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Model-independent inversion of x-ray or neutron reflectivity data
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~Received 30 October 2000; published 26 April 2001!

A technique is described for the model-independent analysis of x-ray or neutron reflectivity data. Rather than
trying to find just one optimum solution, the idea is to find the set of solutions that are feasible. The approach
is based on inversion of the missing phase information using a feasible set approach coupled with a genetic
algorithm search for the set of solutions. It does not require previous knowledge of the chemical constituents
or any type of initial model, thus adding a higher degree of objectivity to the analysis. The algorithm is tested
on both simulated data and observed data. Issues regarding inversion problems and multisolution algorithms,
such as the uniqueness of the solutions, are also briefly discussed.
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X-ray or neutron reflectivity is one of the standard tec
niques for the analysis of surfaces and interfaces. Hithe
methods available for the analysis of reflectivity data ha
been limited and vary considerably in efficiency. More
this technique and its application can be found in the revie
by Als-Nielsen,1 Penfold and Thomas,2 and Als-Nielsen and
Kjaer.3 The most common approach is a least-squares re
ment that starts with boxlike scattering-length-density pro
models and that requires a suitable initial model. Note tha
the initial model is not close to correct, refinement tec
niques may converge to the wrong solution. Several mo
independent techniques have also been developed and
plied with some success, such as maximum entrop4,5

simulated annealing,6 cubic B splines,7 and parametricB
splines.8 Drawbacks include the computationally intensi
nature of some of these techniques and their lack of relia
ity. In addition, these approaches do not take into account
possibility of multiple solutions, which, as discussed belo
is an important issue. Some of these methods have bee
viewed in papers by Lovell and Richardson9 and Lu, Lee,
and Thomas.10 We should also note that the majority of th
work in this field is directed toward neutron reflectivity. I
part, this is because of the added advantage of changing
contrast using the deuteration of selected layers.11 In this
note, we describe a simple and powerful model-independ
method for the fast analysis of x-ray or neutron reflectiv
data and the reconstruction of the scattering-length-den
~SLD! profile that finds not simply one solution, but a set
feasible solutions that match the experimental data. In
sence, rather than relying upon a good guess for the in
model, the method finds the set of feasible models that
consistent with the data. This set can then be used fo
subsequent least-squares refinement. This is the same
egy that has been used for many years to solve the cry
lographic phase problem~e.g., Ref. 12!, and has also bee
used recently with success to solve surface structures~e.g.,
Refs. 13–15!.

We will focus on x-ray reflectivity, noting that the sam
algorithm can be used for neutron reflectivity in almost
cases. For cases involving SLD profiles of smaller exte
reflectivity can be treated kinematically.3 For an infinitely
sharp interface, the Fresnel reflectivity (RF) can be ex-
pressed as
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RF~Q!5U~Q2Q8!

~Q1Q8!
U2

, ~1!

whereQ andQ8 are the moduli of the scattering vectors
vacuum and in the material, respectively. The measured
flectivity R(Q) is related to the ideal reflectivityI (Q) by

I ~Q!5R~Q!/RF~Q!5U E
2`

` dr~z!

dz
exp~ iQz! dzU2

, ~2!

where r(z) is the SLD profile. Thus, provided that devia
tions from a kinematical approximation are negligible, x-r
reflectivity is a classical phase problem in one dimensi
The basic character of such problems has been extens
discussed in the literature.16 We have applied a methodolog
outlined by Combettes17 ~see also Refs. 18–20! to our ap-
proach to the phase problem in the case of x-ray reflectiv
The mathematical background for the approach, at least
convex problems, is now quite well understood~see Refs. 17
and 19! albeit mathematically complicated, and it differs
both strategy and concept from more classical methods s
as refinements or Lagrangian methods. One of the esse
points in this method is to determine all admissible ‘‘a priori
information’’ about the system and exploit it. Such inform
tion is used as constraints during the solution by describin
in terms of sets. For x-ray and neutron reflectivity, there
four constraints acting onr(z), the charge density as a func
tion of positionz:

~i! r(z) is positive, ~except for a few cases in neutro
reflectivity!.

~ii ! For the medium above the reflecting surface, gener
vacuum, the value ofr(z) is known.

~iii ! In the bulk material below the reflecting surface,r(z)
is also known.

~iv! An upper bound to the value ofr(z) is usually avail-
able.

