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Charge pumping and photovoltaic effect in open quantum dots
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We propose a random matrix theory to describe the influence of a time-dependent external field on electron
transport through open quantum dots. We describe the generation of the current by an oscillating field for the
dot, connected to two leads with equal chemical potentials. For low-frequency fields, our results correspond to
adiabatic charge pumping. Finite current can be produced if the system goes along a closed loop in parameter
space, which covers a finite area. At high frequency, a finite current is produced even if the loop is a line in
parameter space. This result can be explained in the same way as adiabatic pumping, but considering the
evolution of the system in phase space rather than in parametric space.
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I. INTRODUCTION

Adiabatic charge pumping through open quantum d
was studied recently in the literature both theoretically1–3

and experimentally.4 Such pumping occurs in a system d
scribed by a Hamiltonian periodic in time with a periodTp
larger than all other characteristic time scales of the syst
After one period, the system returns to its initial form; ho
ever chargeQ can be transmitted through a cross section
the system:

Q5I DCTp5E
0

Tp

^I ~ t !&dt, ~1!

where ^ . . . & denotes quantum mechanical and thermo
namic averaging.

To obtain a finite transmitted charge at low frequenci
the Hamiltonian should depend on at least two parameter
Refs. 1–3 the time dependence of the Hamiltonian was
placed by a dependence on parameters and the system
considered quasistationary for each parameter value.
transported charge during one period of the Hamiltonian w
calculated as an integral in the parameter space. The the3

shed some light on the recent experiments,4 namely on the
amplitude dependence of the root-mean-square fluctuat
of the transmitted charge, averaged over different real
tions of the Hamiltonian.

A very similar phenomenon was considered previously
Fal’ko and Khmelnitskii, who theoretically studied the ph
tovoltaic effect in mesoscopic microjunctions.5 The experi-
mental observation is described in Ref. 6. The photovol
effect is a generation of dc by radiation of a finite frequen
~It is obvious that this effect can only be nonlinear in t
oscillating field.! The bilinear regime of adiabati
pumping,1–3 is precisely the circular photovoltaic effect in
troduced in Ref. 7 and applied to a mesoscopic system
Ref. 5. The results of Ref. 5 are not directly applicable
quantum dots because in microjunctions the Thouless en
ET;1/terg is of the same order as the inverse escape t
1/tesc, whereas for quantum dots 1/tesc!ET . ~Here,terg is
0163-1829/2001/63~19!/195313~12!/$20.00 63 1953
s

.

f

-

,
In
e-
was
he
s
ry

ns
a-

y

ic
.

in

gy
e

the characteristic time for a classical particle to cover all
the available phase space in the dot and we put\51.!
Therefore, the considerations of Refs. 1,3 have their o
physical significance. On the other hand, the theory of Re
is not restricted to the adiabatic regime, the results be
valued in a broad interval of frequencies.

The purpose of the present paper is to go beyond
adiabatic approximation for dc generation in open quant
dots. One can identify two contributions to the dc—
reversible and irreversible. To make a connection with
terminology of the photovoltaic effect used in Ref. 5, w
consider the bilinear dc response through the dot, gener
by several time-dependent perturbationsw i(t)5w i ,veivt.

The direct currentI DC can be written atv→0 as

I DC5 ive i j w i ,vw j ,v* 1v2g i j w i ,vw j ,v* 1O~v3!, ~2!

wheree i j andg i j are real sample specific coefficients. Th
are not fixed by any symmetry~a sample does not have an!
except the condition thatI DC is a real number, which gives
the requirements

e i j 52e j i , g i j 5g j i . ~3!

These relations mean that as the direction of the contou
the parameter space$w i(t)% is reversed@w i(t)→w i(2t) or
w i ,v→w i ,v* #, the first term changes its sign, whereas the s
ond term remains intact. In the language of the photovolt
effect, the first term is the circular photovoltaic effect, a
the second term is the linear effect.5 Equation~2! makes an
explicit connection between the bilinear responses of dc g
eration through open quantum dots and the photovol
effect.

We will see that the separation onto reversible and ir
versible parts goes far beyond the bilinear and low-freque
expansions. We will find that the reversible part vanishes
high frequency, whereas the irreversible part saturates.
will also show that the irreversible contribution may be i
terpreted in a manner similar to adiabatic pumping. In ad
batic pumping, the transmitted charge was determined b
contour in parameter space. The irreversible current is de
©2001 The American Physical Society13-1
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mined by the contour in the extended phase sp

$w i(t),ẇ i(t), . . . ,%, see Sec. V.
The first term in Eq.~2! vanishes for a single pump due

the antisymmetry ofe i j , Eq. ~3!. The contour in paramete
space degenerates to a line in this case, while in phase s
the contour encompasses a finite area. We will see tha
current is proportional to this area. Note, that the contou
invariant with respect to time inversion.

The remainder of the paper is organized as follows.
Sec. II we formulate the model that is studied in the pap
We mainly discuss the high-temperature limitT@v, where
v is the frequency of the perturbation. In Sec. III we calc
late the ensemble averaged fluctuations of the current. A
example, low-frequency asymptotic of reversible~adiabatic!
and irreversible currents are considered. In Sec. IV we
cuss how the irreversible contribution can be represente
the form of a linear integral over the contour in extend
phase space. In Sec. V we discuss the low-temperature
and show how to take heating into account. Section VI su
marizes our results.

II. THE MODEL

We consider the following experimental realization of t
model. Gates near a two-dimensional electron gas form
shape of the dot. An oscillating voltage is applied to t
gatesV1(t) and V2(t). As a result of motion of electron
energy levels in the dot, a current flows through the dot. T
direction of the current depends on the particular realiza
of the dot and is zero on average. We calculate the fluc
tions of the dc with respect to different realizations of t
dot.

