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Electronic structure of vertically stacked self-assembled quantum disks
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The electronic structure of vertically stacked self-assembled quantum disks is studied within the effective
mass approximation. The energy spectrum is calculated in the adiabatic approximation and using an exact
diagonalization technique. The influence of the strain, dot separation, and the magnetic field on the formation
of coupled quantum dot levels is discussed.
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[. INTRODUCTION material. Both QD’s have the same heighft(typically 1-2
nm) and the radiiR; andR, (typically 8—12 nm. The dis-

The development of the “indium-flush” technique by tance between the two wetting layei3, results in a QD
Wasilewski and co-worketsallowed for the fabrication of tunneling barrier of thicknes® —H. The difference in the
high-quality vertically stacked quantum disks. The vertically conduction band offsets for the QD and surrounding material
aligned structures are of interest in fabricating quantum dogjives the confining potentiaf,.
laser$® and light storage devicésand for their possible The material parameters of QD’s and WL'’s enter through
application in quantum computit. The quantum comput- the effective RydbergR =m.e*/2¢’42 and the effective
ing applications are related to the isospin of an elecfiom,  Bohr radius,ag= ef12/m.e2, m, and e being the effective
the analogy between the quantum dot index and two differenfhass of an electron and the dielectric constant, respectively.
spin orientations. Recent experiments by Fafatdl® on  Throughout this workR and ag will be used as units of
mesas and by Bayet al® on a single stack show clearly the energy and length, respectively.
quantization of the lateral motion in each dot and the quan- |n cylindrical coordinates the effective mass Hamiltonian
tum mechanical coupling in the vertical direction, resultingof our system may be written as
in the formation of “molecular” quantum dot levels.

The formation of molecular orbitals in coupled quantum
dots has been investigated experimentdily# and a)
theoretically”*®>1In relevant calculations, Fonseeaal!’
modeled stacked pyramids using an effective mass approxi-
mation, including strain and piezoelectric potential as local
modifications of the conduction band offset. Piyastudied

an infinite chain of coupled pyramids using the eight-band
Luttinger-Kohn Hamiltonian, incorporating strain via the
Bir-Pikus formalism. Both methods involved a discretization
of the one-band or multiband Hamiltonian and a numerical
diagonalization of the corresponding very large but sparse
Hamiltonian matrix.

We present here a simple method of calculation of elec- b) ot i
tronic levels of coupled vertically stacked quantum disks car- disk  disk
ried out in the effective mass and adiabatic approximattbns.
It leads to analytical formulas and a qualitative understand-
ing of the single-particle spectrum and its dependence on
structure parameters. The calculation of electronic levels is
augmented by the calculation of strain, responsible for modi- B I

fications of the height of the barriét!°-?'and the calcula- 2

tion of the effect of the magnetic field perpendicular to the Eo?
growth direction, which modifies the vertical coupling of h
guantum dot levels. Results of the adiabatic approximation \E 2
are tested against exact diagonalization techniques and 3 Eo’ Eo' °

shown to be a reliable tool. ° R
R1R2 r

Il. THE MODEL
FIG. 1. (a) Schematic picture of the InAs/GaAs double self-

Figure Xa) shows the two vertically stacked disk-shapedassembled quantum dots modeled as disks of mgliand R,
InAs quantum dot$QD’s). Each dot is formed on a wetting heightsH, and wetting layer separatidb; (b) illustration of system
layer (WL) of thicknessW, and covered by the GaAs barrier potentials in the adiabatic calculation of electronic stése® text
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- 1/ 9 9 & 92 excited, antisymmetric stat€2) For R;<r <R, we have one
H=— o\ oot gz — 52t V(na), (1) narrow quantum well of widttw (WL) and one wide quan-

tum well of widthW+H (the top QD, separated by a barrier

where the potential/=—V, inside the WL and QD’s and of thicknessD. Here, both eigenstate, and E; will be
V=0 in the barrier. mixtures of symmetric and antisymmetric states, and will be

