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Suppression of electron injection into a finite superlattice in an applied magnetic field
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We present experimental and theoretical studies of the current-voltage charactdrist)csof undoped
GaAs(Al,Ga, _,)As superlatticegSL’s) in a strong magnetic fiel® applied parallel to the growth axis. A
series ofl (V) characteristics measured&& 1,2, .. .,10 Tshows that increasing the magnetic field gradually
suppresses the current across the whole rande We show that at low this suppression originates from a
decrease in the rate of injection of carriers into the SL from the heavily doped emitter contact. Because the
chemical potential in the emitter contact lies below the lowest miniband of the SL, electrons enter the SL by
tunneling through a triangular potential barrier formed by the miniband edge. The tunneling rate dep¥nds on
and on the electron energy for longitudinal motion along the SL axis. The latter is rethcatleast: w /2,
where o, is the cyclotron frequengyin the magnetic field. Consequently, the tunneling rate decreases with
increasingB. This mechanism of suppression dominates at low voltages40 mV) when the barrier trans-
mission coefficient is low.
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I. INTRODUCTION reproduced by the numerical calculations. But at low volt-
ages, when the electron energy is insufficient to emit an LO
Electron transport in semiconductor superlatti¢g&’s) ~ phonon, the agreement between the experiment and the
has been an active research field since the pioneering work d¢ieory is not so good. In this paper, we focus on that low-
Esaki and Tsd.The interest in this area is partly due to the voltage regime, and show that the suppression originates
nonlinearity of the current-voltage characteristi¢¥’) of a ~ mainly from the effect of8 on the injection of conduction
SL. Many SL’s exhibit a peak in the miniband current fol- electrons into the SL miniband. In contrast to previous
lowed by a region of negative differential conductance. Al-calculations;”**we consider a sample dinite length and
though the nature of the negative differential conductance ishow that applying the magnetic field decreases the probabil-
well understood, the details and the form of #{®) char- ity of an electron tunneling from the emitter contact into the
acteristics over wide voltage ranges lacks a complete expld&SL miniband. Since the parallel magnetic field affects neither
nation. The effects of temperature and external magnetithe barrier, nor the longitudinal motion of the carriers, the
field are also not fully understood. suppression may be explained only by a redistribution of the
A strong magnetic fiel® applied parallel to the SL axis occupied emitter states, induced by the magnetic field. This
leads to Landau quantization of electron states in both thétatistical mechanism reproduces the experimental data well,
contacts and the SL layers. Then the in-plane Landau staté$d does not involve extensive numerical calculations; all of
and longitudinal Wannier-Stark states are coupled by variouthe theoretical results can be expressed in a relatively simple
electron-scattering mechanisms. For the SL structure consi@nalytical form.
ered here, optical-phonon scattering is the most effective. At
high voltages this coupling gives rise to cy.cl(.)tr(in-Stark- Il. DESCRIPTION OF THE SL STRUCTURE AND
phonon resonance effects in theV) characteristicd=’ At EXPERIMENTAL RESULTS
lower voltages, when Wannier-Stark quantization is of no
importance, magnetophonon resonance oscillations have The sample used in our experiments was grown by
been observédand studied theoreticalfy Apart from pro- molecular-beam epitaxy on amtype GaAs substrate. It con-
ducing sharp resonance effects in the conductivity, the magains 19 SL periods, which are separated from two heavily
netic field also reduces electron mobility, and thereby givesi-doped GaAs contacts by 10.2 nm wide undoped GaAs
rise to a smooth positive magnetoresistatfcéet! spacer layers. A unit cell of the SL is formed from an
In the present paper we study a suppression of the minicAl,Ga,_;As) barrier of widthb=2.08 nm and a GaAs well
band conductivity of a GaAs/(AGa _,)As superlattice, of widthw=9.72 nm. The width of this unit cell defines the
which is induced by an applied magnetic field. We proposeSL period d=b+w. The barriers and quantum wells are
an explanation of this suppression, which has notable differnominally undoped. Figure 1 shows a schematic conduction-
ences from that considered in previous wdrk*where the  band diagram for the device under zero applied voltage. The
magnetic field was shown to affect the probability of inelas-first miniband has a nominal width df;=12.1 meV, and is
tic electron-phonon scattering. These earlier works involvegeparated from the second miniband by a minigap
numerical simulations of electron dynamics in an infinite SL,=98 meV. The Fermi energy of the doped emitter contact is
using a Monte Carlo method, and showed good agreemeiti, =160 meV. At zero bias, the bottom of the first mini-
with experimental results for thi(V) curves at high volt- band is at an energ;~12 meV above the chemical po-
ages. In particular, for voltages within the region of negativetential of the emitter contact, which is the origin of our en-
differential resistance, the experimentt/) curves are well ergy scale(dotted line in Fig. 1L Consequently, there is a
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first miniband (shaded varies with positionx from the left-hand
FIG. 1. Schematic conduction-band diagram of the SL\or edge of the SL(vertical ling under bias. Energies and positions
=0 mV, showing the first and second miniban@hadedl and  shown are defined in the text. The origin of the energy scale is the
emitter/collector contacts. emitter Fermi level.

