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Charge pumping and photovoltaic effect in open quantum dots
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We propose a random matrix theory to describe the influence of a time-dependent external field on electron
transport through open quantum dots. We describe the generation of the current by an oscillating field for the
dot, connected to two leads with equal chemical potentials. For low-frequency fields, our results correspond to
adiabatic charge pumping. Finite current can be produced if the system goes along a closed loop in parameter
space, which covers a finite area. At high frequency, a finite current is produced even if the loop is a line in
parameter space. This result can be explained in the same way as adiabatic pumping, but considering the
evolution of the system in phase space rather than in parametric space.
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[. INTRODUCTION the characteristic time for a classical particle to cover all of
the available phase space in the dot and we 7patl.)
Adiabatic charge pumping through open quantum dotsTherefore, the considerations of Refs. 1,3 have their own
was studied recently in the literature both theoretidafly ~physical significance. On the other hand, the theory of Ref. 5
and experimentall§.Such pumping occurs in a system de- is not restricted to the adiabatic regime, the results being
scribed by a Hamiltonian periodic in time with a peridg  valued in a broad interval of frequencies.
larger than all other characteristic time scales of the system. The purpose of the present paper is to go beyond the
After one period, the system returns to its initial form; how- adiabatic approximation for dc generation in open quantum
ever charge can be transmitted through a cross section ofdots. One can identify two contributions to the dc—
the system: reversible and irreversible. To make a connection with the
terminology of the photovoltaic effect used in Ref. 5, we
Tp consider the bilinear dc response through the dot, generated
Q=lpcTp= Jo (1(1)dt, (1) py several time-dependent perturbatiangt) = o; €.
The direct currentpc can be written atv—0 as
where ( ...) denotes quantum mechanical and thermody- ) N ) . 3
namic averaging. lpc=lwej¢i @], T 7ij¢i,w@j,w+0(‘l’ ), 2

To obtain a finite transmitted charge at low frequencieswhereeij and y; are real sample specific coefficients. They

the Hamiltonian should depend on at least two parameters. Igre not fixed by any symmetiia sample does not have any

Refs. 1-3 the time dependence of the Hamiltonian was regycept the condition thatyc is a real number, which gives
placed by a dependence on parameters and the system Wgg requirements

considered quasistationary for each parameter value. The
transported charge during one period of the Hamiltonian was €= €i, YVi=Vj- 3
calculated as an integral in the parameter space. The 13he0r¥ . o )
shed some light on the recent experiméntmmely on the hese relations mean that_as the direction of the contour in
amplitude dependence of the root-mean-square fluctuatiorig€ parameter spadep;(t);} is reversed ¢;(t)— ¢;(—t) or
of the transmitted charge, averaged over different realiza®i.o— ¢i..J, the first term changes its sign, whereas the sec-
tions of the Hamiltonian. ond term remains intact. In the language of the photovoltaic
A very similar phenomenon was considered previously byeffect, the first term is the circular photovoltaic effect, and
Fal'’ko and Khmelnitskii, who theoretically studied the pho- the second term is the linear effécEquation(2) makes an
tovoltaic effect in mesoscopic microjunctiondhe experi-  explicit connection between the bilinear responses of dc gen-
mental observation is described in Ref. 6. The photovoltaieration through open quantum dots and the photovoltaic
effect is a generation of dc by radiation of a finite frequency .effect.
(It is obvious that this effect can only be nonlinear in the We will see that the separation onto reversible and irre-
oscillating field) The bilinear regime of adiabatic versible parts goes far beyond the bilinear and low-frequency
pumping =23 is precisely the circular photovoltaic effect in- expansions. We will find that the reversible part vanishes at
troduced in Ref. 7 and applied to a mesoscopic system ihigh frequency, whereas the irreversible part saturates. We
Ref. 5. The results of Ref. 5 are not directly applicable towill also show that the irreversible contribution may be in-
quantum dots because in microjunctions the Thouless enerdgrpreted in a manner similar to adiabatic pumping. In adia-
E1~1/7¢q is of the same order as the inverse escape timéatic pumping, the transmitted charge was determined by a
1/7es., Whereas for quantum dots7l{<Er. (Here,74is  contour in parameter space. The irreversible current is deter-
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mined by the contour in the extended phase space
{ei(),ei(t), ...}, see Sec. V.

The first term in Eq(2) vanishes for a single pump due to
the antisymmetry of;;, Eq.(3). The contour in parameter
space degenerates to a line in this case, while in phase space
the contour encompasses a finite area. We will see that the
current is proportional to this area. Note, that the contour is
invariant with respect to time inversion. T

The remainder of the paper is organized as follows. In v, ®
Sec. Il we formulate the model that is studied in the paper. ) )

FIG. 1. An experimental setup. The voltage applied to the gates

We mainly discuss the high-temperature limit-©, where S

o is the frequency of the perturbation. In Sec. Il we calcu-Y1(t) andV(t) changes the shape of the dot, resuiting in the mo-
L : tion of the energy levels of the electrons in the dot.

late the ensemble averaged fluctuations of the current. As an

example, low-frequency asymptotic of reversikéeliabati¢ oo )

and irreversible currents are considered. In Sec. IV we disivhere the thermodynamic limil — is assumed.

