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Electronic structure of vertically stacked self-assembled quantum disks
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The electronic structure of vertically stacked self-assembled quantum disks is studied within the effective
mass approximation. The energy spectrum is calculated in the adiabatic approximation and using an exact
diagonalization technique. The influence of the strain, dot separation, and the magnetic field on the formation
of coupled quantum dot levels is discussed.
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I. INTRODUCTION

The development of the ‘‘indium-flush’’ technique b
Wasilewski and co-workers1 allowed for the fabrication of
high-quality vertically stacked quantum disks. The vertica
aligned structures are of interest in fabricating quantum
lasers2,3 and light storage devices,4 and for their possible
application in quantum computing.5,6 The quantum comput
ing applications are related to the isospin of an electron,7 i.e.,
the analogy between the quantum dot index and two diffe
spin orientations. Recent experiments by Fafardet al.8 on
mesas and by Bayeret al.9 on a single stack show clearly th
quantization of the lateral motion in each dot and the qu
tum mechanical coupling in the vertical direction, resulti
in the formation of ‘‘molecular’’ quantum dot levels
The formation of molecular orbitals in coupled quantu
dots has been investigated experimentally10–14 and
theoretically.7,15–17 In relevant calculations, Fonsecaet al.17

modeled stacked pyramids using an effective mass appr
mation, including strain and piezoelectric potential as lo
modifications of the conduction band offset. Pryor16 studied
an infinite chain of coupled pyramids using the eight-ba
Luttinger-Kohn Hamiltonian, incorporating strain via th
Bir-Pikus formalism. Both methods involved a discretizati
of the one-band or multiband Hamiltonian and a numeri
diagonalization of the corresponding very large but spa
Hamiltonian matrix.

We present here a simple method of calculation of el
tronic levels of coupled vertically stacked quantum disks c
ried out in the effective mass and adiabatic approximation18

It leads to analytical formulas and a qualitative understa
ing of the single-particle spectrum and its dependence
structure parameters. The calculation of electronic level
augmented by the calculation of strain, responsible for mo
fications of the height of the barrier,16,19–21and the calcula-
tion of the effect of the magnetic field perpendicular to t
growth direction, which modifies the vertical coupling
quantum dot levels. Results of the adiabatic approxima
are tested against exact diagonalization techniques
shown to be a reliable tool.

II. THE MODEL

Figure 1~a! shows the two vertically stacked disk-shap
InAs quantum dots~QD’s!. Each dot is formed on a wettin
layer ~WL! of thicknessW, and covered by the GaAs barrie
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material. Both QD’s have the same heightH ~typically 1–2
nm! and the radiiR1 andR2 ~typically 8–12 nm!. The dis-
tance between the two wetting layers,D, results in a QD
tunneling barrier of thicknessD2H. The difference in the
conduction band offsets for the QD and surrounding mate
gives the confining potentialV0.

The material parameters of QD’s and WL’s enter throu
the effective RydbergR5mee

4/2e2\2 and the effective
Bohr radius,aB5e\2/mee

2, me and e being the effective
mass of an electron and the dielectric constant, respectiv
Throughout this workR and aB will be used as units of
energy and length, respectively.

In cylindrical coordinates the effective mass Hamiltoni
of our system may be written as

FIG. 1. ~a! Schematic picture of the InAs/GaAs double se
assembled quantum dots modeled as disks of radiiR1 and R2,
heightsH, and wetting layer separationD; ~b! illustration of system
potentials in the adiabatic calculation of electronic states~see text!.
©2001 The American Physical Society11-1
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]u2D2
]2

]z21V~r ,z!, ~1!

where the potentialV52V0 inside the WL and QD’s and
V50 in the barrier.

