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Aharonov-Bohm effect of excitons in nanorings
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The magnetic field effects on excitons in an InAs nanoring are studied theoretically. By numerically diago-
nalizing the effective-mass Hamiltonian of the problem that can be separated into terms in center-of-mass and
relative coordinates, we calculate the low-lying excitonic energy levels and oscillator strengths as a function of
the ring width and the strength of an external magnetic field. It is shown that in the presence of Coulomb
correlation, the so-called Aharonov-Bohm effect of excitons exists in a fibi¢ smal) width nanoring.
However, when the ring width becomes large, the non-simply-connected geometry of nanorings is destroyed,
causing the suppression of the Aharonov-Bohm effect. The analytical results are obtained for a narrow-width
nanoring in which the radial motion is the fastest one and adiabatically decoupled from the azimuthal motions.
The conditional probability distribution calculated for the low-lying excitonic states allows identification of the
presence of the Aharonov-Bohm effect. The linear optical susceptibility is also calculated as a function of the
magnetic field, to be compared with the future measurements of optical emission experiments on InAs nano-
rings.
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[. INTRODUCTION calculating the low-lying excitonic energy levels and oscilla-
tor strengths as a function of the ring width and the strength
Recently, Lorke and collaborators demonstrated the realef an external magnetic field, we show an evident ABE for
ization of self-assembled InAs nanorings inside a completedanorings with a finite but small ring width. The numerical
field-effect transistot=® Such small nanoringgwith a typi-  results are well interpreted with the analytical results for a
cal inner (outep radius of 20(100 nm and 2—-3 nm in harrow-width nanoring in which the radial motion is the fast-
heighfl allow one to study the new non-simply-connectedest one and adiabatically decoupled from the azimuthal mo-
geometry where electrons or holes could propagate cohetions, and also well understood by the conditional probability
ently (nondiffusively all throughout=?° In particular, they  distribution calculated for the low-lying excitonic states. The
offer a unique opportunity to explore the so called following is a summary of our main results:
“Aharonov-Bohm effect” (ABE) of an exciton an interest- (i) In the presence of a Coulomb interaction between the
ing concept suggested by Chapfiland Raner and Raiklf>  electron and hole, there i® ABE for the ground excitonic
Chaplik first predicted the Aharonov-Boh(AB) oscilla-  statefor all the ring widths due to the intrinsic divergence of
tion of excitonic levels inonedimensional quantum ring the ground-state energy of one-dimensional excitons.
structure$! and most recently, Roer and Raikh found (i) Some of the low-lying excited excitonic energy levels
similar results with a short-ranged interaction potential byand oscillator strengths can show a periodic, Aharonov-
using a quite different analytical approachln contrast to Bohm-type oscillation, as a function of the magnetic field.
the general belief that an exciton, being a bound state of he periodicity of oscillations is equal th,=h/e—the uni-
electron and hole and thus reeutral entity, should not be versal flux quantum.
sensitive to the applied flux, they predicted the possibility of (i) In addition to the overall blueshifts caused by the
a nonvanishing ABE in one-dimensional rings caused by théliamagnetic effect, the linear optical susceptibility traces ap-
finite confinement of an exciton. On the other hand, so far thgparently show ABE oscillations with the magnetic field for
influence of the ring width on ABE has rarely been investi-some of excited states.
gated. Only recently did Song and Ulloa study the magnetic The remainder of this paper is organized as follows. In
field effect on excitons in a finite width nanoring. They Sec. ll, we present the model Hamiltonian for a nanoring and
found that the excitons in nanorings behave to a great extefifie solution method. As a first approximation, the nanoring
as those in quantum dots of similar dimensions and the finitétructure is modeled by a ringlike confinement potential in
width of nanorings can suppress completely the ABE prewhich we can separate the Hamiltonian into terms in center-
dicted for one-dimensional rings At the moment, however, of-mass and relative coordinates. Subseque@bc. Ill), we
to what extent the ABE exists in the quasi-one-dimensionagive the analytical results for the narrow-width nanorings
(or more important, theealistic) nanorings is still unclear with m{ =mj . By calculating the tunneling possibility for
and is an open subject for research. three typical electron-hole interaction potential,(¢), we
In this paper, we would like to investigate systematicallyexplore the underlying physics of ABE, and the main results
the magnetic field effect on an exciton within a simplified of Chaplik and of Rmer and Raikh are recovered. Section
model Hamiltonian, which is applicable to thealistic self- IV is devoted to the detailed discussion of numerical results
assembled semiconducting InAs nanorihigs®* By diago-  for different ring widths and magnetic fields, including the
nalizing the effective-mass Hamiltonian of the problem andow-lying energy levels, oscillator strengths, conditional
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probability distribution.s,_ _pair-gorrelation function_s, and the y (10nm) “ a
linear optical susceptibility. Finally, we summarize our re-
sults in Sec. V.

