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Fractal analysis of wave functions at the localization-delocalization transition
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Localization-delocalization transition in disordered quantum small-world network model is confirmed by
using the numerical multifractal analysis of the wave functions at the critical point. A linear relation between
the numerator and the denominator of the parametric representation for the singularity spectrum of the wave
functions near the transition point is obtained, serving as a criterion of the critical behavior. The singularity
spectrumf («) at the critical point is size independent. The variation of the fractal inteiagjtgt =0 and
g=1 in changing the rewiring probability reveals the phase transition as shown in the level statistics on the

same model.
DOI: 10.1103/PhysRevB.63.193405 PACS nuni®er73.61.Ph, 05.606-k, 71.30+h, 72.90+y
Localization-delocalization transition(LDT) in low- In this paper we investigate the multifractality properties

dimensional systems has attracted considerable attention fof the wave function at the LDT in disordered quantum small
a long time due to the importance in theoretical and experiworld (DQSW) model. We obtain a universal singularity
mental investigations of the condensed-matter physics. Frompectrumf(«) that features the critical wave functions. We
the scaling theory the LDT can occur only in systems offind that the localization degree of states in the DQSW
dimensionality greater than'2Thus, it is interesting to con- model can be characterized by several discrete multifractal
struct systems with varying dimensionality and to investigatantensities. The form of singularity spectra, independent of
the LDT in them. Recently, the small-world-netwdi&WN) the size and other parameters, further confirms the existence
model has been proposed and studied in its classical aspectf LDT in DQSW systems.
Since the effective dimensionality of SWN depends on the We consider a 1D ring witlN sites and even coordination
probability of the bond rewiring, it can serve as a suitable numberZ. In the initial structure every site links with i&/2
model to study the LDT in systems with varying dimension-neighboring sites with direct bonds on every side. Then one
ality. For this purpose we have generalized the oneperforms the rewiring process that every bond starting from a
dimensional1D) SWN to its quantum version by regarding site labeled as has a probabilityp to be broken and rewired
the bonds as quantum hopping links for the motion of electo another randomly chosen site other thanZheeighboring
trons and investigated the LDT of electronic states by addingites ofi. After this procedure applied on all the sites a so-
the diagonal disorder of the site energfe®ur numerical called small-world-networkis created that is topologically
calculations on the level statistics demonstrate that thereandom but may have an effective dimensionality higher
does exist LDT in increasing due to the competition be- than 1 due to the cutoff paths via the rewired bonds. In the
tween the enhancement of the effective dimensionality anduantum version every site has been assigned an electron
the disorder of topology and site energies. Critical ppinis  orbital and every bond represents the hopping integral be-
determined by the finite-size scaling for the level statisticstween two orbitals on its ends. We also introduce the diago-
and a universal distribution function is found at the critical nal disorder with a uniform distribution in the range of
point? [—w/2w/2] for the orbital levels on the sites. Thus, the
On the other hand, it is commonly believed that the wavetight-binding Hamiltonian of the DQSW model reads
functions near the critical point of LDT exhibit multifractal-

ity. Aoki has pointed out that the wave function at the N N Z/2

Anderson transition corresponding to the fixed point in a H= TVl + t (1= o VG 1+ i+ 1)
real-space renormalization-group study should be scale in- Z’l i)l 21 2’1[ 1= (DA D
variant and exhibit self-similarit§.Schreiber and Grussbach o o

found that at the critical point of the 3D Anderson model, +topi ([1D)(iRl +[TRXIDT, 1)

strong spatial fluctuations of the amplitudes of the wave

function display the multifractal character on all length whereig represents a randomly chosen site other tharZthe
scales. They showed that the singularity spectrum of theneighboring sites of site and subject to the restriction that
critical wave function does not depend on the system siz¢here are no repeating terms in the summatjgn,is a ran-
and rather takes a universal form. Furthermore, they assumetbm variable obeying the distribution function

that the singularity spectrum is universal for the LDT, re-

gardless of the specific values of parameters of models, and

from this they established a straightforward method to dis- P(p )= P,
tinguish the localized and extended states. h 1-p, for p;=0,

fOI’ pi,l = 1,
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the orbital levele, is randomly distributed between w/2
andw/2 with a constant probability, ang andt, are hop-
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possible length scales. In fact, this behavior can serve as a
criterion of the Anderson transition. Below we will use this

ping integrals for the regular bonds and the rewired bondsgriterion to study the localization properties of the wave

respectively.

