
i

PHYSICAL REVIEW B, VOLUME 63, 195323
Suppression of electron injection into a finite superlattice in an applied magnetic field

A. A. Krokhin,* T. M. Fromhold, A. E. Belyaev, H. M. Murphy, L. Eaves, D. Sherwood, P. C. Main, and M. Henin
School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom

~Received 7 September 2000; published 30 April 2001!

We present experimental and theoretical studies of the current-voltage characteristics,I (V), of undoped
GaAs/~Al xGa12x!As superlattices~SL’s! in a strong magnetic fieldB applied parallel to the growth axis. A
series ofI (V) characteristics measured atB51,2, . . . ,10 Tshows that increasing the magnetic field gradually
suppresses the current across the whole range ofV. We show that at lowV this suppression originates from a
decrease in the rate of injection of carriers into the SL from the heavily doped emitter contact. Because the
chemical potential in the emitter contact lies below the lowest miniband of the SL, electrons enter the SL by
tunneling through a triangular potential barrier formed by the miniband edge. The tunneling rate depends onV
and on the electron energy for longitudinal motion along the SL axis. The latter is reduced~by at least\vc/2,
wherevc is the cyclotron frequency! in the magnetic field. Consequently, the tunneling rate decreases with
increasingB. This mechanism of suppression dominates at low voltages (V,40 mV) when the barrier trans-
mission coefficient is low.

DOI: 10.1103/PhysRevB.63.195323 PACS number~s!: 73.21.2b, 73.61.2r
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I. INTRODUCTION

Electron transport in semiconductor superlattices~SL’s!
has been an active research field since the pioneering wo
Esaki and Tsu.1 The interest in this area is partly due to th
nonlinearity of the current-voltage characteristicsI (V) of a
SL. Many SL’s exhibit a peak in the miniband current fo
lowed by a region of negative differential conductance. A
though the nature of the negative differential conductanc
well understood, the details and the form of theI (V) char-
acteristics over wide voltage ranges lacks a complete ex
nation. The effects of temperature and external magn
field are also not fully understood.

A strong magnetic fieldB applied parallel to the SL axis
leads to Landau quantization of electron states in both
contacts and the SL layers. Then the in-plane Landau st
and longitudinal Wannier-Stark states are coupled by vari
electron-scattering mechanisms. For the SL structure con
ered here, optical-phonon scattering is the most effective
high voltages this coupling gives rise to cyclotron-Sta
phonon resonance effects in theI (V) characteristics.2–7 At
lower voltages, when Wannier-Stark quantization is of
importance, magnetophonon resonance oscillations h
been observed8 and studied theoretically.9 Apart from pro-
ducing sharp resonance effects in the conductivity, the m
netic field also reduces electron mobility, and thereby gi
rise to a smooth positive magnetoresistance.10,8,11

In the present paper we study a suppression of the m
band conductivity of a GaAs/(AlxGa12x)As superlattice,
which is induced by an applied magnetic field. We propo
an explanation of this suppression, which has notable dif
ences from that considered in previous work12–14 where the
magnetic field was shown to affect the probability of inela
tic electron-phonon scattering. These earlier works involv
numerical simulations of electron dynamics in an infinite S
using a Monte Carlo method, and showed good agreem
with experimental results for theI (V) curves at high volt-
ages. In particular, for voltages within the region of negat
differential resistance, the experimentalI (V) curves are well
0163-1829/2001/63~19!/195323~8!/$20.00 63 1953
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reproduced by the numerical calculations. But at low vo
ages, when the electron energy is insufficient to emit an
phonon, the agreement between the experiment and
theory is not so good. In this paper, we focus on that lo
voltage regime, and show that the suppression origina
mainly from the effect ofB on the injection of conduction
electrons into the SL miniband. In contrast to previo
calculations,12–14 we consider a sample offinite length and
show that applying the magnetic field decreases the proba
ity of an electron tunneling from the emitter contact into t
SL miniband. Since the parallel magnetic field affects neit
the barrier, nor the longitudinal motion of the carriers, t
suppression may be explained only by a redistribution of
occupied emitter states, induced by the magnetic field. T
statistical mechanism reproduces the experimental data w
and does not involve extensive numerical calculations; al
the theoretical results can be expressed in a relatively sim
analytical form.

