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Classical treatment of parametric processes in a strong-coupling planar microcavity
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A classical treatment of parametric scattering in strong-coupling semiconductor microcavities is shown to
provide a good description of recent experiments in which parametric oscillator behavior has been demon-
strated. The model consists of a nonlinear excitonic oscillator coupled to a cavity mode that is driven by the
external fields and predicts the output power, below threshold gain and spectral blueshifts of the parametric
oscillator.
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Recent experimental studies have demonstrated that
large optical nonlinearities can be obtained in resona
pumped strong-coupling microcavities. The excitations
these structures are polaritons, mixed modes that are
exciton and part cavity photon, and the nonlinearity is due
interactions between the exciton components that cause
polaritons to scatter off each other. This leads to a parame
process where a pair of pump polaritons scatter into non
generate signal and idler modes while conserving energy
momentum. The scattering is particularly strong in mic
cavities because the unusual shape of the dispersion, sh
in the inset to Fig. 1, makes it possible for pump, signal, a
idler all to be on resonance at the same time.

A further important property of planar microcavities is th
correspondence between the in-plane momentum of each
lariton mode and the direction of the external photon
which it couples. This makes it quite straightforward to i
vestigate parametric scattering using measurements at d
ent angles to access the various modes. Two types of
cesses have been studied in this way: parame
amplification, where the scattering is stimulated by exc
tion of the signal mode with a weak probe field, and pa
metric oscillation, where there is no probe and a coher
population in the signal mode appears spontaneously.

Parametric amplification in microcavities was first o
served by Savvidiset al.,1 using ultrafast pump-probe mea
surements. The structure was pumped on the lower polar
branch at an incident angle of 16.5°. Narrow band gains
up to 70 were observed in the region of the polariton feat
for a probe at 0°, along with idler emission at 35°. These
a set of angles for which the pair scattering resonance c
dition is satisfied. A related scattering process has been s
ied by Huanget al.2 using two pump beams at645° and a
probe at normal incidence. The experimental results of Re
have been modeled by Ciutiet al.3 using a microscopic
quantum treatment of polariton-polariton interactions.

Parametric oscillator behavior has been observed
Stevensonet al.4 and Baumberget al.,5 in cw experiments
with the pump incident on the lower polariton branch at t
‘‘magic’’ angle of about 16°. Above a threshold pump inte
sity, strong signal and idler beams were observed at abou
and 35°, without any probe stimulation. The coherence
these beams was demonstrated by significant spectral
rowing, proving that they are due to a parametric proc
rather than resonantly enhanced incoherent photolumi
cence. Houdre´ et al.,6 have also observed a nonlinear em
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sion at 0° for a structure pumped at 10°. However, in t
experiment the pair scattering resonance condition is not
isfied, suggesting that different physics may be involved.

The purpose of this paper is to develop a simple class
model which provides a unified treatment of both amplifi
and oscillator in the cw regime. This model is based on
textbook treatment of parametric phenomena in systems s
as LiNbO3.7 Indeed, the microcavity behavior has charact
istics similar to a typical doubly resonant parametric oscil
tor, where just the signal and idler modes are cav
resonances—the pump resonance is mainly important in
hancing the strength of the nonlinear effects. However, th
are also significant novel aspects to the model: the microc
ity operates in the strong-coupling regime, where the mo
are cavity polaritons not simple photons, and instead o
non-resonantx (2) nonlinearity, the exciton provides a highl
resonantx (3) effect.

I. MODEL

The theoretical model is a classical treatment of a non
persive exciton modec(r ) with energyvx coupled to a cav-
ity modef(r ) with dispersionvc(k), which is driven by the
external fields. To account for broadening processes,vx and
vc(k) are taken to be complex energies with imaginary pa
gx andgc , respectively. The exciton mode is nonlinear, wi
potential energyV(c)5 1

2 vx
2c21 1

12 kc4.
To model the parametric processes, the cavity is driven

harmonic plane waves, consisting of a pump with amplitu
Fp at (vp ,kp) and a probe with amplitudeFs at (vs ,ks).
The cavity and exciton modes are also expressed as a su
plane waves at (vp ,kp) and (vs ,ks), plus an idler at (v i
52vp2vs ,k i52kp2ks). The cavity mode is linear, so th
equations of motion for the pump, signal, and idler mo
separate out, giving

@vc~kp!22vp
2#fp1gcp5Fp ,

@vc~ks!
22vs

2#fs1gcs5Fs , ~1!

