. Apart from computational convenience, the conse-
non-orthogonal version of the tight-binding schehtéence, quence of such a proof would be that intra-atomic MMEs
the method combines versatility and simplicity. In addition, must be exactly zero, as argued by Cruz and co-worKers.
under the assumption of transferability of the Slater-Koster In the present paper, we aim to resolve this confusion by
parameters, the method is readily applied to systems withi) highlighting the source of the erroneous conclusions of
broken translational invariance such as low-dimensionaRefs. 10 and 11, and ki) providing a direct comparison of
structures and clustefsAmong the quantities, which are the approximate tight-binding results with exact results from
successfully calculated by the tight-binding approach, ar@ model for which an analytical solution exists. The simple
elastic constants, phonon spectra, vacancy formation ener@pne-dimensional Kronig-Penney model is applied for this
and surface energy as well as cluster formation energies PuUrpose. As a starting point, we briefly repeat the derivation
and magnetic moments. of the tight-binding MMEs following the line in Ref. 12. To
The application of tight-binding methods to optical prop- this end we consider a general tight-binding eigenstate,
erties of bulk materials dates back several decades. Among
the earliest examples, dielectric spectra of semiconductors

were calculated by Dresselhaus and Dressefhang photo- _ 1 R
emission spectra of metals were calculated by Smith using a |”’k>:§a: Cno(K)|a k), |a k)= N ER: e“Rla,R),

scheme combining tight-binding orbitals and plane-wave 1)

s-p orbitals’ The calculation of optical properties is consid-

erably more complicated since momentum matrix elements

(MMEs) between initial and final states in the entire firstwhereR is the lattice vectorlN is the number of lattice sites,
Brillouin zone are needed in addition to the band structureand |@,R) is an atomic orbital centered at positiéh and

In Refs. 6 and 7 this complication was circumvented by thecharacterized by the label This label specifies the symme-
“substitution” p—(mgy/%)V,H (mg being the free-electron try of the orbital &, p, etc) and, in the case of several
mas$ which relates the momentum operator to the Hamiltonatoms per unit cell, accounts for the relative position within
operator. Hence, once the matrix elementsHofire deter- the unit cell. For simplicity, this case will not be explicitly
mined from a fit to the experimental band structure or a firsiconsidered here, but all results may readily be generalized to
principles calculation, the MMEs are readily available. Incover this case as well. The basic assumption of Ref. 12 is
Ref. 6 this substitution was introduced as an approximatiothat the overlap between atomic orbitals on different
whereas its usage in Ref. 7 was regarded as exact. Lateites is negligibly small. In this situation, it follows
work has added to this confusion. Xwand Chang and that (8,R'|r|a,R)={Ré&,z+dg,}0rr, Where dg,
Aspnes derived expressions for MMEs between Bloch states= (3,0[r|«,0) is the intra-atomic contribution. These two
in terms of MMEs between atomic states localized on theerms, in turn, produce two contributions to the MME via the
same aton{intra-atomig or states localized on neighboring commutator relatiop=imgy/A[H,r], i.e.,
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est Bloch states.
By substituting e R"RI(R-R")=—iV,e'k (R"R') and
utilizing the fact thatH|n,k)=E, ,|n,k) the relation above
reduces to

conservation to exclude intra-atomic coupling by the field,
which explains the agreement with Refs. 10 and 11.

Il. KRONIG-PENNEY MODEL AND TIGHT-BINDING

m
(nk|p|m,k)= ;" 3, chalk)Crna(K) V(B KIHlar k) APPROXIMATION

We now turn to a comparison between approximate and
mo exact results for which we consider the one-dimensional
+ —{Enx— Em,k}Z c:B(k)cma(k)dﬁa. Kronig-Penney modé! which provides quasi-analytical re-
h @p sults for the band structure as well as MMEs. Subsequently,
(3)  a two-state tight-binding description is fit to the Kronig-
It is the latter, intra-atomic term, which is claimed to be Penney model allowing approximate tight-binding MMEs to

. ) . be derived. By comparison to the exact result, the accuracy
exactly zero in Refs. 10 and 11. It is quite clear from thg f the p— (mg/h)V,H substitution may then be assessed.

apove Qerivation that this is not Fhe case, however. A_Iso, MThe Kronig-Penney model is the simplest electronic model
this claim were correct it would imply that all MMES in @ jncorhorating a periodic potential. It is comprised of a series
periodic system of well-separated atoms should vanish. Thigs potential wells of widtha separated by barriers of width

is because the gradieW(B,k|H|a,k) vanishes in a system anq heightv,, c.f. Fig. 1. A virtue of this simple model is

of well-separated atoms due to the lacking overlap betweeghat the coupling between neighboring wells can be adjusted
orbitals or, equivalently, due to the perfectly flat bands ob+g resemble both strong-coupling<a) and weak-coupling
tained in this case. This clearly demonstrates that thgh~a) situations. The band structure relating an eigenvalue
“proofs” of Refs. 10 and 11 are false and it also highlights E to a wave numberk is obtained from the dispersion
the source of the error: only interatomic transitions arerelationt
treated ink space in the tight-binding formalism. Hence,