1

II. MODEL AND NUMERICAL METHOD

We start from a simplified model Hamiltonian for a two-
dimensional exciton in an InAs nanoring and in a static mag-
netic field, simulating recent experimental nanoring
structures>?4The exciton is described by an electron-hole
pair (i=e,h) with an effective band edge masg moving
in the x-y plane. The ringlike structure is well described by o
the potentialU(r;) = (1/2R3)m¥ w?(r;?— R3)?, which repro-
duces a soft barriem® ?R5/2 at the center of the sample
produced by self-assembly®?*Here,R, is the radius of the
ring andw; is the characteristic frequency of the radial con-

U() (ineV)

[pi—adiA(r)]? e?
- = Y LUy e—————
" izze,h 2mi* (r) 47T“J‘O“J‘r“‘e_rhl

@

wherer;=(x;,y;) andp;=—iAV, denote the position vector
and momentum operatog, is the vacuum permittivity, and

finement, giving a characteristic ring widi= \/2z/m* w, y(10nm) | e = (b)
g, is the static dielectric constant of the host semiconductor. 0
gJ.= —e andqg,= +e. We use symmetric gauge to introduce x (10nm)

for each particle. The whole system is subjected to an exter-*
nal magnetic field perpendicular to tkey plane. The result-
ing model Hamiltonian is thus given by
’ 150
l) (neV)
the external magnetic field, i.eA(r¢)=3BX(r,—ry) and
A(rp)=—3BX(re—rp). FIG. 1. Schematic geometry of InAs nanorings with radiys
It should be pOinted out that the present ringlike confine-= 20 nm and width(a) W=10 nm or(b) 7 nm for e|e(‘;tro|"|sméC
ment potential can be rewritten a®(r;)=3;m wiz(ri =0.067m,.
—Ro)2(ri+ Ro)%/R3. If one replaces the operatgrin factor
(ri+Rg)?/R2 by its mean valudr;)=R,, the confinement P2 1 (R?—R3)?
potential returns to the widely used parabolic Hem(R) = m+§Mw§m—
form 35610171929 the other hand, in the limit of the small
radiusR, or for a small potential strengih; , the soft barrier 2
at the ring center is very weak, and the description of the
nanoring is closer to that of a quantum dot. For a fixed ring Pr2e| e’B? eB
width (or potential strength the crossover from nanorings to 20
quantum dots is determined bRy~ (\2/2)W or fw;/2
~m* w”R3/2, which means the lowest energy of radial con- w (M3 +m3wd) r
finement is comparable to the soft barrier at the ring center. It X Preit 2 VE ?
should also be pointed out that our ringlike confinement po- 0
tential has been used to calculate the far-infrared spectros- g2
copy for a two-electron nanorirfg,in good agreement with —,uwrze,rz—
the recent experiment done by Lork¢al® In Fig. 1, we
show the schematic geometry of InAs nanorings with radius .
Ro=20 nm for electrons. Figuregd and Xb) correspond to eB R®-r
tV\?O different ring widths\N=glo and 7 nm, respect?vely. Hmix(R,1) = 177 X Pem— 2u(wg— wﬁ)( R-r—?)
In terms of the relative coordinate=r.—ry, and center- 0
of-mass coordinate R=(mir.+mfr,)/(ms+m}) the , [Rr?+2(R-r)?]
model Hamiltonian can be separated into the motion of cen- T e R2
ter of mass, relative motion of the electron-hole pair, and the 0
mixed part: (m*2w2—mt2w?) R-r3

+2u >
H=Hcm(R) +Hei(r) + Hmix(R,1), M R3

dmege,r’
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where u=mZm; /M is the electron-hole reduced mass andwhereE, andE; are the respective semiconducting band gap

M=m?+m} is the total mass. We have also introduced aof InAs and energy levels of the exciton, afidhas been

center-of-mass frequenay,,= \/(m? w2+m;§ wﬁ)/M and a introduced as a phenomenological broadening parameter.
cm e e

relative frequencyw, ¢ ;= \/(m; w2+ mfwd)/M.

The main purpose in the change of variable above is to
use the solutions dfl.,, andH,e as a basis for solving the ~ In order to explore the underlying physics of ABE, we
full Hamiltonian. Those solutions, i.e., labeled l#™(R) first consider a narrow-width nanoring in which the analyti-
and z/;;‘i'(r), can be solved by the series expansioncal results are variable. We restrict ourselves with the condi-

tion mj =m} =m*, but the general properties of nanorings

6,27 _ r_ _
method®*" Here, A {ncm’IC"!} and A {_n,e| rei} repre are not affected by this constraint. The technique employed
sent the quantum number pair of the radial quantum number.

! in this section follows directly the previous works of Wen-
nand orbital angular—momgntum quantum numb@mother . dler, Fomin, and Chaplik describing the rotating Wigner
advantage of the separation of center-of-mass and relative =/’ o 47631

) . . i NV olecule behavior in quantum rindfs: 6
coordinates is that the negative Coulomb interaction By introduci | dinates in th |
—e?/4 r appears inH, only, and the well-known y Introducing pofar coordinates in the-y plane f;
7eoe " app rel OMY, and . =(r;,¢;), the relative azimuthal coordinate= ¢.— ¢y
poor convergence of the parabolic basis is thus avoided Whennd't’he' z;\zimuthal coordina®= (¢, + ¢p)/2 that dgscrib,es
the characteristic scale of systems is beyond the effectiv . PeT Ph .