@vc~ki !
22v i

2#f i1gc i50,

whereg is the strength of the coupling between the excit
and the cavity photon. The exciton equations are more c
plicated because the nonlinearity generates many term
different frequencies and wave vectors. Only the terms
frequenciesvp , vs , v i are retained here: the others are
very different frequencies, such as 3vp , or are weak, less
thanO(cp

2). This leaves
©2001 The American Physical Society05-1
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~vx
22vp

2!cp1gfp1kucpu2cp12kcsc icp* 50,

~vx
22vs

2!cs1gfs12kucpu2cs1kcp
2c i* 50, ~2!

~vx
22v i

2!c i1gf i12kucpu2c i1kcp
2cs* 50.

These equations can be simplified by using Eqs.~1! to
eliminate the cavity photon fieldsf and write everything in
terms of the exciton fieldsc. It is also convenient to approxi
matevx

22vp
2'2vx(vx2vp), etc., and defineV5g/vx , k̄

5 1
2 k/vx , and f 5 1

2 F/vx . Then Eqs.~2! become

S vx1k̄ucpu22vp2
~V/2!2

vc~kp!2vp
Dcp12k̄csc icp*

5 1
2 V f p/@vc~kp!2vp# , ~3a!

S vx12k̄ucpu22vs2
~V/2!2

vc~ks!2vs
Dcs1k̄cp

2c i*

5 1
2 V fs/@vc~ks!2vs# , ~3b!

S vx12k̄ucpu22v i2
~V/2!2

vc~ki !2v i
Dc i1k̄cp

2cs* 50. ~3c!

Equations~3! constitute the basic model for parametr
processes in a microcavity. The terms inucpu2 represent the
renormalization of the exciton energy due to the pump po
lation. The other nonlinear terms provide the scatteri
which is the main interest here:k̄cp

2c i* and k̄cp
2cs* in Eqs.

~3b! and ~3c! describe the buildup of the population in th
signal and idler modes, while 2k̄csc icp* in Eq. ~3a! repre-
sents the corresponding pump depletion.

It is often useful to make the simplification of considerin
a situation where the pump, signal, and idler energies are
close to the corresponding polariton resonance values,
the broadenings are small compared to the Rabi splittingV.
Then it is a good approximation to replace the polariton
sponse by a single Lorentzian function at eachk, with

FIG. 1. Dependence of the signal response on the pump angle, w
probe at normal incidence. The pump amplitudef p50.292, which corre-
sponds toI p50.75I 0 for this geometry. Structure parameters are Rabi sp
ting V55.0 meV, zero detuning, exciton widthgx50.25 meV, cavity

width gc50.25 meV, nonlinearityk̄51. The inset shows the polariton dis
persion with the pair scattering from pump to signal and idler modes.
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strengthuXu2, where X is the exciton amplitude~Hopfield
coefficient! for the mode. The driving terms on the righ
hand side of Eqs.~3! can similarly be approximated b
(C/X) f , whereC is the photon amplitude. Then, Eqs.~3!
reduce to

uXpu22~vp
01 igp2vp!cp12k̄csc icp* 5~Cp/Xp! f p , ~4a!

uXsu22~vs
01 igs2vs!cs1k̄cp

2c i* 5~Cs/Xs! f s , ~4b!

uXi u22~v i
01 ig i2v i !c i1k̄cp

2cs* 50, ~4c!

wherevp
0 , vs

0 , andv i
0 are the polariton resonance freque

cies andgp , gs , andg i the corresponding widths. In writing
the equations in this form, the exciton renormalization
effectively ignored, though it can be considered to be
cluded as a renormalization of the polariton frequencies
each point on the dispersion, it leads to a blueshift of
proximately 2k̄uXu2ucpu2. For low pump powers, where th
blueshift is small compared to the pump polariton width, a
whenvp5vp

0 , cp can be approximated, using Eq.~4a!, by
cp'2 iCpXp* f p /gp , and the blueshift is

dv0'2k̄uXu2 ~ uCpu2uXpu2/gp
2!I p , ~5!

whereI p5u f pu2 is the pump intensity.
It is interesting to compare the present classical mo

with the treatment in Ref. 3, which gives a good fit to t
pump-probe parametric amplifier experiments of Ref. 1. T
treatment was based on a quantum mechanical picture o
exciton-exciton scattering process. However, with the
proximations that were made, Eqs.~1!–~3! of Ref. 3, contain
essentially the same physics as Eqs.~4! here. Of course,
using a microscopic model gives a value for the nonlinea
k̄. However,k̄ only imposes a scale on the problem: resc

ing all the fields soc→c/Ak̄, f→ f /Ak̄, effectively makes
k̄51.

a

-

FIG. 2. Contour plot of the signal responseucsu2 as a function of probe
energy and incidence angle. The contours are logarithmically spaced,
the light regions of background shading indicate the highest intensi
Dashed lines show the single resonance conditions for the signal and
The pump is on resonance at 16°, and other parameters are as in Fig.
5-2
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II. PARAMETRIC AMPLIFIER

