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Band-gap renormalization and excitonic binding in T-shaped quantum wires

M. Stopd
Tarucha Mesoscopic Project, ERATO-JST, 4S-308S NTT Atsugi Research and Development Center, 3-1 Morinosato Wakamiya,
Atsugi-shi 243-0198 Kanagawa-ken, Japan
(Received 26 August 1999; revised manuscript received 19 July 2000; published 23 Appil 2001

We calculate the electronic structure for a modulation doped and gated T-shaped quantum wire using density
functional theory. We calculate the band-gap renormalization as a function of the density of conduction band
electrons, induced by the donor layer and/or the gate, for the translationally invariant wire, incorporating all
growth and geometric properties of the structure completely. We show that most of the band-gap renormal-
ization arises from exchange-correlation effects, but that a small shift also results from the difference of wave
function evolution between electrons and holes. We calculate the binding energy of excitons in a finite length
wire using a simpler, cylindrical geometry. For a single hole and a one-dimensional electron gas ofrgensity
screening of the exciton binding energy is shown to approximately compensate for band-gap renormalization,
suggesting that the recombination energy remains approximately constamt.with agreement with experi-
ment. We find that the nature of screening, as treated within our nonlinear model, is significantly different from
that of the various linear screening treatments, and the orthogonality of free carrier states with the bound
electron states has a profound effect on the screening charge. In particular, we find no Mott transition. Rather,
the electron and hole remain bound for all densities up 8x 10° cm™* and, as, increases from zero, trion
and even “quadron” formation becomes allowed.
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[. INTRODUCTION energy are isolated into an “exchange-correlation” func-
tional which must be approximated radically. Typically, the
The gap in a semiconductor heterostructure between corimit wherein the density varies adiabatically, known as the
duction and valence bands, and the interaction between elelocal density approximatioiLDA), is assumed. Nonethe-
trons in the one and holes in the other, are known to depenigss, successful treatments of a wide class of systems, from
in a complicated fashion on the presence of mobileatoms and molecules to solids and heterostructures, abound
charged The interpretation of optical experiments in in the literature. It is the purpose of this paper to provide a
doped semiconductor quantum wiflesfor example, must theoretical description of BGR and exciton screening, ap-
invoke the variation of band edges due to many-body angblied particularly to semiconductor quantum wirg3w’s),
geometrical effects, the “redshift” associated with electron-within DFT.
hole binding into excitons, and finally the reduction of the We are interested in quantitative comparison with optical
exciton binding energy due to screening by free carriers. experiments on T-shaped quantum wir@QW'’s) in the
Theoretical description of band-gap renormalizationpresence of a one-dimensional gas of elect(dmEG) with
(BGR) and exciton formation and screening is frequentlylD densityn,, induced in the conduction band via a combi-
addressed with a many-body formali§if. Within this  nation of modulation doping and gatingBy way of warn-
framework, the contributions of both electron-phonon andng, this one-component plasma contrasts with the many
electron-electron self-energies to BGRAs well as the influ- studies that focus on intrinsic QW’s wherein an overall
ence of dynamical screening on the exciton binding energycharge neutral electron-hole plasma is generated entirely
can be studied. The many-body treatment, however, has titbrough photoexcitation. In our case photoexcitation is as-
disadvantage that for BGR it commonly ignores geometricasumed to provide a small number of holeghich we take as
factors, such as the quantum confined Stark efféathose  a single holg and to have a negligible effect on the density
relevance is structure specific. Furthermore, in the excitorof conduction band electrons.
problem, many-body theory treats screening within the linear We evaluate the band structure of a TQW in two steps. In
approximation and, generally, the influence of the boundhe first stedSec. I) we consider a realistic model of a cross
electron on the free electrons is not fully included. In par-section of a TQW, shown in Fig. 1, and solve self-
ticular, the orthogonality of the free electron states with theconsistently for the electronic structure of the subbands, as a
bound state, which increases in importance in lower dimenfunction of the gate voltage, assuming translational invari-
sional systems, is typically not includét. ance along the wire. Material-specific effective masses and
A different formalism without these shortcomings, albeit band offsets, as well as the actual growth profiles and doping
one that forsakes the electron-phonon interaction, is that adensities of the structure, are included. The exciton problem
density functional theoryDFT).*2 Within DFT the ground is treated in the second stépec. Il)) by a simplified, cylin-
state energy of an interacting many-particle system is knownlrical model of a quantum wire which we take to be of finite
to be given rigorously by a functional of the density. Thelength. Thereby we explicitly break translational invariance.
essential problem of DFT is that this functional is unknownIn this portion of the calculation we employ the results of
and the components beyond kinetic and direct electrostatiBec. Il to estimate a reasonable lateral confinement param-
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X lowing. (1) The exciton binding energy weakens consider-

* ably as the 1DEG density is turned on, but never vanishes
18 | GaAs - cap completely.(2) The requirement of orthogonality between
zZ e 5 a' —» the bound electron eigenfunction and those of the screening
= electrons leads to aantiscreeningof the exciton, such that
the density of free electrons in the vicinity of the hole is
. AI0_3Ga 0.7As depressed. This effectively positive charge raises the energy
8 ap of the hole while the energy of the electron actually becomes
more negative and its localization about the hole increases
donor layer With_density. o o
NL= et @am Finally, the contr|but_|ons of the band-gap renorm_ahzatlor_w
L.
-+ and the exciton screening tend to cancel and, consistent with
- width(ag) experiments, the recombination energy remains relatively
3ag QW2 0.435 constant withn,. This result is plotted in Fig. 6 but dis-
S e cussed at the end of Sec. IIl.
o l We principally employ effective atomic units wherein
I 1 Ry*=m*e%2h?k?~5.25 meV and &}=n%k/m*e?
AlysGag,As ~100 A. For comparison with experiments we also use

cm™ !, where B '~10° cm L. Figure 6 below, which

1 1 gives the trend of the complete band gap with, is pre-

¥ \/ sented in meV in order to be consistent with standard prac-
“substrate”’ tice and also for comparison to experimental findings to be
presented in a companion pager.

FIG. 1. Schematic of T-shaped quantum wire cross section.