Calculations will be performed for an open quantum d
in the limit of a large number of open channelsNch connect-
ing the dot to the leads. This condition allows us to negl
the electron-electron interaction, which gives corrections
the 1/Nch

2 order~see Ref. 8!. The same condition permits th
use of a diagrammatic technique, similar to that describe
Ref. 9, to calculate ensemble averaging.

We also assume that the quantum dot is small and
Thouless energyET;1/terg is much greater than all othe
energy scales of the problem. In this limit, one can use r
dom matrix theory~RMT! to study transport and thermody
namic properties of the system, see Ref. 10. All correcti
to the RMT are as small asNch/gdot, wheregdot5ET /d1 , d1
is the mean level spacing. We neglect the fluctuations of
time-dependent perturbation from sample to sample, cre
by the voltagesV1,2(t), since they depend on the small p
rametergdot

21!1 ~see Fig. 1!.
The Hamiltonian of the system is10

Ĥ5ĤD1ĤL1ĤLD , ~4!

where ĤD is the Hamiltonian of the electrons in the do
which is determined by theM3M matrix Hnm :

ĤD5 (
n,m51

M

cn
†Hnmcm , ~5!
19531
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where the thermodynamic limitM→` is assumed.
The coupling between the dot and the leads is

ĤLD5 (
a,n,k

@Wnaca
†~k!cn1H.c.#, ~6!

wherecn corresponds to en electron state in the dot,ca(k)
denotes electron state (a,k) in the leads, andk labels the
continuum of momentum states in each channela. For a dot
connected by two leads withNl and Nr channels, respec
tively, we denote the left lead channels by 1<a<Nl and the
right channels byNl11<a<Nch, whereNch5Nl1Nr . The
coupling constants,Wna , in Eq. ~6! are10

Wna5H Gn , if n5a<Nch,

0, otherwise,
~7!

andGn are defined below in Eq.~23!
The electron spectrum in the leads near Fermi surface

be linearized

ĤL5vF(
a,k

kca
†~k!ca~k!, ~8!

wherevF51/2pn is the Fermi velocity, andn is the density
of states per channel at the Fermi surface.

The current through the dot is given in terms of the sc
tering matricesŜ(t,t8) by the following expression, see Ap
pendix A:

^I ~ t !&5e(
a

LaaE dt1dt2

3H(
b

Sab~ t,t1! f b~ t12t2!S ba
† ~ t2 ,t !2 f a~1 i0!J ,

~9!

wheref a(t) is the Fourier transform of the electron distrib
tion function in the leads,̂ . . . & stands for the quantum
mechanical and thermodynamic averages for a given
semble realization~no ensemble averaging! and

FIG. 1. An experimental setup. The voltage applied to the ga
V1(t) andV2(t) changes the shape of the dot, resulting in the m
tion of the energy levels of the electrons in the dot.
3-2
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CHARGE PUMPING AND PHOTOVOLTAIC EFFECT IN . . . PHYSICAL REVIEW B63 195313
Lab5dabH 1
Nr

Nch
, if 1<a<Nl ;

2
Nl

Nch
, if Nl,a<Nch.

~10!

In Eq. ~9! and below the spin degeneracy is taken into
count.

The scattering matrix of the system,Ŝ(t,t8), is

Sab~ t,t8!5dabd~ t2t8!22p inWan
† Gnm

(R)~ t,t8!Wmb ,
~11!

and the Green’s functionGnm
(R)(t,t8) is the solution to

S i
]

]t
2Ĥ~ t !1 ipnŴŴ†D Ĝ(R)~ t,t8!5d~ t2t8!, ~12!

where the matricesĤ andŴ are comprised by their elemen
@see Eqs.~5! and~7!#. An analog of Eq.~9! was used before
in the energy representation in Ref. 11.

Below we consider the special case of electrons in b
leads being described by identical distribution functio
f j (t)[ f (t). The functionf (t) is the Fourier transform of the
Fermi-Dirac distribution function:

f ~ t !5E
2`

1` dv

2p
eivtH 1

ev/T11
2

1

2J 5
iT

2 sinhpTt
. ~13!

In this case, we can derive~see Appendix B! another formula
for the current through the dot:

^I ~ t !&52eipn TrE E dt1dt2f ~ t12t2!$Ŵ†Ĝ(R)~ t,t1!

3@Ĥ~ t1!2Ĥ~ t2!#Ĝ(A)~ t2 ,t !ŴL%, ~14!

which is more convenient for further calculations.
We calculate the variance~mean square! of the trans-

ported chargeQ through the dot. We assume that the Ham
tonian of the dotĤ in Eq. ~5! is represented by a time
dependent matrix in the form

Ĥ~ t !5Ĥ1V̂1w~ t !1V̂2c~ t !. ~15!

Here, the time-independent part of the HamiltonianĤ is a
randomM3M matrix, which obeys Gaussian statistics wi
the correlator

HnmHn8m8
* 5ldnn8dmm81l8dmn8dnm8 , ~16!

where ( . . .̄) means averaging over ensemble of matricesĤ,
l5M (d1 /p)2 and l85l(12gh/4M ), and gh defines the
crossover from orthogonal (gh50) to unitary (gh54M ) en-
sembles. The parametergh has the meaning of the dephasin
rate due to an external magnetic field in units of the le
spacing d1.10,12 It can be estimated asgh.gdot(F/F0)2

where F is the magnetic flux through the dot andF0
5hc/e is the flux quantum. The time-dependent perturbat
is described by symmetricM3M matricesV̂i and the time-
dependent functionsw(t)5cosvt and c(t)5cos(vt1f),
wherev is the frequency of the perturbation andf is the
phase shift between two harmonic functions.
19531
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In order to find the characteristic value of the matrix e
ments describing the external perturbationVnm acting on
electrons, one has to take into account that the numbe
electrons in the dotdn may be changed by such perturbatio
This change of the charge, in its turn, leads to the chang
the effective potentialVnm

e f f that is experienced by an elec
tron.