In the parametric amplifier, bothf p and f s are nonzero. It
is also helpful to assume thatf s! f p , so thatcs andc i are
small, and the pump depletion term in Eqs.~3a! and~4a! can
be neglected. Consider first the situation when the pro
idler, and pump satisfy the triple resonance condition,
Eqs. ~4! can be used withvp5vp

0 , vs5vs
0 , and v i5v i

0 .
Without the pump depletion term, these equations are so
by eliminatingcp andc i using Eq.~4a! and then Eq.~4c!, to
get

cs5
2 iCsXs* f s /gs

12k̄2~ uXi u2uXsu2/g igs!~ uCpu4uXpu4/gp
4!u f pu4

. ~6!

Dividing by the value ofcs without the pump, i.e., withf p
50, gives theinternal gain for the probe:
c
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as51/~12I p
2/I 0

2!, ~7!

where

I 05gp
2Agsg i /~ k̄uCpu2uXpu2uXsuuXi u!. ~8!

The gain increases from unity atI p50 to become singular a
I p5I 0. This suggests thatI 0 represents the threshold pum
intensity for oscillation, which will indeed be shown to b
the case in the next section.

The previous discussion was limited to the case where
the fields are on resonance. If this condition is not satisfied
is still possible to obtain an analytic solution when the ex
ton renormalization is neglected. Solving Eqs.~3! with the
same weak probe approximation gives
cs5
2~V/2! f s /Ls

12k̄2@~vc~ks!2vs!/Ls#@~vc~ki !* 2v i !/L i* #@~V/2!4/uLpu4#u f pu4
, ~9!
ual

u-

q.

sig-
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where Lp5(vx2vp)@vc(kp)2vp#2(V/2)2, and Ls and
L i are similarly defined.

Figure 1 shows the signal response at normal inciden
calculated using Eq.~9!, for different pump angles. The
pump energy is varied to be on the polariton resonance
each angle. The spectra show the two polariton feature
normal incidence, with clear gain on the lower branch
pump angles in the region of 16°: for this pump angle,
pair scattering resonance condition is satisfied when
probe angle is 0°.

In Fig. 2, the signal response is mapped out as a func
of energy and angle with the pump kept on resonance at
There is an enhanced probe response when either the s
or the idler is on resonance—these single resonance ene
are indicated by the dashed lines on the figure. The resp
is much stronger for the signal resonance, because the p
couples to the signal directly, but to the idler only via pa
metric scattering. The strongest response occurs at
double resonances, where the dashed lines intersect~at 0°,
16°, and 33.5°), but there is a long segment of the disper
very close to double resonance, where the gain remains h

III. PARAMETRIC OSCILLATOR

In the parametric oscillator regime, there is no probe,
f s50, but solutions can still be found with finite signal an
idler fields. Again, it is simplest to start with the triply res
nant case. Focusing on Eqs.~4b! and ~4c!, taking the com-
plex conjugate of one of them, and treatingcp as a param-
eter, we see that there are nonzero solutions forcs and c i
only if the determinant of the coefficients is zero, that is,

k̄ucpu2uXsuuXi u5Agsg i . ~10!

The physical interpretation of this condition is obvious—f
a steady state solution, the generation rate of polaritons in
e,
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signal and idler directions, on the left-hand side, must eq
the ~geometric! mean of the loss rates,Agsg i . This is only
possible with the value ofcp in Eq. ~10!. For a given exter-
nal driving field f p , the required value ofcp is attained by
the depletion of the pump polariton field due to the stim
lated scattering term.

The resulting signal intensity is calculated by using E
~4b! to write c i in terms ofcs , then substituting in Eq.~4a!
to obtain

ucsu25
g i

2k̄2ucpu3uXi u2
uCpu
uXpu S u f pu2

ucpu
uCpuuXpu

gpD , ~11!

where ucpu is now just a constant given by Eq.~10!. Since
the emitted signal intensityI s is proportional toucsu2, this
relationship is of the form

I s}AI p2AI 0, ~12!

where I 0 is the same threshold intensity as in Eq.~8!. Of
courseI s>0, so this solution only exists whenI p>I 0.