123,28 . e motion of the electron-hole pair as a whole, the Hamil-

Bohr radius’>?® We now search for the wave functions of

the exciton in the form tonian(1) reads

IIl. NARROW-WIDTH NANORINGS

cm rel H E h? a + 10 +U(r;)
= , . = - St ri
V=2 AR 3 20| " 2w a2 T, |
Due to the pylindrical symmetry of the problem, t_he exciton 52 (11 9 D2 1[4 D)2
wave functions can be labeled by the total orbital angular eyl o] eyt b =170 1o
momentumL =I.,+1,.. To obtain the coefficients, ,, 2m* [re\ ¢ ol rp\o¢ 0
the total Hamiltonian is diagonalized in the space spanned by 1 1\1 82 1 1\a 4
the product stateg/S™(R)¢/.5'(r). In the present calcula- T _>__+(___)__
tions, we first solve the single-particle problem of center-of- ri rﬁ 4002 rf;. rz) d¢ 90

mass and relative Hamiltoniats,,, andH,.,, keep several Ven([re—r1] ®)
hundreds of the single-particle states, and then pick up the en(Ife=Thl),

low-lying energy levels to construct several thousands Of/vhereflbe: 7Br2 and®,=7Br2. For a narrow-width nan-

product states. Note that our numerical diagonalizatiorbring’ i.e.,W<R,, the radial motion is much faster than the

scheme is very efficient and essentially exact in the sensgimythal motions. Hence the radial motionaiabatically
that the accuracy can be improved as required by increasingecoupledrom the azimuthal motions with the result
the total number of selected product states.

Once the coefficient#, . are obtained, one can calcu-
late directly the measurable properties, such as the linear ¥(reln;.0)= > Engn(Fefm)dn, n(0,0) (7)
optical susceptibility of the nanorings, whose imaginary part fle-Mh
is related to the absorption intensity measured by opticalor the excitonic StateSEne,nh(re,rh) is a product of the

emis;ion experjments. In thgory, the Ii'near optical Suscepti(':orresponding single-particle wave functiong.(r;) with
bility is proportional to the dipole matrix elements between i

one electron-hole pajrstate and the vacuum state, which in e|genenerg|es[1?d (ni=0,1,2...), which describe the ra-

turn is proportional to the oscillator strengtfs. In the di- dial motion of electrons or holes with zero angular momen-

pole approximation, it is given B§>° tum. Because the single-particle wave functions are or-
thonormalized, the se{Ene,nh(re,rh)} forms a closure set of
orthonormalized functions. The azimuthal wave function
should satisfy thesingle-valuedness boundary conditipns

2 i.e., l/fne,nh(@e:(Ph):‘»[/ne,nh(‘Pe"_zwr‘Ph):'r//ne,nh((Pev(Ph

, 4 +2m)=iin_n (eet2m,ep+2m), or in terms of the new

variables ¢ and 0O, z,/;ne,nh(cp,@)z 1//ne'nh(<p+277,®+ )
where the factor!5 (0) and the integral oveR ensure that = Yo, n, (9,0 +2).

only the excitons withL =0 are created by absorbing pho-  As Jong as the above-stated criterion of the adiabatic ap-
tons. Therefore, the frequency dependence of the linear oproximation is satisfied, the excited states of radial motion
tical susceptibilityy(w) can be expressed s lie high above the ground state. As a consequence we can
restrict the consideration to the ground state of the radial
F, ; : :
o 5 motion because here only the lowest-lying states are of in-
X)X e e ( ;

7 ho—E;—E;—I terest. Thus we take only,=n,=0 and substitute Eq7)

2

F’:U dedr\If(R,r)5(f)

> A0 f dR ¢"(R)
NN
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into the Schrdinger equatior{¥ = EW, multiply both parts
by Eoo(rern), and integrate over, r,. Hence the variables
¢ and ® become separated:

/1 I ) )2+ 1 9
—_—— — _—I_ —
m* \r2/|[\de ®o/ 4502

+(Ven(\ri+ri—2rer, cose))

+285ad—E] Yoo ,0)=0, ®)

where® =(®)=(d) in the first-order approximation, and
() denotes the average with the radial wave functions
(- ')ZJ dreref drprpE5drern) - Eodlefn). (9

The magnetic flux in Eq(8) can be removed by a gauge
transformation with the price of introducing thisvisted
boundary conditions

Yoo 0,0) =20y, (o+2m,0+ ),

oo ©,0)=to o ¢,0+2).
It is obvious from Eq(8) that the relative azimuthal motion

(10

is decoupled from the azimuthal motion of the electron-hole
pair as a whole. Therefore the azimuthal wave function can

be represented in the form

Pod ¢,0)=0P(¢)Q,(0), (11)
where
Qu(0)= ——=e"® (12
v - \/ﬁ ’

and®P(¢) is a solution of the equation

|

Here we have used

2 9

m*R3 d¢?

+Ve_h(2R0

E

<ve.h<Jr§+rﬁ—2rerhcos@>=ve.h(2Ro

sin%’ ) —a;-a-'p} ®P(¢)=0.