. . . Il. TRANSLATIONALLY INVARIANT WIRE: BGR
eter. Thus the philosophy of the calculation is that the exci-

ton formation and its screening represent an additive correc- We calculate the electronic structure of the
tion to the translationally invariant band structure of step 1.GaAs-AlGa _,As TQW's by solving Schrdinger and Pois-
This exciton effect can be analyzed within a single-subbandon equations self-consistentfywithin a region illustrated
generic wire model so long as the effects of lateral confinein Fig. 1, for the conduction band electrons, and by including
ment are correctly borrowed from the more faithful, albeitexchange and correlation in the local density
2D, calculation in step 1. approximation:® There are numerous calculations of BGR in
Among our main results for the translationally invariant lower dimensional systems which employ many-body theory
band structuréSec. 1) are the following(1) We find a BGR  to determine the self-energy correction to the subbands from
as a function ofn, with comparable order of magnitude to exchange and correlation effe¢ts® In DFT a band-gap
that derived within many-body theory(2) One small renormalization arises as follows. First, variations in the
(~20%) component of this BGR arises from a variation ofelectrostatic potential tend to affect both bands equally ex-
the lowest electron subband eigenfunction with Specifi- cept for kinematic effects like the quantum confined Stark
cally, at highern, the lowest electronic wave function effect!® where the electron wave function is centered on a
spreads somewhat along the overgrowth interfaeeugh-  different spatial locationfat a different potentialthan that of
out QW2 in Fig. 1,x direction whereas it is more strongly the hole. By contrast, exchange and correlation effects lower
confined at the junctior(i.e., the intersection of the two the energy of electrons in proportionng, the electron den-
wells) at lower n,. The hole wave function, by contrast, sity, and raise the energy of holes in proportionntp the
never spreads appreciably alorg(3) The stability of the hole density, producing an overall shrinkage of the band gap.
hole eigenstate at the junction is dependent on the boundaior the one-component plasma considered here, therefore,
conditions used for large (see Fig. 1 If the chemical po- the exchange-correlation potential acts only on the conduc-
tential is pinned to an assumed background donor density ition band electrons, sinag,~0.
the substratgwe use the term “substrate” to denote the  One advantage of our procedure is that, while many-body
region far from the donor plane, i.e., largesee Fig. 1, then  calculations in principle begin from wave functions and sub-
the hole bound state becomes a resonance which is methand eigenenergies derived from some Hartree calculation,
stable to escape into the substrate. On the other hand, whéme variation of these properties with density and the afore-
the substrate is treated as exactly electrically neutal mentioned kinematical corrections to the band gap are usu-
pinned to acceptoyghe hole state at the junction is stable. ally ignored. By contrast, DFT automatically includes these.
(4) For the specific dimensions and compositions that wed-urthermore, the separate contributions from kinematic ef-
considet® the wires are predominantly one dimensional withfects as opposed to exchange and correlation are easily iso-
filing of no more than two subbands and spreading of thdated (to first ordej by performing a calculation without the
density into QW2 generally less than15% of the total exchange-correlation potentig@le., Hartree only.
density. We employ the parametrization of Ceperley and Alder
Regarding the exciton problef@ec. Ill), we find the fol-  for the density-dependent, exchange-correlation potential
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Vy(n(x)). Takingy as the translationally invariant direction contribution to the charge density. Therefore, the total den-
(see Fig. 1, the Schidinger equation in the-z plane k,  Sity that enters the Poisson equation is given as

=0) reads
p(x,2)=N_(x,z)+n(x,z), (2

where n(x,z) is the density of conduction band electrons
V+Vc(X,2) +edp(X,2) only, and where the charge density of ionized donors is
N, (X,2z). The conduction band electron density is given in
the well regions by

==
2m* (X,z)

+Vye(N(x,2)) l/fn(X,Z):Egl//n(X,Z), 1)

n(X,Z)=f dky ; f(u—kj—Enlgn(x2)[% (3

where V(x,z) is the conduction band offsét,which de- ) ) ) , , )
pends only on the local aluminum concentratigriwe use wheref is the Fermi functionu is the chem|cal potential
the symbol7 instead of the standand to avoid confusion (@Ssumed constant fhroughout the device and taken as the
with the coordinatex), the 2D eigenfunctions and eigenval- €70 of energy andky is the kinetic energy of motion in the
ues are given by, (x,z) andE,,, respectively, and the elec- Y direction. We also employ_a Thomas-Ferm! approximation
trostatic potential ish(x,z). Also in Eq.(1) the level index is for the denglty of electrons in the barrier regions away from
n, and the subscripe refers to electrons in the conduction the wells. Finally, we assume temperatdre 4 K.

band whereas for holes we uB8. The eigenstates are ab- We find little difference in the results whether the donors,
breviated below agn and hn for electrons and holes, re- Which are silicon atombX centers,” are placed in thermal
spectively. Periodic boundary conditions are takernxat equilibrium V.V!th the electrpn gas or are trea‘Fed as a simple
+a/2 wherea=5a} is the period of the TQW superlattice sheet of positive charge with fixed areal density. Insofar as at
as fabricated® TheB effective mass dependence on positionIOW temperatures the_ Iat'ger approximation Is more phy_smal_,
arises through its dependence g In the specific device we use this assumption in the calculations discussed in this

. ; . paper.
\(lavlzei;jgi)%efrc,)rilr:er%%?r?jr Pezviiniltr\]/vaehigngprg%tggggeog;ra d- . Upon obtamlng a self—_consustent solutl_on of the Sehro
ing effecis as well as image ef.fects taking the dielectricdlnger and Poisson equations fqr condgctlon band e_Iectrons,
' we calculate the hole eigenfunctions with the potential
constant ask=12.5 everywhere.
For the solution of Poisson’s equation we also assume

periodic boundary conditions at theborders. For the sur-

facez=0 we simulate the surface metal gate in the standar@vhere now¢(x,z) is the electrostatic potential that solves
fashiort* by Dirichlet boundary conditions which fix the gate the self-consistent problem above. The valence band offset
potential modulo an offset of 0.8 eV for the Schottky barrier.v, (x,z) also depends on the aluminum concentration. We
Variation of the electron sheet density in the overgrowth wellassume a band-gap offset parame@gr=0.6. We treat the

N, (or, equivalently, the 1D density,) is accomplished by holes in the simplest approximation, assuming a single,
biasing this surface gate. Other experimental methods fofieavy-hole isotropic effective mass which depends only on

varying n, include illumination or a variation of the thick- ajuminum concentration; specificallp® (GaAs)=0.377m
ness of the spacer between the modulation doping layer anghdm* (Al sGa, As)=0.403n,.%°

the overgrowth well. While we have modeled each of these T4 summarize therefore and to make the context of this
methods independently, in fact in each case there is an apy|cylation clear, we are interested principally in the BGR as
proximately homogeneous sheébr sheets of positive 4 fynction ofn,, the integral ovex andz of n(x,z), which

charge balancing the electronic charge in the wire/well andye jmagine to be modulated experimentally with an electro-
the difference in the electronic structure between the variougitic gate on the overgrowth surfaéeThus we solve the

methods for a given resultant p, is negligible. Thus here q\qlving self-consistent electronic structure assuming the
we actually vary a surface gate voltage to change density, byemical potential to be far from the valence bane., no

in displaying the results it is sufficient just to plot variables hgleg. We solve for the hole subbands as a one-particle

Versusie . _ _ problem after solving the electronic structure at given
For largez we find, as noted, that the solution for the \;sing the resultant electrostatic potential. We use a simplified
holes is sensitive to the asymptotic value of the potentialpang structure for the holes, in contrast to Ref. 21, which

Generally, we assume Neumann boundary conditions, whicBmpjoys the full, four-band Luttinger Hamiltonian but which
is equivalent to assuming complete neutrality of the SUb‘assumeme=0.

strate. However, we discuss below the nature of the hole
metastable state in the case where the chemical potential is
pinned to a shallow donor level at large

Since the modulation doping istype, the Fermi level is The parameters for the calculation are summarized in the
close to the conduction band throughout the device. Furtheischematic Fig. 1. We follow Ref. 21 by designating the over-
more, since even during photoluminescence measuremengsowth quantum well as “QW2" and the initial growth well
the excitation power is very low, we ignore the valence bandas “QW1.”

