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Band-gap renormalization and excitonic binding in T-shaped quantum wires

M. Stopa*
Tarucha Mesoscopic Project, ERATO-JST, 4S-308S NTT Atsugi Research and Development Center, 3-1 Morinosato Waka

Atsugi-shi 243-0198 Kanagawa-ken, Japan
~Received 26 August 1999; revised manuscript received 19 July 2000; published 23 April 2001!

We calculate the electronic structure for a modulation doped and gated T-shaped quantum wire using density
functional theory. We calculate the band-gap renormalization as a function of the density of conduction band
electrons, induced by the donor layer and/or the gate, for the translationally invariant wire, incorporating all
growth and geometric properties of the structure completely. We show that most of the band-gap renormal-
ization arises from exchange-correlation effects, but that a small shift also results from the difference of wave
function evolution between electrons and holes. We calculate the binding energy of excitons in a finite length
wire using a simpler, cylindrical geometry. For a single hole and a one-dimensional electron gas of densityne ,
screening of the exciton binding energy is shown to approximately compensate for band-gap renormalization,
suggesting that the recombination energy remains approximately constant withne , in agreement with experi-
ment. We find that the nature of screening, as treated within our nonlinear model, is significantly different from
that of the various linear screening treatments, and the orthogonality of free carrier states with the bound
electron states has a profound effect on the screening charge. In particular, we find no Mott transition. Rather,
the electron and hole remain bound for all densities up to;33106 cm21 and, asne increases from zero, trion
and even ‘‘quadron’’ formation becomes allowed.

DOI: 10.1103/PhysRevB.63.195312 PACS number~s!: 73.21.2b, 71.35.2y, 78.66.2w, 73.23.2b
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I. INTRODUCTION

The gap in a semiconductor heterostructure between
duction and valence bands, and the interaction between e
trons in the one and holes in the other, are known to dep
in a complicated fashion on the presence of mob
charges.1–3 The interpretation of optical experiments
doped semiconductor quantum wires,4,5 for example, must
invoke the variation of band edges due to many-body
geometrical effects, the ‘‘redshift’’ associated with electro
hole binding into excitons, and finally the reduction of t
exciton binding energy due to screening by free carriers.

Theoretical description of band-gap renormalizati
~BGR! and exciton formation and screening is frequen
addressed with a many-body formalism.6–8 Within this
framework, the contributions of both electron-phonon a
electron-electron self-energies to BGR,9 as well as the influ-
ence of dynamical screening on the exciton binding ene
can be studied. The many-body treatment, however, has
disadvantage that for BGR it commonly ignores geometr
factors, such as the quantum confined Stark effect,10 whose
relevance is structure specific. Furthermore, in the exc
problem, many-body theory treats screening within the lin
approximation and, generally, the influence of the bou
electron on the free electrons is not fully included. In p
ticular, the orthogonality of the free electron states with
bound state, which increases in importance in lower dim
sional systems, is typically not included.11

A different formalism without these shortcomings, alb
one that forsakes the electron-phonon interaction, is tha
density functional theory~DFT!.12 Within DFT the ground
state energy of an interacting many-particle system is kno
to be given rigorously by a functional of the density. T
essential problem of DFT is that this functional is unknow
and the components beyond kinetic and direct electros
0163-1829/2001/63~19!/195312~13!/$20.00 63 1953
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energy are isolated into an ‘‘exchange-correlation’’ fun
tional which must be approximated radically. Typically, th
limit wherein the density varies adiabatically, known as t
local density approximation~LDA !, is assumed. Nonethe
less, successful treatments of a wide class of systems,
atoms and molecules to solids and heterostructures, abo
in the literature. It is the purpose of this paper to provide
theoretical description of BGR and exciton screening,
plied particularly to semiconductor quantum wires~QW’s!,
within DFT.

We are interested in quantitative comparison with opti
experiments on T-shaped quantum wires~TQW’s! in the
presence of a one-dimensional gas of electrons~1DEG! with
1D densityne , induced in the conduction band via a comb
nation of modulation doping and gating.13 By way of warn-
ing, this one-component plasma contrasts with the m
studies that focus on intrinsic QW’s wherein an over
charge neutral electron-hole plasma is generated ent
through photoexcitation. In our case photoexcitation is
sumed to provide a small number of holes~which we take as
a single hole! and to have a negligible effect on the dens
of conduction band electrons.

We evaluate the band structure of a TQW in two steps
the first step~Sec. II! we consider a realistic model of a cros
section of a TQW, shown in Fig. 1, and solve se
consistently for the electronic structure of the subbands,
function of the gate voltage, assuming translational inva
ance along the wire. Material-specific effective masses
band offsets, as well as the actual growth profiles and dop
densities of the structure, are included. The exciton prob
is treated in the second step~Sec. III! by a simplified, cylin-
drical model of a quantum wire which we take to be of fin
length. Thereby we explicitly break translational invarianc
In this portion of the calculation we employ the results
Sec. II to estimate a reasonable lateral confinement par
©2001 The American Physical Society12-1
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eter. Thus the philosophy of the calculation is that the ex
ton formation and its screening represent an additive cor
tion to the translationally invariant band structure of step
This exciton effect can be analyzed within a single-subb
generic wire model so long as the effects of lateral confi
ment are correctly borrowed from the more faithful, alb
2D, calculation in step 1.

Among our main results for the translationally invaria
band structure~Sec. II! are the following.~1! We find a BGR
as a function ofne with comparable order of magnitude t
that derived within many-body theory.~2! One small
(;20%) component of this BGR arises from a variation
the lowest electron subband eigenfunction withne . Specifi-
cally, at higher ne the lowest electronic wave functio
spreads somewhat along the overgrowth interface~through-
out QW2 in Fig. 1,x direction! whereas it is more strongly
confined at the junction~i.e., the intersection of the two
wells! at lower ne . The hole wave function, by contras
never spreads appreciably alongx. ~3! The stability of the
hole eigenstate at the junction is dependent on the boun
conditions used for largez ~see Fig. 1!. If the chemical po-
tential is pinned to an assumed background donor densit
the substrate~we use the term ‘‘substrate’’ to denote th
region far from the donor plane, i.e., largez; see Fig. 1!, then
the hole bound state becomes a resonance which is m
stable to escape into the substrate. On the other hand, w
the substrate is treated as exactly electrically neutral~or
pinned to acceptors! the hole state at the junction is stabl
~4! For the specific dimensions and compositions that
consider13 the wires are predominantly one dimensional w
filling of no more than two subbands and spreading of
density into QW2 generally less than;15% of the total
density.

Regarding the exciton problem~Sec. III!, we find the fol-

FIG. 1. Schematic of T-shaped quantum wire cross section
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lowing. ~1! The exciton binding energy weakens consid
ably as the 1DEG density is turned on, but never vanis
completely. ~2! The requirement of orthogonality betwee
the bound electron eigenfunction and those of the scree
electrons leads to anantiscreeningof the exciton, such tha
the density of free electrons in the vicinity of the hole
depressed. This effectively positive charge raises the en
of the hole while the energy of the electron actually becom
more negative and its localization about the hole increa
with density.

Finally, the contributions of the band-gap renormalizati
and the exciton screening tend to cancel and, consistent
experiments, the recombination energy remains relativ
constant withne . This result is plotted in Fig. 6 but dis
cussed at the end of Sec. III.