II. DESCRIPTION OF THE SL STRUCTURE AND
EXPERIMENTAL RESULTS

The sample used in our experiments was grown
molecular-beam epitaxy on ann-type GaAs substrate. It con
tains 19 SL periods, which are separated from two hea
n-doped GaAs contacts by 10.2 nm wide undoped Ga
spacer layers. A unit cell of the SL is formed from a
~Al xGax21As! barrier of widthb52.08 nm and a GaAs wel
of width w59.72 nm. The width of this unit cell defines th
SL period d5b1w. The barriers and quantum wells a
nominally undoped. Figure 1 shows a schematic conduct
band diagram for the device under zero applied voltage.
first miniband has a nominal width ofD1512.1 meV, and is
separated from the second miniband by a minigapEg
598 meV. The Fermi energy of the doped emitter contac
Eem5160 meV. At zero bias, the bottom of the first min
band is at an energyE1'12 meV above the chemical po
tential of the emitter contact, which is the origin of our e
ergy scale~dotted line in Fig. 1!. Consequently, there is
©2001 The American Physical Society23-1
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potential barrier of heightE1 which, at low temperatures
prevents direct thermal excitation of an electron from
emitter contact into the first miniband. Therefore atT
50 K and zero voltage the device possesses no intri
conductance.

Since our samples are undoped, the current that fl
when a finite bias voltage is applied is nonohmic. This
clearly seen from the experimentalI (V) characteristics
shown in Fig. 2. TheseI (V) curves were measured atT
54.2 K and forB50 to 10 T at intervals of 1 T. The curren
suppression induced by the magnetic field can be seen
for a low field ofB51 T, and becomes more pronounced
B is increased. Note that at the low voltages, 0<V
<40 mV shown in the main part of Fig. 2, the current i
creases almost exponentially with increasingV. Moreover,
the suppression ratioI (V,B)/I (V,0) is almost independent o
voltage, as discussed in Sec. IV below.

III. ELECTRON INJECTION PROCESS –THERMAL
ACTIVATION AND TUNNELING

When a bias voltage is applied, electrons move throu
the undoped spacer layer to the left of the SL. The elec
field in this region is insufficient to quantize the electr
motion normal to the layers. Consequently, the carriers in
spacer layer form a three-dimensional electron gas. Du
the difference between the Fermi level of the emitter con
and the bottom of the miniband at zero bias, carriers at
Fermi energy in the left-hand side contact have insuffici
energy to enter the SL directly. They need to overcom

FIG. 1. Schematic conduction-band diagram of the SL forV
50 mV, showing the first and second minibands~shaded! and
emitter/collector contacts.

FIG. 2. I (V) characteristics measured for the SL withB
50,1,2, . . . ,10 T.Inset shows the sameI (V) curves over a wider
range of voltages.
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potential barrier of maximum heightE1 which, according to
tight-binding-model calculations, is about 12 meV for an i
finite SL. The classical probability of surmounting this ba
rier by thermionic emission is exp(2E1 /kT)'5310215 at T
54.2 K, which is too small to produce any measurable c
rent flow through the SL. To account for the relatively lar
currents measured in the experiments, there must be a
ternative mechanism, which is field emission. This mec
nism is quantum-mechanical tunneling through the bar
produced by the edge of the lowest miniband. The tunne
rate increases rapidly with the applied voltage. This giv
rise to the strongly nonlinear shapes of theI (V) curves
shown in Fig. 2.

