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Dephasing of electrons by two-level defects in quantum dots
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The electron dephasing timetf in a diffusive quantum dot is calculated by considering the interaction
between the electron and dynamical defects, modeled as two level systems. Using the standard tunneling model
of glasses, we obtain a linear temperature dependence of 1/tf , consistent with the experimental observation.
However, we find that, in order to obtain dephasing times on the order of nanoseconds, the number of two-level
defects needs to be substantially larger than the typical concentration in glasses. We also find a finite system-
size dependence oftf , which can be used to probe the effectiveness of surface-aggregated defects.
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I. INTRODUCTION

Interference of the electron’s paths in a mesoscopic c
ductor results in various quantum phenomena such as
universal conductance fluctuation, persistent current,
weak localization. In all of these phenomena, the depha
time tf appears as a typical time scale over which the e
tronic trajectories have interference; weak-localization c
rection to conductivity—for example, is conventionally us
for the experimental determination of the dephasing time.1 In
the moderate temperature range, experimentally determi2

values oftf in diffusive metals are found to be in excelle
agreement with the theoretical predictions oftf due to
electron-electron interaction.1 While it is theoretically ex-
pected thattf→` asT→0 in the absence of other extern
sources of dephasing,tf is found to saturate at low tempera
tures inalmostall experiments,3 including the recent care
fully performed experiments.4–7 This severe discrepancy be
tween theory and experimental observation of lo
temperature saturation has fast become a topic
controversy8,9 surrounding the question whether the ide4

and the theory8 of zero-point fluctuations of the electroma
netic field created by the electron-electron interaction a
source of dephasing are tenable on general grounds.
poses a serious problem as zero-temperature dephasin
electrons has been argued to be relevant to the problem
persistent current in normal metals,10 the low-temperature
metal/insulator, quantum-Hall/insulator and superconduc
insulator transitions,11–13 and transport through variou
normal-metal/superconductor hybrid junctions;14,15 but the
most unsettling consequence is the negation of the fun
mental premise upon which the theories—and hence
understanding—of metals and insulators are based:
many-body Fermi-liquid picture.

Among various sustained efforts to find a zer
temperature dephasing mechanism other than elect
electron interaction, dephasing due to dynamical defects
side the conductor has been recently argued16,17 to be
important to the saturation problem. Low-energy excitatio
of the dynamical defects are usually modeled by two-le
systems~TLS!. Invoked some three decades ago, first
0163-1829/2001/63~19!/195301~8!/$20.00 63 1953
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Anderson, Varma and Halperin,18 and also by Phillips,19 the
tunneling model of TLS has been quite successful in expla
ing various anomalies in the acoustic, dielectric, and therm
dynamic properties of structural glasses and other amorph
solids.20

Imry, Fukuyama, and Schwab16 have recently suggeste
that the saturation behavior may have the same origin as
1/f conductance noise, arising from the two-level defec
Zawadowski, von Delft, and Ralph17 have argued that the
apparent saturation oftf may be caused by the two-chann
Kondo effect due to electron-TLS scatterings. However
was pointed out11,5 that hysteresis or switching behavior, e
pected from the effects of TLS, was not observed in exp
ments. In addition, various concentration-dependent Kon
like bulk trends anticipated in these theories were also
observed in the experiments.

In this paper, we investigate the role of two-level defe
in the dephasing of electrons inquantum dots. In the recent
experiments from the Marcus group, Huibers and cowork
have observed the saturation of dephasing time in open q
tum dots21 below 0.1 K along with a strong temperature d
pendence above 0.1 K. In addition to this experiment, sa
ration of tf in quantum dots has also been reported in ot
experiments.22,23 If one assumes that two-level defects a
responsible for the saturation of dephasing time in th
experiments,21 it is then natural to suppose just above 0.1
the linear temperature dependence should be explaine
two-level defects as well. Our calculations indeed show t
the dephasing rate due to the TLS does have a linear t
perature dependence. However, we find that the magni
of the dephasing by two-level defects is too small to expl
the experimentally observed dephasing time of nanoseco
This implies that either other mechanisms are more effec
or surface-aggregated two-level defects play a dominant r
defects on a disordered surface are likely to have unu
distributions in their splitting energies. We suggest that
surface defects can be experimentally probed by measu
the size dependence of dephasing time.