potential barrier of heighE£, which, at low temperatures, potential barrier of maximum heigli; which, according to
prevents direct thermal excitation of an electron from thetight-binding-model calculations, is about 12 meV for an in-
emitter contact into the first miniband. Therefore &t finite SL. The classical probability of surmounting this bar-
=0 K and zero voltage the device possesses no intrinsitier by thermionic emission is expE,; /kT)~5x10 "> at T
conductance. =4.2 K, which is too small to produce any measurable cur-
Since our samples are undoped, the current that floweent flow through the SL. To account for the relatively large
when a finite bias voltage is applied is nonohmic. This iscurrents measured in the experiments, there must be an al-
clearly seen from the experimenta(V) characteristics ternative mechanism, which is field emission. This mecha-
shown in Fig. 2. Thesé(V) curves were measured @t  hism is quantum-mechanical tunneling through the barrier
=4.2 Kand forB=0 to 10 T at intervals of 1 T. The current produced by the edge of the lowest miniband. The tunneling
suppression induced by the magnetic field can be seen evéate increases rapidly with the applied voltage. This gives
for a low field ofB=1 T, and becomes more pronounced asfise to the strongly nonlinear shapes of thg/) curves
B is increased. Note that at the low voltagess\@  shown in Fig. 2.
<40 mV shown in the main part of Fig. 2, the current in-  The physical nature of the tunneling injection process is
creases almost exponentially with increasMgMoreover,  Vvery similar to that of tunneling through a Schottky barrier
the suppression ratidV,B)/1(V,0) is almost independent of (See reviews9 or Zener breakdown in crystal semiconduc-
voltage, as discussed in Sec. IV below. tors or in SL's!"'8 Under an applied voltage, the energy
bands are tilted, which gives rise to a finite probability of
tunneling between the states in the emitter contact and those
in the SL miniband, as shown in Fig. 3. We measure the
electron energys associated with motion along the SL
When a bias voltage is applied, electrons move througlfx—) axis from the chemical potential in the emitter contact,
the undoped spacer layer to the left of the SL. The electriovhich means tha¢ > — E,,, (see Fig. 1 For the finite tem-
field in this region is insufficient to quantize the electron perature used in our experiments, electrons in the emitter
motion normal to the layers. Consequently, the carriers in theontact can be thermally excited to states above the Fermi
spacer layer form a three-dimensional electron gas. Due tkevel and then tunnel from these states into the SL miniband.
the difference between the Fermi level of the emitter contacThis type of temperature-assisted tunneling occurs in the
and the bottom of the miniband at zero bias, carriers at th&chottky diode in the thermionic-field emission regitfe.
Fermi energy in the left-hand side contact have insufficienifThe tunneling probability decreases exponentially with in-
energy to enter the SL directly. They need to overcome &reasing length of the barrigg, which depends or and on
the voltageV (see Fig. 3. To good approximation, the for-
bidden region below the first miniband forms an almost tri-
angular barrier with transmission coefficient