We principally employ effective atomic units where
1 Ry* 5m* e4/2\2k2'5.25 meV and 1aB* 5\2k/m* e2

'100 Å. For comparison with experiments we also u
cm21, where 1aB*

21'106 cm21. Figure 6 below, which
gives the trend of the complete band gap withne , is pre-
sented in meV in order to be consistent with standard pr
tice and also for comparison to experimental findings to
presented in a companion paper.13

II. TRANSLATIONALLY INVARIANT WIRE: BGR

We calculate the electronic structure of th
GaAs-AlxGa12xAs TQW’s by solving Schro¨dinger and Pois-
son equations self-consistently,14 within a region illustrated
in Fig. 1, for the conduction band electrons, and by includ
exchange and correlation in the local dens
approximation.12 There are numerous calculations of BGR
lower dimensional systems which employ many-body the
to determine the self-energy correction to the subbands f
exchange and correlation effects.15,16 In DFT a band-gap
renormalization arises as follows. First, variations in t
electrostatic potential tend to affect both bands equally
cept for kinematic effects like the quantum confined Sta
effect,10 where the electron wave function is centered on
different spatial location~at a different potential! than that of
the hole. By contrast, exchange and correlation effects lo
the energy of electrons in proportion tone , the electron den-
sity, and raise the energy of holes in proportion tonh , the
hole density, producing an overall shrinkage of the band g
For the one-component plasma considered here, there
the exchange-correlation potential acts only on the cond
tion band electrons, sincenh'0.

One advantage of our procedure is that, while many-bo
calculations in principle begin from wave functions and su
band eigenenergies derived from some Hartree calculat
the variation of these properties with density and the afo
mentioned kinematical corrections to the band gap are u
ally ignored. By contrast, DFT automatically includes the
Furthermore, the separate contributions from kinematic
fects as opposed to exchange and correlation are easily
lated ~to first order! by performing a calculation without the
exchange-correlation potential~i.e., Hartree only!.

We employ the parametrization of Ceperley and Alde17

for the density-dependent, exchange-correlation poten
2-2
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Vxc„n(x)…. Takingy as the translationally invariant directio
~see Fig. 1!, the Schro¨dinger equation in thex-z plane (ky
50) reads

F2¹
1

2m* ~x,z!
¹1VC~x,z!1ef~x,z!

1Vxc„n~x,z!…Gcn~x,z!5Ee
ncn~x,z!, ~1!

where VC(x,z) is the conduction band offset,18 which de-
pends only on the local aluminum concentrationh ~we use
the symbolh instead of the standardx to avoid confusion
with the coordinatex), the 2D eigenfunctions and eigenva
ues are given bycn(x,z) andEn , respectively, and the elec
trostatic potential isf(x,z). Also in Eq.~1! the level index is
n, and the subscripte refers to electrons in the conductio
band whereas for holes we useEh

n . The eigenstates are ab
breviated below asen and hn for electrons and holes, re
spectively. Periodic boundary conditions are taken atx5
6a/2 wherea55aB* is the period of the TQW superlattic
as fabricated.13 The effective mass dependence on posit
arises through its dependence onh.18 In the specific device
we consider, all regions have eitherh50 ~pure GaAs! or
elseh50.3 for the barrier regions. We ignore interface gra
ing effects as well as image effects, taking the dielec
constant ask512.5 everywhere.

For the solution of Poisson’s equation we also assu
periodic boundary conditions at thex borders. For the sur
facez50 we simulate the surface metal gate in the stand
fashion14 by Dirichlet boundary conditions which fix the ga
potential modulo an offset of 0.8 eV for the Schottky barri
Variation of the electron sheet density in the overgrowth w
Ne ~or, equivalently, the 1D densityne) is accomplished by
biasing this surface gate. Other experimental methods
varying ne include illumination or a variation of the thick
ness of the spacer between the modulation doping layer
the overgrowth well. While we have modeled each of the
methods independently, in fact in each case there is an
proximately homogeneous sheet~or sheets! of positive
charge balancing the electronic charge in the wire/well a
the difference in the electronic structure between the vari
methods,for a given resultant ne , is negligible. Thus here
we actually vary a surface gate voltage to change density
in displaying the results it is sufficient just to plot variabl
versusne .

For largez we find, as noted, that the solution for th
holes is sensitive to the asymptotic value of the potent
Generally, we assume Neumann boundary conditions, w
is equivalent to assuming complete neutrality of the s
strate. However, we discuss below the nature of the h
metastable state in the case where the chemical potent
pinned to a shallow donor level at largez.

Since the modulation doping isn type, the Fermi level is
close to the conduction band throughout the device. Furt
more, since even during photoluminescence measurem
the excitation power is very low, we ignore the valence ba
19531
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contribution to the charge density. Therefore, the total d
sity that enters the Poisson equation is given as

r~x,z!5N1~x,z!1n~x,z!, ~2!

where n(x,z) is the density of conduction band electro
only, and where the charge density of ionized donors
N1(x,z). The conduction band electron density is given
the well regions by

n~x,z!5E dky (
n

f ~m2ky
22En!ucn~x,z!u2, ~3!

where f is the Fermi function,m is the chemical potentia
~assumed constant throughout the device and taken as
zero of energy!, andky

2 is the kinetic energy of motion in the
y direction. We also employ a Thomas-Fermi approximat
for the density of electrons in the barrier regions away fro
the wells. Finally, we assume temperatureT54 K.

We find little difference in the results whether the dono
which are silicon atomDX centers,19 are placed in therma
equilibrium with the electron gas or are treated as a sim
sheet of positive charge with fixed areal density. Insofar a
low temperatures the latter approximation is more physic
we use this assumption in the calculations discussed in
paper.

Upon obtaining a self-consistent solution of the Sch¨-
dinger and Poisson equations for conduction band electr
we calculate the hole eigenfunctions with the potential

Vh~x,z!5VV~x,z!2ef~x,z!, ~4!

where nowf(x,z) is the electrostatic potential that solve
the self-consistent problem above. The valence band of
VV(x,z) also depends on the aluminum concentration. W
assume a band-gap offset parameterQe50.6. We treat the
holes in the simplest approximation, assuming a sing
heavy-hole isotropic effective mass which depends only
aluminum concentration; specifically,mh* (GaAs)50.377m0

andmh* (Al0.3Ga0.7As)50.403m0.20

To summarize therefore and to make the context of t
calculation clear, we are interested principally in the BGR
a function ofne , the integral overx andz of n(x,z), which
we imagine to be modulated experimentally with an elect
static gate on the overgrowth surface.13 Thus we solve the
evolving self-consistent electronic structure assuming
chemical potential to be far from the valence band~i.e., no
holes!. We solve for the hole subbands as a one-part
problem after solving the electronic structure at givenne ,
using the resultant electrostatic potential. We use a simpli
band structure for the holes, in contrast to Ref. 21, wh
employs the full, four-band Luttinger Hamiltonian but whic
assumesne50.