Consideration of two-level defects in quantum dots
their dominant role in dephasing is motivated by the expe
mentally observed tell-tale signs of TLS in quantum do
©2001 The American Physical Society01-1
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hysteresis and switching behavior, which have been in
detected in various quantum-dot experiments24–26 unlike in
the experiments on higher-dimensional diffusive metals. I
quantum dot, usually the Thouless energyET is the largest
energy scale unlike the diffusive metallic case.1,8 Therefore,
the results obtained in the diffusive metallic cases1,8 cannot
be applied~even after the appropriate dimensional consid
ations! to quantum dots. Thouless energy is defined byET
[\D/L2, where D is the diffusion constant andL is the
typical system size.

Dephasing generally describes the loss of coherenc
suppression of interference. Hence, it is important to kn
which kind of paths are considered before defining the ty
cal time scale of the loss of interference along these path
this paper, we are concerned with pairs of time-rever
paths that return to the origin in a diffusive system, shown
Fig. 1. These time-reversed paths enclose magnetic
their interference manifests in the weak-localization corr
tion to conductivity. These paths are chosen for the prob
at hand, because their contribution to conductivity does
vanish even after disorder averaging. In the interferome
studied in this paper, change of the mean conductance
finite field from its zero field value,dg5^^g&&BÞ0
2^^g&&B50, is used to extract the dephasing time from e
perimental data, wherê̂ . . . && means disorder averaging
Using the phenomenological random matrix theory~see, for
example, Refs. 27,28!, tf can be defined–for instance, b
the formula

dg'
e2

h S N

2N1
2p\

tfD
D , ~1!

whereN is the number of channels connected to the quan
dot. Although, the formulas for the conductance change
model dependent,27,28 the difference in the equations in the
models is not significant for the interpretation oftf mea-
sured in experiments.21 In this paper, we will refer totf
obtained from the measureddg as in Ref. 21, without dis-
cussing howdg is related totf any further.

Our calculation of dephasing time is similar to the gene
approach of Stern, Aharonov, and Imry.29 Based on the in-
terference of two time-reversed trajectories, we calculat
typical time scale over which the environmental state
mains in the initial state. Dephasing rate 1/tf due to
electron-electron interactions in diffusive quantum dots
been calculated by Sivan and coworkers:30

FIG. 1. A schematic figure of the electron interferometry invo
ing a quantum dot that is studied in this paper.
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U

e2e

;d1S e

ET
D 2

, e@kBT; ~2!

wheree is the excitation energy of the particle andd1 is the
mean level spacing. However, it should be noted that
direct application of Eq.~2! to experimental data21 is diffi-
cult, because it is not meaningful to estimate the tempera
dependence oftf by merely replacinge with ;kBT in Eq.
~2!.31

The organization of the paper is as follows. In Sec. II, w
describe how dephasing time is calculated in a gen
framework. In Sec. III, interaction between the two-level d
fects and electrons is discussed. In Sec. IV, we show
calculation of 1/tf in the presence of two-level defects wit
widely and narrowly distributed energies. We conclude
Sec. V.

II. INTERFERENCE AND DEPHASING OF PARTICLE’S
TRAJECTORY

Let us consider the event that the electron is at the p
tion r at an initial timet50, and it arrives at the positionr 8
by diffusive motion after a timet0. The environmental state
changes fromh to h8 in this process; the correspondin
probability amplitude of the event isr(r 8,r ,h8,h;t0).

The description of the suppression of interference in el
tron’s paths by the electron-TLS interaction can be cons
ered in two different approaches:

~i! The electron in the two different paths produces tw
different time-dependent electric fields on TLS, thereby, T
go to different states, which suppresses interference.

~ii ! The fluctuating dipole moment of TLS produces t
time-dependent electric field, thereby, the electron in the
different paths gains random phase, which also suppre
interference.