The physical nature of the tunneling injection process
very similar to that of tunneling through a Schottky barri
~see reviews15,16! or Zener breakdown in crystal semicondu
tors or in SL’s.17,18 Under an applied voltage, the energ
bands are tilted, which gives rise to a finite probability
tunneling between the states in the emitter contact and th
in the SL miniband, as shown in Fig. 3. We measure
electron energy« associated with motion along the S
(x2) axis from the chemical potential in the emitter conta
which means that«.2Eem ~see Fig. 1!. For the finite tem-
perature used in our experiments, electrons in the em
contact can be thermally excited to states above the Fe
level and then tunnel from these states into the SL miniba
This type of temperature-assisted tunneling occurs in
Schottky diode in the thermionic-field emission regime16

The tunneling probability decreases exponentially with
creasing length of the barrierx0, which depends on« and on
the voltageV ~see Fig. 3!. To good approximation, the for
bidden region below the first miniband forms an almost
angular barrier with transmission coefficient

D~«!5expH 2
4A2m

3eF\
~E12«!3/2J . ~1!

Here,F is the electric field at the left-hand edge of the S
andm'0.08me is the approximate effective mass of an ele
tron in GaAs with an energy corresponding to the bottom
the miniband. We note that the miniband edge does not p
duce a simple electrostatic potential barrier for the cond
tion electrons. However, to enter the SL, the electron m
cross the region of forbidden energies below the band ed
It was shown recently, that in the semiclassical approxim

FIG. 3. Schematic diagram showing how the energy range of
first miniband ~shaded! varies with positionx from the left-hand
edge of the SL~vertical line! under bias. Energies and position
shown are defined in the text. The origin of the energy scale is
emitter Fermi level.
3-2
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SUPPRESSION OF ELECTRON INJECTION INTO A . . . PHYSICAL REVIEW B63 195323
tion, the probability of transition through this forbidden r
gion is equal to the probability of tunneling through th
equivalent~triangular! potential barrier.19

The total injection current per unit area in they2z plane
produced by the occupied emitter states can be written
form similar to the current through a Schottky barrier15 and
is given by

j ~F !5eE
2Eem

E1
vxD~«! f ~«!r~«!d«, ~2!

where

f ~«!52E
2`

` dpydpz

h2 H 11expS «

kT
1

py
21pz

2

2mkTD J 21

, ~3!

is the supply function20 of electrons in the emitter~the dis-
tribution function of electrons per unit area with energy«
associated with motion along thex axis!, vx is the electron
velocity along the electric field~parallel to thex axis!, r(«)
is the density of states per unit length associated with mo
along thex axis in then1 emitter, andpy , pz are momentum
components for in-plane motion. The current given by E
~2! is derived from a coherent model of tunneling in whi
py andpz are conserved in the tunneling process. The low
limit of the integral in Eq.~2! is determined by the energy o
the conduction band edge in the emitter contact, while
upper limit is determined by the top of the triangular barri
A small number of electrons are thermally excited to high
« values and enter the miniband directly. But, as emphas
above, there are so few of these electrons that they ma
negligible contribution to the current. For each value of«
between the upper and lower limits of integration in Eq.~2!,
the electron can, in principle, populate any lateral mom
tum state (py ,pz) with an occupancy determined by th
Fermi-Dirac distribution in Eq.~3!. Because of this, the lim
its of integration in Eq.~3! are unbounded.

The integral in Eq.~2! contains a product of two expo
nential functions: the barrier transmission coefficientD(«)
and the distribution functionf («). The principal contribution
to the integral comes from a narrow range of energies21 close
to the optimal tunneling energy«0(F) that maximizes the
productD(«) f («). From the conditiond@D(«) f («)#/d« we
obtain a transcendental equation for the optimal energy,

Fc

F
A12

«0

E1
5

1

11exp~2«0 /kT!
, ~4!

where

Fc5
2kTA2mE1

e\
, ~5!

is a critical electric field corresponding to the transition b
tween two distinct tunneling regimes, which we consid
below.

The first is theBoltzmann limit, F!Fc . Because the elec
tric field is weak in this limit, the optimal energy must b
close toE1. For these energies, the exponent in the deno
nator on the right-hand side of Eq.~4! is negligibly small.
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Physically, this means that tunneling occurs from the Bo
mann tail of the Fermi distribution~regime of thermionic
emission15!. In this limit, the asymptotical solution of Eq.~4!
is easily shown to be

«0~F !5E12
~e\F !2

8mk2T2
5E1S 12

F2

Fc
2D . ~6!