cuss how the irreversible contribution can be represented in The coupling between the dot and the leads is

the form of a linear integral over the contour in extended

phase space. In Sec. V we discuss the low-temperature limit N N

and show how to take heating into account. Section VI sum- Hip= aEnk [Whata(K) a+H.C, (6)

marizes our results. o

where ¢, corresponds to en electron state in the doi(k)
Il. THE MODEL denotes electron statex(k) in the leads, andk labels the
We consider the following experimental realization of the cOntinuum of momentum states in each channefor a dot

model. Gates near a two-dimensional electron gas form thgonnected by two leads withi and N, channels, respec-
shape of the dot. An oscillating voltage is applied to thetlVely, we denote the left lead channels by &<N, and the
gatesV(t) and V,(t). As a result of motion of electron "ght channels b, +1<a<Nc, Wherchh:Nl"'Nr' The
energy levels in the dot, a current flows through the dot. Th&0UPliNg constantsiy,, , in Eq. (6) aré
direction of the current depends on the particular realization
of the dot and is zero on average. We calculate the fluctua- Iy, if n=asNg,
tions of the dc with respect to different realizations of the Wha=
dot.
Calculations will be performed for an open quantum dot
in the limit of a large number of open channéls, connect-
ing the dot to the leads. This condition allows us to neglect ' )
the electron-electron interaction, which gives corrections o€ linearized
the 1N?, order(see Ref. 8 The same condition permits the
use of a diagrammatic technique, similar to that described in .
Ref. 9, to calculate ensemble averaging. HL:UF% kit (K) Yral(K), ®)
We also assume that the quantum dot is small and the '
Thouless energfr~1/7er is much'grt_aayer than all other wherev = 1/27v is the Fermi velocity, and is the density
energy scales of the problem. In this limit, one can use ranse ctates per channel at the Fermi surface
dom matrix theor(RMT) to study transport and thermody- The current through the dot is given in ferms of the scat-
namic properties of the system, see Ref. 10. All corrections A, ) )
to the RMT are as small d8,,/gqq;, Wheregge=Er/d;, &, terlng matricesS(t,t’) by the following expression, see Ap-
is the mean level spacing. We neglect the fluctuations of th@€Ndix A:
time-dependent perturbation from sample to sample, created
by the voltages/, J(t), since they depend on the small pa-
rameterg, <1 (see Fig. 1 <I(t))=e§ Awf dtydt;
The Hamiltonian of the system'fs

()

0, otherwise,

andI',, are defined below in Eq23)
+ The electron spectrum in the leads near Fermi surface can

X

HZHD+HL+HLD, (4)

% Sap(tt) fa(ti—t2) S ho(ta, ) = Fo(+i0) |,

9

where Hp is the Hamiltonian of the electrons in the dot,

hich is determined by th1 X M matrix H,,,,: . . _
whien 1s ! y X Fnm wheref (t) is the Fourier transform of the electron distribu-

M tion function in the leads{ ...) stands for the quantum
|:|D: E ngnmwm’ (5) mechanical_ant_:l thermodynamic averages for a given en-
nm=1 semble realizatiorino ensemble averagihgnd
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N, . In order to find the characteristic value of the matrix ele-
+—, If IsasNj ments describing the external perturbatigp,, acting on
A =8 ch (100  electrons, one has to take into account that the number of
apB apB N . .
_ i Ni<a=N electrons in the dofin may be changed by such perturbation.
Nen’ ! oh This change of the charge, in its turn, leads to the change in

In Eq. (9) and below the spin degeneracy is taken into acthe effective potentia\/ﬁrfnf that is experienced by an elec-
tron

count. ) ) _
To take this effect into account, we write

The scattering matrix of the systelﬁ(t,t’), is

Sap(tt')=38,50(t—t") =2 vW! G (t,t" )Wy, Vel=Vamt SamEcdn, 17
11
and the Green’s functio(?(t,t’) is the solution to whereEc is the charging energy of the d@i:> 5,. Other
nm terms produced by the electron-electron interaction are
d . R T Y ) smaller than the level spacing and can be safely neglected,
'E_H(t)JF'”VWW G(tt)=6(t—t"), (12 gee e.g., Ref. 15 for further discussion. On the other hand,
. . the zero-mode part of the effective potential) causes the
where the matricell andW are comprised by their elements change in the number of electrons
[see Egs(5) and(7)]. An analog of Eq(9) was used before

in the energy representation in Ref. 11. 1

Below we consider the special case of electrons in both Sn=— —— 2 veff (18)
leads being described by identical distribution functions Moy & M
f;(t)=1(t). The functionf(t) is the Fourier transform of the
Fermi-Dirac distribution function: Substituting Eq(18) into Eq.(17), and solving the resulting
) algebraic equation, we obtain
=[S 1L IT gy
( B o 27T e‘”/T+1 2 _2 sinhwTt’ S ~ 51 S R

. . . velf=lv — 0T 7|+ 2w, (19

In this case, we can derisee Appendix Banother formula M 61+Ec M

for the current through the dot:
For the dot containing large number of electroNs; 1, the
<|(t)>:2ei7ﬂ,1-rf f dt,dt,f(t;—t){WGR(t,t,) charging energy is much larger than the one particle level
spacingEc/8;=N>1. According to Eq(19), the diagonal
><[|:|(t1)— H(tz)]é(A)(tz,t)\va}, (14) E)art of the perturbation is strongly suppressed and matrices
V; can be taken traceless from the very beginning.