In general, these two approaches are not equivalent,
cause the presence of the electron induces a back rea
from the TLS environment. However, in the presence
weak interaction between the particle and the environmen
is known that either the two descriptions are equivalent, o
least they give the same dephasing rate up to the sec
order in the interaction.32 In this paper, we use approach~i!.
Following the scheme of Chakravarty and Schmid,33 we use
semiclassical approximation on particle’s trajectory and
consider quantum-mechanical evolution of the TLS~envi-
ronment! states. We further assume that the TLS enviro
ment does not influence the classical paths of the elect
therefore, the diffusive electron motion comes from on
static disorder. Under certain conditions, the two-level d
fects might be able to effectively change the semiclass
paths of the electrons. In that case, one may estimatetf by
calculating electron-TLS inelastic-scattering time. Howev
tf begins to lose its meaning as a dephasing time, since
lose the semiclassical picture of the electron’s path.

We describe the tunneling motion in the TLS environme
in a fully quantum-mechanical way. To this end, we consid
the time-dependent potentialV̂@r (t)# exerted by the moving
electron of the pathr (t) on a two-level defect. The probabil
ity amplitude is given by
1-2
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r~r 8,r ,h8,h;t0!5(
j

Aj~r 8,r ;t0!eiSj^h8uU j~t0!uh&,

~3!

whereAj andSj are the corresponding amplitude and acti
of a classical electron’s trajectory labeled byj. U j (t0) is a
time-evolution operator~in the interaction picture! of the en-
vironmental state associated with the electron trajectoryr j (t)

U j~t0!5T̂expF i

\E0

t0
VI@r j~ t !,t#dtG , ~4!

where T̂is the time-ordering operator and

V̂I@r j~ t !,t#5e( i /\)HenvtV̂@r j~ t !#e2( i /\)Henvt. ~5!

The probabilityP(r 8,r ,h;t0) of finding the particle atr 8
after timet0, initially at r with the environment in the initia
stateuh&, is given by the sum of the absolute square of
probability amplitudes over the final states of the enviro
ment;

Ph~r 8,r ;t0!5E dh8ur~r 8,r ,h8,h;t0!u2 ~6!

5(
j

uAj~r 8,r ;t0!u2

1(
j Þk

AjAk* ei (Sj 2Sk)

3^huUk
†~t0!U j~t0!uh&, ~7!

using the completeness relation for the environmental sta
The return probabilityPr ,h(t0) of the electron is defined

by the probability of finding the electron at positionr after
time t0, initially at the same position with the environment
stateuh&;

Pr ,h~t0!5Ph~r 8,r ;t0!ur8→r ~8!

5(
j

uAj~r ,r ;t0!u21(
j

uAj u2

3K hUU j T
† U j1U j

†U j T

2
UhL 1, . . . , ~9!

where j T denotes the time-reversed path ofj. The first term
in Eq. ~9! is termed as the classical return probabil
Pr

class(t0). The second term comes from the interference
the pair of time-reversed paths. The remaining terms, wh
do not appear in the above equation, vanish upon ensem
averaging over disorder due to the random differences in
classical actionSj2Sk for kÞ j , j T. The coherent par
Pr ,h

coh(t0) of the return probability is the second term
Eq. ~9!;

Pr ,h
coh~t0!5(

j
uAj~r ,r ;t0!u2Rê huU j

†~t0!U j T~t0!uh&.

~10!
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Now, the dephasing time can be defined as a time scale
Pcoh(t0) to vanish with a decreasing function such as e
(2t0 /tf). But for the present purpose, the particular exp
nential form of time dependence is not needed.

III. ELECTRON-TLS INTERACTION

We consider two-level tunneling systems~TLS! ~Ref. 20!
as the environment for an electron in the quantum dot. Le
first consider TLS’s that have asymmetry energyD and the
tunnel splitting energyD0. The TLS’s are assumed to b
randomly distributed over the dot with their electric dipo
moments randomly oriented. We will assume the dipole m
ment is not too strong so that we do not have to consi
interaction among the TLS. The density of the TLS will b
assumed to be not too high so that multiple-scattering ev
between the electron and the dipoles can be neglec
Within these approximations, we calculate the return pr
ability of an electron in the presence of a single TL
thereby, we extend the results to the case of many rando
distributed TLS’s. The Hamiltonian of the TLS can be wr
ten in terms of the localized wave functions of the doub
well potential and also in terms of the eigenenergy basis