A common issue in constrained phase determination pr
lems is the uniqueness of the solutions. If the reflectiv
problem is of ‘‘compact support,’’ i.e., outside of some pa
ticular region the derivativedr(z)/dz is zero, and this is the
only constraint on the problem, it is known that a multiplici
of solutions exist.16 Even with the additional constraints it i
not clear that a unique solution exists for the reflectiv
©2001 The American Physical Society14-1
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problem~i.e., an analytic proof!. However, we do know tha
there will be a set of plausible solutions forr(z). If we can
find this set, these can then act as the initial models
subsequent final refinement via a least-squares approac
other words, this set of solutions will act as the initial mod
input and a degree of objectivity can be imparted to the p
cess, limiting the guesswork and eliminating the issue
uniqueness of the solutions.

The solution method combines two separate algorithm

~a! The first finds a solution from some initial startin
point ~some of the phases!. For this we used a method o
iterative orthogonal projections~see below!.

~b! The second is a global search algorithm to find the
of plausible solutions. This is achieved by employing a g
netic algorithm.15

The first algorithm involves projecting an initial estima
onto two constraint sets; a flow diagram is given in Fig.
Given m independent constraints, a feasible solution lies
the intersection ofm constraint sets.17–20In our case we con-
sider two sets: one in real space, the second in recipr
space. The first setS1 consists of all solutions that obey th
constraints onr(z), a real space object. The second setS2 is
the set of solutions whose moduli are equal to those m
sured experimentally. These sets can be expressed m
ematically as

S15$r~z!ur~z!PR1; Dmax>r~z!>0; r~z!5Dsub,

zPsubstrate;r~z!50, zPvacuum% ~3!

S25H r~z!: UF S dr~z!

dz D U2

5I 0~Q!J . ~4!

Here I 0(Q) is the observed ideal reflectivity data as a fun
tion of the reciprocal coordinateQ, Dmax the maximum pos-
sible normalized density in the SLD profile,Dsub the normal-
ized substrate density, andF is the Fourier transform. A se
is termedconvexif all points on the line connecting any tw

FIG. 1. Flow chart of the phase retrieval algorithm used
analyzing x-ray reflectivity. The algorithm as a whole involves t
projection onto set principles and a genetic algorithm.
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elements of the set are also members of the set. ThereforS1
is a convex set whileS2 is a nonconvex set.17–20 In terms of
orthogonal projections, we can construct an iterative met
as

rn~z!5T21P2TP1rn21 , ~5!

where rn is the current estimate ofr(z) and rn21 is the
previous estimate ofr(z). P1 andP2 are relaxed orthogona
projection operators, defined by Eqs.~6! and ~7!. T is the
operator for differentiation and Fourier transformation, a
T21 is its inverse.P1 andP2 can be expressed by

P1r~z!55
0, zPvacuum

r~z!, 0<r~z!<Dmax

~12d1!r~z!, r~z!,0

Dmax2~d221!r~z!, r~z!.Dmax

Dsub, zPsubstrate

~6!

and

P2Tr~z!5AI 0~Q!F Tr~z!

uTr~z!uG , ~7!

where

Tr~z!5F S dr~z!

dz D ~8!

andd1 andd2 are scalar constants~overrelaxation17–20! be-
tween 1 and 2.P2 corresponds to the correction of the obje
at the (n21)th iteration,rn21 , with the observed moduli
@5AI 0(Q)#, andP1 is the correction for the real-space co
straints. For completeness, we have only used orthog
projections implicitly with a classical Hilbert spaceL2 met-
ric; this could be generalized to use Bregman functions
generalized projections.19

To implement the algorithm, we start with a guess for t
complex structure factorsF0(Q), where

F0~Q!5AI 0~Q! exp@ if~Q!# ~9!

and f(Q) are the unknown phases for which values a
sought. It is only necessary to define initial phases for
strongest 10–20 % of measuredI 0(Q) values. Using
F0(Q)50 for the unset values in the first cycle, values f
the others are generated automatically at the end of this p
On any particular guess for the phases, the system of suc
sive orthogonal projections described above~see also Fig. 1!
is performed until there is essentially no change in the o
put. A mathematical figure of merit~FOM! is then calculated
as a recovery criterion, defined by

FOM5
( uFn~Q!2Fn21~Q!u21( zuFn~Q!u2AI 0~Q!z2

2( uFn~Q!u2
,

~10!