Let us first carry out a simple qualitative analysis. Welarger than their counterparts in the first regi¢d). Finally,
separate the motion in the growth and radial directions. Fofor r>R, we have two identical quantum well3VL’s),
the former we deal with two coupled quantum wells. Let usseparated by a barrier of thicknd3sThe ground, symmetric
denote byE, the ground state energy, and Iby(z) and stateE, is always confined and lying at a higher energy than
f,(z) the corresponding orbitals of each isolated well. Forthe one in the second region, b} for small D may be
identical disks the wave functions in tizedirection can be already above the barrier; in this case we take=V,. All
written in the form of symmetric and antisymmetric linear elements of this approach are schematically shown in Fig.
combinations of the single quantum well orbital;(z) 1(b).
=[f1(2)+1,(2)1/V2, f.(2)=[f1(2)—f2(2)]/2, and the To find the allowed energies,(r) we employ the trans-
corresponding eigenenergies &g,.=E,+A/2, whereA is  fer matrix formalismt® For a given energf we define the
the splitting between these levels. The motion in the plane ofertical wave functiong;(z) in five different vertical re-
the disk is quantized, with wave functions corresponding tagions: (i) barrier below the structurez<z;, x;=+—E,
Bessel functions. For infinite barriers the lateral spectruny’(z) = A,exy ky(z—2z,)]+ B, exd — x1(z—2z)]; (ii) first quan-
can be written in terms of zeros of Bessel functiaf:  tym well, 2,<7<7,, k,=Wo+E, g’(2)=A,exp(—ik,2)
E(m,n)=(ap/R)? whereR is the radius of the disks)is B, exp(k,2); (iii) barrier between disks,z,<z<z,
the radial quantum number, andis the angular momentum. k3= —E, 0!(2) = Az exp(— ks2) + Bsexp(ks2); (iv)
The electronic spectrum of the system will f[hen be composedgcong quantum wellzz<z<z,, ks=Vo+E, 9'(2)
of two ladders of states: the symmetric ongg—A/2 =A, exp(—iks2)+B,exp(k,2); (v) barrier above the struc-

+E(0,1), Eg—A/2+E(L,1),.. ., labeled as if,n,+), and t - I —— V()= A _
the antisymmetric one, Eo+A/2+E(0,1), Eo+A/2 rrBe,quz_Kzzz,_ )f‘r’ + (D =Asextns(z-2)]
+E(1,1),..., labeled as ifi,n,—). When A exceeds the > 512~ Z) -

The wave functiorg; (z) must be continuous and smooth
at each interface. These conditions allow to write the coeffi-
cientsA.,B, in terms ofAg,Bs:

guantization of radial motion a crossing of states with differ-
ent angular momenta and different subbands occurs.

IIl. ADIABATIC APPROXIMATION A,=Ty(E)As+T1AE)Bs,

Since the height of both QD’s is much smaller than their
radii, the electron motion in the growth direction is strongly B1=Ta(E)As+T2(E)Bs,
confined. Therefore the wavefunction of an electron may b
written asy(r,0,z) = (1/\27)e™’g!(z)f.(r), whereg!(z)
is a slowly varying function of. Qualitatively, we then deal -1 -1 -1
with distir):ct stt)gandsL(z 01,...) relatedyto the vertical T=b k2 Ulke, 20) U (ke 22)Vine 2V s, 25)
motion. X U(Ky,23)U Y(ky,24)R(Ks5,24)

For each angular momentum channednd each subband .
index v the functionsg,;(z) andf, (r) satisfy the following
set of equations:

Svith the transfer matrix defined as

By virtue of the fact thatc;= k5 andk,=k, and settingz;

=0, the matriced.,U,V,R are defined as
2

1% . .
— 52 TV(2)|9/(2)=Eng/(2), (2) ] ek ek ]
Kk —k| —ike 2 jke'kz]’
1 Jd d 5 Y ,
Tty m +E () [f(r)=Efn(r). (3 e K2 ex? 1 1
= _ ; R= . (4)
— ke 7 ke —-K K