Let us first carry out a simple qualitative analysis. W
separate the motion in the growth and radial directions.
the former we deal with two coupled quantum wells. Let
denote byE0 the ground state energy, and byf 1(z) and
f 2(z) the corresponding orbitals of each isolated well. F
identical disks the wave functions in thez direction can be
written in the form of symmetric and antisymmetric line
combinations of the single quantum well orbitals:f s(z)
5@ f 1(z)1 f 2(z)#/A2, f as(z)5@ f 1(z)2 f 2(z)#/A2, and the
corresponding eigenenergies areEs/as5E07D/2, whereD is
the splitting between these levels. The motion in the plane
the disk is quantized, with wave functions corresponding
Bessel functions. For infinite barriers the lateral spectr
can be written in terms of zeros of Bessel functionsam

n :
E(m,n)5(am

n /R)2, whereR is the radius of the disks,n is
the radial quantum number, andm is the angular momentum
The electronic spectrum of the system will then be compo
of two ladders of states: the symmetric one,E02D/2
1E(0,1), E02D/21E(1,1), . . . , labeled as (m,n,1), and
the antisymmetric one, E01D/21E(0,1), E01D/2
1E(1,1), . . . , labeled as (m,n,2). When D exceeds the
quantization of radial motion a crossing of states with diff
ent angular momenta and different subbands occurs.

III. ADIABATIC APPROXIMATION

Since the height of both QD’s is much smaller than th
radii, the electron motion in the growth direction is strong
confined. Therefore the wavefunction of an electron may
written asc(r ,u,z)5(1/A2p)eimugr

n(z) f m
n (r ), wheregr

n(z)
is a slowly varying function ofr. Qualitatively, we then dea
with distinct subbands (n50,1, . . . ) related to the vertica
motion.

For each angular momentum channelm and each subban
index n the functionsgr

n(z) and f m
n (r ) satisfy the following

set of equations:

F2
]2

]z2 1V~r ,z!Ggr
n~z!5En~r !gr

n~z!, ~2!

F2
1

r 2 S r
]

]r
r

]

]r
2m2D1En~r !G f m

n ~r !5E fm
n ~r !. ~3!

The following considerations will be confined to two su
bands,n50,1. In each case we first find the energyEn(r )
corresponding to the ground (n50) or first excited (n51)
states for the vertical motion in the potentialV(r ,z). The
energyEn(r ) is then treated as an effective potential for t
radial motion@cf. Fig. 1~b!#.

As for the vertical motion, we distinguish three regions
our system, as shown in Fig. 1~b!. ~1! For r ,R1 we have
two identical quantum wells of widthW1H, separated by a
barrier of thicknessD2H. In this region,E0 is the energy of
the ground, symmetric state, andE1 the energy of the first
19531
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excited, antisymmetric state.~2! For R1,r ,R2 we have one
narrow quantum well of widthW ~WL! and one wide quan-
tum well of widthW1H ~the top QD!, separated by a barrie
of thicknessD. Here, both eigenstatesE0 and E1 will be
mixtures of symmetric and antisymmetric states, and will
larger than their counterparts in the first region.~3! Finally,
for r .R2 we have two identical quantum wells~WL’s!,
separated by a barrier of thicknessD. The ground, symmetric
stateE0 is always confined and lying at a higher energy th
the one in the second region, butE1 for small D may be
already above the barrier; in this case we takeE15V0. All
elements of this approach are schematically shown in F
1~b!.

To find the allowed energiesEn(r ) we employ the trans-
fer matrix formalism.18 For a given energyE we define the
vertical wave functiongr

n(z) in five different vertical re-
gions: ~i! barrier below the structure,z,z1 , k15A2E,
gr

n(z)5A1exp@k1(z2z1)#1B1 exp@2k1(z2z1)#; ~ii ! first quan-
tum well, z1,z,z2 , k25AV01E, gr

n(z)5A2 exp(2ik2z)
1B2 exp(ik2z); ~iii ! barrier between disks,z2,z,z3 ,
k35A2E, gr

n(z)5A3 exp(2k3z)1B3exp(k3z); ~iv!
second quantum well,z3,z,z4 , k45AV01E, gr

n(z)
5A4 exp(2ik4z)1B4 exp(ik4z); ~v! barrier above the struc
ture, z.z4 , k55A2E, gr

n(z)5A5 exp@k5(z2z4)#
1B5 exp@2k5(z2z4)#.

The wave functiongr
n(z) must be continuous and smoo

at each interface. These conditions allow to write the coe
cientsA1 ,B1 in terms ofA5 ,B5:

A15T11~E!A51T12~E!B5 ,

B15T21~E!A51T22~E!B5 ,

with the transfer matrix defined as

T5L21~k1 ,z1!U~k2 ,z1!U21~k2 ,z2!V~k3 ,z2!V21~k3 ,z3!