Now we expand all of the exponents in Eq.~2! in the vicinity
of «0. This reduces the integrand in Eq.~2! to a Gaussian
function that can easily be integrated to give

j B~F !5
e2

h2
FA2pmkTexpF2

E1

kT
1

~e\F !2

24m~kT!3G . ~7!

Next we consider the second tunneling regime. This is
Fermi limit F@Fc , which is similar to field emission.16 In
this regime

«0~F !52kT ln~F/Fc!, ~8!

and tunneling occurs mainly from states that lie just bel
the emitter Fermi level. Eq.~8! enables us to evaluate th
integral over« in Eq. ~2! analytically giving

j F~F !5
e2

h2
Apmk2T2

E1
A F

Fc
expS 2

2E1

3kT

Fc

F D . ~9!

Eqs.~7! and~9! give the injection current flowing through
the tunnel barrier in the limiting cases of weak and stro
electric fields, respectively. Note that in the theory of t
Schottky barrier, the limiting regimes~thermionic and field
emission! correspond to different doping densities in th
semiconductor contacts rather than different values of
applied voltage. This leads to current-voltage characteris
for the Schottky diode that are different to those of the
considered in the present paper.

The transition between the Boltzmann and the Fermi t
neling regimes occurs over a range of electric fields close
Fc . This critical field is given by Eq.~5! and depends on the
parameterE1. From this dependence, we can estimateFc
from the experimentalI (V) curves. Since the tunneling cur
rent has different exponential asymptotes@Eqs. ~7! and ~9!#
in the low- and high-voltage limits, in Fig. 4 we plot th
logarithm of the conductance, ln(I/V), using the experimenta
data shown in Fig. 2 forB50. The curvature of this plot
~Fig. 4! changes from concave to convex asV is increased.
The concave part of the curve at low voltages correspond
the Boltzmann regime of tunneling, where ln(I/F)}F2 @see
Eq. ~7!# . At higher voltages the curve becomes convex a
consequence of the ln(I/F)}1/F dependence that characte
izes the Fermi regime@see Eq.~9!#. The transition between
these two regimes occurs at the voltageVc'13 mV marked
in Fig. 4, which corresponds toFc50.5 kV/cm. Evaluating
E1 from Ec using Eq.~5! gives E1'3 meV. This is much
lower than theE1 value of 12 meV that follows from the
band-structure calculations for an infinite SL. We attribu
this difference to the fact that the conventional concept o
continuum miniband applies to a SL with an infinite numb
3-3
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A. A. KROKHIN et al. PHYSICAL REVIEW B 63 195323
of periods, whereas ours only has 19. The energy rang
the miniband will be affected by the finite size of the SL a
also by the effects of surface states and inhomogeneous
fusion of dopants from the contacts.

Our estimate ofE1 shows that the results of band
structure calculations for an infinite SL should be used w
caution for finite samples, at least for an undoped SL.
nally, we note that the asymptotic formulas Eqs.~7! and ~9!
are only valid far from the transition voltageVc . Therefore,
only the low- and high-voltage parts of the curves shown
Fig. 4 follow these analytical formulas.

IV. SUPPRESSION OF THE TUNNELING CURRENT BY A
MAGNETIC FIELD

A magnetic field applied parallel to the SL axis has
influence on the tunneling probabilityD(«) given by Eq.~1!.
However, we will now show that it does affect the distrib
tion function f («), and thereby suppresses the tunneling c
rent obtained from Eq.~2!. In a magnetic field, the electro
states in the emitter contact associated with in-plane (y,z)
motion are quantized into Landau levels with energies«n
5\vc(n11/2), where vc5eB/m is the cyclotron fre-
quency. If the electron scattering rate isn, each Landau leve
has a finite width'\n, which for the sake of simplicity, we
consider to beB independent. Assuming a Lorentzian lin
shape for each broadened Landau level, we find that
magnetic field, Eq.~3! is replaced by

f ~«!5
2mvc

h (
n50

` E
0

` 1

p

~\n/2!d«'

~\n/2!21~«'2«n!2

3
1

11exp@~«1«'!/kT#
. ~10!