To take this effect into account, we write

Vnm
e f f5Vnm1dnmECdn, ~17!

whereEC is the charging energy of the dotEC@d1. Other
terms produced by the electron-electron interaction
smaller than the level spacing and can be safely neglec
see e.g., Ref. 15 for further discussion. On the other ha
the zero-mode part of the effective potential~17! causes the
change in the number of electrons

dn52
1

Md1
(

n
Vnn

e f f . ~18!

Substituting Eq.~18! into Eq. ~17!, and solving the resulting
algebraic equation, we obtain

Vnm
e f f5FVnm2

dnm

M
Tr V̂G1

d1

d11EC

dnm

M
Tr V̂. ~19!

For the dot containing large number of electrons,N@1, the
charging energy is much larger than the one particle le
spacingEC /d1.AN@1. According to Eq.~19!, the diagonal
part of the perturbation is strongly suppressed and matr
V̂i can be taken traceless from the very beginning.

Therefore, the perturbation is characterized only by
rametersCi j , quadratic inV̂i :

Ci j 5
p

M2d1

Tr V̂i V̂j , ~20!

where we used the fact that the matricesV̂i are symmetric.
@We note that, according to the definition of Eq.~20!, Ĉ has
dimension of energy.# The parametersĈ are also related to
the typical value of the level velocities that characterize
evolution of an energy levelen(X) under the external pertur
bationXV̂ ,13

2d1

p
Ci j 5

]en

]Xi

]en

]Xj
2

]en

]Xi

]en

]Xj
. ~21!

Since all other responses~e.g., parametric dependence
the conductance of the dot! are expressed in terms of unive
sal functions of the same parametersCi j ,13 they can be
found from independent measurements. Calculations ca
generalized to the case in which the trace of the perturba
matrix is not zero. See, e.g., Ref. 3.
3-3
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FIG. 2. ~a! Diagrams for the ensemble ave
aged Green’s function. The second term in t
self energy includes an intersection of dash
lines and is as small as 1/M . ~b! The Dyson type
equation for the diffuson,D(t1

1 ,t1
2 ,t2
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The ensemble average of the transmitted chargeQ, de-
fined by Eq.~1!, is zero: Q̄50. We calculate the second
order correlator with respect to an ensemble of random
trices, Eq.~16!:

Q25E
0

TpE
0

Tp
dtdt8^I ~ t !&^I ~ t8!& . ~22!

For this purpose we use a diagrammatic technique, wh
has been applied to a similar class of problems. See R
3,14. Here we present the basic elements of the diagrams
will appear in Secs. III and V.

For simplicity we assume that the contacts are reflecti
less. In this case, the ensemble-averaged scattering m
Sab̄ is zero. This condition allows us to determine the fact
Gn in Eq. ~7!

Gn5AMd1

p2n
, ~23!

and the ensemble-averaged Green’s functionGnm
R,A in the ab-

sence of time-dependent perturbations

Gnm
R,A~e!56

dmn

iAlM H 11
Nch6 i e

4M
, Nch,n<M ;

1

2
, 1<n<Nch.

~24!

Above we introduced the dimensionless energye measured
in units of Al/4M5d1/2p. We expanded these Green
functions ine/M andNch/M , since only those terms surviv
the thermodynamic limitM→`. For the same reason, in th
expression forGn

(R) with n<Nch one has to neglect suc
terms, since the contribution of these elements to the fi
result is already of the order ofNch/M .
19531
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The other element of the diagram technique used in
paper is an amputated average of the products of two Gre
functions@see Fig. 2~b!#, called the diffusonD(t1 ,t2 ,t) and
defined by

@Gnm
(R)~ t1

1 ,t2
1!Gmn

(A)~ t2
2 ,t1

2!#amp

54MlDS t1
11t1

2

2
,
t2

11t2
2

2
,t1

12t2
1D

3d~ t1
12t2

12t1
21t2

2!. ~25!

We can use this relation since the time arguments of diffu
satisfy t1

12t2
15t1

22t2
2 . Introducing new variablest1,2

5(t1,2
1 1t1,2

2 )/2 and t5t1,2
1 2t1,2

2 we obtain the following
equation for the diffusonD(t1 ,t2 ,t):

F ]

]t1
1KD~ t1 ,t!GD~ t1 ,t2 ,t!5d~ t12t2!,

KD~ t,t!5Nch1FT~ t,t!ĈF~ t,t!, ~26!

where

F~ t,t!5S fS t1
t

2D2fS t2
t

2D
cS t1

t

2D2cS t2
t

2D D . ~27!

The solution to the above equation is

D~ t1 ,t2 ,t!5Q~ t12t2!expS 2E
t2

t1KD~ t,t!dtD . ~28!

Equations~26!–~28! are written in dimensionless variable
so that energy and time are measured in units ofd1/2p and
2p/d1, respectively. Below, intermediate expressions
3-4
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CHARGE PUMPING AND PHOTOVOLTAIC EFFECT IN . . . PHYSICAL REVIEW B63 195313
also written in terms of dimensionless energy and time v
ables, while the final answers are represented in term
physical quantities.

III. MESOSCOPIC FLUCTUATIONS OF THE CURRENT
AT HIGH TEMPERATURES

In this section, we will consider the high-temperatu
limit, in which the frequency of the perturbation is muc
smaller than the temperature.~A more accurate definition o
the high-temperature limit is given in Sec. V.! In this case,

the only contribution to the charge correlation function,Q2,
is given by the diagram shown in Fig. 3. The correspond
analytical expression is

Q254e2gE
0

2p

dxdyR~x,y!E
0

1`

duE
2u

u

dtF2~t!