3U~k4 ,z3!U21~k4 ,z4!R~k5 ,z4! .
.

By virtue of the fact thatk35k5 andk25k4 and settingz1
50, the matricesL,U,V,R are defined as

L5F 1 1

k 2kG ; U5F e2 ikz eikz

2 ike2 ikz ikeikzG ;
V5F e2kz ekz

2ke2kz kekzG ; R5F 1 1

2k kG . ~4!

It is convenient to carry out multiplication of matricesW
5UU21 and B5VV21 for each well and each barrier t
arrive at more modular and expandable expression:

W~k,h!5F cos~kh! 2sin~kh!/k

k sin~kh! cos~kh!
G , ~5!

B~k,d!5F cosh~kd! 2sinh~kd!/k

2k sinh~kd! cosh~kd!
G , ~6!
1-2
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ELECTRONIC STRUCTURE OF VERTICALLY STACKED . . . PHYSICAL REVIEW B63 195311
whered is the barrier thickness andh is the well width. The
transfer matrix can now be written asT5L21W1B1W2R
5L21AR, whereA5W1B1W2 is the matrix describing ou
structure. Note that this procedure can be easily adjuste
describe stacks of more than two disks by inserting the
propriate number of matricesW and B into A. We find the
allowed energies for the vertical motion by imposing boun
ary conditions, i.e.,B150 andB550. SinceB15T21(E)A5
1T22(E)B5, if B550, we must haveT21(E)50. Hence, by
finding zeros of the transfer matrix elementT21(E) we find
allowed values of energiesEn(r ) for each radial region of
the system.

We may now solve for the radial motion@Eq. ~3!# in the
effective potentialEn(r ). This potential is constant in eac
radial region, with discontinuities~steps! for r 5R1 and r
5R2 @cf. right hand side of Fig. 1~b!#. This permits us to use
again the transfer matrix method. Let us denote the ene
we are looking for byE. By virtue of the cylindrical symme-
try of the system we will build the radial wave functio
f m

n (r ) in terms of Bessel funcions.
For each zero-dimensional~0D! subbandn the innermost

region 1@En(r ,R1)# corresponds to a propagating solutio

therefore we setk15AE2En
1 and form a propagating wav

function f m
n 5Am

1 Jm(k1r )1Bm
1 Ym(k1r ). In the intermediate

region 2 @En(R1,r ,R2)#, both ‘‘decaying’’ (E,En) and
‘‘propagating’’ (E.En) states are possible. For the forme

we define k25AEn
22E and take f m

n 5Am
2 Km(k2r )

1Bm
2 I m(k2r ), whereas for the latter we definek2

5AE2En
2 and takef m

n 5Am
2 Jm(k2r )1Bm

2 Ym(k2r ). The out-
ermost region 3@En(r .R2)# will be a quantum barrier, so
k35AEn

32E and f m
n 5Am

3 Km(k3r )1Bm
3 I m(k3r ).

At each boundary we match the wave function and
derivative to derive the transfer matrixT. This matrix can be
now written asT5C21(R1)S(R1)S21(R2)D(R2), where the
matrix C corresponds to the interior region 1, the mat
SS21 carries the solution through the region 2, and the m
trix D propagates it outwards in the region 3. These matri
are given by

C~R1!5F Jm~k1R1! Ym~k1R1!

k1Jm8 ~k1R1! k1Ym8 ~k1R1!
G ,

D~R2!5F Km~k3R2! I m~k3R2!

k3Km8 ~k3R2! k3I m8 ~k3R2!
G .

The matrixS has to be defined separately for the decay
and propagating solution:

Sdec~R!5F Km~k2R! I m~k2R!

k2Km8 ~k2R! x2I m8 ~k2R!
G ,

Sprop~R!5F Jm~k2R! Ym~k2R!

k2Jm8 ~k2R! k2Ym8 ~k2R!
G .

The zeros of the transfer matrix elementT21 are the eigen-
values of the system.

Figure 2 shows the dependence of the electronic state
19531
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the wetting layer distanceD for disk radii R158 nm and
R258.5 nm, disk heightH52 nm, V051 eV, and me

50.023m0. The confining potential corresponds to the ba
offset between unstrained InAs and GaAs and the mas
that of unstrained InAs~all material constants taken from
Ref. 20!.