A. Electronic structure

The parameters for the calculation are summarized in
schematic Fig. 1. We follow Ref. 21 by designating the ov
growth quantum well as ‘‘QW2’’ and the initial growth wel
as ‘‘QW1.’’
2-3
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The structure of the subbands of conduction band e
trons as a function ofne is shown in Fig. 2. The zero o
energy for the electrons is the Fermi energyEF ~the plotted
hole energy is discussed further below!. In the higher density
regime a second subband, which has concentration in
interwire QW2 region~cf. Fig. 4 below!, is occupied. The
region marked ‘‘continuum’’ corresponds to the beginning
a dense set of states which are asymptotically free to es
into the substrate~i.e., along QW1, which runs in the1z
direction!. This is so because QW1 is wider than QW2, a
the electrostatic advantage of proximity to the positive d
ants in QW2 is overcome by the additional confinement
ergy there. Nonetheless, the spreading of theoccupiedstates,
when the total density is increased, occurs within QW2~so
as to compensate the positive charge of the donors and g!.

It is noteworthy that for ne*0.5aB*
21

('0.53106 cm21), there are two subbands that are belo
the continuum, in contrast to the situation for lowerne where
only a single bound state exists. This is also consistent w
the bare (ne50) TQW studied in Ref. 21, which had
nearly identical aspect ratio~i.e., ratio of well widths! and
exhibited only a single state separate from the continu
The estimate there of a separation betweenEe

0 and con-

FIG. 3. Areal density~integrated alongz) vs x for various total
wire densities. Confinement to wire almost complete belowne

;0.6. For highestne interwire density develops a subsidiary max
mum at62.5aB* .

FIG. 2. Subband energies vs wire 1D density for electron~e!
and hole (h). Electron levels measured with respect to Fermi s
face; hole level with respect to escape to substrate. Electron
tinuum begins at dashed line. Filling ofEe

1 begins atne;0.5.
19531
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tinuum of ;15 meV is also consistent with our slightl
lower value of;13 meV. Interestingly, this separation re
mains approximately constant~Fig. 2! as ne is increased,
until Ee

1 drops down from the continuum and begins to fil
In Fig. 3 we have plotted the 2D surface density as

function of x for various total ne . As ne approaches
13106 cm21 some spreading of the density away from the
junction occurs. This results both from the occupation ofe1
and also from slight wave function spreading ofe0 ~cf. Fig.
4!. Note, however, that, rather than spreading smoothly
from the wire, the density achieves a local maximum at
interwire minimum in the potential~at 62.5aB* , which, due
to periodicity, are equivalent points!, analogous to the elec
trostatic potential minima in the barriers of a semiconduc
superlattice. Here, however, the effect is both electrost
and quantum mechanical. The symmetry inx about the cen-
ter of the junction and the periodic boundary conditions i
ply that the wave functions must have either local maxima
minima at the boundaries. Note, in Fig. 4, where the mod
squared of the eigenfunctions are plotted, that the subb
e1 hastwo nodes along thex direction~i.e., along QW2!. For
different parameters~not shown!, such as for a wider QW2
or much higherne , a state with a single node at the T jun
tion is lower in energy. But in this regime the attractivene
of the T junction is sufficient to stabilize the even node sta

The spreading ofe0 with increasingne observable in Fig.
4 is relevant to the evolution of the gap between conduct
and valence bands. We will see below that the domin
portion of the BGR arises from exchange and correlat
effects. Nonetheless, as noted in the Introduction, the dif
ence between the evolution of electron and hole wave fu
tions with ne produces a kind of kinematic BGR as in th
quantum confined Stark effect. Explicitly, the hole eige
function, which is shown in Fig. 4 only forne
50.93106 cm21, undergoes essentially no change withne
over thene range of Fig. 2. Therefore the hole essentia
tracks the electrostatic potential at the T junction. The el
trons in e0, however, for increasingne , are able to lower

FIG. 4. Wave functions~moduli squared! showing spreading of
e0 as ne increases from 0.123106 cm21 ~lower right! to
0.93106 cm21 ~lower left!. First excited electron state showstwo
nodes alongx ~upper left!. Hole ground state~upper right! unchang-
ing and strongly confined at junction.

-
n-
2-4
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their energy by spreading along QW2. This implies a reds
in the band gap which emerges even in the absence
exchange-correlation effects~see the Hartree results in Fig.
below!.

B. Hole states

The stability of the hole state at the T junction depen
weakly on the chosen boundary conditions for the Pois
equation at largez. If we pin the chemical potential to a
assumed shallow donor level at largez, a common assump
tion, the hole state at the T junction is merely metastable,
escape, through a long, shallow barrier, to the substrat
energetically preferred. Assuming Neumann boundary c
ditions, or ‘‘flat bands’’ at largez, on the other hand, result
in a true bound state. Dynamically, the difference betwe
‘‘pinned band’’ and flat band conditions is mostly incons
quential for holes photogenerated at the junction. For
reasonable background~i.e., unintentional! donor density,
the barrier to escape of the hole is too large and the hole
remain and, presumably, recombine in the wire. Furth
more, the hole will induce an image in the electron g
which will cause further electrostatic binding to the wire r
gion. A similar effect of holes bound to a 2DEG has be
discussed recently in Ref. 22.

For holes generated in the substrate, far from the w
however, the dynamics of the diffusion of holes into the w
region can be realistically expected to depend on the b
shape as reflected in this dichotomy over boundary co
tions. Generally, fewer background donors are favorable
hole diffusion from substrate into wire.

Even for pinned band conditions the basic charge dis
bution near the wire establishes a purely electrostatic ba
to hole escape, as seen in Fig. 5. Here we plot the 2D e
trostatic potential forne50.93106 cm21. The potential con-
tour principally derives from a plane of positive charge~the
donor layer! and the line of negative charge in the wire. Th
results in an electrostatic potential hill near the junction~to
which holes are attracted!. Thus the hole has at least a lon
shallow barrier to escape even before considering the q
tum effect that further binds the hole to the junction.

FIG. 5. Contour plot of electrostatic potential forne

50.93106 cm21. Schematic illustrates field lines, which help
localize hole at junction.
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In Fig. 2 we plotted the energy of the first hole subba
Eh

0 versusne . In this case we used Neumann boundary co
ditions for Poisson’s equation at largez and the energy zero
for Eh

0 is the electrostatic potential at largez added to the
confinement energy of QW1; in other words it is the ener
required to escape to the substrate continuum. Here we
that the state is stable, and not merely metastable~i.e., the
energy is negative!. Further, the increase in the binding wit
ne ~up to ne;0.63106 cm21) arises from the strengthenin
of the electrostatic potential minimum~for holes! shown in
Fig. 5.

C. Band gap

The band gap in the heterostructure depends upon
assumed intrinsic band gap in the host materials GaAs
Al xGa12xAs, which, as noted, we have taken from th
literature.18 The band-gap variation withne is obtained from
the sum of the lowest subband energies for the electron
the hole, each measured with respect to the GaAs band
at any common point and then added to the intrinsic ba
gap. Figure 6 illustrates the variation of the band gap a
function of ne . The rapid change for smallne for the full
LDA calculation derives from the form of the exchang
correlation potential. The exchange energy alone, for co
parison, is proportional to the Fermi momentumkF5AEF.23

The overall order of magnitude and shape of the BGR
consistent with the results of calculations within theGW
approximation.9 However, since the authors of Ref. 9 a
sumed a neutral, two-component plasma, the results are
quantitatively comparable.