HTLS5
1

2 S D D0

D0 2D
D→ 1

2 S E 0

0 2ED , ~11!

whereE5AD21D0
2 and the transformation denoted by th

arrow means localized wave-function representation→
eigen wave-function representation. The dipole strength
eratorp̂ is defined in the eigen wave-function representati

p̂5p0S 1 0

0 21D→p0S D/E D0 /E

D0 /E 2D/ED , ~12!

wherep0 is the dipole moment when the particle is located
one of the wells of the defect potential. In the followin
section, we will use the eigen wave-function representat
in which HTLS is diagonal. The TLS Hamiltonian will be
used for the environment HamiltonianHenv5HTLS.

TLS dipole at the positionR feels the electric fieldE(R)
produced by the moving electron. The resulting interact
energy can be expressed by the operatorV̂@r j (t)#

V̂@r j~ t !#52 p̂n•E~R!52 p̂n•“RVc@R2r j~ t !#, ~13!

wherep̂ is the dipole moment operator for the TLS, which
along the direction of unit vectorn. Vc is Coulomb interac-
tion potential

Vc@R2r j~ t !#5
e

e* uR2r j~ t !u
'

1

Ld (
q

vqe
iq•(r j 2R),

~14!
1-3
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KANG-HUN AHN AND PRITIRAJ MOHANTY PHYSICAL REVIEW B 63 195301
wheree is the electric charge,e* is the dielectric constant o
the dot material,L is the linear system size, andd is the
spatial dimensionality of the dot (d52,3). Here,vq is the
finite Fourier transform of Coulomb potential

vq5E
dot

dre2 iq"rS e

e* ur u
D ~15!

5
2pe

e* q
~2D, qÞ0! ~16!

5
4pe

e* q2
~3D, qÞ0!. ~17!

We use the discrete values ofq52p/L(m,n,k) for the three-
dimensional case, andq52p/L(m,n) for the two-
dimensional case, wherel ,m, andn are integers. By insert
ing Eq. ~14! into Eq. ~13!, we get

V̂@r j~ t !#5
1

Ld
p̂(

q
~ in•q vqe

2 iq•R!eiq•r j (t). ~18!

Derivation of the Eq.~18! is based on the semiclassic
approximation of the electron’s motion and the unscree
dipole moment of TLS. From a purely quantum-mechani
point of view, one can consider the TLS-electron interact
similar to its treatment in metallic glasses.35 When the TLS
has two positions R65R6d/2, the pure quantum
mechanical TLS-electron interactionV̂QM is written as35

V̂QM5
1

Ld

p̂

p0
(

q
imqe2 iq•R sin~q•d/2!(

k
ck

†ck1q ,

~19!

whereck
† (ck) is the electron creation~annihilation! operator

with momentumk, and mq is the Fourier transform of the
ionic potential. However, the pure quantum-mechanical
proach is not reliable, because the concept of dephasing
comes ambiguous as we leave the semiclassical approx
tion, which has been pointed out in Ref. 34. Here, we mer
get some useful information by comparing the quantu
mechanical Hamiltonian in Eq.~19! to our semiclassical po
tential in Eq. ~18!. Sinceq•d!1 in quantum dots~this is
true—generally speaking, when the Fermi wavelength
much larger than d!, sin(q•d/2)'q•d/25n•qp0/e. Equation
~19! can be understood as the interaction between the T
dipole coupled to an effective electric field produced by
electron.

One of the two differences between Eqs.~18! and~19! is
that the electron interacts with the ion through a scree
interactionmq in Eq. ~19! rather than the direct Coulom
interactionvq , as in Eq.~18!. The specific form ofmq is not
known though it is expected to be less thanvq . If a screened
interaction mq is used, then the calculated dephasing r
1/tf would be smaller than that with the unscreened inter
tion vq . In this paper, we will usevq instead ofmq . The
second difference, which is rather important, is the quantu
19530
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mechanical nature of the electron motion in Eq.~19!.
V̂@r j (t)# in Eq. ~18! is understood aŝc j (r ,t)uV̂QMuc j (r ,t)&,
wherec j (r ,t) is the time-dependent wave function that d
scribes a wave packet corresponding to the trajectoryj,

eiq•r j (t)'K c j~r ,t !U(
k

ck
†ck1qUc j~r ,t !L . ~20!