(13

1

2
re

1

_R_(z)’

sinf
Al

The indexp describes the possible symmetry type@(?(go)
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FIG. 2. Scheme of different interaction potentialg (¢)
as a function of the relative azimuthal coordinate= ¢.— ¢y, .
(@ Short-ranged form —27Vy8(2 sin(p/2)), (b) parabolic
form (m* w2p?/4)[2 sin@/2)]?, and (c) Coulomb form
—e2/4me e, p|2 sin(p/2)|. The potential of a given single well with
minimum at =0, V3" ¢) is delineated by the thick solid line.
Some low-lying energy levels for each well are also indicated.

+ oo

2% explipeq) di(¢—¢q),

(14)

where ¢o=27Q;Q=0,£1,+2,... . Thewave function
?i(¢— @) of a single well satisfies the equation

|

whereVSQ( ) is the potential of a given single well with
minimum ate=¢q, Which coincides with the periodic po-

 m*R2 a_(Pz+V§-wQ(QD)—8}'a' di(¢—@q)=0,
0

(15

and can be specified below by the twisted boundary conditential Ve ,(2Ry|sin(¢/2)|) in the region| ¢ — ¢g| <. Note

tion. In Fig. 2, we show three typical types of electron-hole
interaction potential®/,.,,(2Ry|sin(¢/2)|) with 27 periodic-

that the tight-binding-like relative azimuthal wave function
satisfies the Floquet-Bloch theorem, which is applicable to

ity. In the view of the excitonic state, the potential should bethe periodic potential.
strong enough to bind the electron-hole pair, and then the Combining Eqs(12), (14), and(11) and substituting them
relative azimuthal motion is strongly localized in each potendnto the twist boundary condition, EGL0), we obtain

tial well. Thus the relative azimuthal wave function can be
considered in the tight-binding-like form

v=integer,

195307-4
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P

14
p+ 5 + T, integer.
It becomes obvious that describes the total angular mo-
mentum of excitons.

The tunneling through the potential from well to well
leads to an explicit dependence of the energy levgfs” on
the symmetry parametgrand thus results ienergy bands
as a function of the magnetic flu®. In the tight-binding

approximation, it is given by

8jr.a.,p

. (17

T— "ty
Dy

=&

;'a' — tO,j — 2’[1'] COE{ 2

where

to;=— J do ¢i(@)[Ven(0)— Ve e)1e(¢),
(19)
thj== J de $i(9)[Ven(¢) = Ven(@)1dj(e = ¢1).
It is obvious from Eq.(17) that the hopping integral,

determines the width of the energy bas{d® " and causes
the Aharonov-Bohm-like oscillation in energy levels. How-

ever, as follows from the detailed discussion of this effect,

t,; is typically exponentially small compared wit{* .

Only whens]-r'a' is close to the maximum of interaction po-

tential Ve.h(7) doest,; have a finite value. In other words,

in order to access the measurable AB effect, the bound elec-
tron and hole should have a possibility to tunnel in the op-

PHYSICAL REVIEW B3 195307

we obtain one bound eigenstate with the eigenfunction and
eigenvalue

bo(e— o) = Vkexg —k|o—eqg|), (21)
21,2

L. S 22)
m* R3

respectively. Heré= 7V, /(#2/m* RS) >1. Substituting the
single-well wave function2l) in Eq. (18), in the limit of
largek, we get the result

tO,j~47TV0k eXp( _47Tk),
tlijWZWVOk eXF(—Zﬂ'k),

and

r.a.,p_._
80 -~

27D
—7mVok| 1+4 cos{ T) exp(—27-rk)}. (23
0

Note that the expression fery® P agrees exactly with that
obtained by Rmer and RaikjEq. (19) in Ref. 22.

B. Harmonic potential
In this case the electron-hole interaction potential and
single-well potential are given by
* D2
m* R3 2
4

2
2 sin(f) ,

L@
Ve_h(ZRO sm§> 5

posite directions and meet each other “on the opposite side

of the nanoring” = ).

Using the wave functiorfll) of a state with a fixed an-
gular momentumv, we finally obtain the eigenenergies of
the full Hamiltonian,

2.2

Eoop, »=2600+e! P+ : (19
00pJ =0 T 4m* R2
and the expression for the oscillation strengths
|®P(0)[?
: b0 (20

i~
| Taelopcerr

In the following we consider the detailed examples for three
typical electron-hole interaction potentials, restricting our-

selves withv=0.

A. Short-ranged potential

We use thed potential to simulate the short-ranged po-
tential, i.e., Ve.n(2Rg|sin(@/2)])=—2mV6(2|sin(¢/2)|),
and chooseVg ' (¢)=—27V,8(¢—¢q) [see Fig. 2a)].
By solving the one-dimensional Scliinger equation

ﬁ2 2

m* R3 9¢?