In Fig. 6 we also plot the BGR for the case where t
exchange-correlation potential is turned off, that is, for pu
Hartree. Here the band gap still varies, albeit much less, w
ne . The origin of the shift, alluded to in the discussion
Fig. 4, is the variation of the wave function of the electr
with ne , which gives a kinematic component to its energ
while the hole eigenstate is essentially dormant at the ju
tion. This effect is a slight generalization of the quantu
confined Stark effect, wherein the band gap is affected by
electric field, which is varied, between the electron locat

FIG. 6. Band-gap renormalization for full LDA~solid! and for
pure Hartree~dashed!, here in meV, as a function of density. Exc
ton binding energies for wire radiusa50.55aB* ~pluses! and a
50.35aB* ~crosses! and LDA band gap corrected for excitonic en
ergy as squares and triangles, respectively.
2-5
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M. STOPA PHYSICAL REVIEW B 63 195312
and that of the hole. In our case the electron additiona
shifts its location as the gate bias varies.

We postpone a discussion of the final result of Fig. 6,
behavior of the BGR when corrections for excitonic ener
and screening are included, until after the next section.

III. EXCITON

A. Motivation

In the preceding section we implicitly assumed that, alo
the direction of the wire (y), the eigenstates of holes an
electrons were plane waves. As a simple example, in
limit of a single electron and single hole, our assum
‘‘many-body’’ state is of the form

C~rh ,re!5ce~xe ,ze!e
ikeyech~xh ,zh!eikhyh, ~5!

where the subscriptse and h denote electron and hole, re
spectively. This description ignores the exciton binding
fect, which introduces a correlation between the hole po
tion and that of~at least! one electron. The product of plan
waveseikeyeeikhyh admits no such correlation along the wi
direction. Even if we continue to maintain, as we shall, t
single-hole limit, the introduction of the excitonic effect is
considerable complication.

The standard treatment of this problem is via the Bet
Salpeter equation.7 However, this so-called ladder approx
mation employs several restrictions which we desire to
beyond. Specifically, as in most many-body theories, die
tric response is treated linearly, typically within the plasmo
pole approximation. Hence the low density limit is questio
able. Additionally, the sum of ladder diagrams genera
omits contributions from crossed diagrams~Fig. 7!. Such
terms depend on the density~in our case, the density of elec
trons! and represent quantum mechanical correlations in
electron gas induced by interaction with the hole. We w
argue that such correlations, in the high density limit,
responsible for preventing the exciton state from merg
with the continuum, and indeed promote the formation
multiple electron states bound to the hole~trions and ‘‘quad-
rons’’!.

FIG. 7. ~a! Standard ladder diagrams employed in solvi
Bethe-Salpeter equations.~b! Typically nonincluded ‘‘crossed’’
diagram, dependent onne , resulting from multiple scattering of a
single electron from the hole.
19531
y

e
y

g

e
d

-
i-

e

-

o
c-
-
-

e
l
e
g
f

We are motivated by the work of Vinter24 on binding of
electrons to impurities in the presence of an electron gas
examine the exciton problem via density functional theo
We emphasize, however, that our approach does not im
an infinite mass approximation for the hole. The prima
‘‘approximation’’ of DFT is to treat the wave function as
product of one-particle states and include exchange and
relation locally, through a potential. The nature of this a
proximation is seen most clearly when we consider
single-electron, single-hole limit~assuming purely 1D for the
moment!. In this case, the standard solution is to transfo
coordinates to relative (h[xe2xh) and center of mass~X!
motion, writing C(xh ,xe)5cCM(X)cx(h). Correlation is
thereby included precisely via the relative coordinateh. By
contrast, as we discuss further below, DFT reduces in
two-particle limit simply toC(xh ,xe)5ce(xe)c

h(xh). Self-
consistency does introduce correlation betweenxh and xe ,
but it is underestimated. It is in this limit where we expe
our solution to be most inaccurate. The virtue of DFT is th
it extends beyond the two-body problem, where the sep
tion of variables and the exact solution are no longer av
able. Furthermore, as we show below, the deviation of
binding energy from the correct value is not so great
might be expected even in this limiting case. This is par
aided by the fact that the problem is one dimensional.

In addition to underestimating correlation in the tw
particle limit, the product solution, by definition, discard
center of mass motion. Furthermore, in order to actually c
culate the binding of the electron and hole in the wire, i.
the exciton interaction, the calculation must be restricted t
finite length of wire.25 Computationally this results in the
hole localizing at an essentially arbitrary point, bound to
accumulated electron cloud. However, at least in the tw
body limit, according to the exact solution the exciton bin
ing energy isindependentof center of mass motion. There
fore, by placing the hole at rest we are making
approximation to the binding energy so long as our sampl
large enough that boundary conditions do not affect the
lution, which we have checked.

In summary, assuming a direct product solution under
timates correlations; a problem that is most conspicuou
the two-body limit. Confining the system to a finite wir
however, implies no further approximation, so long asLy is
taken sufficiently large. This is physically reasonable sin
natural size cutoffs, such as localization length and inela
scattering length, are present in real systems and any t
retical result that depended on a truly infinite size of t
system would be highly suspect.

A crucial element of our calculation is the treatment of t
hole self-interaction. The exchange-correlation potential
DFT behaves much like the exchange term in Hartree-F
theory. In both cases exchange reduces the interactio
pairs of electrons but more to the point it compensates for
interaction of an electron with itself. In Hartree-Fock theo
this cancellation is exact; in DFT it is approximate, and so
uncompensated self-interaction remains, a fact that has b
well known for years. But since we have only a single ho
and since we arecalculating its correlation with the electron
gas ~the excitonic effect!, we should not include an
2-6
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exchange-correlation potential for the hole. How, then,
we to compensate for the interaction of the hole with its o
Coulomb field, even approximately?

One conceptually simple method to eliminate se
interaction from the Hartree problem for a finite fermion sy
tem would be to calculate a different electrostatic potent
and hence different Hamiltonian, for every electron. The
tential experienced by each electron would then be ca
lated from the density of all other electrons, but not itself26

In the general case~typified, say, by the calculation of th
electronic structure of an atom!, it is unclear how to execute
this, since one then has a different eigenvalue problem
each state. Obviously one cannot choose the ground
from each Hamiltonian. Does one choose thepth eigenfunc-
tion from the pth Hamiltonian? The problem is ultimatel
that the orthogonal set resulting from a single eigenva
problem is lost.

However, it is just such an approach that we employ he
This is, in our case, unambiguous because we have two
cies of particles and for one of the species~the hole! we have
only one member. Thus the hole eigenfunction is compu
from the electrostatic potential arising from all charge oth
than the hole itself. The electron ‘‘Kohn-Sham’’ states a
still calculated as usual from the total charge density, and
exchange-correlation potential is employed as usual to c
pensate~partially! for electron self-interaction.

In what follows we will begin by discussing the geomet
of the model used in this portion of the calculation. T
cylindrical wire that we utilize is chosen so that the thre
dimensional problem can be simply reduced to a quasi-o
dimensional problem. The limitations of this approximati
and its relationship to the transverse wave functions in S
II are discussed. We will then lay out the full system
equations and boundary conditions to be solved. Follow
this we discuss two instructive simplified cases of the pr
lem. Both of these are based on an effective 1D pair inte
tion ~as opposed to a solution of the full Poisson equation
3D! for which we develop a convenient approximation.
the first we treat the electron gas via the Thomas-Fermi
proximation, showing that the hole spontaneously locali
with a cloud of electrons nearby. In the second we exam
quantitatively the two-body limit of DFT and compare th
results to the exact solution employing the transformation
relative and center of mass coordinates, as discussed a
We then proceed to a presentation of the results of the
self-consistent exciton calculation and apply those results
ditively to the band-gap energy of the previous section
obtain the overall trend of the luminescence energy w
varying electron density.