which is more convenien_t for further calculations. Therefore, the perturbation is characterized only by pa-
We calculate the variancémean squapeof the trans- L~
rametersC;; , quadratic inV; :

ported charg® through the dot. We assume that the Hamil-
tonian of the dotH in Eq. (5) is represented by a time-
dependent matrix in the form

Cij: il TrviVj, (20)
B () =T+ V10 (t) + Vah(t). (15) M*0,

Here, the time-independent part of the Hamiltonidnis a  where we used the fact that the matridésare symmetric.

randomM X M matrix, which obeys Gaussian statistics with [We note that, according to the definition of E80), € has

the correlator dimension of energy.The parameter€ are also related to

HowH =N S Sy TN Sy S (16)  the typical value of the level velocities that characterize the
. evolution of an energy leved,(X) under the external pertur-
where ( .. .) means averaging over ensemble of matries  pation XV 3
A=M(48;/m)? and \'=\(1—gy/4M), and g;, defines the
crossover from orthogonabf=0) to unitary @,=4M) en-

261 de, de, ﬁ_e,, de,

sembles. The parametgy has the meaning of the dephasing L L _ (21)
rate due to an external magnetic field in units of the level m 19X aX; 9X dX

spacing 8;.1%1? It can be estimated agy=gqo(P/Po)?

where @ is the magnetic flux through the dot anfl, Since all other responsée.g., parametric dependence of

=hc/e s the flux quantum. The time-dependent perturbationthe conductance of the daire expressed in terms of univer-

is described by symmetrigl X M matricesVi and the time-  sal functions of the same parameteZs ,13 they can be
dependent functionsp(t)=coswt and (t) =coswt+¢), found from independent measurements. Calculations can be
where w is the frequency of the perturbation aridis the  generalized to the case in which the trace of the perturbation
phase shift between two harmonic functions. matrix is not zero. See, e.g., Ref. 3.
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1 n n
ce+invWTW * m = m s = <Hn’m’Hnm>
— () —
= + ¥
@ B n T n + n m n_m o1 FIG. 2. (a) Diagrams for the ensemble aver-
aged Green'’s function. The second term in the
(a) self energy includes an intersection of dashed
lines and is as small asM/. (b) The Dyson type
& I < R Vam equation for the diffusorP(t; ,t7 ,t5 ,t5).
[ - - T - 3 .|
. >
t; t, A Vam
Vnm an
(. .
(b)
The ensemble average of the transmitted ch&pgele- The other element of the diagram technique used in the

fined by Eq.(1), is Zero;azo_ We calculate the second- Paper is an amputated average of the products of two Green’s
order correlator with respect to an ensemble of random maéflinctions[see Fig. 2b)], called the diffusorD(t,,t,,7) and
trices, Eq.(16): defined by

[Ty (T _ GR t)GW (L, 1)
Q2: J;) pfo pdtdt,<|(t)><|(t,)> ) (22) [ nm( 1 2) Jrmn( 2 J:Ir_):lamp
t] +t; t,+t,
. . . . . —aMAD| - 22—t
For this purpose we use a diagrammatic technique, which 2 2
has been applied to a similar class of problems. See Refs. e
3,14. Here we present the basic elements of the diagrams that X6ty —ty —ty +1ty). (25

W"Li'?gieriuiz itSye\;:vZ ;!ésinrgevfhat the contacts are reflectionwe can use this relation since the time arguments of diffuson
) . satisfy t7 —t; =t; —t, . Introducing new variablest
less. In this case, the ensemble-averaged scattering matrix fy i~ =t 1 g 1.2

— hi i I ine the f =(t12+t£2)/2 and 7=t;,—t,;, we obtain the following
Sqp 1s zero. This condition allows us to determine the aCtorSequation for the diffusoD(ty,t,,7):

I',in Eq.(7)
J
M &, o HRp(ty, 7) | DMy, 7) = 8(t — o),
Th=\— (23 1
ar
= T e
and the ensemble-averaged Green’s funcGd in the ab- Kp(t, 1) =Nent @ (1, 1) CR (L, 7), 26
sence of time-dependent perturbations where
Nentie
1+ ch , Negp<n=M; ¢ t+z _¢<t_z)
= Smn 4M 2 2
Ghm(€e)==% o(t,7)= : (27)
iVvaiM | 1 T T
(24)

. . . The solution to the above equation is
Above we introduced the dimensionless eneegmneasured

in units of yN/4M=6,/2w. We expanded these Green’s t

functions ine/M andN,/M, since only those terms survive D(tlytz’T):@)(tl_tz)eXF( - ft ’CD(taT)dt)- (28)

the thermodynamic limiM — . For the same reason, in the z

expression forGgR) with n=<N,, one has to neglect such Equations(26)—(28) are written in dimensionless variables,
terms, since the contribution of these elements to the finado that energy and time are measured in unit$,627 and
result is already of the order &.,/M. 2wl 8,, respectively. Below, intermediate expressions are
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10

var Q (arb. units)

~ = fin-t,)[H(t)-H(t,)]
i

FIG. 3. The diagram representing the contribution to the charge
correlator,Q? at high-temperatur@.

also written in terms of dimensionless energy and time vari-
ables, while the final answers are represented in terms of F|G. 4. The amplitude dependence of the pumped charge for
physical quantities. different values of the frequency of the pump. FOE y.s. the

curves have th€? dependence at small values @fand the\/C
I1l. MESOSCOPIC FLUCTUATIONS OF THE CURRENT dependence a€> y.,. For small frequency(e.g., ®=0.1y.s)
AT HIGH TEMPERATURES there is an intermediate regime.