. . . . 2 2
only these contributions to the MME are retained using the B ko—ki :
substitutionp— (my/#)V,H. The erroneous conclusions of COSKL)=costikeb)cosk,a)+ ok k sinfCkob)sin(k,a),
Refs. 10 and 11 can be traced to the implied “operator iden- o (6)

tity” r=—iV,. While this relation clearly holds for matrix
elements between basis states of the fomk)=e'k|n), ~ WhereL=a+b, 7ko=y2mo(Vo—E), and 7k, =y2meE.
with |n) independent ok, it is in fact incorrect for tight- Throughou_t, we only consider the lowest qnd first excited
binding basis states of the form given in Ed). This is banddarr:d ‘lrlordc?r“tq, atl)dhedre to usual n?tatlon theselarefde-
readily seen from the matrix element of the difference ?hoége ;[)aendsstaaTes ig Shg\?vnsi,nr?:sig'eflve y- An example o
We now introduce the tight-binding approximation to the
(ﬁ,k|(r+in)|a,k)=2 eik~R(3,o|(r_R)|a,R), (4 Kronig-Penney model. To fit the two bands we use a two-
R state basis formed by the “atomic§ and p states, i.e., the
which does not vanish. In fact, if the separation betweer;[w0 !owest eigenstates of an isolated potential well. .lf we
atoms is much greater than the spatial width of the atomi restrict ourselves to interactions between nearest neighbors

orbitals so that we may neglect all inter-atomic contributions(fhe two-state Hamiltonian is given by

in Eq. (4) it follows that - (Egt+2EgscogkL) 2iEgpsin(kL)

H iH
Hence, the missing term is precisely the intra-atomic contri- z( S8 SP). )
bution in this case. In a connected paper, BoYkimas re- —IHsp Hep

derived the erroneous results of Refs. 10 and 11 by expandHence, neglecting the complications arising from nonor-
ing of the phase-factor of the electromagnetic fielti" in  thogonal basis states, the tight-binding approximation is
the tight-binding basis. In Eq15) of this paper, however, uniquely determined by the five paramet&s, Ep, Esgs,

the author incorrectly uses an argument concerkitvgctor  Epp, andEgp. By requiring an exact match to the Kronig-
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FIG. 2. The exact band structure obtained from the solution to the E \ ________
Kronig-Penney mode(solid lineg in comparison to the fitted tight-binding 5 o2l corrected
approximation(dashed lines é tight-binding
01}
Penney eigenvalues kt. =0 andkL= 7, all parameters but tight-binding
the last are determined. Since only a single parameter is left 00
we cannot require an exact match to both eigenvalues at,

e.g.,.kL=m/2. However, we have found that the following 0 m/2 4

. . S Wavenumber kL
expression folEgp approximately minimizes the total error: _ _ o _
FIG. 3. Comparison between exact, tight-binding, and corrected tight-

_1rp2 12 binding momentum dispersion curves. Notice the constant vertical displace-
=7 — + + . -
Esp=3[ Bz~ Enn(EstEp) +EsEp]™, (8) ment of the tight-binding curves.

where Eorro is the Io_vvest Kronig-Penney eigenvalue et nd approximate results is possible. In Fig. 3 the results are
= /2. This expression corresponds to half the value needeg,;\\n for a strong-couplinga=8 A andb=1 A) case and

to matchE ., exactly. As an example of the agreement be‘weak-coupling 4=8 A andb=4 A) case. The MME ob-
tween the exact calculation and the tight—bindir]g a_pproximatained from Eq.(9) is shown as the curve labeled “tight
tion we have plotted the two band structures in Fig. 2. Theyinding.” Clearly, there is a significant discrepancy with the
parameters used in the figure£8 A andb=1 A) represent exact result. It may be noticed that the shapes of the tight-
a strong-coupling case and the fit is seen to be quite satisfaginding curves are similar to the exact results but displaced
tory. The fit can be improved by the inclusion of overlap vertically. The discrepancy is especially pronounced in the
parameters but these are neglected here. weak-coupling case. In this situation, the tight-binding MME
In order to distinguish between the different contributionsis close to zero as expected from the above arguments. Con-
to the MME we introduce the notatiopy,= (mg /%) oH/ k. versely, the exact result is essentially equal to the MME
The matrix elements of this operator are readily obtainedbtained for an “intra-atomic” transition betweenand p
from the eigenvectors of the tight-binding approximationstates belonging to the same potential well. Hence, the ver-