For D.6 nm there are three confined shells,s, p andd, in
each dot. Thed shell is split into two degenerate states wi
angular momentumm562 and one state with angular mo
mentumm50. When the disks are far apart (D'14 nm),
for each angular momentum the ‘‘symmetric’’~solid lines!
and ‘‘antisymmetric’’~dashed lines! levels are close to eac
other, and almost degenerate for thes shell. Since the radii of
our disks are slightly different, the labels denoting the sy
metry of states are only approximate. The lack of symme
is responsible for the small splitting, of order of 123 meV,
of the states belonging to the same shell, observed for la
D: the higher-energy state contains a greater contribu
from the smaller disk, and the lower-energy state from
larger disk. This splitting increases with energy, because
higher the energy the lower the tunneling barrier and
bigger the overlap of wave functions due to their shallow
confinement. As the QD’s are brought closer together,
splitting between ‘‘symmetric’’ and ‘‘antisymmetric’’ state
grows, reaching about 230 meV forD54 nm. The most
interesting property of this spectrum is the crossing of lev
with different symmetry and different angular momentum~in
the regionD5425.5 nm).

FIG. 2. Electronic states of the system vs QD layer distanceD
for disk radiiR158 nm, R258.5 nm, disk heightH52 nm, barrier
height V051 eV, and the effective massme50.023m0 ~ignoring
strain! from adiabatic approximation~solid lines, symmetric;
dashed lines, antisymmetric!. States are labeled by their angul
momentum, radial quantum number, and isospin. Symmetric
antisymmetric levels of the double wetting layer system are a
shown.
1-3
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FIG. 3. Vertical cross section of the strain spatial variation through the center of the system~disk height 2 nm, disk radii 8 nm and 8.
nm!: ~a! «xx , ~b! «xz , ~c! «zz, and the hydrostatic strain~d! «h . In ~a!, ~c!, and~d!, compressed areas are white, and expanded areas are
Periodic boundary conditions are assumed.
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IV. STRAIN, BAND OFFSET, AND EFFECTIVE MASS

A more realistic calculation should account for stra
since it modifiesV0 and the electron effective mass. To ta
it into account, we use the continuous elasticity theory, d
cretizing our system on a cubic grid.16,19,21 This procedure
consists of computing the total elastic energy of the syst

E5E d3r @C1~r !~«xx
2 1«yy

2 1«zz
2 !1C2~r !

3~«xx«yy1«xx«zz1«yy«zz!1C3~r !

3~«xy
2 1«xz

2 1«yz
2 !2a~«xx1«yy1«zz!#, ~7!

whereC1 , C2, andC3 are material-specific elastic constan
a is introduced to enforce the lattice mismatch (aÞ0 only
in InAs!, and« i j are the strain tensor matrix elements,

« i j ~r !5
1

2S ]ui~r !

]xj
1

]uj~r !

]xi
D ,

and minimizing this energy numerically with respect to d
placements of grid nodesu(r ). As a result, we obtain the
strain tensor matrix elements« i j calculated locally for each
19531
,
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node. In Fig. 3 we present spatial variation of strain ten
elements«xx @Fig. 3~a!#, «xz @Fig. 3~b!#, «zz @Fig. 3~c!# and
the hydrostatic strain«h5«xx1«yy1«zz @Fig. 3~d!#, calcu-
lated for disk radii R158 nm, R258.5 nm, height H
52 nm, and QD layer distanceD54 nm. Both disks are
strongly and uniformly compressed along the radial direct
@Fig. 3~a!#, but expanded along the symmetry axis@Fig.
3~c!#. The hydrostatic compression is strong within disks a
almost absent in the barrier area@Fig. 3~d!#.

