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Fractal analysis of wave functions at the localization-delocalization transition
in a disordered quantum small-world-network model
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Localization-delocalization transition in disordered quantum small-world network model is confirmed by
using the numerical multifractal analysis of the wave functions at the critical point. A linear relation between
the numerator and the denominator of the parametric representation for the singularity spectrum of the wave
functions near the transition point is obtained, serving as a criterion of the critical behavior. The singularity
spectrumf (a) at the critical point is size independent. The variation of the fractal intensityaq at q50 and
q51 in changing the rewiring probabilityp reveals the phase transition as shown in the level statistics on the
same model.
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Localization-delocalization transition~LDT! in low-
dimensional systems has attracted considerable attentio
a long time due to the importance in theoretical and exp
mental investigations of the condensed-matter physics. F
the scaling theory the LDT can occur only in systems
dimensionality greater than 2.1 Thus, it is interesting to con
struct systems with varying dimensionality and to investig
the LDT in them. Recently, the small-world-network~SWN!
model has been proposed and studied in its classical asp2

Since the effective dimensionality of SWN depends on
probability of the bond rewiringp, it can serve as a suitabl
model to study the LDT in systems with varying dimensio
ality. For this purpose we have generalized the o
dimensional~1D! SWN to its quantum version by regardin
the bonds as quantum hopping links for the motion of el
trons and investigated the LDT of electronic states by add
the diagonal disorder of the site energies.3 Our numerical
calculations on the level statistics demonstrate that th
does exist LDT in increasingp due to the competition be
tween the enhancement of the effective dimensionality
the disorder of topology and site energies. Critical pointpc is
determined by the finite-size scaling for the level statisti
and a universal distribution function is found at the critic
point.3

On the other hand, it is commonly believed that the wa
functions near the critical point of LDT exhibit multifracta
ity. Aoki has pointed out that the wave function at th
Anderson transition corresponding to the fixed point in
real-space renormalization-group study should be scale
variant and exhibit self-similarity.4 Schreiber and Grussbac
found that at the critical point of the 3D Anderson mod
strong spatial fluctuations of the amplitudes of the wa
function display the multifractal character on all leng
scales.5 They showed that the singularity spectrum of t
critical wave function does not depend on the system s
and rather takes a universal form. Furthermore, they assu
that the singularity spectrum is universal for the LDT, r
gardless of the specific values of parameters of models,
from this they established a straightforward method to d
tinguish the localized and extended states.
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In this paper we investigate the multifractality properti
of the wave function at the LDT in disordered quantum sm
world ~DQSW! model. We obtain a universal singularit
spectrumf (a) that features the critical wave functions. W
find that the localization degree of states in the DQS
model can be characterized by several discrete multifra
intensities. The form of singularity spectra, independent
the size and other parameters, further confirms the existe
of LDT in DQSW systems.

We consider a 1D ring withN sites and even coordinatio
numberZ. In the initial structure every site links with itsZ/2
neighboring sites with direct bonds on every side. Then o
performs the rewiring process that every bond starting from
site labeled asi has a probabilityp to be broken and rewired
to another randomly chosen site other than theZ neighboring
sites of i. After this procedure applied on all the sites a s
called small-world-network2 is created that is topologically
random but may have an effective dimensionality high
than 1 due to the cutoff paths via the rewired bonds. In
quantum version every site has been assigned an elec
orbital and every bond represents the hopping integral
tween two orbitals on its ends. We also introduce the dia
nal disorder with a uniform distribution in the range o
@2w/2,w/2# for the orbital levels on the sites. Thus, th
tight-binding Hamiltonian of the DQSW model reads

H5(
i 51

N

e i u i &^ i u1(
i 51

N

(
l 51

Z/2

@ t1~12r i ,l !~ u i &^ i 1 l u1u i 1 l &^ i u!

1t2r i ,l~ u i &^ i Ru1u i R&^ i u!#, ~1!

wherei R represents a randomly chosen site other than thZ
neighboring sites of sitei and subject to the restriction tha
there are no repeating terms in the summation,r i ,l is a ran-
dom variable obeying the distribution function

P~r i ,l !5H p, for r i ,l51,

12p, for r i ,l50,
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the orbital levele i is randomly distributed between2w/2
andw/2 with a constant probability, andt1 and t2 are hop-
ping integrals for the regular bonds and the rewired bon
respectively.