B. Model geometry

In this section we employ a simplified geometry, shown
Fig. 8~a!, for a single-mode, cylindrical quantum wire alon
directiony of radiusa surrounded by a cylindrical metal ga
at radiusL whose potentialUext is used to vary the electro
density. The radial charge distribution of both electrons a
holes is assumed to be given by a single Gaussian w
function j(r )5(1/a)A2/pe2r 2/a2

. Clearly this approxima-
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tion is valid only in the limit of a very strongly confined
system. We believe that, even though our system is ind
strongly confined and the qualitative conclusions of this s
tion are independent of this approximation, the primary fa
tor that limits the numerical accuracy of our calculation
most likely this assumption.

In comparing with Sec. II we must choose a value ofa
that is consistent with the lateral spread of the electron
hole wave functions. We have calculated the radial sprea
the lowest electron and hole eigenstates~cf. Fig. 4! for the
TQW,

^r &[E dx dz Ax21z2uc0~x,z!u2, ~6!

and plotted the results, as a function ofne , in Fig. 8~b!. A
distinct shift in ^r & for the electron is seen nearne
50.63106 cm21. This occurs around the filling of the sec
ond subband. This corresponds to the lateral~along thex
direction! spreading mentioned in the discussion of Fig.
For the radiala parameter employed in this section, w
choose various values between the exhibited range for
hole and the electron~typically we compute results fora
50.35aB* , 0.45aB* , and 0.55aB* ).

Finally, we find that forLy'30aB* the eigenstates show
negligible dependence onLy . For example, the eigenvalue
shown in Fig. 12 below show small fluctuations related to
discrete density of states, but they never exceed 0.05 Ry* .

C. Equations

The system of equations that we solve is presented be
The Schro¨dinger equations for the electron and hole, resp
tively, read

FIG. 8. ~a! Schematic of cylindrical wire for model exciton ca
culation. Radial charge distribution of hole and electron taken
single Gaussian. Drawing not to scale:L*10a. ~b! Radial spread
of wave functions for lowest conduction and valence band state
T-shaped wire, as a function of total 1D density. Parameters co
spond to Fig. 2.
2-7
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S 2
1

2me

]2

]y2
1Ve f f

e ~y!1Ṽxc~y!D cp
e~y!5«p

ecp
e~y!,

S 2
1

2mh

]2

]y2
1Ve f f

h ~y!D cp
h~y!5«p

hcp
h~y!, ~7!

where the effective one-dimensional electrostatic potent
are determined from the three-dimensional electrostatic
tentials as

Ve f f
e,h~y![E d2r uj~r !u2efe,h~r ,y!. ~8!

The electrostatic potentials are determined from the full
Poisson equation, assuming azimuthal symmetry,

2¹2fe~r ,y!5
4p

k
@re~r ,y!1rh~r ,y!#,

2¹2fh~r ,y!5
4p

k
re~r ,y!. ~9!

We can also include an explicit background charge in
source terms of Eqs.~9!; however, for the results discusse
here we have changed the chemical potential and the e
tive background charge by means of the surrounding ga

The density of electrons is determined from the eig
functions and eigenvalues of Schro¨dinger’s equation,

re~r ,y!5uj~r !u2(
p51

`

f ~m2«p
e!ucp

e~y!u2, ~10!

wheref is the Fermi function andm is the chemical potential
which is usually taken as the energy zero of the proble
The hole densityr(r ,y) is calculated similarly but with only
a single eigenstate and a filling of unity.

For the electrons, the effective 1D exchange-correlat
potential is obtained from the 3D form~see Sec. II! as

Ṽxc~y!5E d2r uj~r !u2Vxc„re~r ,y!…. ~11!

Equations~7! are solved with periodic boundary cond
tions on the intervalyP@2Ly/2,Ly/2#. The 3D Poisson
equations are solved with Neumann conditions at6Ly/2 and
with Dirichlet boundary conditions on the gate atr 5L. We
note that the Dirichlet boundary conditions on the gate im
a small, subtle error. By using, for the hole, the electrost
potential computed without the hole chargerh(r ) included,
the image charge induced by the hole on the gate, with wh
the hole physically does interact, is absent. A more prec
though computationally taxing, approach would be to co
pute fh(r ,y) from all the charge but then subtra
*d3r 8rh(r 8)e/ur2r 8u, the potential of the hole in free spac

The binding energyEB of the exciton is defined as th
difference in the total energy between the case where
hole is localized, on the one hand, and the case where
single-hole charge is spread uniformly iny, a free hole, on
the other hand. The total energy must include, in addition
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the sum of occupied eigenvalues, a double-counting cor
tion as well as the energy related to the gate. Furtherm
this gate energy is modified by the work supplied to t
gate,14,27 and is hence really afree energy. The overall ex-
pression for this free energy is thus

F~Uext!5«h
11(

p
f ~m2«p

e!«e
p2

1

2E d3r

3@re~r !fe~r !1rh~r !fh~r !#1E d3rre~r !

3@«xc„re~r !!2Vxc~re~r !…#2
1

2
QUext , ~12!

whereQ is the total charge induced on the gate, determin
by computing the normal derivative of the potential at t
gate surface. Also, the third term on the right hand side
Eq. ~12! is a form of double-counting correction for th
exchange-correlation energy, where«xc(r) is the exchange-
correlation energy per particle of a homogeneous elec
gas of densityr.12

We note that one might write the total energy as sim
the sum of occupied Kohn-Sham energies~including the
hole! via Koopman’s theorem. To lowest order, where only
single bound electron and the hole energies are chan
appreciably, one could further estimate this as sim
F(Uext)5«h

11«e
1 . However these are both approximatio

and the correct formula, Eq.~12!, must be used for all bu
heuristic purposes.

D. Thomas-Fermi model

To obtain a qualitative understanding of the results of
full self-consistent calculation we present here a calculat
where the 1D electron gas is treated within the Thom
Fermi approximation and the hole eigenstate is determi
variationally. For this and the ensuing sections we do
solve the full 3D Poisson equation, but rather employ
effective 1D interaction. We further approximate this by
simple, practical form which is very convenient for calcul
tion ~for a similar model, see Ref. 28!. With the assumed
Gaussian wave functions in the transverse direction, the
fective 1D Coulomb interaction is

V~y2y8!52
e2

k E dr rdfE dr8r8df8

3
uj~r!u2uj~r8!u2

A~y2y8!21r21r8222rr8 cos~f2f8!
.

~13!

This integral can be easily performed numerically by writi
the kernel as an expansion in modified Bessel function29

The results can be empirically fitted to a function of the fo

V~y2y8!5
e2

k

A1

A~y2y8!21A2
2

, ~14!
2-8
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where we findA1 andA2 as functions of the wave functio
parametera,

A1521.0210.18a10.015a2,

A250.007410.58a20.11a2, ~15!

wherea is assumed to be given inaB* , A1 is dimensionless,
andA2 is in aB* ~thereby determining the dimensions of th
constants!. Figure 9 shows a comparison of the exact resu
from ~13! and the fitting function~14! for various values of
a. We find that Eq.~14! gives a reasonable approximation
Eq. ~13! as long asa is in the range of@0.25,2.0#aB* .