At a finite temperatureT, the wave-packet stateuc j (r ,t)&
will consist of mostly the eigenenergy states with energ
limited within eF6kBT. Therefore, the time dependence
eiq•r j (t) will be limited by the frequency windowuvu,kBT.
The frequency cutoff will be performed in our semiclassic
calculation later.

IV. DEPHASING RATE

Let us consider a quantum dot as a rectangular box w
volumeV5L3L3 (L or a!L for 2D dots!, and a diffusion
constantD. Using Eq.s~4!, ~10!, and~18!, we get the coher-
ent part of the return probabilityPcoh(t0) of the electron,
initially at r50 ~details of the derivation is given in th
appendix!;

Pcoh~t0!5
1

V F11(
q

u^1u p̂u2&u2q2vq
2

3\2L2d E
0

t0
dt1E

2t1

t1

dt2

3$cosV~ t12t0!2cosVt2%
1

2p

3E dv
exp~ ivut2u!

iv1Dq2 G , ~21!

whereV51/\AD21D0
2. To simplify the calculation, from

here onward, we consider the return probability of the p
ticle at the originr50.

The frequency of the time-dependent electric field p
duced by the electron is not infinitely large; it has an upp
cutoff. By assuming the electron to be in equilibrium wi
other electrons at temperatureT, the high-frequency cutoff of
v is given bykBT(uvu,kBT); this is true only at tempera
tures that are not too low. Note that because of the finite s
of the system,qvq50 for q50. Therefore, there is no di
vergence at low frequencies and the low-frequency cutof
v does not play an important role. By integrating Eq.~21!
with the conditionuvu,kBT, we obtain the coherent part o
the return probabilityPcoh, which decays as}12t0 /tf
1, . . . ,. We have now definedtf as the dephasing time
The dephasing rate 1/tf from a randomly distributed TLS
with an asymmetry energyD and a tunnel splittingD0 is
given by

1

tf~D,D0!
5

2u^1u p̂u2&u2

3\2L2d (
q

q2vq
2 Dq2

V21~Dq2!2
~22!

'
2p0

2D0
2

3\2D~D21D0
2!

(
0,uqu,p/ l

vq
2L22d. ~23!
1-4
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We have usedVtD!1 in the second equality in Eq.~23!.
1/tf obtained above is valid only whenkBT.\V, while in
the other case,Pcoh(t0) is an oscillating function oft0 with
a small amplitude. Therefore, 1/tf (kBT,\V) is negli-
gible.

By inserting Eqs.~16! and ~17! into Eq. ~23!, whenkBT
.AD21D0

2, we get

1

tf~D,D0!
5

2p0
2e2JdD0

2

3\2De* 2L2~D21D0
2!

, ~24!

whered52,3 is the spatial dimension of the quantum d
and

J25 (
0,m21n2,(L/ l )2

1

m21n2
, ~25!

J35
1

p2 (
0,m21n21k2,(L/ l )2

1

m21n21k2
. ~26!

A. TLS with widely distributed asymmetry and tunnel-
splitting energies

We can generalize 1/tf to the case where the TLS’s ar
distributed with a distribution functionf (D,D0),

1

tf
5VE dDE dD0

1

tf~D,D0!
f ~D,D0!. ~27!

By inserting Eq.~24! into the above equation, we get

1

tf
5

Ld22

D

2p0
2e2Jda32d

3\2e* 2
S~T!, ~28!

where

S~T!5E dDE dD0

D0
2

D21D0
2

f ~D,D0!u~kBT2AD21D0
2!,

~29!

wherea is the thickness of the dot in cased52. It is inter-
esting to note that atd52, the dephasing time does n
depend on the dot area.

To calculatetf , we use the standard tunneling model f
the two-level defects.18,19 The essential postulate in th
theory is the uniform distribution of the tunneling parame
l associated with the tunnel splittingD0}e2l. The energy
distribution functionf (D,D0) in this case is written as

f ~D,D0!5
P̄

D0
. ~30!

