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Aharonov-Bohm effect of excitons in nanorings

Hui Hu,1 Jia-Lin Zhu,1,2 Dai-Jun Li,1 and Jia-Jiong Xiong1
1Department of Physics, Tsinghua University, Beijing 100084, People’s Republic of China

2Center for Advanced Study, Tsinghua University, Beijing 100084, People’s Republic of China
~Received 19 October 2000; published 18 April 2001!

The magnetic field effects on excitons in an InAs nanoring are studied theoretically. By numerically diago-
nalizing the effective-mass Hamiltonian of the problem that can be separated into terms in center-of-mass and
relative coordinates, we calculate the low-lying excitonic energy levels and oscillator strengths as a function of
the ring width and the strength of an external magnetic field. It is shown that in the presence of Coulomb
correlation, the so-called Aharonov-Bohm effect of excitons exists in a finite~but small! width nanoring.
However, when the ring width becomes large, the non-simply-connected geometry of nanorings is destroyed,
causing the suppression of the Aharonov-Bohm effect. The analytical results are obtained for a narrow-width
nanoring in which the radial motion is the fastest one and adiabatically decoupled from the azimuthal motions.
The conditional probability distribution calculated for the low-lying excitonic states allows identification of the
presence of the Aharonov-Bohm effect. The linear optical susceptibility is also calculated as a function of the
magnetic field, to be compared with the future measurements of optical emission experiments on InAs nano-
rings.

DOI: 10.1103/PhysRevB.63.195307 PACS number~s!: 73.22.2f, 71.35.2y, 03.65.Ta, 78.66.Fd
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I. INTRODUCTION

Recently, Lorke and collaborators demonstrated the r
ization of self-assembled InAs nanorings inside a comple
field-effect transistor.1–3 Such small nanorings@with a typi-
cal inner ~outer! radius of 20 ~100! nm and 2–3 nm in
height# allow one to study the new non-simply-connect
geometry where electrons or holes could propagate co
ently ~nondiffusively! all throughout.4–20 In particular, they
offer a unique opportunity to explore the so call
‘‘Aharonov-Bohm effect’’ ~ABE! of an exciton, an interest-
ing concept suggested by Chaplik21 and Römer and Raikh.22

Chaplik first predicted the Aharonov-Bohm~AB! oscilla-
tion of excitonic levels inone-dimensional quantum ring
structures,21 and most recently, Ro¨mer and Raikh found
similar results with a short-ranged interaction potential
using a quite different analytical approach.22 In contrast to
the general belief that an exciton, being a bound state
electron and hole and thus aneutral entity, should not be
sensitive to the applied flux, they predicted the possibility
a nonvanishing ABE in one-dimensional rings caused by
finite confinement of an exciton. On the other hand, so far
influence of the ring width on ABE has rarely been inves
gated. Only recently did Song and Ulloa study the magn
field effect on excitons in a finite width nanoring. The
found that the excitons in nanorings behave to a great ex
as those in quantum dots of similar dimensions and the fi
width of nanorings can suppress completely the ABE p
dicted for one-dimensional rings.23 At the moment, however
to what extent the ABE exists in the quasi-one-dimensio
~or more important, therealistic! nanorings is still unclear
and is an open subject for research.

In this paper, we would like to investigate systematica
the magnetic field effect on an exciton within a simplifie
model Hamiltonian, which is applicable to therealistic self-
assembled semiconducting InAs nanorings.1–3,24 By diago-
nalizing the effective-mass Hamiltonian of the problem a
0163-1829/2001/63~19!/195307~11!/$20.00 63 1953
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calculating the low-lying excitonic energy levels and oscil
tor strengths as a function of the ring width and the stren
of an external magnetic field, we show an evident ABE
nanorings with a finite but small ring width. The numeric
results are well interpreted with the analytical results fo
narrow-width nanoring in which the radial motion is the fas
est one and adiabatically decoupled from the azimuthal m
tions, and also well understood by the conditional probabi
distribution calculated for the low-lying excitonic states. T
following is a summary of our main results:

~i! In the presence of a Coulomb interaction between
electron and hole, there isno ABE for the ground excitonic
statefor all the ring widths due to the intrinsic divergence
the ground-state energy of one-dimensional excitons.

~ii ! Some of the low-lying excited excitonic energy leve
and oscillator strengths can show a periodic, Aharon
Bohm-type oscillation, as a function of the magnetic fie
The periodicity of oscillations is equal toF0[h/e—the uni-
versal flux quantum.

~iii ! In addition to the overall blueshifts caused by t
diamagnetic effect, the linear optical susceptibility traces
parently show ABE oscillations with the magnetic field f
some of excited states.

The remainder of this paper is organized as follows.
Sec. II, we present the model Hamiltonian for a nanoring a
the solution method. As a first approximation, the nanor
structure is modeled by a ringlike confinement potential
which we can separate the Hamiltonian into terms in cen
of-mass and relative coordinates. Subsequently~Sec. III!, we
give the analytical results for the narrow-width nanorin
with me* 5mh* . By calculating the tunneling possibility fo
three typical electron-hole interaction potentialVe-h(w), we
explore the underlying physics of ABE, and the main resu
of Chaplik and of Ro¨mer and Raikh are recovered. Sectio
IV is devoted to the detailed discussion of numerical resu
for different ring widths and magnetic fields, including th
low-lying energy levels, oscillator strengths, condition
©2001 The American Physical Society07-1
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probability distributions, pair-correlation functions, and t
linear optical susceptibility. Finally, we summarize our r
sults in Sec. V.