The following considerations will be confined to two sub-
bands,»=0,1. In each case we first find the enefgy(r) |t is convenient to carry out multiplication of matricay
corresponding to the ground € 0) or first excited §=1)  —yy-! and B=VV ! for each well and each barrier to

states for the vertical motion in the potent¥(r,z). The  arrive at more modular and expandable expression:
energyE,(r) is then treated as an effective potential for the

radial motion[cf. Fig. 1(b)]. cogkh)  —sin(kh)/k

As for the vertical motion, we distinguish three regions in W(k,h)= ksinkh)  cogkh) | (5
our system, as shown in Fig(k). (1) For r<R; we have
two identical quantum wells of widtkV+H, separated by a .
barrier of thicknes® —H. In this regionE, is the energy of B(x.d)= costikd)  —sinf(xd)/x ®)
the ground, symmetric state, aid the energy of the first ' — k sinh(kd) coshird) |’
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whered is the barrier thickness ardis the well width. The
transfer matrix can now be written &=L"'W,B;W,R
=L"'AR, whereA=W,B,W, is the matrix describing our
structure. Note that this procedure can be easily adjusted

describe stacks of more than two disks by inserting the ap-

propriate number of matriced/ and B into A. We find the
allowed energies for the vertical motion by imposing bound
ary conditions, i.e.B;=0 andB5;=0. SinceB;=T,(E)As
+T,5(E)Bs, if Bs=0, we must havd,,(E)=0. Hence, by
finding zeros of the transfer matrix elemehy;(E) we find
allowed values of energies,(r) for each radial region of
the system.

We may now solve for the radial motidikq. (3)] in the
effective potentialg,(r). This potential is constant in each
radial region, with discontinuitiegsteps for r=R; andr
=R, [cf. right hand side of Fig. (b)]. This permits us to use

again the transfer matrix method. Let us denote the energy

we are looking for byE. By virtue of the cylindrical symme-
try of the system we will build the radial wave function
fr(r) in terms of Bessel funcions.

For each zero-dimensionéD) subbandy the innermost
region 1[E,(r<R;)] corresponds to a propagating solution;
therefore we sek;= VE— Ei and form a propagating wave
function f2=AXJ(kr) +BLY(kir). In the intermediate
region 2[E (R;<r<R,)], both “decaying” (E<E,) and
“propagating” (E>E,) states are possible. For the former,
we define k,=\E2—E and take f’=A2K. (k)

+ Bfnlm(Kzr), whereas for the latter we defind,
= JE—EZ2 and takef,= A2J(Kor) +B2Y(kor). The out-
ermost region 3JE (r>R,)] will be a quantum barrier, so
kg=ES—E andf’=A3K(kar) + B3| n(xar).

At each boundary we match the wave function and its

derivative to derive the transfer matrix This matrix can be
now written asT=C~}(R;)S(R;)S™}(R,)D(R,), where the

matrix C corresponds to the interior region 1, the matrix
SS'! carries the solution through the region 2, and the ma
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FIG. 2. Electronic states of the system vs QD layer distdhce
for disk radiiR;=8 nm,R,=8.5 nm, disk heighH=2 nm, barrier
height V=1 eV, and the effective mags,=0.023n, (ignoring
strain from adiabatic approximation(solid lines, symmetric;
dashed lines, antisymmetyicStates are labeled by their angular
momentum, radial quantum number, and isospin. Symmetric and
antisymmetric levels of the double wetting layer system are also
shown.

the wetting layer distanc® for disk radiiR;=8 nm and
R,=8.5 nm, disk heightH=2 nm, Vy=1 eV, and m,
=0.023ny. The confining potential corresponds to the band
offset between unstrained InAs and GaAs and the mass is
that of unstrained InAgall material constants taken from
Ref. 20.

trix D propagates it outwards in the region 3. These matrices FOrD>6 nm there are three confined shedisp andd, in

are given by
C(R )_[ Jm(klRl) Ym(klRl)
Y kedl(kiRy) ke Y(kRy) |’
D(R,)= Km(x3Ry) I'm(x3R2)
2 kaKn(kaR2) k3l y(KkaRp) |

The matrixS has to be defined separately for the decayin
and propagating solution:

e[ KR (R
TRI=| (oK L(koR) ol oR) |
o [ IR YlkR)

STRIZ 0 (oR) oY (R)