Vh(X,Z):Vv(X,Z)_e(;b(X,Z), (4)

A. Electronic structure
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FIG. 2. Subband energies vs wire 1D density for electf@®n
and hole f). Electron levels measured with respect to Fermi sur-
face; hole level with respect to escape to substrate. Electron con- FIG. 4. Wave functiongmoduli squarefishowing spreading of
tinuum begins at dashed line. Filling &; begins atn,~0.5. e0 as n, increases from 0.1210° cm™® (lower right to

0.9x10° cm™* (lower left). First excited electron state showso

The structure of the subbands of conduction band elecaodes along (upper lefi. Hole ground statéupper right unchang-
trons as a function oh, is shown in Fig. 2. The zero of ing and strongly confined at junction.
energy for the electrons is the Fermi enefgy (the plotted
hole energy is discussed further bejom the higher density  tinuum of ~15 meV is also consistent with our slightly
regime a second subband, which has concentration in thgwer value of~13 meV. Interestingly, this separation re-
interwire QW2 region(cf. Fig. 4 below, is occupied. The mains approximately constariFig. 2) as n, is increased,
region marked “continuum” corresponds to the beginning of yntj| EX drops down from the continuum and begins to fil.

a dense set of states which are asymptotically free to escape |, Fig. 3 we have plotted the 2D surface density as a
into the substratdi.e., along QW1, which runs in the-z  fynction of x for various totaln,. As n, approaches
direction. This is so because QW1 is wider than QW2, andq « 16 cm~1 some spreading of the density away from the T
the electrostatic advantage of proximity to the positive dopyynction occurs. This results both from the occupatiobf
ants in QW2 is overcome by the ad_ditional con.finement eNand also from slight wave function spreadingetf (cf. Fig.
ergy there. Nonetheless, the spreading ofdbeupiedstates, 4 Note, however, that, rather than spreading smoothly out
when the total density is increased, occurs within QW@  rom the wire, the density achieves a local maximum at an
as to compensate the positive charge of the donors anﬁz gate terwire minimum in the potentialat + 2.5a% , which, due

It is rlciteworthy that  for n.=0.5az to periodicity, are equivalent pointsanalogous to the elec-
(=0.5% ,106 cm 7), there are two subbands that are belowy qstatic potential minima in the barriers of a semiconductor
the continuum, in contrast to the situation for lowgrwhere g herjatiice. Here, however, the effect is both electrostatic
only a single bound state exists. This is also consistent with 4 quantum mechanical. The symmetriabout the cen-
the bare (=0) TQW studied in Ref. 21, which had @ ter of the junction and the periodic boundary conditions im-
nearly identical aspect ratid.e., ratio of well width$ and |y that the wave functions must have either local maxima or
exhibited only a single state separate from the continuuMminima at the boundaries. Note, in Fig. 4, where the moduli
The estimate there of a separation betwdhand con-  squared of the eigenfunctions are plotted, that the subband

el hastwo nodes along th& direction(i.e., along QW2. For
1.0 10° e F different parametergnot shown, such as for a wider QW2
1 n (10 cm’) or much highemn,, a state with a single node at the T junc-
tion is lower in energy. But in this regime the attractiveness
of the T junction is sufficient to stabilize the even node state.

The spreading o0 with increasingn, observable in Fig.

4 is relevant to the evolution of the gap between conduction
and valence bands. We will see below that the dominant
portion of the BGR arises from exchange and correlation
effects. Nonetheless, as noted in the Introduction, the differ-
ence between the evolution of electron and hole wave func-
tions with ny produces a kind of kinematic BGR as in the
guantum confined Stark effect. Explicitly, the hole eigen-
function, which is shown in Fig. 4 only forng

FIG. 3. Areal densityintegrated along) vs x for various total = 0.9X 10° cm™*, undergoes essentially no change with
wire densities. Confinement to wire almost complete belgw Over then, range of Fig. 2. Therefore the hole essentially
~0.6. For highesh, interwire density develops a subsidiary maxi- tracks the electrostatic potential at the T junction. The elec-
mum at=+2.5af . trons ine0, however, for increasing., are able to lower

density (10” cm®)

X (a5)
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FIG. 6. Band-gap renormalization for full LDAsolid) and for
pure Hartregdasheg, here in meV, as a function of density. Exci-
ton binding energies for wire radiua=0.5%% (pluses and a
=0.35% (crossesand LDA band gap corrected for excitonic en-
ergy as squares and triangles, respectively.

FIG. 5. Contour plot of electrostatic potential fon,
=0.9x10° cm 1. Schematic illustrates field lines, which help to
localize hole at junction.

their energy by spreading along QW2. This implies a redshift In Fig. 2 we plotted the energy of the first hole subband
in the band gap which emerges even in the absence @ versusn,. In this case we used Neumann boundary con-
exchange-corl’elation effeC([SEG the Hartree results in Flg 6 ditions for Poisson’s equa’[ion at |argand the energy zero
below. for E{ is the electrostatic potential at largeadded to the
confinement energy of QW1; in other words it is the energy
required to escape to the substrate continuum. Here we see
that the state is stable, and not merely metastéide the

The stability of the hole state at the T junction dependsenergy is negative Further, the increase in the binding with
weakly on the chosen boundary conditions for the Poissof, (up ton,~0.6x10° cm™1) arises from the strengthening
equation at largez. If we pin the chemical potential to an of the electrostatic potential minimuffior holeg shown in
assumed shallow donor level at largea common assump-  Fig. 5.
tion, the hole state at the T junction is merely metastable, and
escape, through a long, shallow barrier, to the substrate is
energetically preferred. Assuming Neumann boundary con-
ditions, or “flat bands” at large, on the other hand, results ~ The band gap in the heterostructure depends upon the
in a true bound state. Dynamically, the difference betweer@ssumed intrinsic band gap in the host materials GaAs and
“pinned band” and flat band conditions is mostly inconse-Al,Ga ,As, which, as noted, we have taken from the

. R . . 18 . .. . . .
quential for holes photogenerated at the junction. For anyiterature.” The band-gap variation with, is obtained from
reasonable background.e., unintentional donor density, the sum of the lowest subband energies for the electron and
the barrier to escape of the hole is too large and the hole willhe hole, each measured with respect to the GaAs band edge
remain and, presumably, recombine in the wire. Furtherat any common point and then added to the intrinsic band
more, the hole will induce an image in the electron gasgap. Figure 6 illustrates the variation of the band gap as a
which will cause further electrostatic binding to the wire re-function of n,. The rapid change for smati, for the full
gion. A similar effect of holes bound to a 2DEG has beenLDA calculation derives from the form of the exchange-
discussed recently in Ref. 22. correlation potential. The exchange energy alone, for com-

For holes generated in the substrate, far from the wireparison, is proportional to the Fermi momentig+ JERZ
however, the dynamics of the diffusion of holes into the wireThe overall order of magnitude and shape of the BGR are
region can be realistically expected to depend on the bandonsistent with the results of calculations within t@aN
shape as reflected in this dichotomy over boundary condiapproximatior®. However, since the authors of Ref. 9 as-
tions. Generally, fewer background donors are favorable tsumed a neutral, two-component plasma, the results are not
hole diffusion from substrate into wire. guantitatively comparable.