—2mVo8(e— @) — & [ dj(¢—9q) =0,

2

m* Rg

4

Vel Qo) = 0*(@=q)?,

respectively. A schematic plot of these two potentials is
shown in Fig. 2Zb). Once again we should solve the one-
dimensional Schidinger equation

k2 92

2l 92

I w2 2 r.a
t 5 (e e (¢ ¢g) =0,
wherel =m* RS/Z. It is nothing but an equation describing a
shifted harmonic oscillator. The eigenfunctions and eigenval-
ues are thus given by

2

b~ po)= =g — | £2
RN 2\ ¢
=@
X H, Q),
3
(24)
r.a._ﬁ H 1 HE—
g =hw j+§, ]=0,1,2....

In Eq. (24), ¢=[(ho/2)(h*/m*R3)] <1 is the typical
width of the single-well wave function artd;(x) is Hermite
polynomial®? By substituting Eq(21) in Egs.(18) and(17),
in the limit of small ¢, the final result is

195307-5



HUI HU, JIA-LIN ZHU, DAI-JUN LI, AND JIA-JIONG XIONG PHYSICAL REVIEW B 63 195307

toj~ajfio, bi(e—¢q), ¢>¢q
¢' (QD_(P ): ’ j:1121"'
1 (=D %i(e—90), e<eq
2
4 ™ (25)
~( — ) o 1/2
b= (U5, exp( fz)ﬁ“” so-o0)=| 2| lo-solexd — =29
and
2 —
XF| -] +1,2,|(P.—%|),
1 | 1a
it P~ha (l+§ —aj+ (-1 12 where a=2(#2/m* R2)/(e/4me s, Ry)<1 andF is a hy-
pergeometric functio®® The corresponding eigenvalues
p( 772> s<277q)) have the form
Xexp ——|co ,
& ®o . 1 e?
gla—_ =
where 19 aj? 8meos Ry
similar to the energy spectra of a hydrogen atom. It should
£ 1 +oo be pointed out that the eigenfunctions vaniskpateq since
ai:ﬂj-—uzf dx x4sz(x)exp1(—x2), the singular and nonintegrable Coulomb potential acts as an
2] —e impenetrable barrier for both electron and hdi@his effect
gives an exponentially small oscillator strength for the ex-
(m2—4) N cited stategsee Eq(20)] and leads to the rapid damping of
=it 2 z) the low-lying excitonic transitions in the linear optical sus-
277018 ceptibility for a finite width nanoring as shown in the next
section. The hopping integrals in E4.8) are tedious to in-
C. Coulomb interaction potential tegrate, and in the first order of smalllimit the final answer
is
Let us consider the more realistic Coulomb interaction
potential which has the forrfsee also Fig. @)] e?
toj~ 8meoe, Ry’
Ven| 2R sin] | = ¢
el SRS [ =7 Zarsoe Ro2lSin(¢/2)] om0 exd - 27|
L ! ja |8mege,Ry’
2
e and
VWO ) = — .
eh () 477808rRo|<P—<PQ| o2 1
rap. | T 44 _1)024
We now face to solve the Schdimger equation for a one- €j0 8meoe Ro| aj? T+ (—1)725
dimensional exciton,
y 2 27D
r2 92 g2 i o | ex ]—a co _CDO )
m* Rg (9(,02 477808rR0|(P_ ‘PQ| ! ! Q where
=0.

ja[+= . ,
o o . aj=4—8jo dXxX[F(—j+1,2x)]% exp(—x),
The ground state solution gives a logarithmically divergent
eigenvalue ¢{*— —) and the normalized eigenfunction
behaves like & function3? In this sense, the electron-hole _2m(m—2)
pair tends to bind extremely tightly, and is prevented to tun- J jla®
nel through the Coulomb potential barrier to induce any mea-
surable AB effect. This situation is also expected if one in- At the end of this section, we would like to emphasize the
troduces a finite but small ring wid#. On the other hand, following features.
each excited state of one-dimensional exciton is twofold de- (i) For all the cases we have considered, both for ground
generate and classified further by tharity symmetry pa- state and excited states the hopping integyalis typically
rameterd (=0, and 1 corresponds to even and odd parityexponentially small compared With}'a', and the exponent
symmetry, respectively The detailed eigenfunctions can be factor is determined by the ratio of electron-hole interaction
constructed from the radial wave function of a hydrogenpotential and the characteristic energy of rotation mode. This
atom with zero angular momentum and are given by prediction is in apparent contradiction to the recent claim of

(2m+ja)[F(—j+1,2,2rlja)]>
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Romer and RaikK? which predicted that the ABE oscilla-  (a

tions are found much more easily in the case of excited state 20 2
and are not exponentially small. This discrepancy might arise 15
from the definition of “excited states” of excitons. Recall 0 10
that there is only one bound state for an electron-hole pait 5
with a short-ranged interaction potenti@t least with ad -20 £
potentia). Therefore, the “excited states” discussed by (b) g ¢ E—
Romer and Raikh are more appropriately regarded as “ex- 20 &
cited states” offree electrons or holes instead of excitons. g 1.0
(i) In the case of the Coulomb interaction potential, there 0 §
is no ABE for the ground excitonic state due to the intrinsic g 0.5
divergence of the ground state energy of one-dimensiona 2 . . :
excitons®® ( L0 ;
(iii) On the other hand, in order to observe the AB effect g 0.4

in excited states, the single-well eigenvalug$" should be
tuned closely to the potential maximuiy_,( 7). Because of
the particular properties of the energy spectra in the presenc
of Coulomb interaction, i.e£]; > —1/j% the Coulomb in-
teraction potential is appropriate to observe the AB effect in
excited states compared with other potentials. For example
for a narrow-width nanoring witiRy,=20 nm, by setting
ejy ~—e’l8mege,Ry, a rough estimation giveg~1,