The zeros of the transfer matrix elemélny; are the eigen-
values of the system.
Figure 2 shows the dependence of the electronic states

each dot. Thel shell is split into two degenerate states with
angular momentunm= =2 and one state with angular mo-
mentumm=0. When the disks are far apafd & 14 nm),
for each angular momentum the “symmetri¢Solid lineg
and “antisymmetric” (dashed lineslevels are close to each
other, and almost degenerate for #&hell. Since the radii of
our disks are slightly different, the labels denoting the sym-
metry of states are only approximate. The lack of symmetry
is responsible for the small splitting, of order of-B meV,

%f the states belonging to the same shell, observed for large
D: the higher-energy state contains a greater contribution
from the smaller disk, and the lower-energy state from the
larger disk. This splitting increases with energy, because the
higher the energy the lower the tunneling barrier and the
bigger the overlap of wave functions due to their shallower
confinement. As the QD’s are brought closer together, the
splitting between “symmetric” and “antisymmetric” states
grows, reaching about 230 meV f@=4 nm. The most
interesting property of this spectrum is the crossing of levels
with different symmetry and different angular moment@im
dhe regionD=4-5.5 nm).
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FIG. 3. Vertical cross section of the strain spatial variation through the center of the dgks&rheight 2 nm, disk radii 8 nm and 8.5
nm): () ey, (b) &4, (€) £,,, and the hydrostatic straid) ¢, . In (a), (c), and(d), compressed areas are white, and expanded areas are dark.
Periodic boundary conditions are assumed.

IV. STRAIN, BAND OFFSET, AND EFFECTIVE MASS node. In Fig. 3 we present spatial variation of strain tensor
A more realistic calculation should account for strain, S/€MeNtSexx [Fig. 3@)], ex, [Fig. 3b)], &,, [Fig. 3(¢)] and

since it modifiesV, and the electron effective mass. To take (N€ hydrostatic strai, =&+ eyy+ e, [Fig. Id)], calcu-

it into account, we use the continuous elasticity theory, dislted for disk radii R,=8 nm, R,=8.5nm, heightH

cretizing our system on a cubic griéi!®?! This procedure =2 NM, and QD layer distancB =4 nm. Both disks are

[Fig. 3@], but expanded along the symmetry afBig.

3(c)]. The hydrostatic compression is strong within disks and
almost absent in the barrier arfiig. 3(d)].
The strain tensor elements are subsequently input into the
strain-dependent eight-barkd p Hamiltonian??> The result-
x(8§y+8§2+852)_ alexteytesn], (7)  ing local band edge energies for the gonductlon and vale_nce
) - ) bands are shown in Fig. 4. Changes in the band edge align-
whereC,, C,, andC; are material-specific elastic constants, ment, hoth for the conduction and the valence band, are con-
@ is introduced to enforce the lattice mismatab#0 only  .qnirated mainly in QD's, since they depend mainly on the

E=f dPr[Cy(r)(sktegy+es,)+Colr)

X (&xxEyyt ExxE271 EyyE27) T C3(I)

in InAs), ande;; are the strain tensor matrix elements, hydrostatic strain. In the conduction band the well depth is
1/ au(r)  aui(r) reduced to abouv{’=600 meV, whereas in the valence
8ij(r)=§( . (?JT) band the heavy- and light-hole confinement increases. In
] 1

contrast, the spin-orbit-split band alignment is reversed. The
and minimizing this energy numerically with respect to dis-splitting of light and heavy holes is as large as 200 meV and
placements of grid nodes(r). As a result, we obtain the so it is reasonable to treat the top of the valence band in the
strain tensor matrix elements; calculated locally for each “single band” approximation.
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FIG. 4. Band edge alignment along the symmetry axis of the FIG. 6. Dependence of the electronic energy spectrum of the
system(dotted lines, unstrained, solid lines, with sthain double-dot system on its lateral dimensidingight of both disks
H=2 nm, QD layer distanc® =5 nm). The ratioR,/R; is kept