Even for pinned band conditions the basic charge distri- In Fig. 6 we also plot the BGR for the case where the
bution near the wire establishes a purely electrostatic barriezxchange-correlation potential is turned off, that is, for pure
to hole escape, as seen in Fig. 5. Here we plot the 2D eleddartree. Here the band gap still varies, albeit much less, with
trostatic potential fon,=0.9x 10° cm™ 1. The potential con- n.. The origin of the shift, alluded to in the discussion of
tour principally derives from a plane of positive chaigee  Fig. 4, is the variation of the wave function of the electron
donor layey and the line of negative charge in the wire. This with n., which gives a kinematic component to its energy,
results in an electrostatic potential hill near the junctitm  while the hole eigenstate is essentially dormant at the junc-
which holes are attractgdThus the hole has at least a long tion. This effect is a slight generalization of the quantum
shallow barrier to escape even before considering the quamonfined Stark effect, wherein the band gap is affected by an
tum effect that further binds the hole to the junction. electric field, which is varied, between the electron location

B. Hole states

C. Band gap
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We are motivated by the work of Vintéron binding of
electrons to impurities in the presence of an electron gas, to
examine the exciton problem via density functional theory.
We emphasize, however, that our approach does not imply
an infinite mass approximation for the hole. The primary
. “approximation” of DFT is to treat the wave function as a
product of one-particle states and include exchange and cor-
relation locally, through a potential. The nature of this ap-
proximation is seen most clearly when we consider the
single-electron, single-hole limfassuming purely 1D for the
momenyj. In this case, the standard solution is to transform
(b) coordinates to relativesf=x.—Xx;) and center of masgX)
motion, writing ¥ (X, ,Xe) = ¢“M(X) (7). Correlation is
thereby included precisely via the relative coordinateBy
contrast, as we discuss further below, DFT reduces in the
two-particle limit simply toW (x;, ,Xe) = #/%(Xe) ¥"(xp) . Self-
consistency does introduce correlation betwagrand X,
but it is underestimated. It is in this limit where we expect
Your solution to be most inaccurate. The virtue of DFT is that

We postpone a discussion of the final result of Fig. 6, th it extends beyond the two-body problem, where the separa-

behavior of the BGR when corrections for excitonic ener ion of variables and the exact solution are no longer avail-
. . ; . Wable. Furthermore, as we show below, the deviation of the
and screening are included, until after the next section.

binding energy from the correct value is not so great as
might be expected even in this limiting case. This is partly
ll. EXCITON aided by the fact that the problem is one dimensional.

In addition to underestimating correlation in the two-
particle limit, the product solution, by definition, discards

In the preceding section we implicitly assumed that, alongcenter of mass motion. Furthermore, in order to actually cal-
the direction of the wire ), the eigenstates of holes and culate the binding of the electron and hole in the wire, i.e.,
electrons were plane waves. As a simple example, in théhe exciton interaction, the calculation must be restricted to a
limit of a single electron and single hole, our assumedfnite length of wire?® Computationally this results in the

<& <&
< <

A

FIG. 7. (8) Standard ladder diagrams employed in solving
Bethe-Salpeter equationgb) Typically nonincluded ‘“crossed”
diagram, dependent am,, resulting from multiple scattering of a
single electron from the hole.

and that of the hole. In our case the electron additionall
shifts its location as the gate bias varies.

A. Motivation

“many-body” state is of the form hole localizing at an essentially arbitrary point, bound to an
_ _ accumulated electron cloud. However, at least in the two-
W (rh,re) = te(Xe,Ze) €KVeih (Xp, ,2,) €KNYN, (5  body limit, according to the exact solution the exciton bind-

ing energy isindependenbf center of mass motion. There-

where the subscripts and h denote electron and hole, re- fore, by placing the hole at rest we are making no
spectively. This description ignores the exciton binding ef-approximation to the binding energy so long as our sample is
fect, which introduces a correlation between the hole positarge enough that boundary conditions do not affect the so-
tion and that of(at least one electron. The product of plane lution, which we have checked.
wavese'keVee!kn¥n admits no such correlation along the wire  In summary, assuming a direct product solution underes-
direction. Even if we continue to maintain, as we shall, thetimates correlations; a problem that is most conspicuous in
single-hole limit, the introduction of the excitonic effect is a the two-body limit. Confining the system to a finite wire,
considerable complication. however, implies no further approximation, so longlLgsis

The standard treatment of this problem is via the Bethetaken sufficiently large. This is physically reasonable since
Salpeter equatioh.However, this so-called ladder approxi- natural size cutoffs, such as localization length and inelastic
mation employs several restrictions which we desire to gascattering length, are present in real systems and any theo-
beyond. Specifically, as in most many-body theories, dielecretical result that depended on a truly infinite size of the
tric response is treated linearly, typically within the plasmon-system would be highly suspect.
pole approximation. Hence the low density limit is question- A crucial element of our calculation is the treatment of the
able. Additionally, the sum of ladder diagrams generallyhole self-interaction. The exchange-correlation potential in
omits contributions from crossed diagrartfSig. 7). Such  DFT behaves much like the exchange term in Hartree-Fock
terms depend on the densiiy our case, the density of elec- theory. In both cases exchange reduces the interaction of
trons and represent quantum mechanical correlations in theairs of electrons but more to the point it compensates for the
electron gas induced by interaction with the hole. We willinteraction of an electron with itself. In Hartree-Fock theory
argue that such correlations, in the high density limit, arethis cancellation is exact; in DFT it is approximate, and some
responsible for preventing the exciton state from mergingincompensated self-interaction remains, a fact that has been
with the continuum, and indeed promote the formation ofwell known for years. But since we have only a single hole,
multiple electron states bound to the h@lieons and “quad- and since we arealculatingits correlation with the electron
rons”). gas (the excitonic effegf we should not include an
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exchange-correlation potential for the hole. How, then, are (a) Ly

we to compensate for the interaction of the hole with its own -

Coulomb field, even approximately? @jj_wjr;{jjjjjjjjj)
One conceptually simple method to eliminate self-

interaction from the Hartree problem for a finite fermion sys- 2a| @IZA gate Uex

tem would be to calculate a different electrostatic potential, AS>a

and hence different Hamiltonian, for every electron. The po-

tential experienced by each electron would then be calcu- 0.6

lated from the density of all other electrons, but not it@If. (b) N

In the general caséypified, say, by the calculation of the R A

electronic structure of an atgpit is unclear how to execute 05 L & electron

this, since one then has a different eigenvalue problem for

each state. Obviously one cannot choose the ground state

from each Hamiltonian. Does one choose il eigenfunc-

tion from the pth Hamiltonian? The problem is ultimately

that the orthogonal set resulting from a single eigenvalue s hole

problem is lost. ®0ogq oo
However, it is just such an approach that we employ here. 03 T T T T