II. MODEL AND NUMERICAL METHOD

We start from a simplified model Hamiltonian for a two
dimensional exciton in an InAs nanoring and in a static m
netic field, simulating recent experimental nanori
structures.1–3,24The exciton is described by an electron-ho
pair (i 5e,h) with an effective band edge massmi* moving
in the x-y plane. The ringlike structure is well described b
the potential,U(r i)5(1/2R0

2)mi* v i
2(r i

22R0
2)2, which repro-

duces a soft barriermi* v i
2R0

2/2 at the center of the sampl

produced by self-assembly.1–3,24Here,R0 is the radius of the
ring andv i is the characteristic frequency of the radial co
finement, giving a characteristic ring widthW'A2\/mi* v i

for each particle. The whole system is subjected to an ex
nal magnetic field perpendicular to thex-y plane. The result-
ing model Hamiltonian is thus given by

H5 (
i 5e,h

F @pi2qiA~r i !#
2

2mi*
1U~r i !G2

e2

4p«0« r ure2rhu
,

~1!

wherer i5(xi ,yi) andpi52 i\“ i denote the position vecto
and momentum operator,«0 is the vacuum permittivity, and
« r is the static dielectric constant of the host semiconduc
qe52e andqh51e. We use symmetric gauge to introduc
the external magnetic field, i.e.,A(re)5 1

2 B3(re2rh) and
A(rh)52 1

2 B3(re2rh).
It should be pointed out that the present ringlike confin

ment potential can be rewritten asU(r i)5 1
2 mi* v i

2(r i

2R0)2(r i1R0)2/R0
2 . If one replaces the operatorr i in factor

(r i1R0)2/R0
2 by its mean valuê r i&5R0, the confinement

potential returns to the widely used parabo
form.3,5,6,10,17,19,23On the other hand, in the limit of the sma
radiusR0 or for a small potential strengthv i , the soft barrier
at the ring center is very weak, and the description of
nanoring is closer to that of a quantum dot. For a fixed r
width ~or potential strength!, the crossover from nanorings t
quantum dots is determined byR0;(A2/2)W or \v i /2
;mi* v i

2R0
2/2, which means the lowest energy of radial co

finement is comparable to the soft barrier at the ring cente
should also be pointed out that our ringlike confinement
tential has been used to calculate the far-infrared spec
copy for a two-electron nanoring,25 in good agreement with
the recent experiment done by Lorkeet al.3 In Fig. 1, we
show the schematic geometry of InAs nanorings with rad
R0520 nm for electrons. Figures 1~a! and 1~b! correspond to
two different ring widthsW510 and 7 nm, respectively.

In terms of the relative coordinater5re2rh and center-
of-mass coordinate R5(me* re1mh* rh)/(me* 1mh* ) the
model Hamiltonian can be separated into the motion of c
ter of mass, relative motion of the electron-hole pair, and
mixed part:

H5Hcm~R!1Hrel~r !1Hmix~R,r !,
19530
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FIG. 1. Schematic geometry of InAs nanorings with radiusR0

520 nm and width~a! W510 nm or ~b! 7 nm for electrons.me*
50.067me .
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wherem5me* mh* /M is the electron-hole reduced mass a
M5me* 1mh* is the total mass. We have also introduced

center-of-mass frequencyvcm5A(me* ve
21mh* vh

2)/M and a

relative frequencyv rel5A(mh* ve
21me* vh

2)/M .
The main purpose in the change of variable above is

use the solutions ofHcm andHrel as a basis for solving the
full Hamiltonian. Those solutions, i.e., labeled bycl

cm(R)
and cl8

rel(r ), can be solved by the series expansi

method.26,27 Here, l5$ncm ,l cm% and l85$nrel ,l rel% repre-
sent the quantum number pair of the radial quantum num
n and orbital angular-momentum quantum numberl. Another
advantage of the separation of center-of-mass and rela
coordinates is that the negative Coulomb interact
2e2/4p«0« r r appears inHrel only, and the well-known
poor convergence of the parabolic basis is thus avoided w
the characteristic scale of systems is beyond the effec
Bohr radius.23,28 We now search for the wave functions
the exciton in the form

C5 (
l,l8

Al,l8cl
cm~R!cl8

rel
~r !. ~3!

Due to the cylindrical symmetry of the problem, the excit
wave functions can be labeled by the total orbital angu
momentumL5 l cm1 l rel . To obtain the coefficientsAl,l8 ,
the total Hamiltonian is diagonalized in the space spanned
the product statescl

cm(R)cl8
rel(r ). In the present calcula

tions, we first solve the single-particle problem of center-
mass and relative HamiltoniansHcm andHrel , keep several
hundreds of the single-particle states, and then pick up
low-lying energy levels to construct several thousands
product states. Note that our numerical diagonalizat
scheme is very efficient and essentially exact in the se
that the accuracy can be improved as required by increa
the total number of selected product states.