Given an effective 1D pair potential, we will solve th
problem of a single hole in a sea of electrons described
the Thomas-Fermi approximation, with the eigenstate of
hole given by a simple function with one variational para
eter, that is,

ch~y!5F 2

b2p
G 1/4

e2y2/b2
. ~16!

Note that this~1D! Gaussian ansatz for the binding of th
hole alongy can be distinguished from the Gaussian form
the 2D transverse wave function by the normalization fac

For a given fixed hole wave function, i.e., a fixedb, the
Thomas-Fermi problem consists of minimizing the followin
functional of the electron densityr(y):

E@r~r !#5E dyF\2p2

24me
r3~y!2 r̄~y!E dy8uch~y!u2

3V~y2y8!1
r̄~y!

2 E dy8r̄~y8!

3V~y2y8!2mr̄~y!G , ~17!

dE

dr~y!
50, ~18!

FIG. 9. Effective 1D potential curves versusy (y850 here!
calculated according to Eq.~13! ~solid! and the fitting function
~dashed! from Eq. ~14! using Eqs.~15! for the parametersA1 and
A2, givena ~listed on figure!. Curves are offset vertically for clarity
offsets, from bottom to top, are 0, 0.5, 1.0, and 1.5 Ry* . Inset
shows closeup near origin.
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wherer̄(y)[r(y)2r0, with r0 the background charge den
sity, and wherem, a Lagrange multiplier, is the chemica
potential. The variation Eq.~18! is trivial and leads to an
integral equation forrmin(y), the energy minimizing elec-
tron density, which is easily solved iteratively. To the resu
ing energyE@rmin(y)# we add the kinetic energy of the hol
\2/2mhb2 to obtain the Thomas-Fermi energyETF(b) ~Fig.
10!. For the finite size wire, whenb becomes very large, we
must prevent the hole density from pouring outside the ra
@2Ly/2,Ly/2# by renormalizingch(y) such that the total
hole charge in the wire remains unity.

The minimum energiesETF(b) are plotted in Fig. 10 ver-
sus b for several background charge densities, wherer0

52A2mem/p\. The energy zero in the figure isETF(`),
i.e., the energy of the hole–TF-gas system when the h
charge is spread uniformly through the wire. The poten
parameters,A1 and A2 are taken from Eq.~15! for a wire
width a50.45aB* . An exponential damping has also bee
included in the potential to simulate a screening gate, but
results are insensitive to the imposed screening length w
it is substantially greater than the wire width. Clearly t
overall energy is minimized at a finiteb for all values ofr0.
Comparison of these energies versusr0 with the exciton
binding energies from the full calculation~displayed in Fig.
6 and discussed below! shows an order of magnitude agre
ment, and a trend of weaker binding with increasedm, but
otherwise the results are poor in comparison with the
calculation. The principal message here is that a o
dimensional quantum particle in a dielectric medium can
localized by the polarization cloud which it produces.22 In
the Thomas-Fermi model, no account is given of whether
screening electrons come from the top of the Fermi sea
the form of scattering phase shifts, or the bottom of t
Fermi sea, in the form of individual bound states. Clarific
tion of this point in particular is one of the key points of th
current study.

FIG. 10. Energy of hole in 1D Thomas-Fermi electron gas,
cluding hole kinetic energy, as a function of hole wave functi
radiusb for various electron densities~listed in 106 cm21). Wire
width a50.45aB* . Energy measured relative to state withb5`,
i.e., with hole charge spread out uniformly. Inset shows ene
minimum, i.e., binding energy, versusne . Variation of only
0.5 Ry* '3 meV is small compared to full quantum mechanic
calculation~cf. Fig. 6!.
2-9
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E. Two-body problem

In the limit of a single hole and single electron in a
otherwise empty wire, if we employ again the effective 1
pair potential of the preceding section, the set of Eqs.~6!–
~10! reduces to

S 2
1

2me

]2

]ye
2

1E dyhV~ye2yh!uch~yh!u2D ce~ye!

5Eec
e~ye!,

S 2
1

2mh

]2

]yh
2

1E dyeV~yh2ye!uce~ye!u2D ch~yh!

5Ehch~yh!, ~19!

where now there is no exchange-correlation potential
electrons. The total energy of the system, which in this
proximation we callE2, is given by

E2[Ee1Eh2
1

2E dy@re~y!fe~y!1rh~y!fh~y!#,

~20!

where here, of course,

re~y![uce~y!u2,

rh~y![uch~y!u2, ~21!

and

fe~y![E dyhV~y2yh!uch~yh!u2,

fh~y![E dyeV~yh2y!uce~ye!u2. ~22!

Please note that this result is the two-body limit of Eq
~6!–~10! but that it also follows directly from the two-bod
Schrödinger equation with no other assumption than that
two-body wave function can be written as a product sta
ce(ye)c

h(yh). Still, as noted above, in this two-body lim
the product wave function constitutes a radical approxim
tion in that each particle is assumed to be moving indep
dently in the average field produced by the other.

The exact solution of the two-body problem is given
the separation of the two-particle Schro¨dinger equation into
relative and center of mass coordinates1 which, for our 1D
problem, is written

F2
1

2m

]2

]h2
1V~h!Gcx~h!5S Ex2

\K2

2M Dcx~h!, ~23!

whereK is the momentum of the center of mass, with to
massM5me1mh , h is the relative electron-hole coord
nate, and herem is the reduced mass. A comparison of t
total energy obtained from the self-consistent solution of
set of equations~19! and theK50 binding energyEx ob-
tained from the solution of Eq.~23! shows a deviation on the
order of 25%, decreasing as the transverse extent of the w
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function increases~Fig. 11!. This is not so bad insofar as th
raison d’être of density functional theory is not the solutio
of two-body problems. Mathematically, the fact that DFT
not a complete failure in this regime is reasonable in that
correct wave function, written in terms ofh andX, could in
principle be expanded in aseriesof products of functions of
ye and yh . We are then retaining only the leading term
such a series, but we are calculating it self-consisten
Note, however, that in dimensions higher than one the ac
racy of such a procedure is bound to decrease simply bec
the number of independent variables in which one must
pand the wave function increases from two to four to six

F. Results

We proceed now to exhibit the results of the full se
consistent calculation based on the solution of Eqs.~6!–~10!.

In Fig. 12 we showEB @see the definition in discussio
prior to Eq. ~12!# computed as a function ofUext for a
50.35aB* ,0.45aB* , and 0.55aB* . Also plotted is the conduc-
tion band densityne , which is here defined as the total num
ber of conduction band electrons in the wire for the localiz
hole case, minus unity~the bound electron!, divided by the
wire lengthLy . When the gate voltage becomes negative,
electrons become depleted from the wire and, belowUext5
21.0 Ry* , the conduction electrons for the delocalized ho
case shift from the wire to the gate. This explains the jump
EB below depletion. The minimum ofEB occurs at the low-
est density before this shift occurs, corresponding to a sin
electron in the wire. Clearly the minimum depends som
what sensitively on the choice ofa, and the binding can
become quite strong for very narrow wires, as is w
known.30 Our empirical form of the effective 1D potentia
Eq. ~14!, gives a good, intuitive understanding of this in th
the parameterA2 decreases with decreasing wire width~cf.
also Fig. 11 for smalla). Note that the small fluctuation
visible in the energies result from the finite sizeLy and the
discreteness of the ‘‘free’’ states.