In this section, we will consider the high-temperature
limit, in which the frequency of the perturbation is much
smaller than the temperatur@® more accurate definition of
the high-temperature limit is given in Sec.)Vn this case,

the only contribution to the charge correlation functi@f,

is given by the diagram shown in Fig. 3. The corresponding First we consider the weak perturbation and perform an

analytical expression is expansion of the diffusons up to terms linearGy) . As a
result we obtain

also show the analytical curve given by H40) for the w
—oo limit. Below, we discuss different limits of Eq29)

A. Bilinear response

— 2w + o0 0

Q2=4e29j dxdyR(x,y)f def d7F?(7) o » +0
0 0 —0 Q2=4772ezgf dﬁeszchef drF?(7)

0 -9

X+y X+y X—y
Pl 0%, T, C2(206—sin 200) + C2sin 206
X ” , (33
X+y X+y X—y
XD + 6, -, , 29 . . . .
2w 20 " w @9 where we have introduced the linear and circular pumping
amplitudes
where
R(X,y)=Cy;sinx siny+Cy,sin(x+ ¢)sin(y+ ¢) Ci=Cy11t2Cypc08¢+ Cypy, (34)
+ CyJ sin(x+ ¢)siny+sinx sin(y + ¢) ], C.=2 sind m (35)
(30)
In the case of temperatufielarger than the escape rajg,..,
NN, we find
9= N (3D
ch
. . . — e 5 1 w?
is the dimensionless conductance through the dot from the Q’°=—g— - TCI2+ cg ] (36)
left to right leads and 247 T yesct ©\ Yesc
o TIr The second term of E§36) survives the limitw— 0, thus
(7)=—=——=—. (32
sinh 27T+

reproducing the known result for adiabatic pumptrigon

the other hand, this t ish t high f . Th
Expression29) can be computed for different values of pa-{ © omer han IS erm vanishes & nigh frequency N

In Eig. 4 h It of . inear term is quadratic in frequency at small frequency and
rameters. In Fig. 4 we present the result of computation o}, 4s to a constant at large frequency.

Q? for two frequenciesw=0.1yesc aNd ©= Yes,, Where The linear pumping amplitud€, in the case of two
Yes= Nend1/27r. Both those curves exhibiE? and /C, de-  pumps has the form of E434), which implies that the am-
pendences at weak and strong pumping, respectively. Weglitude is just a vector sum of different pumps in the param-
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integral in the parameter space. At sufficiently strong pump-
ing, the system at distant points of this space is uncorrelated
and the total contribution to the pumped charge comes from
the uncorrelated pieces of the loop, being proportional to
their number.

In the limit of low frequency and zer€. (single pump,
the mean-square fluctuation of the charge per cycle is qua-

dratic in frequency. For weak pumping, the amplitude of

@ charge fluctuations is determined by E&6) with ¢=0 for

cd A Yesc arbitrary frequencyw. (For a single pumpgC, is the only

A parametej. For strong pumpingbut still w?C,< yisg we

=s==resa— "
ce 25 , o? 8, C\¥
02— 2, i =

O T (wj | 39

(b)

We explain thi nden n the ampli f th rtur-
FIG. 5. In inset(a) a loop is shown in the parameter plane. The bafloen Fl’nath; an(:espeinc(j)?l ce on the amplitude of the pertu

grid divides the plane onto pieces, so that parts of the loop in the
different pieces give uncorrelated contributions to the transported
charge. Insetb) shows the loop in the phase space for strong pump-

ing. In this case the loop can be divided onto pairs, and the pairs are |n the limit of high frequenciesT> w> vy, the variance
not correlated. On the other hand parts of the loop of one pair argf the transmitted charge is given by

close to each other, so they are strongly correlated.
P~ iez ﬁ Ci+ Yesc™ VVesd Yesct 2C))

C. High frequencies

eter space. On the other hand, the circular amplitude is re- Qc= 5897 (40
lated to the area in the parameter space, covered by the VYesd Yesct 2C))
pumps. In the limit of strong pumping, this expression has 1@,
_ asymptotic behavior. The curve EO) is represented in
B. Low frequencies Fig. 4 by the solid line.
Equation(29) in the adiabatic limitw— 0 is in agreement
with the results of Ref. 3. Namely, this expression gives the IV. PHOTOVOLTAIC EFFECT AS PUMPING
same asymptotic behavior for the limits of weak and strong IN PHASE SPACE

pumping. To demonstrate this, we consider the special case

of the C matrix having the formC;,;=C,,=C andC,=0
In this case we obtain

In this section we discuss the mechanism of charge trans-
port by a single pump at finite frequenci@®., the irrevers-
ible contribution to the dc We show the similarity with the

——— hanism of adiabatic charge pumping, discussed in Ref. 1.

— — meC . . . . y . .

Q%= iezgﬁ 2CH[ Yesc Vesd 7esc+4c)]. (37) In the adiabatic approximation, the system’s motion is con-
12°°7 VYesd Yesct 4C) sidered in a parameter space. For finite frequencies, the pa-

rameter space has to be extended to phase space, which con-
tains not only the perturbation parameters but also their time
derivatives.