Once the coefficientsAl,l8 are obtained, one can calcu
late directly the measurable properties, such as the lin
optical susceptibility of the nanorings, whose imaginary p
is related to the absorption intensity measured by opt
emission experiments. In theory, the linear optical susce
bility is proportional to the dipole matrix elements betwe
one electron-hole pairj state and the vacuum state, which
turn is proportional to the oscillator strengthsF j . In the di-
pole approximation, it is given by28–30

F j5U E E dR drC~R,r !d~r !U2

5U(
l,l8

Al,l8cl8
rel

~0!E dR cl
cm~R!U2

, ~4!

where the factorcl8
rel(0) and the integral overR ensure that

only the excitons withL50 are created by absorbing ph
tons. Therefore, the frequency dependence of the linear
tical susceptibilityx(v) can be expressed as28–30

x~v!}(
j

F j

\v2Eg2Ej2 iG
, ~5!
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whereEg andEj are the respective semiconducting band g
of InAs and energy levels of the exciton, andG has been
introduced as a phenomenological broadening paramete

III. NARROW-WIDTH NANORINGS

In order to explore the underlying physics of ABE, w
first consider a narrow-width nanoring in which the analy
cal results are variable. We restrict ourselves with the con
tion me* 5mh* 5m* , but the general properties of nanoring
are not affected by this constraint. The technique emplo
in this section follows directly the previous works of We
dler, Fomin, and Chaplik describing the rotating Wign
molecule behavior in quantum rings.14–16,31

By introducing polar coordinates in thex-y plane r i
5(r i ,w i), the relative azimuthal coordinatew5we2wh ,
and the azimuthal coordinateQ5(we1wh)/2 that describes
the motion of the electron-hole pair as a whole, the Ham
tonian ~1! reads

H5 (
i 5e,h

H F2
\2

2m* S ]2

]r i
2

1
1

r i

]

]r i
D 1U~r i !G J

2
\2

2m* H 1

r e
2 S ]

]w
2 i

Fe

F0
D 2

1
1

r h
2 S ]

]w
2 i

Fh

F0
D 2

1S 1

r e
2

1
1

r h
2D 1

4

]2

]Q2
1S 1

r e
2

2
1

r h
2D ]

]w

]

]QJ
1Ve-h~ ure2rhu!, ~6!

whereFe5pBre
2 andFh5pBrh

2 . For a narrow-width nan-
oring, i.e.,W!R0, the radial motion is much faster than th
azimuthal motions. Hence the radial motion isadiabatically
decoupledfrom the azimuthal motions with the result

C~r e,r h ;w,Q!5 (
ne ,nh

Jne ,nh
~r e,r h!cne ,nh

~w,Q! ~7!

for the excitonic states.Jne ,nh
(r e,r h) is a product of the

corresponding single-particle wave functionsxni
(r i) with

eigenenergies«ni

rad (ni50,1,2, . . . ), which describe the ra-

dial motion of electrons or holes with zero angular mome
tum. Because the single-particle wave functions are
thonormalized, the set$Jne ,nh

(r e,r h)% forms a closure set o
orthonormalized functions. The azimuthal wave functi
should satisfy thesingle-valuedness boundary condition,
i.e., cne ,nh

(we ,wh)5cne ,nh
(we12p,wh)5cne ,nh

(we ,wh

12p)5cne ,nh
(we12p,wh12p), or in terms of the new

variables w and Q, cne ,nh
(w,Q)5cne ,nh

(w12p,Q1p)

5cne ,nh
(w,Q12p).

As long as the above-stated criterion of the adiabatic
proximation is satisfied, the excited states of radial mot
lie high above the ground state. As a consequence we
restrict the consideration to the ground state of the ra
motion because here only the lowest-lying states are of
terest. Thus we take onlyne5nh50 and substitute Eq.~7!
7-3
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into the Schro¨dinger equationHC5EC, multiply both parts
by J0,0(r e,r h), and integrate overr e,r h . Hence the variables
w andQ become separated:

H 2
\2

m* K 1

r e
2L F S ]

]w
2 i

F

F0
D 2

1
1

4

]2

]Q2G
1^Ve-h~Ar e

21r h
222r er h cosw!&

12«0
rad2EJ c0,0~w,Q!50, ~8!

whereF5^Fe&5^Fh& in the first-order approximation, an
^ & denotes the average with the radial wave functions

^•••&5E drer eE drhr hJ0,0* ~r e,r h!•••J0,0~r e,r h!. ~9!

The magnetic flux in Eq.~8! can be removed by a gaug
transformation with the price of introducing thetwisted
boundary conditions:

c0,0~w,Q!5ei2pF/F0c0,0~w12p,Q1p!,
~10!

c0,0~w,Q!5c0,0~w,Q12p!.

It is obvious from Eq.~8! that the relative azimuthal motio
is decoupled from the azimuthal motion of the electron-h
pair as a whole. Therefore the azimuthal wave function
be represented in the form

c0,0~w,Q!5F j
p~w!Qn~Q!, ~11!

where

Qn~Q!5
1

A2p
einQ, ~12!

andF j
p(w) is a solution of the equation

H 2
\2

m* R0
2

]2

]w2
1Ve-hS 2R0Usin

w

2U D2« j
r .a.,pJ F j

p~w!50.

~13!

Here we have used

K 1

r e
2L 5

1

R0
2

,

^Ve-h~Ar e
21r h

222r er h cosw!&5Ve-hS 2R0Usin
w

2U D .

The indexp describes the possible symmetry types ofF j
p(w)

and can be specified below by the twisted boundary co
tion. In Fig. 2, we show three typical types of electron-ho
interaction potentialsVe-h„2R0usin(w/2)u… with 2p periodic-
ity. In the view of the excitonic state, the potential should
strong enough to bind the electron-hole pair, and then
relative azimuthal motion is strongly localized in each pote
tial well. Thus the relative azimuthal wave function can
considered in the tight-binding-like form
19530
e
n

i-

e
-

F j
p~w!5 (

Q52`

1`

exp~ ipwQ!f j~w2wQ!, ~14!

where wQ52pQ;Q50,61,62, . . . . The wave function
f j (w2wQ) of a single well satisfies the equation

H 2
\2

m* R0
2

]2

]w2
1Ve-h

SW,Q~w!2« j
r .a.J f j~w2wQ!50,

~15!

whereVe-h
SW,Q(w) is the potential of a given single well with

minimum atw5wQ , which coincides with the periodic po-
tential Ve-h„2R0usin(w/2)u… in the regionuw2wQu,p. Note
that the tight-binding-like relative azimuthal wave function
satisfies the Floquet-Bloch theorem, which is applicable
the periodic potential.