Furthermore, it is also assumed thatD0 has a nonzero mini-
mum valueD0,min. By applying this distribution, we find,

S~T!5 P̄E
D0,min

kBT

dD0E
2A(kBT)22D0

2

A~kBT)22D0
2

dD
D0

D21D0
2

~31!
19530
,

r

52P̄D0,minF~kBT/D0,min!, ~32!

where

F~z!5E
1

z

dx tan21
Az22x2

x
. ~33!

Here, the above expression is valid forkBT,D0,max, which
is an realistic and common assumption for the tempera
below 1 K. Note thatF(z);z ln z when z@1, therefore in
the case ofkBT@D0,min, we expect the following tempera
ture dependence:

1

tf
}T lnS kBT

D0,min
D , ~34!

which is closer toT rather thanT2.
Now let us estimatetf quantitatively. We consider the

experiments by Huibers and coworkers21 on two-dimensional
ballistic semiconductor quantum dots. The quantum dots
the experiments21 are in the ballistic regime, while our cal
culation oftf is for diffusive quantum dots. However, sinc
the dephasing time is in the ergodic regime (tf.tD), the
results for diffusive dots should be applicable to the chao
quantum dots in the ballistic regime. The diffusion coef
cient is obtained through the ergodic time scale andD
;(ETh /d1)(\/2m* ), wherem* is the effective mass of the
electron ~for GaAs, m* 50.067me), and ETh /d1;30 for
Ref. 21. For ballistic dots, the Thouless energy is given
\vF /L. For GaAs,\2e* /m* e2;10 nm. A reasonable size
of the dipole moment isp0;e310210m. The thickness of
the two-dimensional quantum dot is roughlya;10 nm. By
putting togetherJ2 and ln(kBT/D0,min) into Eq. ~28!, which
are roughly on the order of 1210, we find

1/tf;~10216210215!m3s21P̄kBT. ~35!

In order to obtaintf;1 ns nearT50.1 K, the average
concentration should beP̄;(104821049)J21m23. Although
this number is not completely unreasonable, it is too large
be expected from well-textured semiconductors used in
experiments.21 For comparison, we note that glassy materi
possess a typical TLS concentration ofP̄;1045

21046J21m23.
One may anticipate a different temperature depende

that might show the saturation oftf by considering the dis-
sipative two-level system due to TLS-phonon interactions
incoherent two-level systems due to TLS-TLS interactio
However, it is very difficult to expect that the dephasing ra
is enhanced by several orders of magnitude by such inte
tions.

The large magnitude ofP̄ may be possible if a large
enough number of two-level defects aggregate on the sur
of the quantum dots. This possibility can be experimenta
checked by varying the system size and the dimensiona
Using our results,

1/tf}Ld22a32d. ~36!
1-5
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For example, for a 2D quantum dot, the dephasing rate 1tf
by ‘‘intrinsic’’ two-level defects will increase as the thick
nessa of the dot increases, whereas it will decrease witha
for surface defects.

B. TLS with a narrow-energy distribution of asymmetry and
splitting energies

Low-energy excitations exist in semiconductor cryst
due to the tunneling of impurity ions between equivale
interstitial lattice sites. Due to the crystal fields, definite p
sitions are preferred and a wide distribution of excitati
energies is not expected; in glasses, the wide distribu
arises because of structural disorder. However, defects on
surface may result in a wider distribution of energies beca
of surface roughness. A single tunnel-splitting energy i
plies a narrow distribution of relaxation times such that
standard tunneling model, applicable to structural glasses
discussed in the previous section, is not valid.36

In this section, we consider a well-defined tunnel-splitti
energyD0 rather than a wide distribution. The asymmet
may be uniformly distributed with a gaussian widthD1, usu-
ally determined from the experimental data. The distribut
function is defined as

f ~D!5nTLS

1

D1Ap
e2D2/D1

2
. ~37!

nTLS is the TLS density.
The functionS(T) defined in Eq.~29! in the expression

for the dephasing rate 1/tf is simplified to

S~T!5E dD
D0

2

D21D0
2

f ~D!u~kBT2AD21D0
2!. ~38!