) ) ) ) ] constant. Dashed line indicates the spectrum shown in Fig. 5.
Our estimate ofV{® is consistent with calculations of
P.ryor,16 who calculates the. energy spectrum of a (:1uantun}mgu|ar dot with the same basis area are simitare to
wire formed by InAs pyramidal quantum dots of rectangulariocajization of the ground state wave function in the center
basis(about 119 nm; height about 4 nmusing the Lanc- \ye compared our electronic spectra with Pryor's, using the
zos diagonalization of a discretized Luttinger-Kohn Hamil- gjecironic effective mass as a fitting parameter. For ghe
tonian. Since ground state energies for a circular and a recyq( we find a good agreement with,=0.053n,, i.e., an

effective mass between that of InAs and GaAs, as expected.

B s e S The results of fitting to Pryor’s calculations are shown in the
ol 230 L%.’ inset to Fig. 5. Pryor’s calculations suggest an effective mass
I 5 2wl ] in the InAs strained dot of order ah,=0.04m,, while the
5_250 [ —— %+ 7] far-infaraed (FIR) absorption measurements indicate much
o I A higher mass of 0.08,.1* Our calculations suggest the use of

% oD e distanees D (A effective masan,=0.053n, but it should be treated as an
ayer distance D (A) . . . .

effective parameter to be obtained by comparison with ex-
periment, e.g., cyclotron resonanée.

Figure 5 shows the electronic levels fofy=600 meV
accounting for strain, and witim,=0.053n,. The depen-
dence of the energy levels on layer distance is unchanged but
200 the symmetric-antisymmetric splitting and the crossings of

andp levels occurs at a different layer separaton
250 | C V. COMPARISON WITH THE RECURSIVE GREEN'S

-100 |-

-150 |-

E (meV)

FUNCTION TECHNIQUE

e The adiabatic approximation separates the motion in the

5 35 50 5 75 50 90 100 730750150 140 150 growth direc_tion z_;md the m_otion in the Iater_al dire_ction rely-
QD layer distance D (&) ing on the disparity of vertical and lateral dimensions of the
¥ quantum dot, and on an assumption that the wave function

FIG. 5. Electronic levels of the double-dot system fgy  describing the vertical motiorg,(z), changes slowly along
=600 meV andm,=0.053n, from adiabatic approximatiofsolid the disk radius. It may be argued that the latter condition is
lines) and exact diagonalizatidiparg. The inset shows the result of not fulfilled for r=R; andr=R,, whereg,(z) undergoes a
a fitting procedure of electronic levels of our systésulid lineg to  jump, thereby distorting the value of kinetic energy.

Pryor’s (Ref. 16, crosses We test here the quality of our approach by comparing the
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- T shown in Fig. 5(barg. We see that for the shell the differ-
ence between the results of the adiabatic and RGF techniques
is of order of only a few meV, so the adiabatic approxima-
tion appears to work well for the double quantum dot prob-
lem. Due to its discrete nature the RGF method does not
capture the influence of the finest structure of the system
(i.e., wetting layerswhen the tunneling barrier is too large,
which results in the systematic shift of the RGF values with
the increase of the barier thickness. This shift is not due to

-50

> the discontinuities in the,(z) function, since for large in-
£ terdisk distances the overall wave function hardly changes
w2001 with the increase oD, and the resulting distortion in kinetic
s energy should converge to a constant value. In order to test
ks that, in our model we artificially eliminated the influence of
-250 - the wetting layers, setting the most outer part of the effective
I radial potential to be equal to the band offset, and obtained a
much better correspondence to the RGF result. The agree-
-300 |- lines: B=0 ment of RGF and adiabatic calculations is much better also if
. . . (crosses: B=10T we consider a single disk, for which the finest structure of the
20 s e 70 8 90 system can be accounted for more reliably.
(a) QD layer distance D (A)
A VI. EVOLUTION OF THE DOUBLE-QD SPECTRUM
D=465A WITH LATERAL SIZE