This is, in our case, unambiguous because we have two spe- 00 02 04 06 08 10

cies of particles and for one of the speditre hole we have Density n, (10°cm’)

only one member. Thus the hole eigenfunction is computed . _ . .

from the electrostatic potential arising from all charge other G- 8- (@ Schematic of cylindrical wire for model exciton cal-

than the hole itself. The electron “Kohn-Sham” states areculatlon. Radial charge distribution of hole and electron taken as

. - single Gaussian. Drawing not to scale=10a. (b) Radial spread
still calculated as usual from the total charge density, and thgf wave functions for lowest conduction and valence band states in

exchange-cqrrelatlon potential is Qmploy(_ed as usual to ComI’-shaped wire, as a function of total 1D density. Parameters corre-
pensatgpartially) for electron self-interaction. spond to Fig. 2.

In what follows we will begin by discussing the geometry
of the model used in this portion of the calculation. Thetion is valid only in the limit of a very strongly confined
cylindrical wire that we utilize is chosen so that the three-system. We believe that, even though our system is indeed
dimensional problem can be simply reduced to a quasi-onestrongly confined and the qualitative conclusions of this sec-
dimensional problem. The limitations of this approximation tion are independent of this approximation, the primary fac-
and its relationship to the transverse wave functions in Sedor that limits the numerical accuracy of our calculation is
Il are discussed. We will then lay out the full system of Most likely this assumption.
equations and boundary conditions to be solved. Following !N comparing with Sec. Il we must choose a valueaof
this we discuss two instructive simplified cases of the probthat is consistent with the lateral spread of the electron and
lem. Both of these are based on an effective 1D pair interad1Cl€ wave functions. We have calculated the radial spread of
tion (as opposed to a solution of the full Poisson equation if’€ lowest electron and hole eigenstatet Fig. 4) for the

3D) for which we develop a convenient approximation. In TQW,
the first we treat the electron gas via the Thomas-Fermi ap-
proximation, showing that the hole spontaneously localizes (r)zf dx dz Vx2+ 22| ¢g(x,2)|?, (6)
with a cloud of electrons nearby. In the second we examine
quantitatively the two-body limit of DFT and compare the and plotted the results, as a functionrgf, in Fig. 8b). A
results to the exact solution employing the transformation tglistinct shift in (r) for the electron is seen neam,
relative and center of mass coordinates, as discussed above0.6x 10° cm™*. This occurs around the filling of the sec-
We then proceed to a presentation of the results of the fullpnd subband. This corresponds to the late¢edbng thex
self-consistent exciton calculation and apply those results adlirection spreading mentioned in the discussion of Fig. 4.
ditively to the band-gap energy of the previous section toFor the radiala parameter employed in this section, we
obtain the overall trend of the luminescence energy withchoose various values between the exhibited range for the
varying electron density. hole and the electrofitypically we compute results foa
=0.3m%, 0.4%% , and 0.555).
Finally, we find that forL,~30ag the eigenstates show
negligible dependence dn,. For example, the eigenvalues
In this section we employ a simplified geometry, shown inshown in Fig. 12 below show small fluctuations related to the
Fig. 8@), for a single-mode, cylindrical quantum wire along discrete density of states, but they never exceed 0.05 Ry
directiony of radiusa surrounded by a cylindrical metal gate
at radiusA whose potentiall ., is used to vary the electron C. Equations
density. The radial charge distribution of both electrons and The system of equations that we solve is presented below.
holes is assumed to be given by a single Gaussian wavene Schidinger equations for the electron and hole, respec-
function &(r)=(1/a)y2/me~""/3", Clearly this approxima- tively, read

—

-

<r> (a,

B. Model geometry

195312-7



M. STOPA PHYSICAL REVIEW B 63 195312

1 52 B the sum of occupied eigenvalues, a double-counting correc-
~3 —2+V§_ff(y)+vxc(y)) Pp(Y)=gpp(y), tion as well as the energy related to the gate. Furthermore,
Me gy this gate energy is modified by the work supplied to the

gate}*?" and is hence really free energy. The overall ex-

1 &2 pression for this free energy is thus
( " 3y a7 +vsz<y>) By =eppy). (D
1
_ .1
where the effective one-dimensional electrostatic potentials ':(Ue><t)_*‘3h+2p f(p—ep)eg- Ef d’r
are determined from the three-dimensional electrostatic po-

tentials as

X[pe(r)de(r)+pn(r) én(r)]+ f d®r pe(r)

Veri(y)= f d2r| £(r)[Peden(ry). ® 1
. . . X[exc(pe(r)) = Vyclpe(r))]— EQUexty (12
The electrostatic potentials are determined from the full 3D

Poisson equation, assuming azimuthal symmetry, whereQ is the total charge induced on the gate, determined

4o by computing the normal derivative of the potential at the
—V2¢e(r.y) = ——Lpe(r.y) +pn(r.y)], gate surface. Also, the third term on the right hand side of
K Eqg. (12) is a form of double-counting correction for the
4 exchange-correlation energy, wherg(p) is the exchange-
_v2 _om correlation energy per particle of a homogeneous electron
Veon(r.y) P pe(r,y). ) gas of densitw.lz
We note that one might write the total energy as simply
e sum of occupied Kohn-Sham energi@scluding the

. . hole) via Koopman'’s theorem. To lowest order, where only a
here we have changed the chemical potential and the effe%'ingle bound electron and the hole energies are changing

tive backgrognd charge by means of the surrounding gate'appreciably, one could further estimate this as simply
The density of electrons is determined from the e|gen-F(U Y=cltel. However these are both approximations
functions and eigenvalues of Schinger’'s equation, ext) = €nT Fe- PP

and the correct formula, Eq12), must be used for all but
heuristic purposes.