The Hamiltonian can be numerically diagonalized to yie
the wave functions for various parameters. We adopt
spatial distribution of amplitudesuc j ( i )u2 of a wave function
with eigenenergyEj as the entity of the multifractal analys
to investigate its localization properties. In the calculation
the singularity spectrum we use the standard box-coun
method.6 In this method the entire circumference of th
DQSW ring is divided intoNL (NL<N) boxes of lengthL.
The probability to find an electron in thekth box is given by

mk, j~L !5(
i Pk

uc j~ i !u2, for k51,2,3, . . . ,NL . ~2!

In the statistical sensemk, j (L) depends on the size of boxe
with a power-law relation. The singularity strengthak in the
kth box is defined as the exponent of the power law

mk~L !;Lak. ~3!

Here we omit the index of the wave function for the simpl
ity. Thus, the boxes can be grouped into several subsets
cording to the values ofak . The subseta contains the boxes
with ak within a window ofa. The number densityN(a) of
subseta is a fractal itself with the Hausdorff dimensionf (a)

N~a,L !;L2 f (a). ~4!

The singularity spectrumf (a) completely characterizes th
multifractality of the whole measure of the probability di
tribution of the wave function. In order to avoid sufferin
from the possible numerical inaccuracies in the Legen
transformation, many authors employ a parame
representation6 of f (a) in terms ofq. Namely, one can use
the properly normalizedqth moment of the spatial distribu
tion of the wave function to constitute a measure

mk~q,L !5mk
q~L !/(

k8
mk8

q
~L !. ~5!

Then a(q) and f (q) are presented, respectively, in the fo
lowing form:

a~q!5 lim
d→0

(
k

mk~q,L !ln mk~1,L !/ ln d, ~6!

f ~q!5 lim
d→0

(
k

mk~q,L !ln mk~q,L !/ ln d, ~7!

whered5L/N denotes the ratio of the box size and the s
tem size. However, as pointed out by several authors, Eq~7!
is valid only in the existence of a linear relation between
numerator and the denominator for different values ofd. We
can definev5(kmk(q,L)ln mk(q,L) andx5 ln d. Thus, in the
procedure ofd→0 in the relative sense~actuallyL cannot be
shorter than the lattice spacing, 1! the linear relationv versus
x in Eq. ~7! reflects the scaling invariance of the measure
the fluctuations of the amplitudes of the wave function in
19340
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possible length scales. In fact, this behavior can serve
criterion of the Anderson transition. Below we will use th
criterion to study the localization properties of the wa
functions.

In the numerical calculations we first use the value ofp in
the region far from the critical pointpc that was obtained in
the scaling analysis of the level statistics.3 No linear relation
of v(x) is found for the eigenfunctions near the center of t
band in a system with sizeN52400. However, when we
carry out the same calculations forp in the vicinity of pc in
a system with the same size, this linear relation ofv(x)
indeed appears. Within the range ofpc60.0005, the wave
functions near the band center all exhibit the anticipated
ear characteristics ofv(x) @an example is shown in Fig
1~a!#. In the calculationsL scales from 20 to 2n with n;5 or
6 that are precise enough for system sizeN;103. By chang-
ing the system size toN51200 andN53600 the good linear
fitting persists, as shown in Figs. 1~b! and 1~c!, respectively.
Therefore, we can confirm that the multifractality of th
wave functions near the critical point manifests itself for d
ferent system sizes.