3DS x1y

2v
1u,

x1y

2v
1t,

x2y

v D
3DS x1y

2v
1u,

x1y

2v
2t,

x2y

v D , ~29!

where

R~x,y!5C11sinx siny1C22sin~x1f!sin~y1f!

1C12@sin~x1f!siny1sinx sin~y1f!#,

~30!

g5
NlNr

Nch
, ~31!

is the dimensionless conductance through the dot from
left to right leads and

F~t!5
Tt

sinh 2pTt
. ~32!

Expression~29! can be computed for different values of p
rameters. In Fig. 4 we present the result of computation

Q2 for two frequenciesv50.1gesc and v5gesc, where
gesc5Nchd1/2p. Both those curves exhibitCl

2 andACl de-
pendences at weak and strong pumping, respectively.

FIG. 3. The diagram representing the contribution to the cha
correlator,Q2 at high-temperatureT.
19531
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also show the analytical curve given by Eq.~40! for the v
→` limit. Below, we discuss different limits of Eq.~29!

A. Bilinear response

First we consider the weak perturbation and perform
expansion of the diffusons up to terms linear inCi j . As a
result we obtain

Q254p2e2gE
0

`

due22NchuE
2u

1u

dtF2~t!

3
Cl

2~2vu2sin 2vu!1Cc
2 sin 2vu

v
, ~33!

where we have introduced the linear and circular pump
amplitudes

Cl5C1112C12cosf1C22, ~34!

Cc52 sinf AC11C222C12
2 . ~35!

In the case of temperatureT larger than the escape rategesc,
we find

Q25
e2

24
g

d1

T

1

gesc
2 1v2 S v2

gesc
2

Cl
21Cc

2D . ~36!

The second term of Eq.~36! survives the limitv→0, thus
reproducing the known result for adiabatic pumping.1,3 On
the other hand, this term vanishes at high frequency.
linear term is quadratic in frequency at small frequency a
tends to a constant at large frequency.

The linear pumping amplitudeCl in the case of two
pumps has the form of Eq.~34!, which implies that the am-
plitude is just a vector sum of different pumps in the para

e

FIG. 4. The amplitude dependence of the pumped charge
different values of the frequency of the pump. Forv>gesc the
curves have theC2 dependence at small values ofC and theAC
dependence atC@gesc. For small frequency~e.g., v50.1gesc!
there is an intermediate regime.
3-5
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eter space. On the other hand, the circular amplitude is
lated to the area in the parameter space, covered by
pumps.

B. Low frequencies

Equation~29! in the adiabatic limitv→0 is in agreement
with the results of Ref. 3. Namely, this expression gives
same asymptotic behavior for the limits of weak and stro
pumping. To demonstrate this, we consider the special c
of the Ĉ matrix having the formC115C225C andC1250.
In this case we obtain

Q25
1

12
e2g

d1

T

2C1@gesc2Agesc~gesc14C!#

Agesc~gesc14C!
. ~37!

As temperature drops down toT;gesc5Nchd1/2p, the vari-
ance of the transmitted charge saturates to

Q25
2

p
e2g

d1

gesc

C2

Agesc~gesc14C!3
. ~38!

Note, that the dc through the dotI dc5Q/Tp;vQ vanishes as
v→0, as expected for a system in equilibrium.

The authors of Ref. 3 showed that for strong pumping
mean-square transported charge is proportional to the le
of the contour in the parameter space, and does not de
on the particular shape of the contour. Equations~37! and
~38! support this statement, since forC@gesc, they repro-
duce aAC dependence on the pumping amplitude. In t
opposite case of weak pumping, Eqs.~37! and ~38! give C2

dependence in accordance with Refs. 1,2. To understand
strong pumping dependence, we consider a loop in the
rameter space.@See Fig. 5#. We notice @see Eq.~45! and
Refs. 1,3# that adiabatic pumping can be related to a cont

FIG. 5. In inset~a! a loop is shown in the parameter plane. T
grid divides the plane onto pieces, so that parts of the loop in
different pieces give uncorrelated contributions to the transpo
charge. Inset~b! shows the loop in the phase space for strong pum
ing. In this case the loop can be divided onto pairs, and the pairs
not correlated. On the other hand parts of the loop of one pair
close to each other, so they are strongly correlated.
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integral in the parameter space. At sufficiently strong pum
ing, the system at distant points of this space is uncorrela
and the total contribution to the pumped charge comes fr
the uncorrelated pieces of the loop, being proportional
their number.

In the limit of low frequency and zeroCc ~single pump!,
the mean-square fluctuation of the charge per cycle is q
dratic in frequency. For weak pumping, the amplitude
charge fluctuations is determined by Eq.~36! with f50 for
arbitrary frequencyv. ~For a single pump,Cl is the only
parameter.! For strong pumping~but still v2Cl!gesc

3 ) we
find

Q25
25

576p
e2g

v2

gesc
2

d1

T S Cl

gesc
D 3/2

. ~39!

We explain this dependence on the amplitude of the per
bation in the next section.

C. High frequencies

In the limit of high frequencies,T@v@gesc, the variance
of the transmitted charge is given by

Q25
1

12
e2g

d1

T

Cl1gesc2Agesc~gesc12Cl!

Agesc~gesc12Cl!
. ~40!

In the limit of strong pumping, this expression has theACl
asymptotic behavior. The curve Eq.~40! is represented in
Fig. 4 by the solid line.

IV. PHOTOVOLTAIC EFFECT AS PUMPING
IN PHASE SPACE

In this section we discuss the mechanism of charge tra
port by a single pump at finite frequencies~i.e., the irrevers-
ible contribution to the dc!. We show the similarity with the
mechanism of adiabatic charge pumping, discussed in Re
In the adiabatic approximation, the system’s motion is co
sidered in a parameter space. For finite frequencies, the
rameter space has to be extended to phase space, which
tains not only the perturbation parameters but also their t
derivatives.