20 0 20

X (nm)
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0.2

0.0
0

10 20 30 40
v (nm)

FIG. 3. The conditional probability distribution&PD’s) and

which agrees well with the numerical results for light-hole pair-correlation functiongPCF’s shown, respectively, on the left

excitons in InAs nanorings as shown below.

and right of each of the subplofbeled by(a)—(c)] for a heavy-

hole exciton in an InAs nanoring with radil® =20 nm and width
W= 10 nm. Each CPD is expressed in a logarithmic intensity scale

IV. NUMERICAL RESULTS AND DISCUSSIONS

In order to understand the influence of a finite ring width
on the AB effect, let us now discuss the numerical results for
a realistic self-assembled semiconducting InAs nanoring. In
the following we restrict ourselves in the subspace0. We
have taken the parametems = 0.067m,,

in the range from 0.01black to 1.0 (white). The heavy hole is
fixed atvy=(20,0). (a) The ground state an() the fifth and(c)
sixth excited states.

we first study the hopping integrgy; (or the tunneling pos-
he effecti sibility) that plays the most essential role in the AB effect.
the eflective mass  pangting the numerical wave function of excitons by

of the light rlole m,*h=0.099ne., the effective mass of. the W (re,rn) [see Eq(3), which is the summation of the prod-
heavy holemj,=0.335m (M, is the bare mass of a single yct of the center-of-mass and relative wave funcflpmee

electron, and g,=12.4, which are appropriate for InAs define the usual PCF as

material>>'°The electron and hole are considered to be con-
fined in a confinement potential with the same strength, i.e.,
m? wZ=m¢ »?. The ring radiusR, and characteristic fre-
qguency of the radial confinemefitw, are chosen to be 20
nm and 14 meV Rw.=14 meV corresponds towW
=10 nm), respectively, simulating the recent experimenta
results AE,,~5 meV and AE,~20-25 meV in InAs
nanorings* AE,, is the energy level spacing between the
single electron states with different orbital angular momen-
tum m and the same radial quantum numlmemwhile AE,
corresponds to the energy spacing with different radial quan-
tum numbern and the same angular momentum In the
calculations, we use effective atomic units in which the
length unitag is a factore,/u times the Bohr radiusg,
and the energy is given in effective hartreebi}
=(ule?)x1 hartree(for the heavy-hole exciton, for ex-
ample, the length and energy units then scale afp
=11.8 nm andH} =10.0 meV). ForRy=20 nm, the uni-

P(V[rh=vo) =

G(v)=27‘rf f 8(re—rp—V)|W(re,rp)|2dredry,,

(26)

nd the CPD for finding the electron\agiven that the hole
satrp=vg as

|\I’(V,rh:Vo)|2

Jdre|‘P(re,rh:Vo)|2

(27)

Note that for the exac¥ in the case of a circularly symmet-
ric confinement, the PCF turn out to be circularly symmetric.
With the above, we solved for heavy-hole—exciton energy
spectra and wave functions foV=10 nm. The selected
PCF's and CPD’s are displayed in Fig. 3. For the ground
state in Fig. 8), the CPD exhibits a highly localized elec-
tron density around the hole, namely, the electron and hole

versal flux quantum®, corresponds to the magnetic field tends to bind tightly with each other. The above picture is
B~4.1T. also reflected in the PCF, which shows a rapid delay as the
By probing of the structure of the numerical excitonic distance between electron and hole increases. This behavior
wave functions with the use of the conditional probability agrees well with the rigorous analysis presented earlier in
distribution (CPD) and pair-correlation function>® (PCB, Sec. IlIC. In contrast to the ground state, in Fig&)3and
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FIG. 5. The low-lying energy levels of InAs nanorings with
radiusRy=20 nm and widthw=10 nm as a function of the mag-
netic field for (a) heavy-hole andb) light-hole excitons. As indi-
cated by the arrow, a periodic, Aharonov-Bohm-type oscillation in
some low-lying energy levels takes place.

This is due the comparable effective mass between the elec-
tron and light hole, which suppresses the electron-hole bind-
ing (i.e., the much higher ground-state energy of light-hole
exciton compared with that of heavy-hole excit@nd thus
enhances the AB effect.