Substituting this formula into Eq.~2! we obtain an expres
sion for the tunnel current that involves two integrations, o

FIG. 4. Logarithm of conductance measured for the SL aB
50 T. The voltageVc where the curvature changes sign~shown by
the vertical line! marks the transition from the Boltzmann to th
Fermi tunneling regimes.
19532
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over« and the other over the in-plane energy«' . Integration
over the longitudinal energy« can be performed in the sam
way as forB50, namely, by expanding the integrand in th
vicinity of the optimal tunneling energy. We find that th
optimal energy for a given Landau level decreases with
creasingB and is given approximately by«0

n(F,B)5«0(F)
2(n11/2)\vc . Consequently, electrons in the lowest La
dau level have the highest tunneling energy~energy of lon-
gitudinal motion!, and therefore, dominate the current. In t
limiting regimes of Boltzmann and Fermi tunneling, asym
totical calculations lead to formulas for the tunnel curre
density, which differ from Eqs.~7! and ~9! only by a
B-dependent factor, that is

j ~F,B!5 j ~F !q~B!, ~11!

where

q~B!5
\vc

kT (
n50

` E
0

` 1

p

~\n/2!

~\n/2!21~«'2«n!2

3expS 2
«'

kTDd«' . ~12!

Note that in Eq.~11! we have omitted the subscripts th
identify the Boltzmann and Fermi limits. The factorq(B)
describes the magnetosuppression of the tunnel curr
Within the accuracy of our asymptotical calculations the c
rent is suppressed uniformly, that is, the suppression r
j (F,B)/ j (F,0) is independent ofF. To compare this theoret
ical result with our experimental data, in Fig. 5 we plot no
malized I (V,B)/I (V,0) current-voltage characteristics ob
tained experimentally for different magnetic fields. Th
figure shows that indeed the variation of the normalized c
rent with voltage is rather weak for magnetic fields<5 T.
In particular, the fractional variation ofI (V,B)/I (V,0) over
the voltage range shown in Fig. 5 is always less than 0.2
higher fields, the variation is stronger. This is because
peak in theI (V) characteristics shifts to lower voltages wi
increasingB ~see the inset in Fig. 2!. Here we do not discuss
the physical origin of this shift, but we do emphasize
effect on the form ofI (V,B)/I (V,0). In the vicinity of the
peak the asymptotic formulas that lead to Eq.~11! are in-
valid. Because the peak shifts to lowerV asB increases, the

FIG. 5. Series of normalized current-voltage characterist
I (V,B)/I (V,0), measured forB51,2, . . . ,9 T.
3-4
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SUPPRESSION OF ELECTRON INJECTION INTO A . . . PHYSICAL REVIEW B63 195323
range of voltages in Fig. 5 where the suppression is ho
geneous, that isI (V,B)/I (V,0) is constant, becomes na
rower with increasingB.

The factorq(B) given in Eq.~12! can be simplified if we
assume that the broadening of the Landau levels is m
larger than the energy of the thermal fluctuations, tha
\n@kT. We estimate that the scattering raten due to ion-
ized impurities in the heavily doped emitter contact is a
proximately 631012 s21 at T54.2 K. Then \n/kT.14.
Because of the exponential factor in the integrand of
~12!, the principal contribution to the integral over«' comes
from a narrow range of energies close to«';kT. If B is
sufficiently large that\vc.kT, the Lorentzian factor can b
considered as a constant since it varies slowly on a sca
kT. Then, after simple algebra, we obtain,

q~B!>
\vc

kT (
n50

`
~\n/2!

~\n/2!21«n
2E0

`

expS 2
«'

kTDd«'

5
1

2
tanhS pn

2vc
D . ~13!

Note that this formula givesq(0)51/2 rather than the cor
rect value of 1 because it is invalid in the limitB→0.