Ill. ELECTRON INJECTION PROCESS —-THERMAL
ACTIVATION AND TUNNELING

442
D(s)zex4—£(El—s)3’2 . 1)

Here,F is the electric field at the left-hand edge of the SL,
andm~0.08n, is the approximate effective mass of an elec-
0.00 0.02 0.04 tron in GaAs with an energy corresponding to the bottom of
the miniband. We note that the miniband edge does not pro-
duce a simple electrostatic potential barrier for the conduc-
FIG. 2. I1(V) characteristics measured for the SL with  tion electrons. However, to enter the SL, the electron must
=0,1,2...,10 T.Inset shows the saméV) curves over a wider Cross the region of forbidden energies below the band edge.
range of voltages. It was shown recently, that in the semiclassical approxima-
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tion, the probability of transition through this forbidden re- Physically, this means that tunneling occurs from the Boltz-

gion is equal to the probability of tunneling through the mann tail of the Fermi distributioriregime of thermionic

equivalent(triangulay potential barrief® emissior®). In this limit, the asymptotical solution of E¢4)
The total injection current per unit area in the-z plane  is easily shown to be

produced by the occupied emitter states can be written in a

form similar to the current through a Schottky bartfeand (ehF)? F2
is given by 80(F):El—m= 1| 1= =) (6)
Cc
. _[® Now we expand all of the exponents in E&) in the vicinity
J(F)_ejEevaD(e)f(s)p(e)ds' @ of £y. This reduces the integrand in E®) to a Gaussian
function that can easily be integrated to give
where
e? E;, (erF)?
= dpydp; e Pyrpi] T jB(F)z—ZF\/Zﬂ-kaex;{——Jr—. )
= — kT 3
f(e) Zfix " 1+ex kT+ KT , (3 h 24m(KT)

Next we consider the second tunneling regime. This is the
Fermi limit F>F., which is similar to field emissioff In
this regime

is the supply functioff of electrons in the emittefthe dis-
tribution function of electrons per unit area with energy
associated with motion along theaxis), v, is the electron
velocity along the electric fieldparallel to thex axis), p(&) eo(F)=—KTIN(F/F,) ®)

is the density of states per unit length associated with motion 0 o

along thex axis in then™ emitter, andp,, p, are momentum and tunneling occurs mainly from states that lie just below
components for in-plane motion. The current given by Eqthe emitter Fermi level. Eq(8) enables us to evaluate the
(2) is derived from a coherent model of tunneling in which integral overe in Eqg. (2) analytically giving

py, andp, are conserved in the tunneling process. The lower

limit of the integral in Eq(2) is determined by the energy of . e [mmkeT? [F 2E, F.

the conduction band edge in the emitter contact, while the Jr(F)= n2 E—\EGXF< T 3kT F) ©)
upper limit is determined by the top of the triangular barrier. ! ¢

A small number of electrons are thermally excited to higher Egs.(7) and(9) give the injection current flowing through

e values and enter the miniband directly. But, as emphasizege tunnel barrier in the limiting cases of weak and strong
above, there are so few of these electrons that they make detric fields, respectively. Note that in the theory of the
negligible contribution to the current. For each valuesof  gchottky barrier, the limiting regimeghermionic and field
between the upper and lower limits of integration in B2),  gmission correspond to different doping densities in the
the electron can, in principle, populate any lateral momengemiconductor contacts rather than different values of the
tum state py,p,) with an occupancy determined by the ynpjied voltage. This leads to current-voltage characteristics
Fermi-Dirac distribution in Eq(3). Because of this, the lim- o the Schottky diode that are different to those of the SL
its of integration in Eq(3) are unbounded. considered in the present paper.