The Hamiltonian can be numerically diagonalized to yield

functions.
In the numerical calculations we first use the valug af

the wave functions for various parameters. We adopt th¢he region far from the critical point, that was obtained in

spatial distribution of amplitudelsy;(i)|* of a wave function
with eigenenergy; as the entity of the multifractal analysis

the scaling analysis of the level statisticNlo linear relation
of v(x) is found for the eigenfunctions near the center of the

to investigate its localization properties. In the calculation ofband in a system with sizBl=2400. However, when we
the singularity spectrum we use the standard box-countingarry out the same calculations fpiin the vicinity of p. in
method® In this method the entire circumference of the a system with the same size, this linear relationv¢k)

DQSW ring is divided intoN; (N =<N) boxes of length_.
The probability to find an electron in theh box is given by

(L) =2 |95 for k=123 N.. ()
In the statistical sensg, ;(L) depends on the size of boxes
with a power-law relation. The singularity strength in the
kth box is defined as the exponent of the power law

(L)~ L% 3

Here we omit the index of the wave function for the simplic-

indeed appears. Within the range pf+ 0.0005, the wave
functions near the band center all exhibit the anticipated lin-
ear characteristics of(x) [an example is shown in Fig.
1(a)]. In the calculationg scales from 2 to 2" with n~5 or
6 that are precise enough for system size 10°. By chang-
ing the system size thl=1200 andN = 3600 the good linear
fitting persists, as shown in Figs(k) and Xc), respectively.
Therefore, we can confirm that the multifractality of the
wave functions near the critical point manifests itself for dif-
ferent system sizes.

The existence of the multifractality of the wave functions
at the band center for specific values pforovides a new

ity. Thus, the boxes can be grouped into several subsets agvidence for the LDT in the DQSW model. Moreover, the

cording to the values af, . The subsetr contains the boxes
with ay within a window of@. The number densiti)(«) of
subsetx is a fractal itself with the Hausdorff dimensidfi«)

N(a,L)~L @), (4)

The singularity spectrunfi(«) completely characterizes the
multifractality of the whole measure of the probability dis-
tribution of the wave function. In order to avoid suffering

value of p. from the multifractality analysis of the wave
functions is consistent with that from the analysis of the level
statistics. From these results a universal form of singularity
spectra independent of the system size and the valpe isf
naturally expectedThis is confirmed in our calculations and
the results for different size\(= 1200, 2400, 3600) and dif-
ferent coordinate numbeiZ&8, 12) are shown in Fig. 2.
Herep. decreases by increasi@gas largerZ provides more

from the possible numerical inaccuracies in the Legendr@pportunities for the shortcut paths. Curves of singularity

transformation,
representatichof f(a) in terms ofg. Namely, one can use
the properly normalizedth moment of the spatial distribu-
tion of the wave function to constitute a measure

L) =pd(L)1Y pld (L), (5)
k!

Then «(q) and f(q) are presented, respectively, in the fol-
lowing form:

a(q)= Iim; i, L)In i (1,L)/1n 6, (6)
6—0
f(q)=1lim > w(q,L)In w(q,L)/In 6, (7)

50 K

many authors employ a parametricspectra for various parameters are essentially coincident in

the range of &< «<3.0. A little diversity appears in the re-
gion of «>3.0, which corresponds t1@<0 with larger ab-
solute value ofg. Sinceq acts as a microscope of exploring
the singularity measure in different regions of amplitudes of
wave functions, the very small amplitudes of wave functions
are amplified in the moment of a negatigewith large ab-
solute value, corresponding to the subsets with larger singu-
larity strengtha. In this region the calculated results are
mostly sensitive to the numerical errors and the digit control-
ling, which lead to the unavoidable deviation from the exact
behavior. We note that although the critical pomtis dif-
ferent for differentz, the singularity spectrum near the criti-
cal point shows the same behavior. This implies that the
critical singularity spectra are universal for the critical point
of the DQSW model with different coordinate numbers. The
shape of the curves is similar to that shown in Refs. 5 and 7.