For completeness we now give the expression forq(B) in
the limit \n!kT, but note that this regime is not attained
the experiments. In this case, the Lorentzian factors can
replaced by delta functions, yielding the result

q~B!5
\vc

kT (
n50

`

expS 2
«n

kTD5
\vc/2kT

sinh~\vc/2kT!
. ~14!

Since the function on the right-hand side of Eq.~14! decays
exponentially with increasing magnetic field, the current s
pression in this case is much stronger than that given by
~13!. For example, whenB53 T, Eq. ~14! gives q(B)
'0.01. Such strong suppression has never been observ
our experiments. By contrast, the weaker magnetosupp
sion given by Eq.~13! describes the experimental resu
rather well. This demonstrates that Landau-level broaden
has a major effect on the observed magnetosuppressio
the current.

The origin of this suppression has a clear physical exp
nation. WhenB50, the principal contribution to the tunne
ing current is made by electrons with the optimal tunnel
energy«0(F) associated with motion along the SL axis, a
with py

21pz
250. The external magnetic fieldB does not

change the total electron energy, but it reduces the energ
the longitudinal motion at least by\vc/2. This is because
for nonzeroB, the minimum energy for motion in they2z
plane is increased to\vc/2. To maintain the state occu
pancy, the optimal tunneling energy must therefore fall
approximately the same value. This reduces the barrier tr
mission coefficient and so suppresses the current.
19532
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V. EFFECTS OF THE SPACE CHARGE ON THE
CURRENT-VOLTAGE CHARACTERISTICS

OF A FINITE-LENGTH SL

So far, we have considered how electrons are injected
the lowest SL miniband. But to calculateI (V), we must also
determine the electric-field profile along the SL. This profi
depends in part on the conductivity of the SL itself that d
termines the space-charge distribution of electrons in the
miniband. In an infinite model SL, the electric field is a
sumed to be homogeneous. However, this model is unre
tic since it does not include the emitter and collector co
tacts. Since we consider a real sample with contacts, sp
charge effects are important, and can produce
inhomogeneous electric field.22 The current-voltage charac
teristics Eqs.~7!, ~9!, and ~11! give the tunnel current as
functions of the electric-fieldF in the tunneling region (x
,x0), not as functions of the applied voltageV. If the effects
of the space charge are weak, thenV5FL, whereL is the
distance between then1 contacts. However, in general, suc
a simple relation betweenF and V is not valid, and the
electric-field profileF(x,V), which depends parametricall
on V, must be calculated self consistently. OnceF(x,V) is
known, theI (V) characteristics of the device can be obtain
by substituting the electric-fieldF0[F(0,V) at the point of
injection into thej (F) characteristics of the tunneling con
tact given by Eqs.~7!, ~9!, and~11!.

In order to calculateF(x,V), we have developed a realis
tic physical model of the SL’s used in our experiments. T
main features of this model are as follows:~i! The tunnel
contact@consisting of the emitter contact and the SL regi
for x,x0 ~Fig. 3!#, and that part of the SL layers withx
.x0, will be considered as two resistors connected in ser
The current through any cross-section of the SL is equa
the current flowing through the tunnel contact.~ii ! The effec-
tive length of the tunnel contact equals the length of
tunneling trajectory,x05x0(F) ~see Fig. 3!. This length is
x05(e\2/8mk2T2)F0(V) for the Boltzmann tunneling re
gime, andx05E1 /eF0(V) for the Fermi regime. The length
of the active part of the SL~where electrons have sufficien
energy to enter the first miniband! is L2x0. ~iii ! Current
flow through the SL originates only from those electrons t
are injected through the tunnel contact, i.e., there are no
trinsic carriers in the SL, which is nominally undoped. D
to the tunneling injection process, all electrons enter the
at the bottom of the lowest miniband.