Note that the variableD0 is not integrated over, in contrast t
the case for the standard tunneling model; and the final re
depends onD0. Evaluation of the above integral yields

S~T!;nTLS ~kBT@D0@D1! ~39!

;
D0

D1
nTLS ~kBT@D1@D0!. ~40!

If temperature is larger than the energy scales of TLS, the
is possible to obtain saturation or temperature-indepen
dephasing rate 1/tf . In realistic systems,D0 is usually a
small fraction ofD1; thus, the experimentally relevant lim
is the second case,D1@D0, in expression~40!. The dephas-
ing rate can now be obtained:

1

tf
;~10216210215!nTLS

D0

D1
m3s21. ~41!

For tf to be on the order of 1 ns, the two-level defect dens
should be

nTLS;
D1

D0
~102421025!m23. ~42!
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Now let us estimatenTLS for a typical single-crystal sys
tem. Single-crystal silicon structures have been studied
this context in the temperature range of interest, below 1
down to 5 mK. Both acoustic dissipation and heat capac
measurements on silicon resonators by Kleiman, Agno
and Bishop37 ~see the corresponding estimates by Phillip38

and Keyes39! find that the TLS density,nTLS;1023m23,
with an estimated value ofD1 /D0;100. Now using the
same value forD1 /D0 in the expression~42!, the order-of-
magnitude estimate of TLS density is found to benTLS
;102621027m23. The required density needs to be at lea
three orders of magnitude higher than the typical concen
tion in the silicon structures to result in a TLS-induce
dephasing timetf;1 ns. This is an unreasonably larg
number, even for the typical intentionally doped semico
ducting structures of silicon.40 Though, experimental studie
of acoustic and thermal properties of gallium arsen
structures/heterostructures for the effects of two-level s
tems have not been done in the temperature range of inte
for dephasing,21,4 recent studies on semi-insulating galliu
arsenide resonators41 suggest that the typical TLS density
comparable to that in silicon.

V. CONCLUSION

We have calculated the dephasing time by assuming
presence of two-level defects inside diffusive quantum do
The temperature dependence of 1/tf is found to be roughly
linear (;T) for widely distributed two-level defects in th
standard tunneling model. We find that to explain the size
the experimentally observed dephasing times, we nee
large number of two-level defects. This number is subst
tially larger than that found in glassy materials~almost by
three orders of magnitude!. Therefore, it is hard to believe
that the electron dephasing is dominated by the intrinsic
independent two-level defects at low temperatures. We h
also calculatedtf from a distribution of narrow-energy, two
level defects, and we find a regime of temperature indep
denttf . However, the required number of two-level defec
is too large as in the case of widely distributed TLS. T
system-size dependence obtained in our calculation can
used to check the possibility of surface defects that are p
ably effective. Because of the large surface-to-volume ra
in quantum dots, it may be reasonable to assume that mo
the defects are surface aggregated. It will be interesting
estimate P̄ or nTLS required for the observed low
temperature charge noises of quantum dots and compa
the values from dephasing time. Unfortunately, we are
aware of any quantitative theory for the quantum dot cha
noise arising from the two-level defects.

Note added. In a recent paper, Aleiner, Altshuler, an
Galperin42 have analyzed the relevance of TLS for electr
dephasing. Although they use a different approach a
evaluatetf for different systems~metals, not quantum dots!,
their conclusions are similar to ours—that is, a substantia
large concentration of TLS,P̄, much larger than the typica
values in metallic glasses is required for the quantitative
planation of the saturation observed in experiments on
tallic wires4 by two-level systems.16
1-6
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APPENDIX: DERIVATION OF EQ. „21…

For the simplicity of calculation, we suppose that the T
is initially in the stateu2&, an eigenstate of the Hamiltonia
in Eq. ~11! with the eigenenergyE2 ~the case withu1& can
be calculated in a similar way!. The time evolution operato
U j (t)@U j (t)u2&5c1(t)u1&1c2(t)u2&] of the TLS corre-
sponding to the electron pathj can be written as

S c1~ t !

c2~ t !
D 5T̂ expH 2

i

\E0

t

dt8VI@r j~ t!#J S 0

1D , ~A1!

where

VI~r j~ t!#5S ^1uVI@r j~ t8!,t8#u1& ^1uVI@r j~ t8!,t8#u2&

^2uVI@r j~ t8!,t8#u1& ^2uVI@r j~ t8!,t8#u2&
D .