The integral in Eq(2) contains a product of two expo-  The transition between the Boltzmann and the Fermi tun-
nential functions: the barrier transmission coeffici@ts)  neling regimes occurs over a range of electric fields close to
and the distribution functiof(e). The principal contribution F.. This critical field is given by Eq(5) and depends on the
to the integral comes from a narrow range of eqeftjielsse parameterE,. From this dependence, we can estimBe
to the optimal tunneling energyo(F) that maximizes the  from the experimental(V) curves. Since the tunneling cur-
productD(e)f(e). From the conditiord[D(e)f(e)]/de we  rent has different exponential asymptof&ss. (7) and (9)]
obtain a transcendental equation for the optimal energy, in the low- and high-voltage limits, in Fig. 4 we plot the
F . 1 logarithm of the conductance, IA{), using the experimental
—oy\f1- 20— (4) ~ data shown in Fig. 2 foB=0. The curvature of this plot
F E1 l+exp—eo/kT)’ (Fig. 4) changes from concave to convex \dss increased.

The concave part of the curve at low voltages corresponds to

where
the Boltzmann regime of tunneling, where Iiff)=<F? [see
2kT\2mE,; Eq. (7)] . At higher voltages the curve becomes convex as a
T (5 consequence of the IMF)«1/F dependence that character-

izes the Fermi regimgsee Eq.(9)]. The transition between

is a critical electric field corresponding to the transition be-these two regimes occurs at the voltage=13 mV marked

tween two distinct tunneling regimes, which we considerin Fig. 4, which corresponds #©.=0.5 kV/cm. Evaluating

below. E, from E. using Eq.(5) givesE;~3 meV. This is much

The first is theBoltzmann limit F<F .. Because the elec- lower than theE; value of 12 meV that follows from the
tric field is weak in this limit, the optimal energy must be band-structure calculations for an infinite SL. We attribute
close toE;. For these energies, the exponent in the denomithis difference to the fact that the conventional concept of a
nator on the right-hand side of E¢4) is negligibly small.  continuum miniband applies to a SL with an infinite number
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V(mV) over the longitudinal energy can be performed in the same

way as forB=0, namely, by expanding the integrand in the
FIG. 4. Logarithm of conductance measured for the SIBat Vicinity of the optimal tunneling energy. We find that the
=0 T. The voltage/, where the curvature changes sighown by ~ optimal energy for a given Landau level decreases with in-
the vertical lin¢ marks the transition from the Boltzmann to the creasingB and is given approximately byg(F,B)=gq(F)
Fermi tunneling regimes. —(n+1/2)hw.. Consequently, electrons in the lowest Lan-
dau level have the highest tunneling enefgpergy of lon-
of periods, whereas ours only has 19. The energy range @jitudinal motion, and therefore, dominate the current. In the
the miniband will be affected by the finite size of the SL andlimiting regimes of Boltzmann and Fermi tunneling, asymp-
also by the effects of surface states and inhomogeneous difetical calculations lead to formulas for the tunnel current
fusion of dopants from the contacts. density, which differ from Eqs(7) and (9) only by a
Our estimate ofE; shows that the results of band- B-dependent factor, that is
structure calculations for an infinite SL should be used with
caution for finite samples, at least for an undoped SL. Fi- ; i
nally, we note that the asymptotic formulas E¢&. and (9) I(F.B)=i(Fa(B), D
are only valid far from the transition voltagé.. Therefore,
where
only the low- and high-voltage parts of the curves shown in
Fig. 4 follow these analytical formulas.

B hwe z (hvl2)
IV. SUPPRESSION OF THE TUNNELING CURRENT BY A aB)=1T 2 | 7 T (hvl2)%+ (5, —op)?