Combining Eqs.~12!, ~14!, and~11! and substituting them
into the twist boundary condition, Eq.~10!, we obtain

n5 integer,
~16!

FIG. 2. Scheme of different interaction potentialsVe-h(w)
as a function of the relative azimuthal coordinatew5we2wh .
~a! Short-ranged form 22pV0d„2 sin(w/2)…, ~b! parabolic
form (m* v2r2/4)@2 sin(w/2)#2, and ~c! Coulomb form
2e2/4p«0« rru2 sin(w/2)u. The potential of a given single well with
minimum atw50, Ve-h

SW,0(w) is delineated by the thick solid line.
Some low-lying energy levels for each well are also indicated.
7-4
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p1
n

2
1

F

F0
5 integer.

It becomes obvious thatn describes the total angular mo
mentum of excitons.

The tunneling through the potential from well to we
leads to an explicit dependence of the energy levels« j

r .a.,p on
the symmetry parameterp and thus results inenergy bands
as a function of the magnetic fluxF. In the tight-binding
approximation, it is given by

« j
r .a.,p5« j

r .a.2t0,j22t1,j cosS 2p
F

F0
1pn D , ~17!

where

t0,j52E dw f j~w!@Ve-h~w!2Ve-h
SW,0~w!#f j~w!,

~18!

t1,j52E dw f j~w!@Ve-h~w!2Ve-h
SW,0~w!#f j~w2w1!.

It is obvious from Eq.~17! that the hopping integralt1,j

determines the width of the energy band« j
r .a.,p and causes

the Aharonov-Bohm-like oscillation in energy levels. How
ever, as follows from the detailed discussion of this effe
t1,j is typically exponentially small compared with« j

r .a.,p .
Only when« j

r .a. is close to the maximum of interaction po
tential Ve-h(p) doest1,j have a finite value. In other words
in order to access the measurable AB effect, the bound e
tron and hole should have a possibility to tunnel in the o
posite directions and meet each other ‘‘on the opposite
of the nanoring’’ (w5p).

Using the wave function~11! of a state with a fixed an
gular momentumn, we finally obtain the eigenenergies o
the full Hamiltonian,

E0,0,p, j ,n52«0
rad1« j

r .a.,p1
\2n2

4m* R0
2

, ~19!

and the expression for the oscillation strengths

F j5
uF j

p~0!u2

E
2p

1p

dwuF j
p~w!u2

dn,0 . ~20!

In the following we consider the detailed examples for th
typical electron-hole interaction potentials, restricting o
selves withn50.

A. Short-ranged potential

We use thed potential to simulate the short-ranged p
tential, i.e., Ve-h„2R0usin(w/2)u…522pV0d„2usin(w/2)u…,
and chooseVe-h

SW,Q(w)522pV0d(w2wQ) @see Fig. 2~a!#.
By solving the one-dimensional Schro¨dinger equation

H 2
\2

m* R0
2

]2

]w2
22pV0d~w2wQ!2« j

r .a.J f j~w2wQ!50,
19530
t,

c-
-
e

e
-

we obtain one bound eigenstate with the eigenfunction
eigenvalue

f0~w2wQ!5Ak exp~2kuw2wQu!, ~21!

«0
r .a.52

\2k2

m* R0
2

52pV0k, ~22!

respectively. Herek[pV0 /(\2/m* R0
2)@1. Substituting the

single-well wave function~21! in Eq. ~18!, in the limit of
largek, we get the result

t0,j'4pV0k exp~24pk!,

t1,j'2pV0k exp~22pk!,

and

«0
r .a.,p'2pV0kF114 cosS 2pF

F0
Dexp~22pk!G . ~23!

Note that the expression for«0
r .a.,p agrees exactly with tha

obtained by Ro¨mer and Raikh@Eq. ~19! in Ref. 22#.

B. Harmonic potential

In this case the electron-hole interaction potential a
single-well potential are given by

Ve-hS 2R0Usin
w

2U D5
m* R0

2

4
v2S 2 sin

w

2 D 2

,

Ve-h
SW,Q~w!5

m* R0
2

4
v2~w2wQ!2,

respectively. A schematic plot of these two potentials
shown in Fig. 2~b!. Once again we should solve the on
dimensional Schro¨dinger equation

H 2
\2

2I

]2

]w2
1

Iv2

2
~w2wQ!22« j

r .a.J f j~w2wQ!50,

whereI 5m* R0
2/2. It is nothing but an equation describing

shifted harmonic oscillator. The eigenfunctions and eigenv
ues are thus given by

f j~w2wQ!5
1

A2 j j !p1/2j
expF2

1

2 S w2wQ

j
D 2G

3H j S w2wQ

j
D ,

~24!

« j
r .a.5\vS j 1

1

2D , j 50,1,2, . . . .