Hamiltonian Eq.(7), tical displacement simply represents the omitted intra-atomic
term. It is noted that the displacements in the weak- and
—ij iHsp strong-coupling cases are approximately equal in agreement
(1K|py|2K)= — (H E ) with this explanation.
(Hss—Eqp)*+Hgp! T'ss™ =1k A much better approximation to the exact MME may be

obtained by explicitly adding an intra-atomic contribution to

@H,ss i@H’SP the momentum operator. In fact, E§) shows that the intra-
h ) Hpp— Eoy atomic correction has an explickt dependence due to the
x m m ( iHsp ) presence of the factd, \—E, . For simplicity, however,
—j _o|-|’SP _°|-|’PP we neglect this dependence and simply addimdependent
h h term to the momentum matrix. With this modification the
(99  matrix element reads
whereE;, andE,) are the eigenvalues and the prime des- —i iHgp
ignatesd/dk. The eigenvectors have been chosen so as tBlZ(k): (Hss Eq)%+ H%P(HSS_ El,k)
make the result real-valued. Obviously, the MME in E®). '
approaches zero as the separation between potential wells is @H’ i@H’ _ip
increased sincelss, Hpp, andH4p vanishes if there is no nooSS i TSP Hpp—Eyy
overlap between adjacent “atomic” orbitals. X m ( iHgp ' )
—i—H{HPsp  —Hpp
IIl. COMPARISON AND RESULTS h
i i HéP_(HSS_Elk)Z
From the solution of the Kronig-Penney model the exact =(1K|pi2K)+ “ Pep. (10)

MME is available. Hence, a direct comparison between exact H§p+(Hss— E1,k)2
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1.0

- - C is a material dependent constant. In Fig. 4 a comparison
a=8A,b=1A,V,=5ev between exact, tight-binding and corrected tight-binding
exact i spectra is shown. As expected, the agreement between the
;, -~ tight-binding exact and corrected tight-binding curves is excellent. The
06 A corrected TB characteristic broadened square-root singularity around the
band-gap energy is seen in all three curves. When normal-
ized by the maximum value, the dielectric spectra all agree in
this spectral range since the peak position is solely deter-
mined by the band gap. At higher photon energies, however,
the uncorrected tight-binding curve deviates significantly
' _ from the exact result. This is a consequence of the incorrect
#iw [eV] momentum dispersion curve. At this point we wish to stress
that the uncorrected tight-binding calculation may, in fact, be
FIG. 4. Normalized spectra of the imaginary part of the dielectric con-g reasonable approximation for real solids provided inter-
stant for the_ three different_ mode_ls. The e_xample illustrates the case Oétomic coupling is sufficiently strong that interatomic transi-
strong coupling between neighboring potential wells. tions are the dominating ones. As an example, the present
authors have found the uncorrected tight-binding method to
be in reasonable agreement with a pseudopotential calcula-
§dn for Si. This agrees with Ref. 12, in which the intra-

with the exact results is improved dramatically. In fact over-atomic term was found to contribute only 25% to the absorp-
P y: ' tion in porous Si. Generally, the intra-atomic contribution is

f"l” errors are now generally less than a few percent. The er.roéxpected to be less important for transitions betwegp)(
is slightly larger if extreme strong-coupling cases are consid;

. : ; bands than for transitions involvirdjbands due to the local-
ered and, conversely, the error is essentially zero in th

: . . : zed nature of the atomid orbitals.
weak-coupling regime. Hence, by adding an intra-atomic

contribution, a reliable tight-binding scheme for calculations
of optical properties is obtained. It should be noted that this IV. CONCLUSION
modification amounts to introducing. a ging{éndependent In this paper, the question of how momentum matrix ele-
number. Hence, the added complication of the correctedenis(MMES) are obtained in tight-binding calculations is
model is not a serious one. addressed. It is stressed that the substitutign
~Asa demonstratlon_of the implications for act_ual Calcma'—»(molﬁ)VkH for the momentum operator is generally in-
tions of optical properties we tum to the dielectric responsey g since it completely neglects intra-atomic transitions. In
We assume that the Kronig-Penney model describes a seMirder to judge the error, we have compared exact MMEs
qonductor electronic system with the lower and upper b"’mdébtained from a one—din%ensional Kronig-Penney model to
filled and empty, respectively. As the model is one- .. elements of i, /%) V(H calculated within the tight-
dimensional the results apply immediately to simplistic cal-p;jing approximation. In this manner, it is demonstrated
culations for, €.g., quantum wires with a periodic potentialy\a+ 4 gignificant error is introduced by omitting the intra-
along the d|rgct|on of the W|re._We_ expect the_trends to b‘:'atomic contribution. The discrepancy increases with the
generally valid, however. For simplicity, we limit our study goaraion between neighboring potential wells since this
to the imaginary part of the dielectric constant given by leads to an increasingly dominating intra-atomic contribu-
tion. We find, however, that by adding<eindependent intra-
L Ip12(k)|? dk, (11) atomic term to the momentum matrix, agreement with the
' exact results is restored. This correction should generally im-
prove tight-binding calculations of the optical properties of
whereE,;(k)=E,x—E;x, Ay=0.1 eV is the linewidth and real solids.

0.8

1, max

0.4

g (w)/ g

0.2

We adjustPgp by fitting to the exact MME akL=0. The
curves obtained in this way are shown as the dashed on
labeled “corrected tight-binding” in Fig. 3. The agreement

8'(“’)=CJw/L{<E21<k>—hw>2+(ﬁy>2}E§1(k>
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