MAGNETIC FIELD
de, . (12

A magnetic field applied parallel to the SL axis has no Xexp{ KT
influence on the tunneling probabiliy(e) given by Eq.(1).
However, we will now show that it does affect the distribu-
tion functionf(e), and thereby suppresses the tunneling cur-
rent obtained from Eq(2). In a magnetic field, the electron
states in the emitter contact associated with in-plane)(
motion are quantized into Landau levels with energigs
=hw(n+1/2), where w.=eB/m is the cyclotron fre-
qguency. If the electron scattering rateviseach Landau level
has a finite width=7 v, which for the sake of simplicity, we
consider to beB independent. Assuming a Lorentzian line
shape for each broadened Landau level, we find that in
magnetic field, Eq(3) is replaced by

Note that in Eq.(11) we have omitted the subscripts that
identify the Boltzmann and Fermi limits. The factqfB)
describes the magnetosuppression of the tunnel current.
Within the accuracy of our asymptotical calculations the cur-
rent is suppressed uniformly, that is, the suppression ratio
j(F,B)/j(F,0) is independent df. To compare this theoret-
ical result with our experimental data, in Fig. 5 we plot nor-
malized 1 (V,B)/1(V,0) current-voltage characteristics ob-
%lained experimentally for different magnetic fields. The
igure shows that indeed the variation of the normalized cur-
rent with voltage is rather weak for magnetic field$ T.

In particular, the fractional variation dfV,B)/I1(V,0) over

2Mae xi (hvi2)de, the voltage range shown in Fig. 5 is always less than 0.2. At

fe)=, n=0 Jo T (fivl2)?+ (e, —&,)? higher fields, the variation is stronger. This is because the
peak in thel (V) characteristics shifts to lower voltages with
% 1 (10) increasingB (see the inset in Fig.)2Here we do not discuss
l1+exd(e+e )/KT]" the physical origin of this shift, but we do emphasize its

effect on the form ofl (V,B)/I(V,0). In the vicinity of the
Substituting this formula into Eq2) we obtain an expres- peak the asymptotic formulas that lead to Efl) are in-
sion for the tunnel current that involves two integrations, onevalid. Because the peak shifts to lowémasB increases, the
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range of voltages in Fig. 5 where the suppression is homo- V. EFFECTS OF THE SPACE CHARGE ON THE
geneous, that is(V,B)/1(V,0) is constant, becomes nar- CURRENT-VOLTAGE CHARACTERISTICS
rower with increasing3. OF A FINITE-LENGTH SL

The factorq(B) given in Eq.(12) can be simplified if we
assume that the broadening of the Landau levels is mucﬁl1
larger than the energy of the thermal fluctuations, that i
hv>kT. We estimate that the scattering ratedue to ion-
ized impurities in the heavily doped emitter contact is ap
proximately 6<10'2 s7! at T=4.2 K. Then#v/kT=14.
Because of the exponential factor in the integrand of Eq
(12), the principal contribution to the integral over comes
from a narrow range of energies close ¢p~kT. If B is
sufficiently large thati w.>kT, the Lorentzian factor can be
considered as a constant since it varies slowly on a scale
kT. Then, after simple algebra, we obtain,

So far, we have considered how electrons are injected into
e lowest SL miniband. But to calculaltéV), we must also
Yetermine the electric-field profile along the SL. This profile
depends in part on the conductivity of the SL itself that de-
“termines the space-charge distribution of electrons in the SL
miniband. In an infinite model SL, the electric field is as-
sumed to be homogeneous. However, this model is unrealis-
tic since it does not include the emitter and collector con-
tacts. Since we consider a real sample with contacts, space-
charge effects are important, and can produce an
%homogeneous electric fiefd. The current-voltage charac-
teristics Egs.(7), (9), and (11) give the tunnel current as
functions of the electric-field= in the tunneling region X
<Xg), notas functions of the applied voltade If the effects