In Eq. ~24!, j[@(\v/2)(\2/m* R0
2)#21/2!1 is the typical

width of the single-well wave function andH j (x) is Hermite
polynomial.32 By substituting Eq.~21! in Eqs.~18! and~17!,
in the limit of smallj, the final result is
7-5
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t0,j'a j\v,

t1,j'~21! jb j expS 2
p2

j2 D \v,

and

« j
r .a.,p'\vF S j 1

1

2D2a j1~21! j 112b j

3expS 2
p2

j2 D cosS 2pF

F0
D G ,

where

a j5
j2

24

1

2 j j !p1/2E2`

1`

dx x4H j
2~x!exp~2x2!,

b j5
~p224!

2 j 11 j ! j2
H j

2S p

j D .

C. Coulomb interaction potential

Let us consider the more realistic Coulomb interact
potential which has the form@see also Fig. 2~c!#

Ve-hS 2R0Usin
w

2U D52
e2

4p«0« rR02usin~w/2!u
,

Ve-h
SW,Q~w!52

e2

4p«0« rR0uw2wQu
.

We now face to solve the Schro¨dinger equation for a one
dimensional exciton,

H 2
\2

m* R0
2

]2

]w2
2

e2

4p«0« rR0uw2wQu
2« j

r .a.J f j~w2wQ!

50.

The ground state solution gives a logarithmically diverg
eigenvalue (« j

r .a.→2`) and the normalized eigenfunctio
behaves like ad function.33 In this sense, the electron-ho
pair tends to bind extremely tightly, and is prevented to tu
nel through the Coulomb potential barrier to induce any m
surable AB effect. This situation is also expected if one
troduces a finite but small ring widthW. On the other hand
each excited state of one-dimensional exciton is twofold
generate and classified further by theparity symmetry pa-
rameteru (u50, and 1 corresponds to even and odd pa
symmetry, respectively!. The detailed eigenfunctions can b
constructed from the radial wave function of a hydrog
atom with zero angular momentum and are given by
19530
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-
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f j u~w2wQ!5H c j~w2wQ!, w.wQ

~21!uc j~w2wQ!, w,wQ
, j 51,2, . . .

~25!

c j~w2wQ!5S 2

j 3a3D 1/2

uw2wQuexpS 2
uw2wQu

ja D
3FS 2 j 11,2,

2uw2wQu
ja D ,

where a[2(\2/m* R0
2)/(e2/4p«0« rR0)!1 and F is a hy-

pergeometric function.32 The corresponding eigenvalue
have the form

« j u
r .a.52

1

a j2
e2

8p«0« rR0
,

similar to the energy spectra of a hydrogen atom. It sho
be pointed out that the eigenfunctions vanish atw5wQ since
the singular and nonintegrable Coulomb potential acts as
impenetrable barrier for both electron and hole.34 This effect
gives an exponentially small oscillator strength for the e
cited states@see Eq.~20!# and leads to the rapid damping o
the low-lying excitonic transitions in the linear optical su
ceptibility for a finite width nanoring as shown in the ne
section. The hopping integrals in Eq.~18! are tedious to in-
tegrate, and in the first order of small-a limit the final answer
is

t0,j'a j

e2

8p«0« rR0
,

t1,j'~21!ub j expS 2
2p

ja D e2

8p«0« rR0
,

and

« j u
r .a.,p'2

e2

8p«0« rR0
F 1

a j2
1a j1~21!u2b j

3expS 2
2p

ja D cosS 2pF

F0
D G ,

where

a j5
ja

48E0

1`

dx x3@F~2 j 11,2,x!#2 exp~2x!,

b j5
2p~p22!

j 3a3
~2p1 ja !@F~2 j 11,2,2p/ ja !#2.

At the end of this section, we would like to emphasize t
following features.

~i! For all the cases we have considered, both for grou
state and excited states the hopping integralt1,j is typically
exponentially small compared with« j

r .a. , and the exponen
factor is determined by the ratio of electron-hole interact
potential and the characteristic energy of rotation mode. T
prediction is in apparent contradiction to the recent claim
7-6
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Römer and Raikh,22 which predicted that the ABE oscilla
tions are found much more easily in the case of excited st
and are not exponentially small. This discrepancy might a
from the definition of ‘‘excited states’’ of excitons. Reca
that there is only one bound state for an electron-hole
with a short-ranged interaction potential~at least with ad
potential!. Therefore, the ‘‘excited states’’ discussed
Römer and Raikh are more appropriately regarded as ‘‘
cited states’’ offree electrons or holes instead of excitons

~ii ! In the case of the Coulomb interaction potential, the
is no ABE for the ground excitonic state due to the intrin
divergence of the ground state energy of one-dimensio
excitons.33

~iii ! On the other hand, in order to observe the AB effe
in excited states, the single-well eigenvalues« j

r .a. should be
tuned closely to the potential maximumVe-h(p). Because of
the particular properties of the energy spectra in the prese
of Coulomb interaction, i.e.,« j u

r .a.}21/j 2, the Coulomb in-
teraction potential is appropriate to observe the AB effec
excited states compared with other potentials. For exam
for a narrow-width nanoring withR0520 nm, by setting
« j u

r .a.;2e2/8p«0« rR0, a rough estimation givesj ;1,
which agrees well with the numerical results for light-ho
excitons in InAs nanorings as shown below.