To obtain quantitative results from this model we need
determine thex dependence of the local volume dens
N(x) of conduction electrons in the SL, which is related
F(x,V) by Poisson’s equation. These functions must be c
culated self consistently from the current-conservation c
dition

j ~F0!5eN~x!vd@F~x,V!#, ~15!

wherevd is the local electron drift velocity, and the Poisso
equation

dF~x,V!

dx
52

eN~x!

ee0
. ~16!
3-5
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A. A. KROKHIN et al. PHYSICAL REVIEW B 63 195323
Here,e is the relative permittivity of GaAs. The right-han
side of Eq.~15! gives the current at a positionx inside the
active part of the SL. It is expressed in a Drude formalis
and is proportional to the drift velocity of conduction ele
trons vd , which is a nonlinear function ofF(x,V). The
simple Esaki-Tsu model1 gives

vd~F !5v0

F~x,V!/F*

11@F~x,V!/F* #2
, ~17!

wherev05\/(msld) in which the effective massmsl is in-
versely proportional to the second derivative of the miniba
energy wave-vector dispersion relation at the bottom of
miniband, andF* 53.8 kV/cm is the electric field corre
sponding to the peak in the current-voltage characteristic
B50.

Eqs.~15! and~16! are subject to two boundary condition
One is the continuity of the electric field at the pointx
5x0(F) where the electrons enter the SL miniband. At th
point

F05F~x0 ,V!. ~18!

The second boundary condition establishes the relation
tween the distribution of the electric field in the device a
the applied voltage, which requires that

V5Vs1x0F01E
x0

L

F~x,V!dx, ~19!

where Vs}V is the voltage dropped across the undop
spacer layers adjacent to the emitter and collector conta
Since these spacer layers are short~10.2 nm!, Vs can be
neglected at voltages below'35 mV. At higher voltages,
Vs becomes important, but then the electron injection proc
is completely different from the tunneling mechanism co
sidered here. The reason for this is that the electrons
energy from the electric field when they pass through
emitter spacer layer. ForV>35 mV this energy is sufficien
to overcome the triangular barrier of height;3 meV shown
in Fig. 3. Then the electrons enter the lowest miniband
rectly from the emitter contact, and theI (V) characteristic is
controlled by miniband transport alone. The magnetos
pression ofI (V) observed in this high-voltage range can
explained by considering the influence ofB on the electron-
scattering rate in the miniband.12–14

Eqs.~15!–~19! form a closed self-consistent set of equ
tions. To obtain the current-voltage characteristics, we m
first determineF0(V) from these equations. This is done
three steps. First, the concentrationN(x) obtained from Eq.
~15! is substituted into Eq.~16!. This gives a first-order non
linear differential equation forF(x,V). The second step is to
solve this equation subject to the boundary condition
~18!, and then substitute the solution into Eq.~19!. This pro-
vides an implicit equation forF0(V). The third step is to
solve this equation numerically in order to determineF0(V).
In Figs. 6 and 7 we show the relation betweenF0 andV for
the Boltzmann and Fermi tunneling regimes, respectiv
Along the horizontal axis in each figure we plot the produ
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F0(V)L, which shows the effective voltage that would b
dropped across the device if the electric field were indep
dent ofx.

These graphs show thatF0(V) becomes increasingly non
linear as V is increased and the effects of space-cha
buildup become more important. The effective voltageF0L
is always lower thanV because the electric field in the tunn
contactF0 is lower than the mean electric fieldV/L. The
physical reason for this difference is the negative sp
charge accumulated in the SL. Because of this space cha
the electric field in the SL layers increases with increasingx.
The local electric fieldF0 must therefore be smaller than th
mean fieldV/L in order to ensure that the total voltag
dropped across the device equals the applied voltageV. As a
consequence, our calculatedI (V) curves increase more
slowly with increasingV when the effects of space charg
buildup are taken into account. This can be seen from Fig
in which we plot I (V) characteristics calculated for a me
with a cross-sectional area of 7.831023 mm2 including
~curves with square symbols! and neglecting~curves with
circles! space charge effects. We consider two magnetic-fi
values,B50 T @Figs. 8~a! and~c!# andB510 T @Figs. 8~b!
and ~d!#. We also consider both the low-voltage Boltzma
tunneling regime@Figs. 8~a! and ~b!# and the high-voltage
Fermi regime@Figs. 8~c! and ~d!#. For both voltage ranges
and both magnetic-field values, the calculated current
creases more slowly with increasingV when space-charge

FIG. 6. Calculated applied voltageV plotted as a function of the
effective voltageF0(V)L for the Boltzmann tunneling regime. Th
thick solid curve is forB50 T and the thin solid curve is forB
510 T. These curves are nonlinear due to the inhomogeneit
the electric field in the SL. Curves for intermediate magnetic fiel
B51,2, . . . ,9 T, lie inbetween the thin and the thick solid line
The dashed line shows the linear variation ofF0(V)L with V ob-
tained when space-charge effects are neglected.