=20 0 20 Other noticeable features shown in Figga)5and 5b)
include the following (i) There are many anticrossings in the
X (nm) energy levels that are caused by level repulsigiis.Con-

trary to conventional quantum dots, when the magnetic field
FIG. 4. The conditional probability distributiot€PD’s) for the  is increased it seems unlikely to form any Landau lew@is.
eighth (upper paneland ninth(lower panel excited states. Other |n the high magnetic field, the energy level of the ground
parameters are the same as in Fig. 3. state and first excited state shows a slight blueshift, due to

3(c) the CPD's for the fifth and sixth excited states exhibit athe diamagnetic effect for each charge carrier that pushes all

well-developed local maximum probability for finding the the.relative energies upwards. This behavior is qualitatively
electron around the diametrically opposite point §,0) similar to the excitons in quantum dots. Note that those blue-

suggesting that the electron and hole have the possibility tghi_flfﬁ arg ?]bs_erveo][ itrrl]a recg”nttexp?rinfépg. for h hol
tunnel through the Coulomb potential barrier in opposite di- € behavior of Ih€ oscillator strengths for heavy-hole

rections. Observe also that the PCF’s in Figd) &nd 3c) ?xﬁj'tc.m and I|gtht(—jhpIeF<_aXC|ton aza lftuncuondqlf the mat%n(tatlc
reveal a clear local maximum at-35 nm. Moreover, in the leld is presented in Figs.(§-6(d). It is readily seen tha

case of the eighth and ninth excited statsse Fig. 4, one periodic oscillations take place in the oscillator strengths for

can even identify a larger hopping integral. The remarkable
emergence of the hopping integral for low-lying excited ex-
citonic states provides us a possibility for observing a non-
vanishing AB effect.

Figures %a) and Jb) display the low-lying energy levels
as a function of the magnetic field for heavy-hole exciton
and light-hole exciton. As can be seen immediately, the most

B 15—
(a)

33

32

<> T
b
=
o b
) )

Oscillator Strengths

obvious feature is the AB oscillations of some low-lying . 6 .

energy levels(indicated by an arroyvwith a period B 23l (© j (@
~4.1T or a flux quantumb,, as expected. However, the 4r .
AB oscillations are not very close to sinusoidal as illustrated ) AN ERVANE
by Eq.(17), due to the finite width of nanorings. The typical 22 1 oSO\ )/
amplitude of those oscillations is about 3 meV, which is S P A

much larger than the extremely narrow luminescence line-
width in a single InAs nanoring®’ and in view of this it
might be sensitive to be detected by present optical emission F|G. 6. The oscillator strengths of InAs nanorings as a function
techniques. Comparing Figs(eb and 3b), it is seen that the  of the magnetic field for heavy-holeipper panel(a) and (b)] and
energy levels of the light-hole exciton show a relatively pro-light-hole [lower panel,(c) and (d)] excitons. (a),(c) for ground
nounced AB effect. Even the first excited energy level of thestate and(b),(d) for excited statesthe solid, dashed, and dotted
light-hole exciton tends to oscillate with the magnetic field.lines correspond to the fourth, fifth, and sixth excited states

B(T) B (T)
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FIG. 7. Imaginary part of linear optical susceptibility as a func-  FIG. 8. The low-lying energy levels of InAs nanorings as a
tion of frequency for different magnetic fieldsn each subplot, function of the magnetic field for a heavy-hole exciton with differ-
from bottom to topB=0.0-8.0 T is increased on steps of 0.2 T entring widths(a) W=8 nm, (b) 14 nm,(c) 20 nm, andd) 30 nm.
(a),(b) for heavy-hole andc),(d) for light-hole excitons(b) and(d) ~ Other parameters are the same as in Fig. 5.
are the enlarged versions @ and(c). Ring radiusR,=20 nm and
width W=10 nm. For simplicity, the semiconducting band d&p  which suggests that a highly sensitive technique is needed in
is taken_to be zero. Note that for the sake of clarity curves havene experiment to access these coherent AB oscillations.
been shifted up by a constant. It is important to point out that our results mentioned

above are in apparent contradiction with the prediction given
the selected low-lying excited states. Though those oscillaby Song and Ulloa in their recent works, in which they
tions are not regular in shape and not close to the expecterdaimed that the excitons in nanorings behave to a great ex-
sinusoidal, they are still supposed to be caused by AB pheent as those in quantum dots of similar dimensions and the
nomena. In contrast, for the ground state, the oscillatoAB oscillation of exciton characteristics predicted for one-
strength increase monotonically with the magnetic field. Thedimensional rings are found to not be present in finite-width
result is in line with the blueshifts of the ground-state ener-systems<? Here we indeed observe the ABE of some of low-
gies, for example, the increasing magnetic field increases thging exciton states, which is suggested by the CPD’s and
confinement, decreases the separation between electron aR@F’s, illustrated by the energy spectra and oscillator
hole, and in turn yields the enhancement of oscillatorstrengths and finally confirmed by the imaginary part of lin-
strengths. Furthermore, the overall magnitude of the oscillaear optical susceptibility. Therefore, we believe that the finite
tor strength of the ground state is approximately one ordebut small width of the nanorings will not suppress the ABE
larger that of low-lying excited states, in good agreemenso greatly. Since the parameters used by Song and Ulloa are
with the analysis presented earlier that the oscillatomuite similar to ours, we suggest that the discrepancy might
strengths for excited states are exponentially small for ideabriginate from the following reasons.
one-dimensional nanorings. (i) In their paper, the negative Coulomb interaction term