IV. NUMERICAL RESULTS AND DISCUSSIONS

In order to understand the influence of a finite ring wid
on the AB effect, let us now discuss the numerical results
a realistic self-assembled semiconducting InAs nanoring.
the following we restrict ourselves in the subspaceL50. We
have taken the parametersme* 50.067me , the effective mass
of the light holemlh* 50.099me , the effective mass of the
heavy holemhh* 50.335me (me is the bare mass of a singl
electron!, and « r512.4, which are appropriate for InA
material.3,5,10The electron and hole are considered to be c
fined in a confinement potential with the same strength,
me* ve

25mh* vh
2 . The ring radiusR0 and characteristic fre

quency of the radial confinement\ve are chosen to be 20
nm and 14 meV (\ve514 meV corresponds toW
510 nm), respectively, simulating the recent experimen
results DEm;5 meV and DEn;20–25 meV in InAs
nanorings,24 DEm is the energy level spacing between t
single electron states with different orbital angular mom
tum m and the same radial quantum numbern, while DEn
corresponds to the energy spacing with different radial qu
tum numbern and the same angular momentumm. In the
calculations, we use effective atomic units in which t
length unitaB* is a factor« r /m times the Bohr radiusaB ,
and the energy is given in effective hartrees,Ha*
5(m/« r

2)31 hartree~for the heavy-hole exciton, for ex
ample, the length and energy units then scale toaB*
511.8 nm andHa* 510.0 meV). ForR0520 nm, the uni-
versal flux quantumF0 corresponds to the magnetic fie
B'4.1 T.

By probing of the structure of the numerical exciton
wave functions with the use of the conditional probabil
distribution ~CPD! and pair-correlation function35,36 ~PCF!,
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we first study the hopping integralt1,j ~or the tunneling pos-
sibility! that plays the most essential role in the AB effe
Denoting the numerical wave function of excitons b
C(re ,rh) @see Eq.~3!, which is the summation of the prod
uct of the center-of-mass and relative wave functions#, we
define the usual PCF as

G~y!52pE E d~re2rh2v!uC~re ,rh!u2dredrh ,

~26!

and the CPD for finding the electron atv given that the hole
is at rh5v0 as

P~vurh5v0!5
uC~v,rh5v0!u2

E dreuC~re ,rh5v0!u2
. ~27!

Note that for the exactC in the case of a circularly symmet
ric confinement, the PCF turn out to be circularly symmetr

With the above, we solved for heavy-hole–exciton ene
spectra and wave functions forW510 nm. The selected
PCF’s and CPD’s are displayed in Fig. 3. For the grou
state in Fig. 3~a!, the CPD exhibits a highly localized elec
tron density around the hole, namely, the electron and h
tends to bind tightly with each other. The above picture
also reflected in the PCF, which shows a rapid delay as
distance between electron and hole increases. This beha
agrees well with the rigorous analysis presented earlie
Sec. III C. In contrast to the ground state, in Figs. 3~b! and

FIG. 3. The conditional probability distributions~CPD’s! and
pair-correlation functions~PCF’s! shown, respectively, on the lef
and right of each of the subplots@labeled by~a!–~c!# for a heavy-
hole exciton in an InAs nanoring with radiusR0520 nm and width
W510 nm. Each CPD is expressed in a logarithmic intensity sc
in the range from 0.01~black! to 1.0 ~white!. The heavy hole is
fixed at v05(20,0). ~a! The ground state and~b! the fifth and~c!
sixth excited states.
7-7
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3~c! the CPD’s for the fifth and sixth excited states exhibi
well-developed local maximum probability for finding th
electron around the diametrically opposite point (28,0),
suggesting that the electron and hole have the possibilit
tunnel through the Coulomb potential barrier in opposite
rections. Observe also that the PCF’s in Figs. 3~b! and 3~c!
reveal a clear local maximum aty;35 nm. Moreover, in the
case of the eighth and ninth excited states~see Fig. 4!, one
can even identify a larger hopping integral. The remarka
emergence of the hopping integral for low-lying excited e
citonic states provides us a possibility for observing a n
vanishing AB effect.

Figures 5~a! and 5~b! display the low-lying energy levels
as a function of the magnetic field for heavy-hole excit
and light-hole exciton. As can be seen immediately, the m
obvious feature is the AB oscillations of some low-lyin
energy levels~indicated by an arrow! with a period B
'4.1 T or a flux quantumF0, as expected. However, th
AB oscillations are not very close to sinusoidal as illustra
by Eq.~17!, due to the finite width of nanorings. The typic
amplitude of those oscillations is about 3 meV, which
much larger than the extremely narrow luminescence li
width in a single InAs nanoring,37 and in view of this it
might be sensitive to be detected by present optical emis
techniques. Comparing Figs. 5~a! and 5~b!, it is seen that the
energy levels of the light-hole exciton show a relatively p
nounced AB effect. Even the first excited energy level of
light-hole exciton tends to oscillate with the magnetic fie

FIG. 4. The conditional probability distributions~CPD’s! for the
eighth ~upper panel! and ninth~lower panel! excited states. Othe
parameters are the same as in Fig. 3.
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This is due the comparable effective mass between the e
tron and light hole, which suppresses the electron-hole b
ing ~i.e., the much higher ground-state energy of light-ho
exciton compared with that of heavy-hole exciton! and thus
enhances the AB effect.

Other noticeable features shown in Figs. 5~a! and 5~b!
include the following.~i! There are many anticrossings in th
energy levels that are caused by level repulsions.~ii ! Con-
trary to conventional quantum dots, when the magnetic fi
is increased it seems unlikely to form any Landau levels.~iii !
In the high magnetic field, the energy level of the grou
state and first excited state shows a slight blueshift, due
the diamagnetic effect for each charge carrier that pushe
the relative energies upwards. This behavior is qualitativ
similar to the excitons in quantum dots. Note that those bl
shifts are observed in a recent experiment.38

The behavior of the oscillator strengths for heavy-ho
exciton and light-hole exciton as a function of the magne
field is presented in Figs. 6~a!–6~d!. It is readily seen that
periodic oscillations take place in the oscillator strengths

FIG. 5. The low-lying energy levels of InAs nanorings wit
radiusR0520 nm and widthW510 nm as a function of the mag
netic field for ~a! heavy-hole and~b! light-hole excitons. As indi-
cated by the arrow, a periodic, Aharonov-Bohm-type oscillation
some low-lying energy levels takes place.