Of considerable interest is the absence of a binding
unbinding transition for the exciton. Even when we exte

FIG. 11. Binding energy for two-body problem using corre
separation of variables with correlation,Ex , and simple product
ansatz from limiting case of DFT,E2, as a function ofa, radial
wave function spread. Fractional difference in the range of
225 %.
2-10
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the density range to.2aB*
21 ~i.e., .23106 cm21) and

even for the widest charge distributiona50.55aB* , the
ground state remains bound~not shown!. In fact, as shown in
Fig. 13 ~see also Fig. 14!, a second electronic state becom
localized about the hole aboveUext'1.25 Ry* , correspond-
ing to ne'0.2aB*

21 , thus forming a so-called trion.31 Here
we have plotted the~Kohn-Sham! level energies for the lo-
calized hole case, measured relative to the band edge
from the hole, so that an energy above zero indicates
asymptotically free particle. We find that for even high
densities,.0.8aB*

21 , a third electron can become bound
the hole; a state which we refer to naturally as a ‘‘quadron

It is important to note that the formation of such a
electron-trion bound state would be impossible in vacuu
since it represents the binding of two negative charges. H
ever, in our wire system charge neutrality is enforced by
metallic, constant potential of the surrounding cylinder. F
thermore, this background charge is treated as fully class

FIG. 12. Binding energy of exciton vs gate potential fora
50.35aB* ~triangles!, 0.45aB* ~hexagons!, and 0.55aB* ~boxes!. Line
gives correspondingne ~see text for exact definition!. Rise of en-
ergy belowne50 caused by shift of electronic charge to gate
delocalized hole case.

FIG. 13. Lower panel: discrete Kohn-Sham energy levels
electron~solid! and hole~dashed! vs gate voltage,a50.35aB* . To
lowest order exciton binding energy isEB'«e

11«h
1 ; hence binding

weakens with increasedUext ~andne). Hole localizes two electrons
aboveUext'1 Ry* . Upper panel: magnification nearE50 show-
ing that second electron binds to hole to form trion atUext

'1.25 Ry* .
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— there is no Fermi wavelength in the metal to cut o
screening at short distances. Electrons are added to the
by increasing the positive potential on this gate, i.e., by a
ing positive charge. Since the orthogonality of the electro
to the bound electron reduces the probability density of s
cessive states near the origin~see next paragraph and Fig
14! and since the background charge is under no such c
straint, there is anet increase of positive charge in the vicin
ity of the origin as density is increased. Of course, the po
tive charge resides on the external cylinder away from
1DEG, so its effect is relatively weak. But eventually it
strong enough to bind an additional electron.

The most intriguing feature of the results in Fig. 13
that, while the hole becomes more weakly bound, and c
sequently more spatially extended, the electrons, particul
the lowest state, become more strongly bound with incre
ing Uext ~and consequently increasingne). A similar result
for electron binding to an ionized impurity in a 2DEG silico
inversion layer was found by Vinter.24 This feature, which is
related to the quadron binding just discussed, is rather co
terintuitive, since one expects screening, by free electrons
the interaction between hole and bound electron to wea
the attraction and separate the particles. Partially this resu
understood as relating to the direct product nature of
exciton state when expressed in DFT, as opposed to
single composite state of the two-body or screened two-b
problem. Thus the binding energy is not a single eigenva
or even the sum of two eigenvalues, but rather it must
understood as a difference between two interacting gro
states. In other words, as is well known, care must be u
when interpreting the meaning of the Kohn-Sham eigenv
ues and eigenfunctions. Nonetheless, the decreased en
and increased localization of the lowest Kohn-Sham le
seem puzzling. In Fig. 14 we show, for a relatively hig
densityne50.6aB*

21 , the set of all occupied eigenfunction
~moduli squared!. At this ne the lowest two-electron state
are localized near the hole aty50. Note, however, that due
to the restraint of orthogonality the densities of all oth
states in the vicinity of the hole aresuppressed. Thus, while

r

FIG. 14. Occupied electronic wave functions~moduli squared!,
states 1 through 19,a50.35aB* , ne50.63106 cm21. Two states
are localized near hole~at y50). Orthogonality of remaining state
to bound states suppresses screening charge density near hol
2-11
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the total conduction band density, exhibited in Fig. 15, pe
at y50, this density minus that of the lowest state dim
ishes at the hole. Combined with the uniformly increas
background positive charge on the gate, this comprise
buildup of positive charge near the hole asUext andne are
increased. Therefore an increased density of electrons
duces an effectively antiscreening effect, which initia
drives the electron closer to the hole and then admits a
ond and even a third bound electron. The hole eigens
meanwhile, is growing increasingly delocalized and t
faster rise of its energy accounts for the increase of the o
all energy~i.e., a decrease of the negative binding energ!.

G. Combined results

Finally, in combining the results from Secs. II and III, w
simply add the excitonic binding energy to the band g
calculated in the LDA for the translationally invariant wir
The results for this are shown in Fig. 6. Clearly t
exchange-correlation and kinematic effects causing the B
produce a redshift which is partially negated by the shift
the exciton binding energy due to screening. This is con
tent with the notable insensitivity of the photoluminescen
line position in optical experiments on quantum wires to
ther a photoexcited electron-hole plasma4,5 or a gate-
generated 1DEG.13

The dimensional dependence of BGR is a subject of c
siderable interest.5 Within the ‘‘free virtual state’’ approxi-
mation to the Bethe-Salpeter equation,32 renormalization is
seen to stem from the screening of the exciton in comb
tion with a phase-space filling effect. The relative importan
of these effects in different dimensions has been discus
by Nojima.33 Within the DFT context it is clear that, as note
above, the exciton binding energy can become very grea
very narrow wires. We could argue then that the persiste
of a redshift in 2D is at least in part due to the weaker b
exciton binding energy. It is not the case that the screenin
2D is less strong—it is stronger. It is merely that the range
the exciton energy from bare to fully screened~i.e., freee-h
pair! is smaller in 2D. Hence the compensation for t
exchange-correlation renormalization of the bands via e
ton screening is weaker in 2D.

FIG. 15. Total electron density~solid!, total density minus
bound state~dashed!, effective electrostatic potentialVe f f

h (y) ~dot-
ted!, density of hole ~dot-dashed!, and density of gate charg
~double-dot-dashed! versusy; same parameters as in Fig. 14.
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Interestingly, the approximate cancellation of exchan
correlation renormalization and exciton screening in 1D
termined from our calculations is also consistent with rec
calculations of the dynamically screened Bethe-Salpe
equation by Das Sarma and Wang8 for wires with a two-
component plasma, although the interpretation differs so
what from that discussed here. While the tendency tow
cancellation of BGR and excitonic screening is concluded
both studies, the most striking difference between the res
of Ref. 8 and those here concerns the unbinding of the e
ton, which, in an electron-hole plasma, is called the M
transition. The authors of Ref. 8 estimate a merging of
exciton energy with the electron-hole band edge at aro
n;33105 cm21, wheren is here of course the density o
electronsand holes. Even in the simple one-electron sta
screening approximation they find a vanishing of the exci
binding energy with density. By contrast, we find that up
the highest density considered (33106 cm21) the exciton
remains bound. Assuming that both conclusions are corr
the implication is that it is the interactionbetweenexcitons
that leads to their unbinding or, equivalently, their mergi
with the continuum.