The existence of the multifractality of the wave functio
at the band center for specific values ofp provides a new
evidence for the LDT in the DQSW model. Moreover, th
value of pc from the multifractality analysis of the wav
functions is consistent with that from the analysis of the le
statistics. From these results a universal form of singula
spectra independent of the system size and the value ofpc is
naturally expected.7 This is confirmed in our calculations an
the results for different size (N51200, 2400, 3600) and dif
ferent coordinate number (Z58, 12) are shown in Fig. 2
Herepc decreases by increasingZ as largerZ provides more
opportunities for the shortcut paths. Curves of singular
spectra for various parameters are essentially coinciden
the range of 0,a,3.0. A little diversity appears in the re
gion of a.3.0, which corresponds toq,0 with larger ab-
solute value ofq. Sinceq acts as a microscope of explorin
the singularity measure in different regions of amplitudes
wave functions, the very small amplitudes of wave functio
are amplified in the moment of a negativeq with large ab-
solute value, corresponding to the subsets with larger sin
larity strengtha. In this region the calculated results a
mostly sensitive to the numerical errors and the digit contr
ling, which lead to the unavoidable deviation from the exa
behavior. We note that although the critical pointpc is dif-
ferent for differentZ, the singularity spectrum near the crit
cal point shows the same behavior. This implies that
critical singularity spectra are universal for the critical po
of the DQSW model with different coordinate numbers. T
shape of the curves is similar to that shown in Refs. 5 an
The only difference from the spectra of Refs. 5 and 7 is
scales off (a) anda. In the present case the box counting
performed in 1D boxes while in Refs. 5 and 7 it is done
3D boxes. Becausea and f (a) are both fractal dimension o
quantities obtained from the box counting, the scales oa
and f (a) are approximately shrunk by 3 times in comparis
with those in Refs. 5 and 7.

We also investigated thep dependence of the multifracta
strengthaq for q50 andq51 in a system with a given size
5-2
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BRIEF REPORTS PHYSICAL REVIEW B 63 193405
FIG. 1. ~a! Dependence ofv[(m(q,L)ln m(1,L) on x[ ln d for
wave functions near the band center of a DQSW system withp near
the critical value. The other parameters areZ58, w518.0, N
52400, andq50,1,2,3,4,5~from bottom to top!. ~b! Relation ofv
to x with the same parameters as those in~a! but N51200, and from
bottom to topq50,1,2,3,4 forp50.0852 andq50,1,2,3 for p
50.0850. Inset:q54 for p50.0850.~c! Relation ofv to x with the
same parameters as those in~a! but N53600.
19340
The results are shown in Fig. 3. The two values exhibit o
posite monotonous evolution in varyingp. For the sake of
clarity we plot two horizontal lines at values ofa1(pc) and
a0(pc) to divide the area into the localization districts ou
side the two lines and the delocalization one between th
When the rewiring probabilityp increases, botha0(p) and
a1(p) cross the critical lines at the same value ofp, corre-
sponding to the transition from the localization to the de
calization. We observe that the differenceDa5a0(p)
2a1(p) can reflect the localization degree even though
exact multifractality does not exist in systems far from t
critical point. It is worth stressing that although all the ca
culations are carried out in a single configuration of the d
order and no ensemble average is taken, the smooth pr
of the curves suggests the excellent self-averaging and
the multifractal analysis is an effective method in determ
ing the localization-delocalization transition. Moreover, w

FIG. 2. Singularity spectrumf (a) as a function ofa for wave
functions of systems near the transition pointpc . For systems with
coordinate numberZ58 the data are shown with both symbols a
connecting lines, for system withZ512 only the symbols are dis
played.

FIG. 3. Multifractal intensitiesa0 (s) anda1 (L) as functions
of rewiring probability p. Two solid lines with upper and down
triangle symbols correspond the reference values ofa0 and a1 at
the critical pointpc , respectively. The system size isN52400 and
the other parameters are the same as those in Fig. 1~a!.
5-3
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believe that a careful search for the linearity of functionv(x)
is a key procedure for the reliability of the method employ
near the critical point.

To summarize, we have confirmed the localizatio
delocalization transition in the DQSW model by using t
fractal analysis of the wave functions in systems with va
ing parameters. We find that the size-independent linear
lationship of functionv(x) persists near the critical pointpc .
This behavior not only indicates the exact multifractality
the wave functions at the critical point, but also produce
universal critical singularity spectrumf c(a) independent of
V.

E
,
.

19340
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the parameters. Moreover, we find that the transition fr
the localization to the delocalization in the DQSW syste
can also be displayed by drawing the curves ofa0(p) and
a1(p) versusp which cross the reference critical lines at th
transition. The present investigations may shed some ligh
properties of disordered systems with varying effective
mensionality.
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