We can also include an explicit background charge in th%h
source terms of Eqg9); however, for the results discussed

pe<r,y>=|§<r>|2p§1f(u—s;iw;(y)ﬁ (10

D. Thomas-Fermi model

wheref is the Fermi function ang is the chemical potential, To obtain a qualitative understanding of the results of the
which is usually taken as the energy zero of the problemy)| self-consistent calculation we present here a calculation
The hole density(r,y) is calculated similarly but with only  \yhere the 1D electron gas is treated within the Thomas-

a single eigenstate and a filling of unity.  Fermi approximation and the hole eigenstate is determined
For the electrons, the effective 1D exchange-correlationariationally. For this and the ensuing sections we do not
potential is obtained from the 3D forfisee Sec. )las solve the full 3D Poisson equation, but rather employ the
effective 1D interaction. We further approximate this by a
¥, ):f d2r|£(0) |2V, (po(T,Y)). (11  simple, practical form which is very convenient for calcula-
xety | FVaelpe(ry tion (for a similar model, see Ref. 28With the assumed

Gaussian wave functions in the transverse direction, the ef-

Equations(7) are solved with periodic boundary condi- fective 1D Coulomb interaction is

tions on the intervalye[—L,/2L,/2]. The 3D Poisson

equations are solved with Neumann conditionsat, /2 and e?

with Dirichlet boundary conditions on the gaterat A. We V(y-y')=— —f dp pdqsf dp'p'de’

note that the Dirichlet boundary conditions on the gate imply K

a small, subtle error. By using, for the hole, the electrostatic 1£00) 2 E(p")2

potential computed without the hole chargg(r) included, p p )

the image charge induced by the hole on the gate, with which Vy=y")?+p*+p'?=2pp’ cod p—¢')

the hole physically does interact, is absent. A more precise, (13)

though computationally taxing, approach would be to com-

pute ¢n(r,y) from all the charge but then subtract This integral can be easily performed numerically by writing

Jd3 " py(r')el|r—r’|, the potential of the hole in free space. the kernel as an expansion in modified Bessel funcftns.
The binding energyEg of the exciton is defined as the The results can be empirically fitted to a function of the form

difference in the total energy between the case where the

hole is localized, on the one hand, and the case where the o2 A
single-hole charge is spread uniformly yna free hole, on V(y—y')=— —_—, (14)
the other hand. The total energy must include, in addition to K N(y—y' ) +A;
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l1a=1.3 a=1.0 ~ 0.4 n=1.0 Xn=04 3
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FIG. 9. Effective 1D potential curves versys(y’'=0 herg FIG. 10. Energy of hole in 1D Thomas-Fermi electron gas, in-

calculated according to Eq13) (solid) and the fitting function cluding hole kinetic energy, as a function of hole wave function

(dashedl from Eq. (14) using Eqs.(15) for the parameters; and radiusb for various electron densitiedisted in 16 cm™1). Wire

A,, givena (listed on figurg. Curves are offset vertically for clarity; width a=0.4%} . Energy measured relative to state wiik o,

offsets, from bottom to top, are 0,0.5,1.0, and 1.5 Rynset i.e., with hole charge spread out uniformly. Inset shows energy

shows closeup near origin. minimum, i.e., binding energy, versus,. Variation of only
0.5 Ry*~3 meV is small compared to full quantum mechanical

where we findA; andA, as functions of the wave function calculation(cf. Fig. 6).

parameter,
A;=—1.02+0.18+0.01%2, where;(y)zp(y) — po, With pg the background charge den-
sity, and whereu, a Lagrange multiplier, is the chemical
A,=0.0074+0.58—0.11a2, (15  potential. The variation Eq(18) is trivial and leads to an

. . . L . integral equation folp,in(y), the energy minimizing elec-
wherea is assumed to be given B , A, is dimensionless, tron density, which is easily solved iteratively. To the result-

andA, is in ag (thereby determining the dimensions of the ina ener ) we add the kinetic enerav of the hole
constants Figure 9 shows a comparison of the exact reSU|t%2%2mhbg);E[gtr;[gi(r¥)t]r1e Thomas-Fermi ener@ii(b) (Fig.
from (1.3) and the fitting _funct|or(14) for various vglueg of 10). For the finite size wire, wheh becomes very large, we

a. We find that Eq(14) gives a reasonable approximation to must prevent the hole density from pouring outside the range

Eg. (13 as long as is in the range 0f 0.25,2.af. B A
Given an effective 1D pair potential, we will solve the %olléycl:i{a_ryg/?inb)t/h;evr\]/?rremrilrlﬁgqiggu(riliinUCh that the total

problem of a single hole in a sea of electrons described by The mini oE- (b lotted in Fig. 10
the Thomas-Fermi approximation, with the eigenstate of the € minimum energieBrx(b) are plotte In Fg. 19 ver-
hole given by a simple function with one variational param-Sus P_for_several background charge densities, whpge

eter, that is, =2\2meulh. The energy zero in the figure Brg(),
i.e., the energy of the hole—-TF-gas system when the hole

- charge is spread uniformly through the wire. The potential
C (16)  parametersA; and A, are taken from Eq(15) for a wire
width a=0.45%% . An exponential damping has also been
Note that this(1D) Gaussian ansatz for the binding of the included in the potential to simulate a screening gate, but the
hole alongy can be distinguished from the Gaussian form ofresults are insensitive to the imposed screening length when
the 2D transverse wave function by the normalization factorit s substantially greater than the wire width. Clearly the
For a given fixed hole wave function, i.e., a fixedthe  overall energy is minimized at a finitefor all values ofp,,.
Thomas-Fermi problem consists of minimizing the following comparison of these energies versys with the exciton

1/4

Ph(y)= {i
b2

functional of the electron densify(y): binding energies from the full calculaticiisplayed in Fig.
522 . 6 and discussed belgvghows an order of magnitude agree-
E[p(r)]= f dy| 52 p3(y)—p(y) f dy’ | (y)|? ment, and a trend of weaker binding with increagedbut
e

otherwise the results are poor in comparison with the full

;(y) . calculation. The principal message here is that a one-

XV(y—y')+ TJ dy’p(y’) dimensional quantum particle in a dielectric medium can be

localized by the polarization cloud which it produ¢@dn

the Thomas-Fermi model, no account is given of whether the

(17) screening electrons come from the top of the Fermi sea, in

the form of scattering phase shifts, or the bottom of the

Fermi sea, in the form of individual bound states. Clarifica-

oE -0 (18) tion of this point in particular is one of the key points of the

oply) current study.