In any case, the absence of a Mott transition, even for
single-component plasma that we study here, is of signific
interest to both experimentalists and theorists. Our high
density (33106 cm22) corresponds to slightly fewer tha
four electrons within the Bohr radius of the exciton
(;1.2aB* ) and yet even at that density a bound exciton st
still exists. What, then, would a Mott transition look lik
microscopically? The positively charged hole must, at a
density, be surrounded by a cloud of negative charge, sim
due to charge neutrality. Generally screening is thought o
the creation of electron-hole pairs at the Fermi surface,
one could imagine that at sufficiently high density the ne
tralizing electron cloud would shift from the bound state
the bottom of the Fermi sea to a cloud of ‘‘Friedel’’ electro
nearEF . However, since density functional theory is an e
fective single-particle theory and since an arbitrarily sm
attractive potential in one dimension binds an electron,
screening of the hole by the Fermi surface electrons wo
have to be essentially perfect in order to cancel the bo
state. Whether this is an artifact of DFT which results, u
mately, from the local density approximation for exchan
and correlation or whether it is a realistic physical manife
tation of the anomalous behavior of 1D systems is not
tirely clear. The experimental picture seems to show t
exciton binding in 1D is far more robust than theories oth
than this one have predicted, lending some support to
physics behind our method. Thus the questions become h
if at all, does this picture break down and what is the act
criterion for the Mott transition in 1D? A theoretical ap
proach to this would have to focus on the bistable point
which the neutralizing charge resides, with equal probabil
on the bottom or the top of the Fermi sea.

IV. CONCLUSION

In conclusion, we have presented results of density fu
tional calculations for the electronic structure of modulati
2-12
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doped and gated T-shaped quantum wires for the case w
the wire can be assumed to be translationally invariant.
have shown that the phenomenon of band-gap renorma
tion can be qualitatively and quantitatively understood with
DFT. We have further employed a simplified model of
cylindrical quantum wire to examine the strength of t
bound exciton state in the presence of a one-dimensio
electron gas. We have normalized out the band struc
problem here by defining the exciton binding energy as
difference between the total energy of the wire with a loc
ized hole and that with the hole charge~and consequently al
electrons! spread uniformly along the wire. We find that th
variation of the exciton binding energy with density tends
cancel the band-gap renormalization, in agreement with
cent experiments. Finally, we noted that, in this on
component plasma case, to the highest densities we h
considered, no analog of the Mott transition, i.e., no unbin
195312
re
e
a-

al
e
e

-

ve
-

ing of the electron and hole, occurs. This is therefore, to
knowledge, the first theoretical study that substantiates
well-known experimental findings on this issue.5 Rather than
unbinding, the orthogonality of the free electron states w
those of the bound electron~s! leads to an antiscreening be
havior such that asne increases a second~trion! and even a
third ~quadron! bound state forms at the hole.

In the future we hope to investigate the effect of dime
sionality on the exciton physics by extending the calculat
to include multiple 1D subbands.
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Röpke, Phys. Status Solidi B90, 175 ~1978!.

7H. Haug and S. Schmitt-Rink, Prog. Quantum Electron.9, 3
~1984!.

8S. Das Sarma and D. W. Wang, cond-mat/9905038~unpub-
lished!.

9E. H. Hwang and S. Das Sarma, Phys. Rev. B58, R1738~1998!.
10See, for example, W. L. Bloss, J. Appl. Phys.65, 4789~1989!.
11C. Guillemot, Phys. Rev. B31, 1428~1985!.
12See, for example, Peter Fulde,Electron Correlations in Mol-

ecules and Solids~Springer-Verlag, Berlin, 1995!, and refer-
ences therein.

13The detailed growth pattern of the device that we model, a
photoluminescence experiments in the presence of a g
induced 1DEG, will be described in a companion publication:
Sedlmaier, M. Stopa, G. Schedelbeck, W. Wegscheider, and
Abstreiter~unpublished!.

14For a discussion of our numerical techniques see M. Stopa, P
Rev. B54, 13 767~1996!.

15S. Das Sarma, R. Jalabert, and S. R. Eric Yang, Phys. Rev. B39,
5516 ~1989!; 41, 8288~1990!.

16S. Schmitt-Rink, D. Chemla, and D. A. B. Miller, Adv. Phys.38,
89 ~1989!; R. Cingolani and K. Ploog,ibid. 40, 535 ~1991!.

17D. M. Ceperley and B. J. Alder, Phys. Rev. Lett.45, 566 ~1980!.
18We employ the standard treatment of the band gap, taking
eck,

.

J.
ett.

.

nd
ate-
S.
G.

hys.

in

particularEg5151211455h ~meV! andVC5QeEg , where the
band-gap offset parameter is taken asQe50.6. See M. Zachau
F. Koch, G. Weimann, and W. Schlapp, Phys. Rev. B33, 8564
~1986!.

19M. Stopa, Phys. Rev. B53, 9595~1996!.
20U. Ekenberg and M. Alterelli, Phys. Rev. B35, 7585~1987!.
21G. Goldoni, F. Rossi, E. Molinari, and A. Fasolino, Phys. Rev

55, 7110~1997!.
22A. Paassen, A. Zrenner, A. Efros, M. Stopa, J. Frankenberger

Bichler, and W. Wegscheider, Phys. Rev. Lett.83, 3033~1999!.
23G. Mahan,Many-Particle Physics~Plenum, New York, 1986!.
24B. Vinter, Phys. Rev. B26, 6808~1982!.
25An alternative approach, taken, in the 2D case, by G. E. W. Ba

and T. Ando, Phys. Rev. B31, 8321 ~1985!, is to retain full
translational invariance and include correlation of hole and e
trons via a local approximation derived from the homogene
3D electron gas. The problem reduces thereby to one dimens
The authors justify this approach by arguing that the scree
Coulomb interaction is short range and therefore momentum
dependent. Consequently vertex corrections turn out to be
ligible. Whatever the virtues of this approach may be in
2DEG, screening is certainly appreciably worse in 1D and i
very difficult to see the justification for abandoning the excit
effect altogether.

26J. M. Ziman,Elements of Advanced Quantum Theory, 4th ed.,
~Cambridge University Press, Cambridge, 1988!, Sec. 5.3.

27M. Stopa, Y. Aoyagi, and T. Sugano, Phys. Rev. B51, 5494
~1995!.

28S. Nojima, Phys. Rev. B50, 2306~1994!.
29J. D. Jackson,Classical Electrodynamics~Wiley, New York,

1975!.
30G. D. Sanders and Y.-C. Chang, Phys. Rev. B45, 9202~1992!.
31R. Schilling and D. C. Mattis, Phys. Rev. Lett.49, 808 ~1982!.
32R. Zimmerman, Phys. Status Solidi B146, 371 ~1988!.
33S. Nojima, Phys. Rev. B51, 11 124~1995!.
-13