T (hvl2) (= el of the space charge are weak, thés FL, wherel is the
a®)= kT ngo (hv/2)2+82f0 ex[{ - k_'r)(j"SL distance between the" contacts. However, in general, such
" a simple relation betweef and V is not valid, and the
1 TV electric-field profileF(x,V), which depends parametrically
:Eta”’( zwc) (13 onV, must be calculated self consistently. Orfegx,V) is

known, thel (V) characteristics of the device can be obtained
by substituting the electric-fielé,=F(0,V) at the point of
Note that this formula giveg(0)=1/2 rather than the cor- injection into thej(F) characteristics of the tunneling con-
rect value of 1 because it is invalid in the linBt—0. tact given by Eqgs(7), (9), and(11).
For completeness we now give the expressiorg{@) in In order to calculaté-(x,V), we have developed a realis-
the limit #»<KkT, but note that this regime is not attained in tic physical model of the SL’s used in our experiments. The
the experiments. In this case, the Lorentzian factors can bmain features of this model are as follows} The tunnel
replaced by delta functions, yielding the result contact[consisting of the emitter contact and the SL region
for x<xq (Fig. 3], and that part of the SL layers with

>Xq, Will be considered as two resistors connected in series.

hwe < en hwd2kT The current through any cross-section of the SL is equal to
=T Z ex;{—ﬁ)zm. (14)  the current flowing through the tunnel contadt) The effec-

n=0 ¢ tive length of the tunnel contact equals the length of the
tunneling trajectoryxo=Xq(F) (see Fig. 3 This length is

Since the function on the right-hand side of Ety) decays Xo=(eh?/BmICT?)Fo(V) for the Boltzmann tunneling re-
exponentially with increasing magnetic field, the current sup9iMe, andXo=E,/eFo(V) for the Fermi regime. The length
pression in this case is much stronger than that given by EQf the active part of the Skwhere electrons have sufficient
(13). For example, wherB=3 T, Eq. (14) gives q(B) nergy to enter the first minibapds L—x,. (iii) Current
~0.01. Such strong suppression has never been observed/|AW through the SL originates only from those electrons that
our experiments. By contrast, the weaker magnetosuppre&!€ injected through the tunnel contact, i.e., there are no in-
sion given by Eq.(13) describes the experimental results trinsic carriers in the SL, which is nominally undoped. Due

rather well. This demonstrates that Landau-level broadening‘_jt the tunneling injection process, all electrons enter the SL

has a major effect on the observed magnetosuppression the bottpm of th_e IQWESt miniband. .
the current. To obtain quantitative results from this model we need to

The origin of this suppression has a clear physical explad€termine thex dependence of the local volume density
nation. WherB=0, the principal contribution to the tunnel- N(x) of Condl_"Ct'On, electro_ns in the SL, Wh'Ch is related to
ing current is made by electrons with the optimal tunneling” (%:V) Dy Poisson’s equation. These functions must be cal-
energys,(F) associated with motion along the SL axis, andculated self consistently from the current-conservation con-

with pj+p5=0. The external magnetic field does not dition
change the total electron energy, but it reduces the energy of j(Fo)=eN(X)vg[F(x,V)], (15)
the longitudinal motion at least by w./2. This is because, ) . ) ]

for nonzeroB, the minimum energy for motion in the—z whereuv 4 is the local electron drift velocity, and the Poisson
plane is increased tdw /2. To maintain the state occu- €quation
pancy, the optimal tunneling energy must therefore fall by dE(x.V N
approximately the same value. This reduces the barrier trans- (x,V) __¢ (x) )
mission coefficient and so suppresses the current. dx €€g

aB)

(16)
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Here, € is the relative permittivity of GaAs. The right-hand 14
side of Eq.(15) gives the current at a positioninside the 12[
active part of the SL. It is expressed in a Drude formalism, 10l
and is proportional to the drift velocity of conduction elec- s 8}
trons vy, which is a nonlinear function of(x,V). The E 6l
simple Esaki-Tsu modehives =l
2 L
F(x,V)IF* 0 . . . , ,
ve(F)=vgq , (17) 0 2 4 6 8 10 12
1+[F(x,V)/F*]? FL(MV)
wherev,=%/(mgd) in which the effective mass, is in- FIG. 6. Calculated applied voltagéplotted as a function of the

versely proportional to the second derivative of the minibanceffective voltageFo(V)L for the Boltzmann tunneling regime. The
energy wave-vector dispersion relation at the bottom of théhick solid curve is forB=0 T and the thin solid curve is foB
miniband, andF* =3.8 kV/cm is the electric field corre- =10 T. These curves are nonlinear due to the inhomogeneity of

sponding to the peak in the current-voltage characteristics é|fle electric field in the SL. Curves for intermediate magnetic fields,
B=0. B=1,2,...,9 T, lie inbetween the thin and the thick solid lines.