where§=L/N denotes the ratio of the box size and the sys-The only difference from the spectra of Refs. 5 and 7 is the

tem size. However, as pointed out by several authors(#q.

scales off (@) and«. In the present case the box counting is

is valid only in the existence of a linear relation between theperformed in 1D boxes while in Refs. 5 and 7 it is done in

numerator and the denominator for different values.ofVe
can define =2, u.(q,L)In w(q,L) andx=1In é. Thus, in the
procedure 05— 0 in the relative sens@ctuallyL cannot be
shorter than the lattice spacing,the linear relationy versus

x in Eq. (7) reflects the scaling invariance of the measure of

3D boxes. Because andf(«) are both fractal dimension of
quantities obtained from the box counting, the scalesy of
andf(«) are approximately shrunk by 3 times in comparison
with those in Refs. 5 and 7.

We also investigated the dependence of the multifractal

the fluctuations of the amplitudes of the wave function in allstrengtha, for =0 andg=1 in a system with a given size.
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FIG. 1. (&) Dependence af=X u(q,L)In x(1,L) onx=In &for
wave functions near the band center of a DQSW system puitar
the critical value. The other parameters a&e 8, w=18.0, N
=2400, andg=0,1,2,3,4,5(from bottom to top. (b) Relation ofv
to x with the same parameters as thoséinbut N= 1200, and from
bottom to topq=0,1,2,3,4 forp=0.0852 andgq=0,1,2,3 forp
=0.0850. Insetq=4 for p=0.0850.(c) Relation ofv to x with the
same parameters as those(@h but N=3600.
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FIG. 2. Singularity spectruni(«) as a function ofe for wave
functions of systems near the transition pgigt For systems with
coordinate numbeZ =8 the data are shown with both symbols and
connecting lines, for system with=12 only the symbols are dis-
played.

The results are shown in Fig. 3. The two values exhibit op-
posite monotonous evolution in varyimqg For the sake of
clarity we plot two horizontal lines at values of(p.) and
ao(pe) to divide the area into the localization districts out-
side the two lines and the delocalization one between them.
When the rewiring probabilityp increases, botly(p) and
a41(p) cross the critical lines at the same valueppfcorre-
sponding to the transition from the localization to the delo-
calization. We observe that the differencea= aqy(p)
—a(p) can reflect the localization degree even though the
exact multifractality does not exist in systems far from the
critical point. It is worth stressing that although all the cal-
culations are carried out in a single configuration of the dis-
order and no ensemble average is taken, the smooth profile
of the curves suggests the excellent self-averaging and that
the multifractal analysis is an effective method in determin-
ing the localization-delocalization transition. Moreover, we
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FIG. 3. Multifractal intensitiesyy (O) anda, (¢ ) as functions
of rewiring probability p. Two solid lines with upper and down
triangle symbols correspond the reference valueggpand «; at

the critical pointp., respectively. The system sizeNs=2400 and
the other parameters are the same as those in fjg. 1
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believe that a careful search for the linearity of functid) the parameters. Moreover, we find that the transition from
is a key procedure for the reliability of the method employedthe localization to the delocalization in the DQSW systems
near the critical point. can also be displayed by drawing the curvesag{p) and

To summarize, we have confirmed the localization-a1(p) versusp which cross the reference critical lines at the
delocalization transition in the DQSW model by using thetransition. The present investigations may shed some light on
fractal analysis of the wave functions in systems with vary-Properties of disordered systems with varying effective di-
ing parameters. We find that the size-independent linear renensionality.
lationship of functiorv (x) persists near the critical poipt . This work was supported by National Foundation of
This behavior not only indicates the exact multifractality of Natural Science in China, Grant Nos. 69876020 and
the wave functions at the critical point, but also produces a0074029, and by the China State Key Projects of Basic
universal critical singularity spectrurf(«) independent of ResearcHG19990645098
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