According to Eq.(9), the transported charge for one pe-

As temperature drops down 0~ yes= N¢pd1/27r, the vari-
ance of the transmitted charge saturates to

— 2,4 c? o :
Q2= —e?g— _ (3g)  riod is determined by
m Yesc \ Vesd Yesct 4C)3
Note, that the dc through the digi.= Q/ T~ wQ vanishes as Q= J dtf dt’J dTJ —e'”f(r)

w—0, as expected for a system in equilibrium.

The authors of Ref. 3 showed that for strong pumping the t+t’ 1 t+t’ 1
mean-square transported charge is proportional to the length XTr S( ’T+ Z)ST 5~ Z)A]' (41
of the contour in the parameter space, and does not depend
on the particular shape of the contour. Equati¢®® and  We use the Wigner transform for the scattering matrix:
(38) support this statement, since f@&> vy, they repro-
duce a/C dependence on the pumping amplitude. In the
opposite case of weak pumping, E¢37) and (38) give C?
dependence in accordance with Refs. 1,2. To understand the
strong pumping dependence, we consider a loop in the pa- We consider charge pumping at high temperatufe (
rameter space.See Fig. 5. We notice[see Eq.(45 and >w). In this case, the integration overis limited by the
Refs. 1,3 that adiabatic pumping can be related to a contouinverse temperature T/ On the other hand, the scattering

61

oo.d
S(t,t’)zf S[e, (t+1")/2]e' <t >§. (42)
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matrix S(e,t) in the Wigner representation varies slowly constant and the transported charge per period is propor-
with respect to its time argumentThis allows us to expand tional to the area of the contour in phase space. The contour

the scattering matrices in EGt1) to linear order inr. Using
the unitarity of the scattering matrix we finally obtain

Q= f IZW coslfe/2T

XTr A(ﬁS( 1)

:
ST(et)— S(et)8+))}.

(43
This equation was used by Brouwer in Ref(%ee also Ref.

is an ellipse with semiaxeg¢C andw+/C and arear»C. For
the variance of the transmitted charge, we exp@@t
o« w?C? yas, Which is in agreement with Eq:36) for w
< Yesc:

In the limit of low frequency but strong pumping, we can
apply Eq.(46) to understand Eq(39). The power depen-
dence[ C*?] is different from the adiabatic ca$€*?]. The
loop in phase plane is long along theaxis but narrow in the
¢ direction because the frequency is smgdlee Fig. ®).]
The charge variation is determined by a sum of independent
contributions from pieces of the contour along thexis. As

11). The scattering matrix in the Wigner representation is acan be seen from Fig.(B), the number of the independent
function of the perturbation itself and its higher-order deriva-pieces isN;,q=v/C/ ves. In the ¢ direction the system is

tives with respect to timgSee Appendix G.In the adiabatic

approximation, the derivatives are neglected as being sm
to higher orders in frequency. Beyond the adiabatic approxi

mation, we have to include the derivatives.

We demonstrate that the analysis of Ref. 1 can be applie

to our case. We assume that there is a single paramaéter

Then, following Brouwer, Ref. 1, we introduce a vector field

dS(e,t)
X S*(et)],

whereX;=d'¢(t)/dt" andi is a non-negative integer.
In these notations, E@43) for the transported charg@ is
given by

Q=e § f277 costfe/2T i= 2 Pile)dX:.

Pi(e,t)=Im Tr{A (44)

(49)

correlated inside each piece of the contour since all points

aéllong thee direction are separated by a distance, smaller

than the correlation length. The characteristic &gaf each
art is proportional tavCvyese The variance of the trans-
gorted charge can thus be estimated as

2 3/2
_ ) C
Q% e”Nijng St e”—- _) - 47
YVesc! Yes

When the amplitude of the fiel€ or the frequencyw
increases further, so thab?C;=y2,, this picture is no
longer valid. The trajectory does not have parts close to each
other and each part gives an independent contribution. The
situation is similar to the case of strong adiabatic pumping,
as shown in Fig. &) and discussed in Ref. 3. The variance
of the transported charge is proportional to the total number
of uncorrelated parts, so th@®« JC, see Eq(40).

The loop integral in the above equation can be rewritten as a
surface integral using Stoke’'s theorem. We develop our
analysis for the transported charge to the lowest order in
frequency, so that the scattering matrix depends onl)Xgn The previous discussion of dc generation is quite general.
— o(t) andX, = ¢(t). According to Stoke’s theorem for this However, it does not take into account the heating of elec-
two-dimensional space, we obtain trons by an external field that becomes important at low tem-
perature. In this regime, the electron distribution function in
the dot changes and acquires a width larger than the electron
temperature in the leads. For simplicity, we limit our discus-
sion to one parameter pumpiriinear photovoltaic effegt
The external perturbation is determined by a harmonic func-
tion ¢(t) =coswt and the strength of the perturbationGs

The new widthT,, of the distribution function can be es-
timated from the following picture. An electron has random
transitions between different energy levels. The time be-
tween consecutive transitiong is determined by the Fermi
golden rule:

V. LOW TEMPERATURE

de

= ——— | dedoll
27 cosr?e/ZTf edell(e),

(46)

.
T(e)=Im Tr[A&S(G) 95 (6)]
de g

In Appendix C we present a formal derivationas/ 9¢
from the equation of motion, Eq(12), in terms of the
Green’s functions of the dot to lowest orderdr yeqc.