Since the disk radii depend on the growth conditions, it is
of interest to investigate how the change of the lateral size of
ool the system will influence its electronic spectrum. Figure 6

shows the dependence of the energies of electronic states on
= the radius of the disiR;, with a fixed ratioR,/R;=85/80
20-91 and the QD layer distancB=5 nm. WhenR; is of the
2s.0] order of the height of each digke., 2 nm) only one shells,
£ sool is confined. With the increase of the radius the energy gap
= between the symmetric and antisymmetric orbital of this
= shell remains constariabout 50 meY, which is due to the
To-0] fact that the distance between disks is fixed. The same is true
s.0 | f for other pairs of states composing higher shells, emerging
oo : : 1 ¥ = = . from the WL continuum a®; increases. However, the en-
) 0.0 500 -100.0 ‘E‘fo-ov) 2000 -2500  -300.0 ergy distance between shells is not constant, which leads to
me

crossings of states. So, as can be seen from Figs. 5 and 6, the
FIG. 7. Electronic energy levels in the presence of a para”eparameterD c_jeterml__nes the_ broade”'”g of each _shell,
magnetic field for the system wittH=2 nm, R;=8 nm, R, whereas the disk radii determine the relative energy distance

=8.5 nm.(a) dependence on the QD layer distanceBor0 (solid ~ Petween shells.
lineg and B=10 T (crosses (b) the density of states foD
=4.65 nm in various magnetic fields. VII. TUNING OF THE INTERDOT COUPLING

WITH MAGNETIC FIELD
results from the adiabatic model to the values obtained from

the recursive Green’s functiofRGP calculation of the full ~_In this section we investigate tuning of the interdot cou-
three-dimensional Schdinger equation. The double quan- Pling with the magnetic field perpendicular to the growth
tum dot HamiltonianH, Eq. (1), has been discretized on a direction. The magnetic part of the Hamiltonian of our
cubic grid by replacing the second derivative by the symmetdouble-QD system in cylindrical coordinates, with a mag-
ric differences with respect to each coordinate. netic field along they direction B=(0,8,0) and with the
In order to minimize the influence of the infinite boundary VECtor potential in a Landau gauge is

conditions and the second derivative approximation error, we _
have chosen the size of the computational box and the dis- »~ . d sind Jd z
cretization length so that our system was divided into about
10° cells. The resulting “tight-binding” Hamiltonian matrix
has been diagonalized using the RGF techrfiquatil con-  whereQ=w /R, w.=feB/mg is the cyclotron energy,
vergence was reached. The results for the ground state er-y#hc/eB/ag is the magnetic length measured in Bohr radii
ergy as a function of the quantum dot layer distance ar@g, and we takeA=(Bz0,0). Since analytical formulas
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for the electron wave function, ¥(r,0,2) VIIl. CONCLUSION
— f imé~v v : i ) ) ) . )
= (1/y2m)e™g, (2) (), are known, we write the Hamil In conclusion, we use the adiabatic approximation to cal-

tonianH =H,+Hg in the basis of these functions and diag- culate the electronic energy levels in the vertically coupled

onalize it numerically. TheFl,(f) part acts as an additional double quantum dot system. The procedure, beside geomet-
parabolic confinement in the direction and gives nonzero ric parameters of the system, requires knowledge of the band
matrix elements only for states with the same angular moedge discontinuity between the quantum well and the barrier
menta. Thed{" part combines states witn’=m=1, and and the electron effective mass. We calculate the former us-

leads to anticrossings between these levels. This behavior 89 the continuum elasticity theory, and the latter by com-
visualized in Fig. 7a), where we present a comparison of the Parng the energy spectrum to that obtained from the numeri-
energy levels foB=0 andB=10 T. In Fig. 1b) we show cal k-p calculation, but treat it as a fitting parameter. The
the density of states of our system wiB=4.65 nm, for change of the QD layer distance strongly modifies the elec-

which in zero magnetic field the antisymmetd@and sym- tronic energies, leading fo a spll_ttlrﬁgf order of 30 m‘?V for
small D) between the symmetric and antisymmetric levels,

. . ~ (1) . . . . . -
metric p states cross. Sinddg” is linear inB, the depen-  anq causes crossings between levels belonging to different
dence of the energy gap between anticrossing states on thfie|is. These crossings are removed by a magnetic field per-
magnetic field is approximately linear. pendicular to the growth direction.
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