~A2!

To find the corresponding time evolution of the TLS sta
for the time-reversed paths,@U j T(t)u2&5d1(t)u1&
1d2(t)u2&], one obtains a similar form by usingr j T(t)
5r j (t02t). Expanding ^2uU j

†(t0)U j T(t0)u2&
5c1* (t0)d1(t0)1c2* (t0)d2(t0) up to the second order in

interactionV̂, we get

Rê 2uU j
†~t0!U j T~t0!u2&

511
1

\2E0

t0
dtE

0

t0
dt8@cos$V~ t1t82t0!%2cos

3$V~ t2t8!%#^2uV̂@r j~ t !#u1&^1uV̂@r j~ t8!#u2&,

~A3!

where\V5E5E12E25AD21D0
2, and we used the rela

tion V̂@r j (t)#†5V̂@r j (t)# in the last equality.
Now from Eqs.~18!, ~A3!, and~10!, one can get the co

herent return probability in

Pr
coh~t0!5(

j
uAj~r ,r ;t0!u2

1
u^1u p̂u2&u2

3\2L2d E
0

t0
dtE

0

t0
dt8

3@cos$V~ t1t82t0!%2cos$V~ t2t8!%#

3(
q

q2uvqu2(
j

uAj~r ,r ;t0!u2eiq•[ r j (t)2r j (t8)] .

~A4!

Here, we have omitted the subscripth in Pr ,h
coh for the

TLS state, because both of the initial states of the TLSuh&
19530
l

s

5u6& give rise to the same expression.Pr
coh(t0) in Eq. ~A4!

is the value averaged over the TLS position. Here, we h
used the disorder average over TLS^^exp@iR•(q1q8)#&&
5dq ,2q8. The factor 3 in Eq.~A4! comes from the averag
over the orientation of the TLS dipoles.

In the case ofADt0. l ( l is the mean free path!, the sum
over the classical paths that appears in Eq.~A4! can be writ-
ten as a path integral using the Wiener measure.43,44,33The
path integral can be calculated as

(
j

uAj~r ,r ;t0!u2eiq•[ r j (t)2r j (t8)]

5E
x(0)5r

x(t0)5r
D@x~t!#expS 2

1

4DE
0

t0
dtuẋ~t!u2D

3exp~ iq•@x~ t !2x~ t8!# !

5
1

V (
uq8u,p/ l

exp~2Duq8u2t0!e2D(uqu222q•q8)ut2t8u,

~A5!

where we have used the boundary conditions for the qu
tum dot as a rectangular box with volumeV5L3L3 (L or
a!L for two-dimensional dots!. Several remarks are in or
der. Equations~A5! are valid only in diffusive regimes. The
summation over the discretized momentum variablesq and
q8 is understood to be limited byp/ l . The contributions
from ballistic regime, which are supposed to be small wh
ADtf@ l , are neglected in this work. The last equality in t
Eqs.~A5! is obtained forr50.

Then, the classical return probabilityPclass(t0) for r50
is given by

Pclass~t0!5(
j

uAj~r ,r ;t0!u2ur50

5
1

V (
uqu,p/ l

exp~2Duqu2t0!. ~A6!

Inserting Eq.~A5! into Eq.~A4!, we get the coherent par
of the return probability

Pcoh~t0!5
1

V (
q8

exp~2Duq8u2t0!

3F11(
q

u^1u p̂u2&u2q2vq
2

3\2L2d E
0

t0
dt1E

2t1

t1

dt2

3$cosV~ t12t0!2cosVt2%e2D(uqu222q•q8)ut2uG ,

~A7!

where we used the change of variables oft15t1t8 and t2

5t2t8.
We restrict to the ergodic regimet0.tD , therefore

significant contribution comes only fromq850. By taking
q850 and using the Fourier transform ofe2Duqu2ut2u in Eq.
~A7!, we obtain Eq.~21!.
1-7
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