Now we interpret results found in the previous section
using Eq.(46). We consider one parameter pumpitigear
photovoltaic effectcharacterized by a harmonic perturbation
¢(t)=coswt with frequencyw. In this case, the strength of (48)

perturbationC, defined by Eq.(20), is a single number, The first equality sign follows from the Fermi golden rule,
which we denote a€. For weak pumping, we keep the time- the second sign represents an estimate of the characteristic
dependent perturbation to lowest order to calculate the dezajue of the matrix element¥,, |2 and the density of states
rivatives with respect t@ and ¢. We assumédl(e) to be a 1/, the last equation is the definition &, cf. Eq. (20).

R C
:E 27"'|Vnm|25(5n_ €m=* a))~|Vnm|2/51=—
m T
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Since an electron stays in the dot for a timge= yoe
=2mINgy6y, it performs Ny = 1/t vese C/ Yesc transitions.
Each transition changes the energy of the electrombjs

in the random walk problem, the displacement of electrons in ts
energy space i$ wC/ yege
This analysis gives a new temperature scgle t3

| C

esc

This scale has a meaning only for strong fiels y.s. SO

that the diffusion picture in energy space is valid. Otherwise,
electrons experience few transitions with change of energy
. Now we consider low temperatures, so that T, is not
valid. We calculate the fluctuations of dc for a system with a
single pump. As we know from Sec. lll, at high frequency,
the number of pumps is not important and the result depends
on their linear combination.

Unlike the diagram, shown in Fig. 3, diagrams presented
in Fig. 6 have additional diffusons dressed on the distribution
functionsf(7). Collecting diagrams in Figs. 3 and 6 we ob-
tain the following expression for the variance of the pumped
charge:

_ T oc v
Q2:4eZCNchgff "dtdt’f def drF2(7)
0 0 -0

XD t+t,th9t+t’+ t—t’
2 1 2 Tl
t+t’ t+t’ A A
XD|——+0,———7,t—t'
> 0, > 7,t—t )
+ oo + oo { — +
XJ ng(t,t—f,ZT)J d¢'D(t't' = §",27)
0 0
x{2C sirffw(t— &)sirto(t’ — &' )sirfor FIG. 6. Diagrams, which contribute to the dc at low temperature
limit. (We do not show diagrams, which can be obtained from the
+NgpSinot sinwt’}, (50 above by omitting the upper or lower diffusonghe last diagram

contains the Hikami box, which is presented in Fig. 7.
whereg is the dimensionless conductance of the [dee Eq.

(31)] and Energy of an electron in the dot changes due to the exter-

nal field, resulting in the redistribution of the electrons in the
: _ (51) energy space. The new distribution function becomes wider
sinh 27T 7 than that of electrons in the leads at temperafur€onse-
quently, the Fourier transform of the electron distribution
At high-temperaturél > w, Eq. (50) reduces to Eq(29).  function becomes narrower. The right-hand side of @)
Indeed, all three diagrams in Fig. 6 are smaller than the diarepresents the effect of heating. This function appears in the
gram in Fig. 3, at least by one factar/T. integral overr in Eq. (50) along with the functionF(7),
Now we discuss the Ilimit of high-frequencyw
> maxyese, C}. This inequality allows us to perform inte-

gration overé¢ and ¢’ in Eq. (50). We can replace st(t _ R NEANDN ﬁ/ o
—§) by 1/2 and use the approximation TRNA NY NN ANS

f:D(t,t—é,Zr)dgw;' &) % @ &&%Q @

Nyt 2C sirfwr

- Tsinwr
F(r)=

t

FIG. 7. The Hikami box, introduced in Fig. 6, can be obtained
In this limit, the product of the diffusons in the second andfrom these diagrams as well from their rotations. The grey rectan-
third lines of Eq.(50) does not depend on gulars represent averages of the @& G® andGAGW,
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defined by Eq(32). At sufficiently low temperature, the con-

vergence of the integral overis determined by the “heating —)
factors,” Eq. (52) rather than byF(7). We note that the -]
shape of the new distribution function is not a Fermi function )
with a higher temperature. Instead, its Fourier transform has R

the form of the right-hand side of E¢G2).
To be more specific, we consider the strong pumping limit
C> veser When the electron distribution function is deter- incoming X<0

mined by the new scal€,, see Eq(49). We find - il
outcoming X>0 « X=0
2 3 2 51 "
Q7= 1_6e g;. (53 FIG. 8. Correspondence between the sigix ahd the direction

of motion of electrons with respect to the dot.
The same parameter dependence can be found frortd8q.

replacing temperaturé by the new energy scalg,. in the phase space. An intermediate regime exists for a single

Equation (50) has two terms. One term contains factor yymp at low frequency and moderate amplitude of the exter-
sinwtsinwt’. This term survives the high-temperature limit, 5 field. This regime is described byG#? dependence of
see Sec. lll. Nonetheless, at low temperature, the heating,e variance of the dc on the field amplitude.
modifies the results of Sec. lll, so that the temperature de- \we also considered a wide temperature range. At high
pendence saturates at the characteristic temperaturelgcale temperature, the variance of the current decreaseE as