r
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FIG. 2. Test SLD profiles:~a!
Two-box model, ~b! three-box
model, ~c! multilayer model, and
~d! four-box model. The dotted~or
dashed! curves represent the origi
nal model, and the full curves in
dicate models with the roughnes
applied.
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whereFn(Q) andFn21(Q) are the moduli and phase for th
nth and (n21)th iterations, respectively. In the ideal ca
without noise this FOM is exactly zero for any phase valu
that satisfy the constraints. However, since the problem
not convex~setS2 is not convex!, there may be many rathe
different phases that give small to zero values for the FO
One therefore has to perform a global search to find the se
f(Q) values that give small FOM values, this set being
feasible set of solutions for the problem. For this a gene
algorithm ~GA! was used to implement a global search
find the best set of phases. Successive projections onto
constraint sets refine the initial phaseslocally, but within the
GA a global optimization is achieved by a method similar
‘‘natural selection,’’ which favors phases with better FO
values. Phases with good FOM values are chosen as ‘‘
ents’’ for the next generation of ‘‘children.’’ The outpu
from the algorithm is a solution set in which the solutions a
listed in an ascending order with regard to their FOM’s. T
first solution, or top solution, has the lowest FOM and
considered to be the most plausible solution to the probl
Details on phase restoration using GA’s and FOM selec
can be found elsewhere in papers by Carmodyet al.21 and
Marks and Landree.22 For completeness, we should mentio
that care and use of sharing algorithms23 are required to find
the set of feasible solutions rather than just one or two s
tions.

The approach we are using may at first appear rather c
plicated and similar to existing methods, but differs fro
them in several important aspects. First, our use of set
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define the character of constraints and solutions allow
proper, rigorous mathematical formulation of the proble
For instance, recognition thatS2 is nonconvex means that w
can unconditionally state that multiple solutions m
exist—in other words, there is no guarantee that the refl
tivity problem has a unique solution. Second, and more
portantly, the approach intrinsically accounts for this po
sible nonuniqueness. If two~or more! solutions exist, our
approach will find them. It is also worth stressing that t
algorithm requiresonly three pieces of information:~a! the
density of the substrate,~b! an upper limit~which does not
need to be very accurate! for the density of the surface ma
terial, and~c! an upper bound to the width of the surfac
material.

No prior assumptions are required regarding the form
the film density, except that it is positive and real. The out
will be a set of solutions ranked in terms of how well the
match the known information.~These solutions can then b
used as the initial models for refinements.! In some cases
particularly with large measurement errors, there may w
be several quite different solutions that all match the c
straints; in this case, unless some can be excluded on ph
cal grounds, the reflectivity measurements are intrinsica
nonunique.

In order to examine the algorithm and solution metho
several test models were prepared:~a! a two-box model and
~b! a three-box model@Figs. 2~a! and 2~b!#, simulating a
monolayer of fluorocarbon amphiphilic molecules on wat
~c! a multilayer model@Fig. 2~c!#, modeled after five alter-
4-3
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ERMAN BENGU, MONICA SALUD, AND L. D. MARKS PHYSICAL REVIEW B 63 195414
nating layers of Pt and Si on a SiO2 substrate; and~d! a
four-box model@Fig. 2~d!#, to scrutinize the uniqueness is
sue. A Gaussian interface roughness ofs53.0 Å was used
for all interfaces in the models. The ideal reflectivity curv
for the models were simulated kinematically and are sho
in Fig. 3. The algorithm was set to search and reconstruct
phases for the largest 20 or 40 reflections@values ofI 0(Q)#
of a total of 500~20 for two- and three-box and 40 for fou
box and multilayer models!. The input consisted of simulate
ideal reflectivities, the reciprocal space constraint setS2 , and

FIG. 3. Simulated ideal reflectivity curves for the models
Fig. 2.
19541
n
e

the real space constraint setS1 . The fundamental challeng
in using three- and two-box models is that in the lowQ
region (Q,0.6 Å21) the two-box and three-box models d
not have significant differences in the ideal reflectiv
curves, as shown in Fig. 3. The results, consisting of the
solutions for these cases, given in Figs. 4~a! and 4~b!, indi-
cate that the algorithm was able to differentiate betwe
these cases and match the original models very well—ne
exactly, if corrected for the displacements observed~indi-
cated byD in the figures!. A displacement in real space co
responds to a systematicphase shiftin reciprocal space with
respect to the correct phases, which does not affect the s
of the solution, changing only the relative position of th
solution with regard to a reference point. The displacem
for the two-box solution is measured to be around 1 Å, wh
that of the three-box model is approximately 2.5 Å. Th
insignificant effect can be overcome by implementing stric
real-space constraints in the algorithm; however, we h
chosen not to do so for simplicity. Smaller displacements
also observed for the top solutions for multilayer and fo
box models, given in Figs. 4~c! and 4~d!.