The dashed line shows the linear variationFef( V)L with V ob-

Egs.(15) and(16) are subject to two boundary conditions. tained when space-charge effects are neglected.

One is the continuity of the electric field at the poixt

=Xo(F) where the electrons enter the SL miniband. At this
point Fo(V)L, which shows the effective voltage that would be

dropped across the device if the electric field were indepen-
Fo=F(Xg,V). (18 dent ofx.
These graphs show that(V) becomes increasingly non-
The second boundary condition establishes the relation béinear asV is increased and the effects of space-charge
tween the distribution of the electric field in the device andbuildup become more important. The effective voltdgg
the applied voltage, which requires that is always lower thaiV because the electric field in the tunnel
contactF is lower than the mean electric fied/L. The
physical reason for this difference is the negative space
charge accumulated in the SL. Because of this space charge,
the electric field in the SL layers increases with increasing
where V=V is the voltage dropped across the undopedrhe local electric field=, must therefore be smaller than the
spacer layers adjacent to the emitter and collector contactgean fieldV/L in order to ensure that the total voltage
Since these spacer layers are shd@.2 nm), Vg can be  dropped across the device equals the applied volagdes a
neglected at voltages below35 mV. At higher voltages, consequence, our calculatdqV) curves increase more
V¢ becomes important, but then the electron injection processlowly with increasingV when the effects of space charge
is completely different from the tunneling mechanism con-puildup are taken into account. This can be seen from Fig. 8
sidered here. The reason for this is that the electrons gaim which we plotl (V) characteristics calculated for a mesa
energy from the electric field when they pass through thevith a cross-sectional area of X80 2 mn?¥ including
emitter spacer layer. F&f=35 mV this energy is sufficient (curves with square symboland neglecting(curves with
to overcome the triangular barrier of heighB meV shown circles space charge effects. We consider two magnetic-field
in Fig. 3. Then the electrons enter the lowest miniband divaluesB=0 T [Figs. 8(a) and(c)] andB=10 T[Figs. 8b)
rectly from the emitter contact, and th€V) characteristic is  and (d)]. We also consider both the low-voltage Boltzmann
controlled by miniband transport alone. The magnetosuptunneling regimegFigs. 8§a) and (b)] and the high-voltage
pression ofl (V) observed in this high-voltage range can beFermi regime[Figs. §c) and (d)]. For both voltage ranges
explained by considering the influence®fon the electron- and both magnetic-field values, the calculated current in-
scattering rate in the minibartd-*4 creases more slowly with increasingwhen space-charge
Egs. (15-(19) form a closed self-consistent set of equa-
tions. To obtain the current-voltage characteristics, we must
first determineF(V) from these equations. This is done in
three steps. First, the concentratiix) obtained from Eq.
(15) is substituted into Eq.16). This gives a first-order non-
linear differential equation foF(x,V). The second step is to
solve this equation subject to the boundary condition Eg.
(18), and then substitute the solution into Ef9). This pro-
vides an implicit equation foF,(V). The third step is to
solve this equation numerically in order to determingV).
In Figs. 6 and 7 we show the relation betwdenandV for FL(MV)
the Boltzmann and Fermi tunneling regimes, respectively.
Along the horizontal axis in each figure we plot the product FIG. 7. The same as Fig. 6 but for the Fermi tunneling regime.

L
V=VS+X0F0+f F(x,V)dx, (19
Xo
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0.4

When space-charge effects are included, we obtain good
agreement between the theoretit@V/) plots (solid curves
with square symbols in Fig.)&nd the corresponding experi-
mental datgsolid curves with no symbols in Fig) 8or both
B=0 T [Figs. 8a) and(c)] andB=10 T [Figs. 8b) and
(d)]. Similar correspondence is obtained for B 10 T,
which strongly supports the proposed mechanism of magne-
tosuppression.