To support the experimental relevance of our results anthas been simply treated as a perturbation within a parabolic
better understand the periodic, Aharonov-Bohm-type oscillabasis. However, just as the authors mentioned, when the
tion in energy spectra, the imaginary part of linear opticalcharacteristic scale of systems is beyond the effective Bohr
susceptibility is plotted as a function of frequenay for  radius, the known poor convergence of the parabolic basis
different magnetic fields in Figs.(@—-7(d), where a broad- might lead to unreliable results, especially for the excited
ening parametdr =0.5 meV is used. Those curves representstates.
all the possible transitions of excitonic states that would be (ii) For the radius of the ring in Fig. 4 of Ref. 2R,
measurable via photoluminescence excitation measurements24 nm, the periodicity of the AB oscillation is expected to
(PLE). For simplicity, the semiconducting band g&g is  be given by a period B~2.9 T. However, the authors only
taken to be zero, and the frequenay at each transition show the results for different magnetic fields increased in
(peak corresponds to the energy level of excitons, for ex-steps of 5.0 T. With such a large interval, one might miss the
ample, the negativa at the lowest transition in Fig.(&) AB oscillations completely.
corresponds to the ground-state transition of heavy-hole ex- We next turn out to investigate the size effect by tuning
citon. As expected, the periodic oscillations at some low-the ring width. As an illustration, the low-lying energy levels
lying energy levels ¢~30 meV) are well reflected. How- of the heavy-hole exciton for a narrow ring widt
ever, the amplitude of those oscillations is very small=8 nm, shown in Fig. &), is compared to the wide ring
compared with that of the lowest transition because of thevidth case withiW=14, 20, and 30 nmishown in Figs. &),
weak oscillator strengths of low-lying excited states. In fact,8(c), and &d), respectively. It is readily seen that as the ring
it is an indication of the delicate nature of the AB effect, width increases, the AB oscillation pattern is gradually de-
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50
40
30

(i.e., the general properties of a one-dimensional exciton is
expectegl thus resulting in the destruction of the regular

patterns observed in quantum dots. It is interesting to note
that this distinctive difference is indeed observed by a recent

20
experiment given by Petterssenal?* and Huet al#?*3

10

V. CONCLUSION

In conclusion, we have studied the magnetic field effect
on excitons in an InAs nanoring based on a simple model
Hamiltonian. By numerical diagonalization, we calculate the
low-lying energy levels, oscillator strengths, and the corre-
sponding linear optical susceptibility. A periodic, Aharonov-
Bohm-type oscillation is clearly revealed in some low-lying
energy levels and linear optical susceptibility curves for a
realistic self-assembled semiconducting InAs nanoring. This

FIG. 9. Imaginary part of linear optical susceptibility of the AB effect is well interpreted with the rigorous analysis for
heavy-hole exciton as a function of frequency for different mag-narrow-width nanorings.
netic fields and different ring widthga) W=8 nm, (b) 14 nm,(c) In a recent work, Warburtoet al. presented an experi-
20 nm, and(d) 30 nm. ment of optical emission in asingle charge-tunable

nanoring’’ They studied the role of multiply charged exciton
stroyed. The disappearance of the AB effect arises from theomplexes with no applied magnetic field and found a shell
destruction of the non-simply-connected geometry of nanostructure in energy similar to that of quantum dbté?
rings, since the increasing width lowers the soft confinement herefore, encouraged by the rapidly developing nanotech-
potential barrier at the ring center and in turn yields a highniques for detection, i.e., the achievement of extremely nar-
possibility for placement of carriers. FoW=30 nm, which row and temperature-insensitive luminescence lines from a
is comparable to the ring diameter=2R,=40 nm, the single InAs nanoring in GaAs, we hope that our predictions
main characteristic of the energy spectra resembles that &f the ABE effects can be confronted in experiments in the
quantum dots>~*! In Fig. 9, the corresponding imaginary future.
part of linear optical susceptibility is plotted as a function of ~Note added. Recently, we communicated with the authors
frequency_ Comparison of the caseWwf=8 nm in F|g qa) of Ref. 23. We were informed that the width of the ring used
with the wide width limit[Fig. 9(d)] is instructive, since it in their calculations(in Fig. 4 of Ref. 23 should have read
exhibits a distinctive difference of the excitonic optical prop-21 nm instead of the 8 nm that is mistakenly mentioned in
erties between nanorings and guantum dots. Unlike Con\/eﬁhe Caption. Therefore, their results are not in contradiction
tional quantum dots, in which the |Ow-|ying exciton state with ours. In fact, their results in Flg 4 are very similar to
transitions have the same amplitudes and are nearly equalfrs for the heavy-hole exciton with a ring width of 20 nm as
distributed(a reflection of excitations involving the exciton shown in Fig. €c).
ground state and various center-of-mass replicas without al-
te.rmg the 'g.round state qf the relative co.ordlnatbe !ow- _ ACKNOWLEDGMENTS
lying transitions of nanorings show a rapid dampening with
frequency and their positions are not periodic. This differ- We would like to thank Dr. H. Pettersson for helpful dis-
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