FIG. 7. The same as Fig. 6 but for the Fermi tunneling regim
3-6
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buildup is included in the calculations. Note that the effect
this space charge becomes more pronounced asV increases.
This is because the tunnel current from the emitter into
MB increases exponentially with increasingV, while the
Drude current within the SL layers increases more slow
Consequently, to ensure current conservation, the occu
cies of the MB states and corresponding space charge
increase with increasingV. This effect is clearly seen by
comparing the effective voltages shown in Figs. 6, 7. In
Boltzmann regime~Fig. 6! where space-charge effects a
less important, the effective voltageF0L deviates much less
from V, than in the Fermi regime~Fig. 7!.

FIG. 8. I (V) characteristics in the Boltzmann@~a! and ~b!# and
Fermi @~c! and ~d!# tunneling regimes withB50 @~a! and ~c!# and
B510 T @~b! and~d!#. Solid curves without symbols show exper
mental data. Squares~circles! indicate I (V) curves calculated in-
cluding ~neglecting! the effects of space-charge buildup in the S
miniband.
19532
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When space-charge effects are included, we obtain g
agreement between the theoreticalI (V) plots ~solid curves
with square symbols in Fig. 8! and the corresponding exper
mental data~solid curves with no symbols in Fig. 8! for both
B50 T @Figs. 8~a! and ~c!# and B510 T @Figs. 8~b! and
~d!#. Similar correspondence is obtained for allB,10 T,
which strongly supports the proposed mechanism of mag
tosuppression.

It is easy to see that Eqs.~7! and~9! do not give the same
current atF5Fc . As a consequence of this mismatch, t
theoreticalI (V) curves rise above the experimental data n
V5Vc513 mV in Boltzmann regime@Figs. 8~a! and ~b!#,
but fall below them in Fermi regime@Figs. 8~c! and ~d!#.
Although the asymptotic formulas Eqs.~7! and~9! give poor
approximations to the current in the vicinity of the transitio
voltageVc , the good agreement between the theoretical
experimentalI (V) curves found away fromVc suggests that
our estimate ofVc itself is fairly accurate. Since the calcu
lated current is very sensitive to the value ofVc , any signifi-
cant error in our estimate of this parameter would produ
much worse agreement between theory and experiment.

In Figs. 8~c! and ~d!, the calculatedI (V) curves deviate
strongly from the experimental data forV.35 mV, even
when space-charge effects are included. This is becaus
mentioned above, the transmission coefficient of the trian
lar potential barrier shown in Fig. 3 becomes close to unity
high V, and so the electrons are able to enter the minib
directly. In this region, the conductivity of the SL is ex
plained well by a velocity quenching model13 and related
Monte Carlo simulations.14

VI. CONCLUSION

In summary, we have shown that the magnetosuppres
of SL miniband conduction observed in our experiments c
be explained by considering tunneling injection proces
that transmit electrons from the doped emitter contact i
the SL layers. To enter the SL miniband, the electrons n
to tunnel through the potential barrier that is formed if t
lowest miniband lies above the emitter Fermi level. At h
lium temperatures, the height of this barrier greatly exce
kT and the optimal tunneling energy is obtained by maxim
ing the product of the electron distribution function and t
tunneling transmission coefficient. When a magnetic field
applied along the SL axis, the in-plane motion is quantiz
into Landau levels. As a consequence, the optimal tunne
energy and corresponding transmission coefficient both
and thereby suppress the current. Our calculations of
I (V) characteristics, based on this mechanism of injecti
are in good agreement with the corresponding experime
data for a wide range ofV andB values.
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