According to Eq.~9!, the transported charge for one p
riod is determined by

Q5eE
0

Tp
dtE dt8E dtE de

2p
ei et f ~t!

3TrHSS e,
t1t8

2
1

t

4DS †S e,
t1t8

2
2

t

4DLJ . ~41!

We use the Wigner transform for the scattering matrix:

S~ t,t8!5E S @e,~ t1t8!/2#ei e(t2t8)
de

2p
. ~42!

We consider charge pumping at high temperatureT
@v). In this case, the integration overt is limited by the
inverse temperature 1/T. On the other hand, the scatterin

e
d
-
re
re
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matrix S(e,t) in the Wigner representation varies slow
with respect to its time argumentt. This allows us to expand
the scattering matrices in Eq.~41! to linear order int. Using
the unitarity of the scattering matrix we finally obtain

Q5eE
0

Tp
dtE de

2p

1

cosh2e/2T

3TrH LS ]S~e,t !

]t
S †~e,t !2S~e,t !

]S †~e,t !

]t D J .

~43!

This equation was used by Brouwer in Ref. 1.~See also Ref.
11!. The scattering matrix in the Wigner representation i
function of the perturbation itself and its higher-order deriv
tives with respect to time.~See Appendix C.! In the adiabatic
approximation, the derivatives are neglected as being s
to higher orders in frequency. Beyond the adiabatic appro
mation, we have to include the derivatives.

We demonstrate that the analysis of Ref. 1 can be app
to our case. We assume that there is a single parameterw(t).
Then, following Brouwer, Ref. 1, we introduce a vector fie

Pi~e,t !5Im TrH L
]S~e,t !

]Xi
S †~e,t !J , ~44!

whereXi5diw(t)/dti and i is a non-negative integer.
In these notations, Eq.~43! for the transported chargeQ is

given by

Q5e R E de

2p

1

cosh2e/2T
(
i 50

`

Pi~e!dXi . ~45!

The loop integral in the above equation can be rewritten a
surface integral using Stoke’s theorem. We develop
analysis for the transported charge to the lowest orde
frequency, so that the scattering matrix depends only onX0

5w(t) andX15ẇ(t). According to Stoke’s theorem for thi
two-dimensional space, we obtain

Q5eE de

2p

1

cosh2 e/2T
E dwdẇP~e!,

P~e!5Im TrH L
]S~e!

]w

]S †~e!

]ẇ
J . ~46!

In Appendix C we present a formal derivation of]S/]ẇ
from the equation of motion, Eq.~12!, in terms of the
Green’s functions of the dot to lowest order inv/gesc.

Now we interpret results found in the previous secti
using Eq.~46!. We consider one parameter pumping~linear
photovoltaic effect! characterized by a harmonic perturbati
w(t)5cosvt with frequencyv. In this case, the strength o
perturbationĈ, defined by Eq.~20!, is a single number
which we denote asC. For weak pumping, we keep the time
dependent perturbation to lowest order to calculate the
rivatives with respect tow and ẇ. We assumeP(e) to be a
19531
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constant and the transported charge per period is pro
tional to the area of the contour in phase space. The con
is an ellipse with semiaxesAC andvAC and areapvC. For
the variance of the transmitted charge, we expectQ2

}v2C2/gesc
4 , which is in agreement with Eq.~36! for v

!gesc.
In the limit of low frequency but strong pumping, we ca

apply Eq. ~46! to understand Eq.~39!. The power depen-
dence@C3/2# is different from the adiabatic case@C1/2#. The
loop in phase plane is long along thew axis but narrow in the
ẇ direction because the frequency is small.@See Fig. 5~b!.#
The charge variation is determined by a sum of independ
contributions from pieces of the contour along thew axis. As
can be seen from Fig. 5~b!, the number of the independen
pieces isNind5AC/gesc. In the ẇ direction the system is
correlated inside each piece of the contour since all po
along theẇ direction are separated by a distance, sma
than the correlation length. The characteristic areaSc of each
part is proportional tovACgesc. The variance of the trans
ported charge can thus be estimated as

Q2}e2Nind Sc
2}e2

v2

gesc
2 S C

gesc
D 3/2

. ~47!

When the amplitude of the fieldC or the frequencyv
increases further, so thatv2Cl>gesc

3 , this picture is no
longer valid. The trajectory does not have parts close to e
other and each part gives an independent contribution.
situation is similar to the case of strong adiabatic pumpi
as shown in Fig. 5~a! and discussed in Ref. 3. The varian
of the transported charge is proportional to the total num
of uncorrelated parts, so thatQ2}AC, see Eq.~40!.

V. LOW TEMPERATURE

The previous discussion of dc generation is quite gene
However, it does not take into account the heating of el
trons by an external field that becomes important at low te
perature. In this regime, the electron distribution function
the dot changes and acquires a width larger than the elec
temperature in the leads. For simplicity, we limit our discu
sion to one parameter pumping~linear photovoltaic effect!.
The external perturbation is determined by a harmonic fu
tion w(t)5cosvt and the strength of the perturbation isC.

The new widthTh of the distribution function can be es
timated from the following picture. An electron has rando
transitions between different energy levels. The time
tween consecutive transitionst tr is determined by the Ferm
golden rule:

t tr
215(

m
2puVnmu2d~en2em6v!;uVnmu2/d15

C

p
.

~48!