The strain tensor elements are subsequently input into
strain-dependent eight-bandk•p Hamiltonian.22 The result-
ing local band edge energies for the conduction and vale
bands are shown in Fig. 4. Changes in the band edge a
ment, both for the conduction and the valence band, are c
centrated mainly in QD’s, since they depend mainly on
hydrostatic strain. In the conduction band the well depth
reduced to aboutV0

(s)5600 meV, whereas in the valenc
band the heavy- and light-hole confinement increases
contrast, the spin-orbit-split band alignment is reversed. T
splitting of light and heavy holes is as large as 200 meV a
so it is reasonable to treat the top of the valence band in
‘‘single band’’ approximation.
1-4
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ELECTRONIC STRUCTURE OF VERTICALLY STACKED . . . PHYSICAL REVIEW B63 195311
Our estimate ofV0
(s) is consistent with calculations o

Pryor,16 who calculates the energy spectrum of a quant
wire formed by InAs pyramidal quantum dots of rectangu
basis~about 19319 nm; height about 4 nm!, using the Lanc-
zos diagonalization of a discretized Luttinger-Kohn Ham
tonian. Since ground state energies for a circular and a r

FIG. 4. Band edge alignment along the symmetry axis of
system~dotted lines, unstrained, solid lines, with strain!.

FIG. 5. Electronic levels of the double-dot system forV0

5600 meV andme50.053m0 from adiabatic approximation~solid
lines! and exact diagonalization~bars!. The inset shows the result o
a fitting procedure of electronic levels of our system~solid lines! to
Pryor’s ~Ref. 16, crosses!.
19531
r

ct-

angular dot with the same basis area are similar~due to
localization of the ground state wave function in the cente!,
we compared our electronic spectra with Pryor’s, using
electronic effective mass as a fitting parameter. For ths
shell we find a good agreement withme50.053m0, i.e., an
effective mass between that of InAs and GaAs, as expec
The results of fitting to Pryor’s calculations are shown in t
inset to Fig. 5. Pryor’s calculations suggest an effective m
in the InAs strained dot of order ofme50.04m0, while the
far-infaraed~FIR! absorption measurements indicate mu
higher mass of 0.08m0.14 Our calculations suggest the use
effective massme50.053m0 but it should be treated as a
effective parameter to be obtained by comparison with
periment, e.g., cyclotron resonance.14

Figure 5 shows the electronic levels forV05600 meV
accounting for strain, and withme50.053m0. The depen-
dence of the energy levels on layer distance is unchanged
the symmetric-antisymmetric splitting and the crossing os
andp levels occurs at a different layer separationD.

V. COMPARISON WITH THE RECURSIVE GREEN’S
FUNCTION TECHNIQUE

The adiabatic approximation separates the motion in
growth direction and the motion in the lateral direction re
ing on the disparity of vertical and lateral dimensions of t
quantum dot, and on an assumption that the wave func
describing the vertical motion,gr(z), changes slowly along
the disk radius. It may be argued that the latter condition
not fulfilled for r 5R1 and r 5R2, wheregr(z) undergoes a
jump, thereby distorting the value of kinetic energy.

We test here the quality of our approach by comparing

e FIG. 6. Dependence of the electronic energy spectrum of
double-dot system on its lateral dimensions~height of both disks
H52 nm, QD layer distanceD55 nm). The ratioR2 /R1 is kept
constant. Dashed line indicates the spectrum shown in Fig. 5.
1-5
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MAREK KORKUSIŃSKI AND PAWEL HAWRYLAK PHYSICAL REVIEW B 63 195311
results from the adiabatic model to the values obtained fr
the recursive Green’s function~RGF! calculation of the full
three-dimensional Schro¨dinger equation. The double quan
tum dot HamiltonianH, Eq. ~1!, has been discretized on
cubic grid by replacing the second derivative by the symm
ric differences with respect to each coordinate.

In order to minimize the influence of the infinite bounda
conditions and the second derivative approximation error,
have chosen the size of the computational box and the
cretization length so that our system was divided into ab
106 cells. The resulting ‘‘tight-binding’’ Hamiltonian matrix
has been diagonalized using the RGF technique23 until con-
vergence was reached. The results for the ground state
ergy as a function of the quantum dot layer distance

FIG. 7. Electronic energy levels in the presence of a para
magnetic field for the system withH52 nm, R158 nm, R2