The second term was completely neglected in the previye found that at low temperature, heating becomes impor-
ous sections. The origin of this term is similar to that of theignt and it introduces a characteristic temperalyresee Eq.
thermoelectric effect in a conductor out of thermodynamic(49), below which the temperature dependence of the dc
equilibrium. Although electrons are in equilibrium in the sayrates. The result of heating on the dc is twofold. The first
leads, the heating changes their distribution function in theffect diminishes the dc current by a broadening of the elec-
dot, producing a nonequilibrium distribution. Then nonequi-yron distribution function. The second effect produces the a
librium electrons escape from the dot. The direction of eachhermoelectric field, and is a nonequilibrium effect. This ef-
escape is determined by the realization of the dot. An unbaltact is related to the electron-hole asymmetry in the dot. Our
ance between electrons escaping through the left or righlgyits are different from the observed experimentally tem-
leads gives current.sir wr term in Eq. (50) reflects the  perature dependence, see also Ref. 3.
electron-hole asymmetry, necessary for thermoelectric et}—) Finally, the photovoltaic effect is not symmetric with re-
fects) spect to the inversion of magnetic field, similarly to adiabatic

pumping case, see Ref. 3.
VI. CONCLUSION

We studied the dc through the quantum dot generated, ACKNOWLEDGMENTS
e.g., by time-dependent distortions of the dot shape. This dc
is fluctuating from sample to sample and we found the sec- We are thankful to P. W. Brouwer for useful discussions.
ond moment of its distribution. Unlike the previous warks The work was supported by Cornell Center for Materials
on the adiabatic pumping, we treated the system for a broaBesearch under NSF Grant No. DMR-96322K56G.V. and
range of external frequencies, thus providing a bridge beV.A.) and by the Packard FoundatidinL.A.).
tween adiabatic pumping and photovoltaic effects in micro-
junctions of Ref. 5.

The adiabatic approximation is not valid when the fre- APPENDIX A
guency of the perturbatiom is comparable with the escape

rate from the doty.s.. Beyond the adiabatic approxmatlon,éﬂoving towards the dots by, (x.t) with x<0, wherelx

the dc current consists of reversible and irreversible part Jetermi the dist f the dot bound Fio. 8
The reversible contribution was studied in the adiabatic re2S€'MINES the distance irom he dot boundary, Sse€ Fig. ©.

gime. This contribution is determined by an integral over theThen Yo(x,1) for x>0 represents the outcoming electrons.

contour in parameter space. On the other hand, the irreverg--he bpunda&w(:to |s_desc|r|bf:d byta}[ supe(rjposn(ljon Otf t_k;eb
ible contribution to the dc current is determined by an inte-"cOMING and outcoming electron stales and we denote it by
gral over this contour in phase space ,(0t). The wave function of electrons in stadtés denoted

A crossover from the bilinear@?) to \/C regime was by ¢i(t)' , .
found in Ref. 3. The crossover happens when the system We introduce the Keldysh Green'’s functions
makes a large loop during one period of the external field, so
that it is uncorrelated at different points of the loop, see Fig. R xx') R xx)
5(a). We showed that this crossover is universal and happens G apitt af it o
at arbitrary frequency. This result is consistent with the rep- 0 gg’*ﬁ)(t,t’,x,x’) '
resentation of the dc current as an integral along the contour (A1)

We define the wave function of electrons in chanael

aB(t,t',X,X/):
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Pt x) ¢®t x)

&ia(tvt/1xl): (A) (AZ) gi(z)(titraxl):f dtl YN (tytl)
Lt x) )’ ialat—H (1),
which are defined in terms of XW}ggaﬁ(tlyt',O,X')- (A10)
(R)(t t', XX )=—i0t—t"){[.(x1), 1//B(X t')].), The corresponding advance component is zero. Here,

1[idlot—H(t)] is the retarded component of the electron
(A)(t X)) =10t —t) ([ (X.1), ‘/’B(X t)1.), Green’s function in the dot. This definition is different from

that given in the main part of the paper, see Ed). The
(K)(t X)) = — [ Pa(x,1), %(X t"].), latter will appear naturally in the end of this section. The

additional term~W'W takes into account the escape from

where[-,-]. denote commutator and anticommutator, re-the dot through the leads.
spectively The similar expressions can be written down for The next step is to represent Eé8) in the form

&ia(t,t’,x’) Green’s function, withy,(x,t) replaced by (K)(tt XX = G(K)(t_t, x—x")
#i(t). ’
We assume that electrons do not interact in the reservoirs R
and the Green’s function of the incoming electroms X’ +f dtd6G .y (1= 11,X)
<0) is given by the Keldysh structure:
1
GR(t— K)(t—t" x—x' X| W W' (ty,t5)
Gt XX )= A { ialot—Fi(t) L v
i 0 Gg’*ﬁ)(t—t’,x—x’) gt
(A3) 5 (t2,17,0,x") (Al1)
where In the above equation, we consides0. Using G{(t
" _ —1t',0) from Eq.(A4), we find
GR(t,x)=—10(1)8,58vt—X), (A4)
(A) ; GU(t.t,0,x )—Jdt 1+ W— it 71(tt)
Gop(t,X)=+i0(—1)5,56(vet—x), (A5) 1 ialat—A) By 1
Gl (ex)=T(O[GR(ex)-GCL(ex)],  (AB) xGiJ(ty,t7,0x), x'<0.  (A12)
wheref(e) is the distribution function of electrons in the  Substituting this expression to EGA11) and takingx=
channela. In equilibrium with temperaturd, +]6|—0, we obtain forx’ <0:
~ €—9, a ’ ’
T.(e=tanh—, A7) W 8l x)= J dt,S,, (4t G (1 1, —x),