The first equality sign follows from the Fermi golden rul
the second sign represents an estimate of the characte

value of the matrix elementsuVnmu2 and the density of state
1/d1, the last equation is the definition ofC, cf. Eq. ~20!.
3-7
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Since an electron stays in the dot for a timetesc5gesc
21

52p/Nchd1, it performs Ntr51/t trgesc5C/gesc transitions.
Each transition changes the energy of the electron byv. As
in the random walk problem, the displacement of electron
energy space is}vAC/gesc.

This analysis gives a new temperature scaleTh :

Th5vA C

gesc
. ~49!

This scale has a meaning only for strong fieldsC@gesc so
that the diffusion picture in energy space is valid. Otherwi
electrons experience few transitions with change of ene
v. Now we consider low temperatures, so thatT@Th is not
valid. We calculate the fluctuations of dc for a system with
single pump. As we know from Sec. III, at high frequenc
the number of pumps is not important and the result depe
on their linear combination.

Unlike the diagram, shown in Fig. 3, diagrams presen
in Fig. 6 have additional diffusons dressed on the distribut
functions f (t). Collecting diagrams in Figs. 3 and 6 we o
tain the following expression for the variance of the pump
charge:

Q254e2CNchgE E
0

Tp
dtdt8E

0

`

duE
2u

1u

dtF̃2~t!

3DS t1t8

2
1u,

t1t8

2
1t,t2t8D

3DS t1t8

2
1u,

t1t8

2
2t,t2t8D

3E
0

1`

djD~ t,t2j,2t!E
0

1`

dj8D~ t8,t82j8,2t!

3$2C sin2v~ t2j!sin2v~ t82j8!sin2vt

1Nchsinvt sinvt8%, ~50!

whereg is the dimensionless conductance of the dot@see Eq.
~31!# and

F̃~t!5
T sinvt

sinh 2pTt
. ~51!

At high-temperatureT@v, Eq. ~50! reduces to Eq.~29!.
Indeed, all three diagrams in Fig. 6 are smaller than the
gram in Fig. 3, at least by one factorv/T.

Now we discuss the limit of high-frequencyv
@ max$gesc,C%. This inequality allows us to perform inte
gration overj and j8 in Eq. ~50!. We can replace sin2 v(t
2j) by 1/2 and use the approximation

E
0

`

D~ t,t2j,2t!dj'
1

Nch12C sin2vt
. ~52!

In this limit, the product of the diffusons in the second a
third lines of Eq.~50! does not depend ont.
19531
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a-

Energy of an electron in the dot changes due to the ex
nal field, resulting in the redistribution of the electrons in t
energy space. The new distribution function becomes wi
than that of electrons in the leads at temperatureT. Conse-
quently, the Fourier transform of the electron distributi
function becomes narrower. The right-hand side of Eq.~52!
represents the effect of heating. This function appears in
integral overt in Eq. ~50! along with the functionF(t),

FIG. 6. Diagrams, which contribute to the dc at low temperat
limit. ~We do not show diagrams, which can be obtained from
above by omitting the upper or lower diffusons.! The last diagram
contains the Hikami box, which is presented in Fig. 7.

FIG. 7. The Hikami box, introduced in Fig. 6, can be obtain
from these diagrams as well from their rotations. The grey rect
gulars represent averages of the typeG(R)G(R) andG(A)G(A).
3-8
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defined by Eq.~32!. At sufficiently low temperature, the con
vergence of the integral overt is determined by the ‘‘heating
factors,’’ Eq. ~52! rather than byF(t). We note that the
shape of the new distribution function is not a Fermi functi
with a higher temperature. Instead, its Fourier transform
the form of the right-hand side of Eq.~52!.

To be more specific, we consider the strong pumping li
C@gesc, when the electron distribution function is dete
mined by the new scaleTh , see Eq.~49!. We find

Q25
3

16
e2g

d1

v
. ~53!

The same parameter dependence can be found from Eq.~40!
replacing temperatureT by the new energy scaleTh .

Equation ~50! has two terms. One term contains fact
sinvt sinvt8. This term survives the high-temperature lim
see Sec. III. Nonetheless, at low temperature, the hea
modifies the results of Sec. III, so that the temperature
pendence saturates at the characteristic temperature scaTh .

The second term was completely neglected in the pr
ous sections. The origin of this term is similar to that of t
thermoelectric effect in a conductor out of thermodynam
equilibrium. Although electrons are in equilibrium in th
leads, the heating changes their distribution function in
dot, producing a nonequilibrium distribution. Then noneq
librium electrons escape from the dot. The direction of ea
escape is determined by the realization of the dot. An un
ance between electrons escaping through the left or r
leads gives current.@sin2 vt term in Eq. ~50! reflects the
electron-hole asymmetry, necessary for thermoelectric
fects.#

VI. CONCLUSION

We studied the dc through the quantum dot genera
e.g., by time-dependent distortions of the dot shape. This
is fluctuating from sample to sample and we found the s
ond moment of its distribution. Unlike the previous works1,3

on the adiabatic pumping, we treated the system for a br
range of external frequencies, thus providing a bridge
tween adiabatic pumping and photovoltaic effects in mic
junctions of Ref. 5.

The adiabatic approximation is not valid when the fr
quency of the perturbationv is comparable with the escap
rate from the dotgesc. Beyond the adiabatic approximatio
the dc current consists of reversible and irreversible pa
The reversible contribution was studied in the adiabatic
gime. This contribution is determined by an integral over
contour in parameter space. On the other hand, the irrev
ible contribution to the dc current is determined by an in
gral over this contour in phase space.

A crossover from the bilinear (C2) to AC regime was
found in Ref. 3. The crossover happens when the sys
makes a large loop during one period of the external field
that it is uncorrelated at different points of the loop, see F
5~a!. We showed that this crossover is universal and happ
at arbitrary frequency. This result is consistent with the r
resentation of the dc current as an integral along the con
19531
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in the phase space. An intermediate regime exists for a si
pump at low frequency and moderate amplitude of the ex
nal field. This regime is described by aC3/2 dependence of
the variance of the dc on the field amplitude.