The multilayer model is included to inspect the applic
bility of the algorithm to the analysis of ultrahard multilaye
coatings and similar stratified media. In reality, the reflect
ity from such a system is better explained using dynam
modeling24 due to the effects of multiple scattering betwe
the layers. The top solution for the multilayer model displa
-
e
t
-

n

n

FIG. 4. Solutions for the test
SLD profiles:~a! Two-box model,
~b! three-box model, ~c!
multilayer model, and~d! four-
box model. The full curves indi-
cate SLD profiles and the dash
dotted curves represent th
solutions found using the presen
technique. The displacements, in
dicated by aD, in the solutions are
discussed in the text. The arrow i
~c!, the solution for the multilayer
model, indicates the deviations i
the low-density regions from the
original model.
4-4
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MODEL-INDEPENDENT INVERSION OF X-RAY . . . PHYSICAL REVIEW B63 195414
several deviations from the original model, especially in
low-density regions, indicated by an arrow in Fig. 4~c!; how-
ever, the shape and the width of the high-density layers
correct. This result suggests that to the extent that reflecti
from a multilayer can be approximated kinematically, t
solutions from the algorithm can be used as starting po
for a least-squares method. This case was also repeated
ting phases of the 20 largest values ofI 0(Q). Although in
general the solutions are very encouraging, the reconst
tion of the low-density layers is not as good.

The final simulated case, the four-box model, is used
examine the uniqueness question inherent in both multis
tion algorithms and the inversion problem. As shown in F
2~d!, several step heights and lengths are nearly ident
Stepsa– f and c–d are designed to have no more than
25% difference between their heights. The same is true
step lengthsb ande. Such near-degeneracy of features in t
model makes the accurate reconstruction of the step he
and lengths harder, enabling the possibility of structures w
a combination of identical features positioned differently
have nearly identical calculated reflectivity curves. The m
feasible~top! solution for the four-box case, shown in Fi
4~d! indicates that the algorithm performed very well. T
deviations from the original model are minimal, and all
the features are positioned correctly, thus indicating no
parent signs of problems associated with the uniquenes
the solution.

The ability of this algorithm to obtain a multiplicity o
solutions that obey the applied constraints was tested s
rately on another two-box model. SLD profiles of eight
the top solutions given in a typical trial are compared in F
5~a!, where it is clear that a number of plausible solutio
with differing features have been reconstructed. For eac
these, both a FOM as given in Eq.~10! and a calibration
figure of merit~CFOM! that compares the solution phases
those of the original simulation, are calculated. The CFO
and FOM for 250 solutions are plotted in Fig. 5~b!. In the
CFOM, defined as

CFOM5
( $Fn~Q!u12cos@fn~Q!2fn0~Q!#u%

2( Fn~Q!

,

~11!

fn0(Q) represents the phase generated by the simulatio
the ideal reflectivity curve from a box model and would n
be known in an experimental case; however, in examin
our algorithm, we use the CFOM as a measure of the s
ability of the FOM in determining the fitness of a solutio
Two branches of solutions@labeledA andB in Fig. 5~b!# are
visible, each of which corresponds to a particular set of si
larly shaped solutions as shown in Fig. 5~a!. Within a given
family, individual solutions differ from each other only sub
tly and primarily by the aforementioned phase shift, and th
may be treated as a single ‘‘quasisolution.’’ In general, it
found from our observations of the two- and three-box S
profiles generated by our algorithm that the number of q
sisolutions in such cases, while greater than one, is sma
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The final phase of this study consisted of applying t
algorithm to the analysis of data from the x-ray reflectiv
study of fluorocarbon amphiphile perfluorododecyl aspart
~PFA! monolayers on water by Jacquemainet al.25 The data
consist of four sets, Fig. 6, acquired under the followi

FIG. 5. ~a! Multiple solutions generated in a single trial of th
algorithm. SLD profiles are displaced along the density axis
clarity. ~b! CFOM vs FOM for 250 different solutions.