FIG. 6. The oscillator strengths of InAs nanorings as a funct
of the magnetic field for heavy-hole@upper panel,~a! and ~b!# and
light-hole @lower panel,~c! and ~d!# excitons. ~a!,~c! for ground
state and~b!,~d! for excited states~the solid, dashed, and dotte
lines correspond to the fourth, fifth, and sixth excited states!.
7-8
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the selected low-lying excited states. Though those osc
tions are not regular in shape and not close to the expe
sinusoidal, they are still supposed to be caused by AB p
nomena. In contrast, for the ground state, the oscilla
strength increase monotonically with the magnetic field. T
result is in line with the blueshifts of the ground-state en
gies, for example, the increasing magnetic field increases
confinement, decreases the separation between electron
hole, and in turn yields the enhancement of oscilla
strengths. Furthermore, the overall magnitude of the osc
tor strength of the ground state is approximately one or
larger that of low-lying excited states, in good agreem
with the analysis presented earlier that the oscilla
strengths for excited states are exponentially small for id
one-dimensional nanorings.

To support the experimental relevance of our results
better understand the periodic, Aharonov-Bohm-type osc
tion in energy spectra, the imaginary part of linear opti
susceptibility is plotted as a function of frequencyv for
different magnetic fields in Figs. 7~a!–7~d!, where a broad-
ening parameterG50.5 meV is used. Those curves repres
all the possible transitions of excitonic states that would
measurable via photoluminescence excitation measurem
~PLE!. For simplicity, the semiconducting band gapEg is
taken to be zero, and the frequencyv at each transition
~peak! corresponds to the energy level of excitons, for e
ample, the negativev at the lowest transition in Fig. 7~a!
corresponds to the ground-state transition of heavy-hole
citon. As expected, the periodic oscillations at some lo
lying energy levels (v;30 meV) are well reflected. How
ever, the amplitude of those oscillations is very sm
compared with that of the lowest transition because of
weak oscillator strengths of low-lying excited states. In fa
it is an indication of the delicate nature of the AB effec

FIG. 7. Imaginary part of linear optical susceptibility as a fun
tion of frequency for different magnetic fields~in each subplot,
from bottom to top,B50.0–8.0 T is increased on steps of 0.2 T!.
~a!,~b! for heavy-hole and~c!,~d! for light-hole excitons.~b! and~d!
are the enlarged versions of~a! and~c!. Ring radiusR0520 nm and
width W510 nm. For simplicity, the semiconducting band gapEg

is taken to be zero. Note that for the sake of clarity curves h
been shifted up by a constant.
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which suggests that a highly sensitive technique is neede
the experiment to access these coherent AB oscillations

It is important to point out that our results mentione
above are in apparent contradiction with the prediction giv
by Song and Ulloa in their recent works, in which the
claimed that the excitons in nanorings behave to a great
tent as those in quantum dots of similar dimensions and
AB oscillation of exciton characteristics predicted for on
dimensional rings are found to not be present in finite-wid
systems.23 Here we indeed observe the ABE of some of lo
lying exciton states, which is suggested by the CPD’s a
PCF’s, illustrated by the energy spectra and oscilla
strengths and finally confirmed by the imaginary part of l
ear optical susceptibility. Therefore, we believe that the fin
but small width of the nanorings will not suppress the AB
so greatly. Since the parameters used by Song and Ulloa
quite similar to ours, we suggest that the discrepancy m
originate from the following reasons.

~i! In their paper, the negative Coulomb interaction te
has been simply treated as a perturbation within a parab
basis. However, just as the authors mentioned, when
characteristic scale of systems is beyond the effective B
radius, the known poor convergence of the parabolic ba
might lead to unreliable results, especially for the excit
states.

~ii ! For the radius of the ring in Fig. 4 of Ref. 23,R0
524 nm, the periodicity of the AB oscillation is expected
be given by a periodDB'2.9 T. However, the authors onl
show the results for different magnetic fields increased
steps of 5.0 T. With such a large interval, one might miss
AB oscillations completely.

We next turn out to investigate the size effect by tuni
the ring width. As an illustration, the low-lying energy leve
of the heavy-hole exciton for a narrow ring widthW
58 nm, shown in Fig. 8~a!, is compared to the wide ring
width case withW514, 20, and 30 nm@shown in Figs. 8~b!,
8~c!, and 8~d!, respectively#. It is readily seen that as the rin
width increases, the AB oscillation pattern is gradually d

e

FIG. 8. The low-lying energy levels of InAs nanorings as
function of the magnetic field for a heavy-hole exciton with diffe
ent ring widths:~a! W58 nm, ~b! 14 nm,~c! 20 nm, and~d! 30 nm.
Other parameters are the same as in Fig. 5.
7-9
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stroyed. The disappearance of the AB effect arises from
destruction of the non-simply-connected geometry of na
rings, since the increasing width lowers the soft confinem
potential barrier at the ring center and in turn yields a h
possibility for placement of carriers. ForW530 nm, which
is comparable to the ring diameterd52R0540 nm, the
main characteristic of the energy spectra resembles tha
quantum dots.39–41 In Fig. 9, the corresponding imaginar
part of linear optical susceptibility is plotted as a function
frequency. Comparison of the case ofW58 nm in Fig. 9~a!
with the wide width limit @Fig. 9~d!# is instructive, since it
exhibits a distinctive difference of the excitonic optical pro
erties between nanorings and quantum dots. Unlike conv
tional quantum dots, in which the low-lying exciton sta
transitions have the same amplitudes and are nearly eq
distributed~a reflection of excitations involving the excito
ground state and various center-of-mass replicas withou
tering the ground state of the relative coordinate!, the low-
lying transitions of nanorings show a rapid dampening w
frequency and their positions are not periodic. This diff
ence is a refection of the anisotropic confinement
nanorings:23 Since the exciton is confined in a quasi-on
dimensional system, its center-of-mass degree of freedo
greatly suppressed and its relative motion becomes domi