We also considered a wide temperature range. At h
temperature, the variance of the current decreases asT21.
We found that at low temperature, heating becomes imp
tant and it introduces a characteristic temperatureTh , see Eq.
~49!, below which the temperature dependence of the
saturates. The result of heating on the dc is twofold. The fi
effect diminishes the dc current by a broadening of the e
tron distribution function. The second effect produces th
thermoelectric field, and is a nonequilibrium effect. This e
fect is related to the electron-hole asymmetry in the dot. O
results are different from the observed experimentally te
perature dependence, see also Ref. 3.

Finally, the photovoltaic effect is not symmetric with re
spect to the inversion of magnetic field, similarly to adiaba
pumping case, see Ref. 3.
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APPENDIX A

We define the wave function of electrons in channela
moving towards the dots byca(x,t) with x,0, whereuxu
determines the distance from the dot boundary, see Fig
Then ca(x,t) for x.0 represents the outcoming electron
The boundaryx50 is described by a superposition of th
incoming and outcoming electron states and we denote i
ca(0,t). The wave function of electrons in statei is denoted
by c i(t).

We introduce the Keldysh Green’s functions

Ĝab~ t,t8,x,x8!5S G ab
(R)~ t,t8,x,x8! G ab

(K)~ t,t8,x,x8!

0 G ab
(A)~ t,t8,x,x8!

D ,

~A1!

FIG. 8. Correspondence between the sign ofx and the direction
of motion of electrons with respect to the dot.
3-9
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Ĝia~ t,t8,x8!5S G ia
(R)~ t,t8,x8! G ia

(K)~ t,t8,x8!

0 G ia
(A)~ t,t8,x8!

D , ~A2!

which are defined in terms of

G ab
(R)~ t,t8,x,x8!52 iQ~ t2t8!^@ca~x,t !,cb

†~x8,t8!#1&,

G ab
(A)~ t,t8,x,x8!5 iQ~ t82t !^@ca~x,t !,cb

†~x8,t8!#1&,

G ab
(K)~ t,t8,x,x8!52 i ^@ca~x,t !,cb

†~x8,t8!#2&,

where @•,•#6 denote commutator and anticommutator,
spectively. The similar expressions can be written down

Ĝia(t,t8,x8) Green’s function, withca(x,t) replaced by
c i(t).

We assume that electrons do not interact in the reserv
and the Green’s function of the incoming electrons (x; x8
,0) is given by the Keldysh structure:

Gab~ t,t8,x,x8!5S Gab
(R)~ t2t8,x2x8! Gab

(K)~ t2t8,x2x8!

0 Gab
(A)~ t2t8,x2x8!

D ,

~A3!

where

Gab
(R)~ t,x!52 iQ~ t !dabd~vFt2x!, ~A4!

Gab
(A)~ t,x!51 iQ~2t !dabd~vFt2x!, ~A5!

Gab
(K)~e,x!5 f̃ a~e!@Gab

(R)~e,x!2Gab
(A)~e,x!#, ~A6!

where f̃ (e) is the distribution function of electrons in th
channela. In equilibrium with temperatureT,

f̃ a~e!5tanh
e2dma

2T
, ~A7!

where dma represent relative change in chemical poten
for different leads.

The equations of motion for the Green’s functions defin
by Eqs.~A1! and ~A2! have the form:

i F ]

]t
2vF

]

]xG Ĝab~ t,t8,x,x8!5d~x!Wa i Ĝib~ t,t8,x8!

1d~ t2t8!d~x2x8!1̂,

~A8!

F i
]

]t
2Hi j ~ t !G Ĝj a~ t,t8,x8!5Wib

† Ĝba~ t,t8,0,x8!. ~A9!

We notice that due to causality,Gab
(A)(t,t8,0,x8)[0 for

x8,0. This observation significantly simplifies further ca
culations. Indeed, we can represent the Keldysh compo
of the Green’s function in the left-hand side of Eq.~A9! in
the form
19531
-
r

irs

l

d

nt

G ia
(K)~ t,t8,x8!5E dt1F 1

i ]/]t2Ĥ~ t !
G

i j

~ t,t1!

3Wj b
† Gab~ t1 ,t8,0,x8!. ~A10!

The corresponding advance component is zero. H
1/@ i ]/]t2Ĥ(t)# is the retarded component of the electr
Green’s function in the dot. This definition is different from
that given in the main part of the paper, see Eq.~10!. The
latter will appear naturally in the end of this section. T
additional term;W†W takes into account the escape fro
the dot through the leads.

The next step is to represent Eq.~A8! in the form

G ab
(K)~ t,t8,x,x8!5Gab

(K)~ t2t8,x2x8!

1E dt1dt2Gag
(R)~ t2t1 ,x!

3FW
1

i ]/]t2Ĥ~ t !
W†G

gd

~ t1 ,t2!

3G db
(K)~ t2 ,t8,0,x8! ~A11!

In the above equation, we considerx50. Using Gab
(R)(t

2t8,0) from Eq.~A4!, we find

G ab
(K)~ t,t8,0, x8!5E dt1F11Ŵ

ipn

i ]/]t2Ĥ~ t !
Ŵ†G

ad

21

~ t,t1!

3Gdb
(K)~ t1 ,t8,0,x8!, x8,0. ~A12!