The treatment can be extended to the case where the
nal direction is such that the signal and idler are not both
resonance, that is, the mismatchD52vp2vs

02v i
0Þ0. The

steady state condition, Eq.~10!, becomes

k̄ucpu2uXsuuXi u5@~vs
01 igs2vs!~v i

02 ig i2v i !#
1/2, ~13!

with, once again,v i52vp2vs . A solution is only possible
if the right-hand side of Eq.~13! is real, which requires
vs2vs

05Dgs /(gs1g i), and correspondingly v i2v i
0

5Dg i /(gs1g i). The physical significance of this require
ment can be seen by looking atcs andc i : for the allowed
value of vs , gsucsu2/uXsu25g i uc i u2/uXi u2, that is, the loss
rates through the signal and idler modes are identical. He
5-3



a-

o-

n

ne

n
lu

er
a

of
. A
ca
w
th

he

ple

p

o
ow

r,

ot
ese
ld

ling
the

the
to

ve
e-

atu-
r 1

in-

tric
the
esh-

is
-

ulse
asts
ntial
d
d be
be-

cil-
ell
ex-
as-
co-
cent
e
ble
e-
e to

B.
is,

BRIEF REPORTS PHYSICAL REVIEW B 63 193305
this is the Manley-Rowe condition for the microcavity par
metric oscillator.

Continuing the solution for the signal intensity, for res
nant pumping the effect of the finite mismatchD is to shift
the threshold, so

I 0~D!5I 0~0!$11D2/~gs1g i !
2%1/2, ~14!

where I 0(0) is the value given in Eq.~8!. The threshold is
lowest whenD50 and pump, signal, and idler are all o
resonance.

These results show that the signal intensity is determi
by the pump depletion, which produces the value ofucpu2

required by Eqs.~10! and ~13!. For I p.I 0 , ucpu2 remains
unchanged, just as the population inversion in a conventio
laser is clamped at its threshold level. Since the actual va
of ucpu2 is unique to a particular pair of signal and idl
directions, in equilibrium there can only be one finite sign
amplitude. It is easy to see what will happen in an out-
equilibrium situation when there is more than one signal
signal whose loss rate exceeds its generation rate will de
while one for which the generation rate exceeds the loss
grow. So, in a process akin to mode selection in a laser,
signal with the lowest loss rate will dominate, depleting t
pump until only it survives.

IV. DISCUSSION

This model of the parametric oscillator makes two sim
predictions that can be checked against experiment: theAI p
power dependence in Eq.~12!, and the clamping of the pum
polariton amplitudecp to the value given in Eq.~10!. The
latter effect should be observable as a saturation, ab
threshold, of the blueshift of the polariton dispersion. Bel

FIG. 3. Theoretical fits to the experimental data~points! for ~a! signal
power and~b! blueshift from Ref. 5.
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the threshold the shift is roughly linear with pump powe
and it saturates at the value given in Eq.~5! with I p5I 0. For
the signal mode the saturated shift is thusdvs

0

'2Agsg i uXsu/uXi u. Of course, there are other effects, n
included in the model, that can cause energy shifts. Th
include the exciton renormalization due to the signal fie
and at higher powers the breakdown of the strong-coup
regime. The former effect can be estimated and is small:
signal field will give an energy shift ofk̄uXsu2ucsu2, which is
about 10% of the saturateddvs

0 when I p52I 0, using the
same structural parameters as in Fig. 1.

Figure 3 shows how these predictions compare with
experimental results in Ref. 5. The signal power is fitted
the form I s}AI p2AI 0 of Eq. ~12!. Although a good fit is
obtained, it is difficult to distinguish theAI p behavior from a
simple linear increase with the limited range of data abo
threshold. The support for the model provided by the blu
shift data is rather better: the experiments show a clear s
ration of the blueshift, and the saturation shift of just unde
meV agrees very well with the prediction ofdvs

0

'0.97 meV obtained using the experimental widthsgs
50.57 meV andg i50.80 meV.

The predicted form of the gain in Eq.~7! is not found in
the pump-probe experiments of Ref. 1, where the gain
creases exponentially withI p . However, the gain mechanism
in the ultrafast measurements differs from the cw parame
amplification discussed here. The peak pump powers in
experiments are orders of magnitude greater than the thr
old I 0, but oscillator behavior is not seen because there
insufficient time for the signal to build up just from the in
coherent photoluminescence. However, the probe p
seeds the signal, starting an an exponential growth that l
as long as the pump. This gives the observed expone
dependence onI p . Although the cw gain below threshol
predicted here has not been seen experimentally, it shoul
observable in structures that show parametric oscillator
havior.

To conclude, it has been shown that the parametric os
lator behavior recently observed in microcavities can be w
explained by a simple classical treatment of a nonlinear
citon strongly coupled to a cavity mode. The main noncl
sical effects that are missing from this model are the in
herent photoluminescence, discussed theoretically in a re
paper by Ciutiet al.,8 and quantum statistical effects in th
oscillator behavior around the threshold. It is also possi
that at higher excitation powers the signal intensity will b
come large enough for the appearance of new physics du
polariton-polariton interactions in the coherent state.
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