FIG. 9. Imaginary part of linear optical susceptibility of th
heavy-hole exciton as a function of frequency for different ma
netic fields and different ring widths:~a! W58 nm, ~b! 14 nm,~c!
20 nm, and~d! 30 nm.
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~i.e., the general properties of a one-dimensional exciton
expected!, thus resulting in the destruction of the regul
patterns observed in quantum dots. It is interesting to n
that this distinctive difference is indeed observed by a rec
experiment given by Petterssonet al.24 and Huet al.42,43

V. CONCLUSION

In conclusion, we have studied the magnetic field eff
on excitons in an InAs nanoring based on a simple mo
Hamiltonian. By numerical diagonalization, we calculate t
low-lying energy levels, oscillator strengths, and the cor
sponding linear optical susceptibility. A periodic, Aharono
Bohm-type oscillation is clearly revealed in some low-lyin
energy levels and linear optical susceptibility curves fo
realistic self-assembled semiconducting InAs nanoring. T
AB effect is well interpreted with the rigorous analysis f
narrow-width nanorings.

In a recent work, Warburtonet al. presented an experi
ment of optical emission in asingle charge-tunable
nanoring.37 They studied the role of multiply charged excito
complexes with no applied magnetic field and found a sh
structure in energy similar to that of quantum dots.44,45

Therefore, encouraged by the rapidly developing nanote
niques for detection, i.e., the achievement of extremely n
row and temperature-insensitive luminescence lines from
single InAs nanoring in GaAs, we hope that our predictio
of the ABE effects can be confronted in experiments in
future.

Note added. Recently, we communicated with the auth
of Ref. 23. We were informed that the width of the ring us
in their calculations~in Fig. 4 of Ref. 23! should have read
21 nm instead of the 8 nm that is mistakenly mentioned
the caption. Therefore, their results are not in contradict
with ours. In fact, their results in Fig. 4 are very similar
ours for the heavy-hole exciton with a ring width of 20 nm
shown in Fig. 9~c!.
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22R. A. Römer and M. E. Raikh, Phys. Rev. B62, 7045~2000!.
23J. Song and S. E. Ulloa, Phys. Rev. B63, 125302~2001!.
24H. Pettersson, R. J. Warburton, A. Lorke, K. Karrai, J. P. K

thaus, J. M. Garcia, and P. M. Petroff, Physica E~Amsterdam!
6, 510 ~2000!.

25H. Hu, J.-L. Zhu, and J.-J. Xiong~unpublished!.
26J.-L. Zhu, J. J. Xiong, and B.-L. Gu, Phys. Rev. B41, 6001

~1990!.
27J.-L. Zhu, Z. Q. Li, J. Z. Yu, K. Ohno, and Y. Kawazoe, Phy

Rev. B55, 1 ~1997!.
28J. Song and S. E. Ulloa, Phys. Rev. B52, 9015~1995!.
29G. W. Bryant, Phys. Rev. B37, 8763~1988!.
19530
-

30W. Que, Phys. Rev. B45, 11 036~1992!.
31Recently, we obtained Ref. 21, in which the main result is sim

to that in Sec. III C.
32M. Abramowitz and I. A. Stegun,Handbook of Mathematica

Functions~Dover, New York, 1972!.
33R. Loudon, Am. J. Phys.27, 649 ~1959!.
34M. Andrews, Am. J. Phys.44, 1064~1976!.
35C. Yannouleas and U. Landman, Phys. Rev. B61, 15 895~2000!.
36C. Yannouleas and U. Landman, Phys. Rev. Lett.85, 1726

~2000!.
37R. J. Warburton, C. Scha¨flein, D. Haft, F. Bickel, A. Lorke, K.

Karrai, J. M. Garcia, W. Schoenfeld, and P. M. Petroff, Natu
~London! 405, 926 ~2000!.

38H. Pettersson~private communication!.
39V. Halonen, T. Chakraborty, and P. Pietila¨inen, Phys. Rev. B45,

5980 ~1992!.
40A. Wojs and P. Hawrylak, Phys. Rev. B51, 10 880~1995!.
41P. Hawrylak, Phys. Rev. B60, 5597~1999!.
42H. Hu, G.-M. Zhang, J.-L. Zhu, and J. J. Xiong, Phys. Rev. B63,

045320~2001!.
43H. Hu, D. J. Li, J.-L. Zhu, and J. J. Xiong, J. Phys.: Conde

Matter 12, 9145~2000!.
44M. Bayer, O. Stern, P. Hawrylak, S. Fafard, and A. Forchel, N

ture ~London! 405, 923 ~2000!.
45P. Hawrylak, G. A. Narvaez, M. Bayer, and A. Forchel, Phy

Rev. Lett.85, 389 ~2000!.
7-11