Substituting this expression to Eq.~A11! and takingx5
1udu→0, we obtain forx8,0:

G ab
(K)~ t,t8,1udu,x8!5E dt1Sag~ t,t1!Ggb

(K)~ t12t8,2x8!,

~A13!

where the scattering matrixSab(t,t8) is given by Eq.~11!.
Equation~A13! is valid for x8,0. We have to repeat the

procedure described above to calculate the electron Gre
function in the leads forx8.0. Since the equations that de
termine evolution of the Green’s function fromx8,0 to x8
.0 are conjugated to those forx, we conclude, that

G ab
(K)~ t,t8,1udu,1udu!5E E dt1dt2Sag~ t,t1!

3Ggd
(K)~ t12t2,0!S db

† ~ t2 ,t8!.

~A14!

The currents in the left and right leads are given by

I l~ t !5evF(
a51

Nl

@G aa
(K)~ t,t,1udu,1udu!

2G aa
(K)~ t,t,2udu,2udu!#, ~A15!
3-10
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I r~ t !5evF (
a5Nl11

Nch

@G aa
(K)~ t,t,1udu,1udu!

2G aa
(K)~ t,t,2udu,2udu!#, ~A16!

where d→0. This limit is just a reminder thatG aa
(K)(t,t,

2udu,2udu) is taken for incoming electrons and is given b
Eq. ~A6!. Consequently,

G aa
(K)~ t,t,2udu,2udu!5 f ~1 i0!,

f ~ t !5E
2`

1`

eivt f̃ ~v!
dv

2p
. ~A17!

Since the charge is conserved,I l(t)52I r(t). We rewrite
the current through the dot as

I ~ t !5
NrI l~ t !2NlI r~ t !

Nch
5I l~ t !52I r~ t !. ~A18!

Substituting Eqs.~A14! and~A17! into Eqs.~A15! and~A16!
and using Eq.~A18! we obtain Eq.~9!.

APPENDIX B

In this appendix, we derive Eq.~14! from the general Eq.
~13!. The only assumption we are using here is that the
tribution function of electrons is the same in all channe
i.e., f a(t)[ f (t). Substituting the explicit form of the scatte
ing matrix from Eq.~11!, we obtain

I ~ t !52p ineH E dt1f ~ t2t1!Lab@Ŵ†Ĝ(A)~ t1 ,t !Ŵ#ba

2E dt1f ~ t12t !Lab@Ŵ†Ĝ(R)~ t,t1!Ŵ#ba

22p inE E dt1dt2f ~ t12t2!Lab

3@Ŵ†Ĝ(R)~ t,t1!ŴŴ†Ĝ(A)~ t2 ,t !Ŵ#baJ , ~B1!

where the diagonal matrixL̂ is defined in Eq.~11!, and
Ĝ(t,t8) denotes the Green’s function in the dot.

Now we use the equation of motion of the retarded a
advanced Green’s functions, Eq.~12!, to simplify the right-
hand side of Eq.~B1!. For this purpose, we premultiply th
equation for the advanced componentĜ(A)(t2 ,t8) by the re-
tarded componentĜ(R)(t,t1), then we postmultiply the trans
posed equation for the retarded componentĜ(R)(t,t1) by
Ĝ(A)(t2 ,t8). Subtracting from the second equation the fi
one, we obtain

2p inĜ(R)~ t,t1!ŴŴ†Ĝ(A)~ t2 ,t8!

5 i F ]

]t1
1

]

]t2
GĜ(R)~ t,t1!Ĝ(A)~ t2 ,t8!
19531
s-
,

d

t

1Ĝ(R)~ t,t1!@Ĥ~ t1!2Ĥ~ t2!#Ĝ(A)~ t2 ,t8!

2@Ĝ(R)~ t,t1!d~ t22t8!2d~ t2t1!Ĝ(A)~ t2 ,t8!#.
~B2!

Substituting this equation to Eq.~B1! we obtain Eq.~14!.

APPENDIX C

The equation for the Green’s function in the Wigner re
resentation for a time-dependent Hamiltonian is

2eĜ~e,t !2@H02 ipnŴŴ†,Ĝ~e,t !#11 (
k50

`
w (k)~ t !

~2i !kk!

3H V̂
]kĜ~e,t !

]ek
1~21!k

]kĜ~e,t !

]ek
V̂J 52. ~C1!

Here,Ĝ(e,T) is the Green’s function in the Wigner variable
e and t. We representedĤ(t) in the form Ĥ(t)5Ĥ0

1V̂w(t).
In the adiabatic limit, only thek50 is taken into account

This approximation is crucial in the case of a single pum
By appropriate choice of the beginning of the cycle, t
pump moves for the second half of the cycle along the sa
trajectory as for the first half, but in the opposite directio
As a consequence, the total transported chargeQ, Eq. ~43!,
vanishes in the adiabatic approximation. To remove t
symmetry, we can add another pump oscillating with t
same frequency, but with a different phase shift. Also,
higher order terms in Eq.~C1! break this symmetry.

We consider contribution to the lowest order in frequen
to the transported chargeQ. For this purpose, we neglect a
terms withk>2, keep thek51 term to the first order and
include all orders ink50 term. The solution is

Ĝ0~e,t !5
1

e2Ĥ02V̂w~ t !1 ipnŴŴ†
,

Ĝ1~e,t !5 i
ẇ~ t !

2
@Ĝ0~e,t !V̂Ĝ0

2~e,t !2Ĝ0
2~e,t !V̂Ĝ0~e,t !#.

~C2!

To the lowest order inẇ(t), the scattering matrixŜ has
the form

Ŝ1~e,t !5Ŝ0@e,w~ t !#1ẇ~ t !Â@w~ t !#, ~C3!

where

Ŝ0@e,w~ t !#5122p inŴ†Ĝ0~e,t !Ŵ, ~C4!

and

Â~e,t ![
]Ŝ
]ẇ

5
i

2
@Ĝ0~e,t !V̂Ĝ0

2~e,t !2Ĝ0
2~e,t !V̂Ĝ0~e,t !#.

~C5!
3-11
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