(A13)
}/(\;?%ri?fgr%% trleeparg::;c,ent relative change in chemical potentlalWhere thg scattering m.atrixaﬁ (,t,t’) is given by Eq/(11).
The equations of motion for the Green’s functions defined Equation(A13) is valid forx”<0. We have to repeat the
by Egs.(A1) and (A2) have the form: procgdur_e described above to c_:alculate the e!ectron Green's
function in the leads fok’>0. Since the equations that de-
termine evolution of the Green'’s function frori<0 to x’
aﬁ(t,t,,X,X’): 5(X)Wai@i3(t,t’,x’) >0 are conjugated to those fgy we conclude, that

[at UFox

+8(t—t")8(x—x")1, gl9tt’,+|al, +|5|)_J f dt;dt,S,,(t,t1)

(A8)
X G (1, —15,008 S4(ts,t').

(A14)

ﬁt—Hij(t)}gja(t.t’,X’)=W?ﬁgﬁa(t,t',ox’). (A9)
The currents in the left and right leads are given by

We notice that due to causalit)(t,t’,0x')=0 for N
x"<0. This observation significantly simplifies further cal- (H)=ev 2 [
culations. Indeed, we can represent the Keldysh component : Fe

of the Green'’s function in the left-hand side of E#9) in -
the form —Gaa(t,t,—18],—18])], (A15)

aq by
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Nep AR) Nt — A IEA L 7
+G t,t)[H(t H(t,) ]G t,,t
(D) =ev (G0t +] )+ |8]) (t,t)[H(ty) —H(t) ]G (t,t")
a=N;+1 N -
o —[GP(t,t) 8(t,—t") = 8(t—t) W (ty,t")].
-Gt~ sl -8, (A16) (B2)
where §—0. This limit is just a reminder thag{)(t.t, Substituting this equation to E¢B1) we obtain Eq(14).

—168|,—14|) is taken for incoming electrons and is given by
Eqg. (A6). Consequently,

APPENDIX C
(K) R (] The equation for the Green’s function in the Wigner rep-
Gaa (bt~ 8l = [8) =f(+i0), resentation for a time-dependent Hamiltonian is
+oo dw P
_ i fF - . R M)t
fv f_we flw) 5 (AL7) 2eG(e,t) —[Ho—imvWW!,G(e,t)],+ >, (P_ ®
k=0 (2i)k!
Since the charge is conservagt) = —1,(t). We rewrite KA KA
the current through the dot as x \7‘9 G(e) +(_1)k‘9 G(E't)\y o (C1)
Jek JeX
N (1) =N (1)

=1(t)=—1(t). (A18) Here,G(e,T) is the Green'’s function in the Wigner variables
Neh e and t. We representedH(t) in the form H(t)=H,
Substituting Eqs(A14) and(Al17) into Egs.(A15) and(A16) +\7¢(t).

I(t)=

and using Eq(A18) we obtain Eq.(9). In the adiabatic limit, only thé&=0 is taken into account.
This approximation is crucial in the case of a single pump.
APPENDIX B By appropriate choice of the beginning of the cycle, the

] ) ) pump moves for the second half of the cycle along the same
In this appendix, we derive E¢14) from the general Eq. trajectory as for the first half, but in the opposite direction.
(13) The Only aSSUmpUO” we are using here is that the dISAS a consequence, the total transported CthEq (43)’
|e,fa(t)Ef(t) SubStItutIng the eXp|iCit form of the scatter- Symmetry, we can add another pump Osci”ating with the

ing matrix from Eq.(11), we obtain same frequency, but with a different phase shift. Also, the
_ A A ) . higher order terms in EqC1) break this symmetry.
I(t)=2mive f dty f(t—=t) AL g[ WG (t1, ) W] g, We consider contribution to the lowest order in frequency

to the transported charde. For this purpose, we neglect all

A ~ terms withk=2, keep thek=1 term to the first order and

_ _ TER) s

f dtuf(t =D A WG, 1) Wlga include all orders irk=0 term. The solution is

—2mvf Jdtldtzf(tl—tz)AaB Golet) = — 1 —

e—Ho—Vo(t)+imrWW'
X WISt t) WWIGH (1, )Wy, [, (BD) ()

i Gi(et)=i T[éo(.s,t)\‘/c“;g(E,t)—c‘;g(e,t)\?éo(e,t)].
where the diagonal matriX\ is defined in Eqg.(11), and (C2)

G(t,t') denotes the Green's function in the dot.

Now we use the equation of motion of the retarded and To the lowest order inp(t), the scattering matrix has
advanced Green'’s functions, Ed.2), to simplify the right-  the form
hand side of Eq(B1). For this purpose, we premultiply the

equation for the advanced compon&ffV(t,,t") by the re- 31(6,t)=30[6,(p(t)]+ e(H) AL o(1)], (C3
tarded componer®(®(t,t,), then we postmultiply the trans-
posed equation for the retarded compon&i®(t,t;) by

GA(t,,t"). Subtracting from the second equation the first Syl e, o(t)]=1— 27 YW Gyl e,t)W, (Ca)
one, we obtain

where

and
2w vGR(t, 1) WWTIGA(t,,t) A

- I o

Ale)="——=5[Go( e VG (e) G ) VGo(e,0)]
¢

(CH

1% d
_J’__

G(R) G(A) !
oo CP G )
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