. , r , . . It is easy to see that Eq&Z) and(9) do not give the same

0 2 4 6 8 1.°_ 12 current atF=F_;. As a consequence of this mismatch, the
(b) B=10T, Boltzmann regime theoreticall (V) curves rise above the experimental data near
0.06 - 1 V=V.=13 mV in Boltzmann regimgFigs. §a) and (b)],

but fall below them in Fermi regimgFigs. 8c) and (d)].
Although the asymptotic formulas EqS) and(9) give poor
approximations to the current in the vicinity of the transition
voltageV,., the good agreement between the theoretical and
0.004 | experimental (V) curves found away fronv. suggests that

. . . . . . our estimate ol itself is fairly accurate. Since the calcu-

6 2 4 6 8 10 12 lated current is very sensitive to the value\f, any signifi-
() B =0, Fermi regime ] cant error in our estimate of this parameter would produce

(a) B= 0,' Boltzmann regirﬁe

03

0.2}

011

0.0

0.08

0.04

0.02

I(mA)

1.4

:.12) i much worse agreement between theory and experiment.

) In Figs. 8c) and (d), the calculated (V) curves deviate

081 strongly from the experimental data f&>35 mV, even

0.6 when space-charge effects are included. This is because, as
04} mentioned above, the transmission coefficient of the triangu-
0.2 1 lar potential barrier shown in Fig. 3 becomes close to unity at
0.0 i . . . high V, and so the electrons are able to enter the miniband

20 25 30 35 40 directly. In this region, the conductivity of the SL is ex-

0.5} (d) B=10T,Fermiregime . plained well by a velocity quenching mod&land related

04l Monte Carlo simulation&?

031
0.2}
011
0.0

VI. CONCLUSION

In summary, we have shown that the magnetosuppression
of SL miniband conduction observed in our experiments can
r - - - be explained by considering tunneling injection processes
15 20 25 30 35 40 . ; i
V(mV) that transmit electrons from the doped emitter contact into
the SL layers. To enter the SL miniband, the electrons need
FIG. 8. 1(V) characteristics in the Boltzmarife) and(b)] and  to tunnel through the potential barrier that is formed if the
Fermi[(c) and (d)] tunneling regimes wittB=0 [(a) and(c)] and  |owest miniband lies above the emitter Fermi level. At he-
B=10 T[(b) and(d)]. Solid curves without symbols show experi- |jum temperatures, the height of this barrier greatly exceeds
mental data. Squarggircles indicate| (V) curves calculated in- kT and the optimal tunneling energy is obtained by maximiz-
cluding (neglecting the effects of space-charge buildup in the SL jng the product of the electron distribution function and the
miniband. tunneling transmission coefficient. When a magnetic field is
applied along the SL axis, the in-plane motion is quantized
into Landau levels. As a consequence, the optimal tunneling
energy and corresponding transmission coefficient both fall

@nd thereby suppress the current. Our calculations of the
MB increases exponentially with increasing while the y SUPp

e . (V) char risti n this mechanism of injection
Drude current within the SL layers increases more slowly.( ) characteristics, based on this mechanism of injection,

) are in good agreement with the corresponding experimental
Consequently, to ensure current conservation, the occupap; 9 9 P g exp

cies of the MB states and corresponding space charge musi?lta for a wide range of andB values,
increase with increasiny. This effect is clearly seen by
comparing the effective voltages shown in Figs. 6, 7. In the
Boltzmann regime(Fig. 6) where space-charge effects are
less important, the effective voltaggL deviates much less This work was supported by EPSRC, The Royal Society,
from V, than in the Fermi regiméFig. 7). and by CONACyT(Mexico).

buildup is included in the calculations. Note that the effect o
this space charge becomes more pronounced iasreases.
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