FIG. 6. Experimental data from the x-ray reflectivity study
PFA monolayers on water@by Jacquemainet al. ~Ref. 25!#: s,
water1KOH solution, pH511.2, p530 mN m21; 3, pure water,
p528 mN m21; h, pure water,p513 mN m21; 1, water1CsOH
solution,pH511.1,p530 mN m21.
4-5
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FIG. 7. Solutions using the experimental da
for ~a! pure water,p513 mN m21, ~b! pure wa-
ter, p528 mN m21, ~c!water1KOH solution,
pH511.2,p530 mN m21, ~d! water1CsOH so-
lution, pH511.1,p530 mN m21.
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conditions:~I! pure water, surface pressurep513 mN m21;
~II ! pure water, high pressurep528 mN m21; ~III ! basic so-
lution ~KOH! with pH511.2,p530 mN m21; ~IV ! basic so-
lution ~CsOH! with pH511.1,p530 mN m21. The original
analysis of the data sets from the PFA/water system is g
by Jacquemainet al.25 using a least-squares refinement.
addition, Pedersen7 has also analyzed the same data set us
a method involving a profile correlation function. In gener
the solutions for the SLD for the PFA/water system fro
both studies resembles the three-box case examined ea
although the two-box case is also very similar.

In this analysis, again only the phases of the 20 m
intense reflections were varied in the algorithm, although
whole set contained a total of 31 reflections as shown in F
6. The reflectivity values forQ/Qc,1 in the data sets ar
greater than unity, probably originating from instrumen
resolution or other issues with data acquisition. The top
lutions for the data set on pure water are shown in Figs. 7~a!
~low pressure! and 7~b! ~high pressure!. The solution for the
low-pressure data set indicates a lower roughness in
agreement with the previous results.7,25 There is a marked
difference between the roughness of the low-pressure s
tion and the rest of the solutions that are from data sets w
much higher surface pressure~;30 mN m21!. However,
there are two problem areas in the solution as shown in
7~a! ~1! the kink at the PFA-water interface and~2! the hump
in the surface region. The cause for these can be a comb
tion of the following, among other possibilities: nonuni
beam intensities forQ/Qc,1 and/or placement of the con
straints regarding regions where SLD is zero. Although
top solution for the high-pressure case does indicate the p
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ence of a similar kink~artifact 1! in Fig. 7~b!, the rest of the
solutions do not. The head group for the low-pressure so
tion is visible around 19 Å, which does agree well with th
length of the PFA molecule~19.6 Å! calculated previously,25

allowing for molecular tilt and other effects. The head gro
for the high-pressure solution, Fig. 7~b!, is much more pro-
nounced than that for the low-pressure case, similar to th
by Jacquemainet al.25 The position for the head group i
around 20.5 Å.

The major difference between the high-pressure solu
and the solution for the KOH1water case, Fig. 7~c!, is the
positioning of the extra density for the head group. This fe
ture is around 19.5 Å below the zero reference point for
KOH1water solution. The same feature is found to be f
ther pronounced, and at 21 Å below the surface in the
solution for CsOH1water case shown in Fig. 7~d!. The pre-
vious values reported by Jacquemainet al.25 and Pedersen7

agree well with these values.
In summary, a method for the analysis of x-ray reflectiv

data has been developed. This method is based on the re
struction of the missing phase information through metho
known both in the image recovery field and in x-ray cryst
lography. This technique involves application of the feasi
sets approach to the retrieval of the missing phases u
constraint sets on the real space object~SLD! and the recip-
rocal space data~ideal reflectivity! coupled with a global
search via a genetic algorithm. The method and the a
rithm have been tested using four different simulated ca
which resulted in nearly perfect reconstructions of the m
els in question. Furthermore, the applicability of the tec
nique to the real experimental data has been demonstr
4-6
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using experimental x-ray reflectivity studies of PFA on w
ter. The solutions from the method are comparable to th
obtained from least-squares fits of molecular model,25 but
without the need to make any initial assumptions about
character of the solution. The same trends in the variation
roughness with the surface pressure of the water, and
positioning of the head groups in the SLD profiles, are o
served. For cases where a very good initial model is alre
known, refinement would be a simpler approach; if this is n
.

l

t
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the case, and in general to check for uniqueness issues
model-independent approach outlined herein should be
superior.
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