XV(y—y")— pp(y)
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E. Two-body problem 0
In the limit of a single hole and single electron in an Self consistent (E, )ﬁ | 0.26
otherwise empty wire, if we employ again the effective 1D Q A
pair potential of the preceding section, the set of EGs- . O i
| =
(10) reduces to "'; correlated (E,) o024 jf
O) I><
@ Sl
- JthV(ye yn " (yn)l? | ¥2(ye) c . - relative difference
2me L —_— -0.22
—Eelﬂe(ye), : - .
05 1.0 15
o T [ ay - vl R o aa)
th &yh e h e e h

FIG. 11. Binding energy for two-body problem using correct
:Ehz//h(yh), (19 separation of variables with correlatiok, , and simple product

h h . h lati ial ansatz from limiting case of DFTE,, as a function ofa, radial
where now there Is no exchange-correlation potential fof,, e fynction spread. Fractional difference in the range of 20
electrons. The total energy of the system, which in this ap-_ 55 ¢,

proximation we callE,, is given by

1 function increasefFig. 11). This is not so bad insofar as the
. ~ - : ) .
E,=E.+E,— _f Ayl pe(Y) de(Y) + pr(Y) dr(Y)], raison d’dre of density functional theory is not the solution
2T 2 ¢ ¢ " " of two-body problems. Mathematically, the fact that DFT is
(20 not a complete failure in this regime is reasonable in that the

where here, of course, correct wave function, written in terms af and X, could in
principle be expanded in seriesof products of functions of
pe(Y)=e(Y)I?, Yo andy,. We are then retaining only the leading term of
such a series, but we are calculating it self-consistently.
pr(Y)=|n(Y)]?, (21)  Note, however, that in dimensions higher than one the accu-

racy of such a procedure is bound to decrease simply because
the number of independent variables in which one must ex-
pand the wave function increases from two to four to six.

and

y)Ef dypV(y—yn| ¢"(yn)|%
F. Results

¢ (y)Ef dyeV(yn—Y)| #8(Ye) |2 (22) We proceed now to exhibit the results of the full self-
" e h | o consistent calculation based on the solution of EG)s-(10).

Please note that this result is the two-body limit of Eqs. In Fig. 12 we showEg [see the definition in discussion
(6)—(10) but that it also follows directly from the two-body Prior to Eg. (12)] computed as a function dfie,, for a
Schralinger equation with no other assumption than that the=0.3%ag ,0.455 , and 0.583 . Also plotted is the conduc-
two-body wave function can be written as a product statetion band densityr,, which is here defined as the total num-
5(ye) ¥ (yy). Still, as noted above, in this two-body limit ber of conduction band electrons in the wire for the localized
the product wave function constitutes a radical approximahole case, minus unitithe bound electron divided by the
tion in that each particle is assumed to be moving indepenwire lengthL, . When the gate voltage becomes negative, all
dently in the average field produced by the other. electrons become depleted from the wire and, belby,=
The exact solution of the two-body problem is given by —1.0 Ry", the conduction electrons for the delocalized hole
the separation of the two-particle ScHinger equation into  case shift from the wire to the gate. This explains the jump in
relative and center of mass coordinatesich, for our 1D  Eg below depletion. The minimum d&g occurs at the low-
problem, is written est density before this shift occurs, corresponding to a single
electron in the wire. Clearly the minimum depends some-
N « what sensitively on the choice &, and the binding can
ym=|E— oM (m), (23 become quite strong for very narrow wires, as is well
known2® Our empirical form of the effective 1D potential,
whereK is the momentum of the center of mass, with totalEq. (14), gives a good, intuitive understanding of this in that
massM=mg,+m,, 7 is the relative electron-hole coordi- the parameteA, decreases with decreasing wire widtf.
nate, and herg: is the reduced mass. A comparison of thealso Fig. 11 for smalk). Note that the small fluctuations
total energy obtained from the self-consistent solution of thevisible in the energies result from the finite sizg and the
set of equationg19) and theK=0 binding energyE, ob-  discreteness of the “free” states.
tained from the solution of Eq23) shows a deviation on the Of considerable interest is the absence of a binding to
order of 25%, decreasing as the transverse extent of the wawmbinding transition for the exciton. Even when we extend

(92 2

- ——+V
20 37 (7)
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FIG. 12. Binding energy of exciton vs gate potential fr y (as)

=0.33} (triangles, 0.4%% (hexagony and 0.587 (boxes. Line
gives corresponding, (see text for exact definitionRise of en-
ergy belown,=0 caused by shift of electronic charge to gate for
delocalized hole case.

FIG. 14. Occupied electronic wave functiofmoduli squaref
states 1 through 192=0.3%%, n,=0.6x10° cm % Two states
are localized near hol@t y=0). Orthogonality of remaining states
to bound states suppresses screening charge density near hole.

the density range to>2a% ! (i.e., >2x10f cm 1) and

even for the widest charge distribution=0.55%, the
ground state remains boufidot shown. In fact, as shown in
Fig. 13(see also Fig. 14 a second electronic state becomes

— there is no Fermi wavelength in the metal to cut off
screening at short distances. Electrons are added to the wire
by increasing the positive potential on this gate, i.e., by add-
. ing positive charge. Since the orthogonality of the electrons
localized abouitble hole abol.,~1.25 RY', correspond- togthpe bound elegtron reduces the p?obabilli/ty density of suc-
ing to ne~0.2a5 ~, thus forming a so-called trioft. Here  cassive states near the origisee next paragraph and Fig.
we have plotted théKohn-Sham level energies for the lo- 14) and since the background charge is under no such con-
calized hole case, measured relative to the band edge fafraint, there is metincrease of positive charge in the vicin-
from the hole, so that an energy above zero indicates aRy of the origin as density is increased. Of course, the posi-
asymptotically free particle. We find that for even higher ;e charge resides on the external cylinder away from the
densities,>0.8a3 ", a third electron can become bound to 1pEG, so its effect is relatively weak. But eventually it is
the hole; a state which we refer to naturally as a “quadron.”strong enough to bind an additional electron.

It is important to note that the formation of such an  The most intriguing feature of the results in Fig. 13 is
electron-trion bound state would be impossible in vacuuminat, while the hole becomes more weakly bound, and con-
since it represents the binding of two negative charges. Howsequently more spatially extended, the electrons, particularly
ever, in our wire system charge neutrality is enforced by thene |owest state, become more strongly bound with increas-
metallic, constant potential of the surrounding cylinder. Fur-ing U,y (and consequently increasimg). A similar result
thermore, this background charge is treated as fully classicabr electron binding to an ionized impurity in a 2DEG silicon

inversion layer was found by Vintéf.This feature, which is
0.1 related to the quadron binding just discussed, is rather coun-
o terintuitive, since one expects screening, by free electrons, of
o R i the interaction between hole and bound electron to weaken
w binding 892 the attraction and separate the particles. Partially this result is
— T understood as relating to the direct product nature of the
— exciton state when expressed in DFT, as opposed to the
3 single composite state of the two-body or screened two-body
50"—89'= problem. Thus the binding energy is not a single eigenvalue,
(3]
w