58.5 nm.~a! dependence on the QD layer distance forB50 ~solid
lines! and B510 T ~crosses!; ~b! the density of states forD
54.65 nm in various magnetic fields.
19531
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shown in Fig. 5~bars!. We see that for thes shell the differ-
ence between the results of the adiabatic and RGF techni
is of order of only a few meV, so the adiabatic approxim
tion appears to work well for the double quantum dot pro
lem. Due to its discrete nature the RGF method does
capture the influence of the finest structure of the sys
~i.e., wetting layers! when the tunneling barrier is too large
which results in the systematic shift of the RGF values w
the increase of the barier thickness. This shift is not due
the discontinuities in thegr(z) function, since for large in-
terdisk distances the overall wave function hardly chan
with the increase ofD, and the resulting distortion in kinetic
energy should converge to a constant value. In order to
that, in our model we artificially eliminated the influence
the wetting layers, setting the most outer part of the effect
radial potential to be equal to the band offset, and obtaine
much better correspondence to the RGF result. The ag
ment of RGF and adiabatic calculations is much better als
we consider a single disk, for which the finest structure of
system can be accounted for more reliably.

VI. EVOLUTION OF THE DOUBLE-QD SPECTRUM
WITH LATERAL SIZE

Since the disk radii depend on the growth conditions, i
of interest to investigate how the change of the lateral size
the system will influence its electronic spectrum. Figure
shows the dependence of the energies of electronic state
the radius of the diskR1, with a fixed ratioR2 /R1585/80
and the QD layer distanceD55 nm. WhenR1 is of the
order of the height of each disk~i.e., 2 nm! only one shell,s,
is confined. With the increase of the radius the energy
between the symmetric and antisymmetric orbital of t
shell remains constant~about 50 meV!, which is due to the
fact that the distance between disks is fixed. The same is
for other pairs of states composing higher shells, emerg
from the WL continuum asR1 increases. However, the en
ergy distance between shells is not constant, which lead
crossings of states. So, as can be seen from Figs. 5 and 6
parameter D determines the broadening of each she
whereas the disk radii determine the relative energy dista
between shells.

VII. TUNING OF THE INTERDOT COUPLING
WITH MAGNETIC FIELD

In this section we investigate tuning of the interdot co
pling with the magnetic field perpendicular to the grow
direction. The magnetic part of the Hamiltonian of o
double-QD system in cylindrical coordinates, with a ma
netic field along they direction B5(0,B,0) and with the
vector potential in a Landau gauge is

ĤB5 i VzS cosu
]

]r
2

sinu

r

]

]u D1
z2

l 4 5ĤB
(1)1ĤB

(2) , ~8!

whereV5vc /R, vc5\eB/mec is the cyclotron energy,l
5A\c/eB/aB is the magnetic length measured in Bohr ra
aB , and we takeA5(Bz,0,0). Since analytical formulas

l

1-6
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ELECTRONIC STRUCTURE OF VERTICALLY STACKED . . . PHYSICAL REVIEW B63 195311
for the electron wave function, c(r ,u,z)
5(1/A2p)eimugr

n(z) f m
n (r ), are known, we write the Hamil

tonianĤ5Ĥ01ĤB in the basis of these functions and dia

onalize it numerically. TheĤB
(2) part acts as an additiona

parabolic confinement in thez direction and gives nonzer
matrix elements only for states with the same angular m

menta. TheĤB
(1) part combines states withm85m61, and

leads to anticrossings between these levels. This behavi
visualized in Fig. 7~a!, where we present a comparison of t
energy levels forB50 andB510 T. In Fig. 7~b! we show
the density of states of our system withD54.65 nm, for
which in zero magnetic field the antisymmetrics and sym-

metric p states cross. SinceĤB
(1) is linear in B, the depen-

dence of the energy gap between anticrossing states on
magnetic field is approximately linear.
t

.
.
,
, J

f-

tte

sk

rl,
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VIII. CONCLUSION

In conclusion, we use the adiabatic approximation to c
culate the electronic energy levels in the vertically coup
double quantum dot system. The procedure, beside geo
ric parameters of the system, requires knowledge of the b
edge discontinuity between the quantum well and the bar
and the electron effective mass. We calculate the former
ing the continuum elasticity theory, and the latter by co
paring the energy spectrum to that obtained from the num
cal k•p calculation, but treat it as a fitting parameter. T
change of the QD layer distance strongly modifies the e
tronic energies, leading to a splitting~of order of 30 meV for
small D) between the symmetric and antisymmetric leve
and causes crossings between levels belonging to diffe
shells. These crossings are removed by a magnetic field
pendicular to the growth direction.
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