------- or even the sum of two eigenvalues, but rather it must be
&y understood as a difference between two interacting ground
T T T T T T 1 states. In other words, as is well known, care must be used
when interpreting the meaning of the Kohn-Sham eigenval-
Uex (Ry') ues and eigenfunctions. Nonetheless, the decreased energy
FIG. 13. Lower panel: discrete Kohn-Sham energy levels forand increas,ed Iocali_zation of the lowest KOhn'S_ham I(_avel
electron(solid) and hole(dashedl vs gate voltagea=0.35%3 . To seem puzzllng.*I[11 Fig. 14 we show, fqr a r_elat|vely _h'gh
lowest order exciton binding energy B~ &L+ & ; hence binding ~ densityne=0.6a5 ~, the set of all occupied eigenfunctions
weakens with increasdd.,, (andn,). Hole localizes two electrons  (moduli squarefl At this n, the lowest two-electron states
aboveU,,~1 Ry*. Upper panel: magnification ne&=0 show-  are localized near the hole wt=0. Note, however, that due
ing that second electron binds to hole to form trion Wg,, to the restraint of orthogonality the densities of all other
~1.25 Ry". states in the vicinity of the hole asuppressedThus, while
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: : . ' —-3 Interestingly, the approximate cancellation of exchange-
correlation renormalization and exciton screening in 1D de-
termined from our calculations is also consistent with recent
calculations of the dynamically screened Bethe-Salpeter
equation by Das Sarma and W&rfgr wires with a two-
component plasma, although the interpretation differs some-
what from that discussed here. While the tendency toward
cancellation of BGR and excitonic screening is concluded in
both studies, the most striking difference between the results
of Ref. 8 and those here concerns the unbinding of the exci-
4 2 0 2 4 ton, which, in an electron-hole plasma, is called the Mott
. transition. The authors of Ref. 8 estimate a merging of the
y(as) : ;
exciton energy with the electron-hole band edge at around
FIG. 15. Total electron densitysolid), total density minus n~3x10° cm !, wheren is here of course the density of
bound statgdashe, effective electrostatic potentidd®;(y) (dot-  electronsand holes. Even in the simple one-electron static
ted, density of hole(dot-dashel and density of gate charge screening approximation they find a vanishing of the exciton
(double-dot-dashedrersusy; same parameters as in Fig. 14. binding energy with density. By contrast, we find that up to
_ _ o the highest density considered X30° cm™?) the exciton
the total conduction band density, exhibited in Fig. 15, peak$emains bound. Assuming that both conclusions are correct,
aty=0, this density minus that of the lowest state dimin-he jmplication is that it is the interactiobetweenexcitons
ishes at the hole. Combined with the uniformly increasinginat leads to their unbinding or, equivalently, their merging
background positive charge on the gate, this comprises ith the continuum.
buildup of positive charge near the hole @g,; andn, are In any case, the absence of a Mott transition, even for the
increased. Therefore an increased density of electrons pr@jngle-component plasma that we study here, is of significant
duces an effectively antiscreening effect, which initially jnterest to both experimentalists and theorists. Our highest
drives the electron closer to the hole and then admits a Segfensity (3<10° cm™2) corresponds to slightly fewer than
ond and even a third bound electron. The hole eigenstatggr electrons within the Bohr radius of the exciton

meanwhile, is growing increasingly delocalized and the(_1 24%) and yet even at that density a bound exciton state
faster rise of its energy accounts for the increase of the ovels;|| exists. What, then, would a Mott transition look like

all energy(i.e., a decrease of the negative binding energy icroscopically? The positively charged hole must, at any

density, be surrounded by a cloud of negative charge, simply

G. Combined results due to charge neutrality. Generally screening is thought of as

Finally, in combining the results from Secs. Il and III, we the creation of electron-hole pairs at the Fermi surface, so

simply add the excitonic binding energy to the band gapPne could imagine that at sufficiently high density the neu-
calculated in the LDA for the translationally invariant wire. tralizing electron cloud would shift from the bound state at
The results for this are shown in Fig. 6. Clearly thethe bottom of the Fermisea to a cloud of “Friedel” electrons
exchange-correlation and kinematic effects causing the BGRearEg. However, since density functional theory is an ef-
produce a redshift which is partially negated by the shift offective single-particle theory and since an arbitrarily small
the exciton binding energy due to screening. This is consisattractive potential in one dimension binds an electron, the
tent with the notable insensitivity of the photoluminescencescreening of the hole by the Fermi surface electrons would

line position in optical experiments on quantum wires to ei-nave to be essentially perfect in order to cancel the bound
ther a photoexcited electron-hole pladmaor a gate- State. Whether this is an artifact of DFT which results, ulti-

generated 1DEG® mately, from the local density approximation for exchange
The dimensional dependence of BGR is a subject of conand correlation or whether it is a realistic physical manifes-

siderable interestWithin the “free virtual state” approxi- tation of the anomalous behavior of 1D systems is not en-

mation to the Bethe-Salpeter equatmenormalization is tirely clear. The experimental picture seems to show that

seen to stem from the screening of the exciton in combina€Xciton binding in 1D is far more robust than theories other

tion with a phase-space filling effect. The relative importancehan this one have predicted, lending some support to the

of these effects in different dimensions has been discussefysics behind our method. Thus the questions become how,

by Nojima33 Within the DFT context it is clear that, as noted if at all, does this picture break down and what is the actual

abOVE, the exciton b|nd|ng energy can become very great fdi;rlterlon for the Mott transition in 1D? A theore“cal .ap-

very narrow wires. We could argue then that the persistencBroach to this would have to focus on the bistable point at

of a redshift in 2D is at least in part due to the weaker bargvhich the neutralizing charge resides, with equal probability,

exciton binding energy. It is not the case that the screening iR the bottom or the top of the Fermi sea.

2D is less strong—it is stronger. It is merely that the range of

the_ e)_<cit0n energy from bare to fully screengé., _freee-h IV. CONCLUSION

pain is smaller in 2D. Hence the compensation for the

exchange-correlation renormalization of the bands via exci- In conclusion, we have presented results of density func-

ton screening is weaker in 2D. tional calculations for the electronic structure of modulation
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doped and gated T-shaped quantum wires for the case wheirgg of the electron and hole, occurs. This is therefore, to our
the wire can be assumed to be translationally invariant. W&nowledge, the first theoretical study that substantiates the
have shown that the phenomenon of band-gap renormalizavell-known experimental findings on this issuRather than
tion can be qualitatively and quantitatively understood withinunbinding, the orthogonality of the free electron states with
DFT. We have further employed a simplified model of athose of the bound electr(s) leads to an antiscreening be-

cylindrical quantum wire to examine the strength of thehavior such that as, increases a secorittion) and even a
bound exciton state in the presence of a one-dimensionghird (quadron bound state forms at the hole.

electron gas. We have normalized out the band structure |n the future we hope to investigate the effect of dimen-
problem here by defining the exciton binding energy as thejonality on the exciton physics by extending the calculation
difference between the total energy of the wire with a local+o include multiple 1D subbands.

ized hole and that with the hole char@and consequently all
electrons spread uniformly along the wire. We find that the
variation of the exciton binding energy with density tends to
cancel the band-gap renormalization, in agreement with re-
cent experiments. Finally, we noted that, in this one- | wish to thank Werner Wegscheider, Stefan Sedimaier,
component plasma case, to the highest densities we hawankar Das Sarma, and Elisa Molinari for helpful conversa-
considered, no analog of the Mott transition, i.e., no unbind{ions.
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