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Spin-orbit scattering as an experimental tool to measure spin currents

Gerd Bergmann*
Department of Physics, University of Southern California, Los Angeles, California 90089-0484

~Received 16 October 2000; published 5 April 2001!

Impurities with large spin-orbit scattering can be used to detect a finite spin polarization in a conductor. If
one considers a Fermi sphere with only spin-up conduction electrons in the presence of an electric field in the
x direction, then impurities with finite spin-orbit scattering scatter the conduction electrons asymmetrically.
The current in they direction is nonzero, even in the absence of a magnetic field. The magnitude of this
‘‘anomalous’’ Hall effect is calculated in terms of Friedel phase shifts.
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In a series of recent experiments1,2 we measured the Hal
resistance of quench-condensed potassium films. When
a film is covered with 1

100 of a monolayer of Pb we observ
~on top of the linear Hall resistance! a Hall curve that is very
similar to the anomalous Hall resistance of a ferromagn
The Pb impurities have a large spin-orbit scattering~SOS!.
We believe that the Pb impurities act as detectors of a fi
spin polarization in the K films. This is due to the fact th
impurities with large SOS scatter electrons with spin up
down asymmetrically.

The asymmetric scattering of polarized conduction el
trons by spin-orbit scattering was already investigated
Ballentine and Huberman3,4 when they tried to explain the
Hall constant of heavy liquid metals such as Tl, Pb, and
They performed the spin-orbit scattering in a perturbat
calculation. This might not be applicable in the present ca
We investigated recently the SOS of Pb and Bi in a num
of alkali metals, in particular in Cs.5 The SOS cross sectio
of Pb and Bi in Cs was remarkably large. In units of 4p/kF

2

we foundsSO8 '0.6 for the dimensionless SOS cross secti
The spin-orbit-scattering cross section is given by the f
mula

sSO8 5
sSOkF

2

4p
5(

l 51

`
l ~ l 11!

2l 11
sin2~d l ,12d l ,2!. ~1!

Here we use the notation for the Friedel phase sh
d l 11/2,l5d l ,1 and d l 21/2,l5d l ,2 . ~sSO and sSO8 include the
non-spin-flip contribution of the SOS.!

If one assumes that the Pb is an~s,p! scatterer and ne
glects higher-angular-momentuml scattering then the valu
2
3 is the absolute maximum forsSO8 of Pb impurities in Cs.
The phase difference betweend1,1 andd1,2 has to be of the
order ofp/2.

The purpose of this Brief Report is to calculate t
strength of the asymmetric scattering and the resul
‘‘anomalous’’ Hall resistanceRyx in terms of the Friedel
phase shifts of the Pb impurity and the polarization of
conduction electrons and to establish Pb impurities as a
tector for spin polarization. Such a calculation goes beyo
perturbation theory and is exact.

I start by considering first a plane electron wave w
momentumk, spin up, and one SOS impurity at the origi
0163-1829/2001/63~19!/193101~4!/$20.00 63 1931
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which scatters the plane wave. The asymptotic form of
total wave function, plane wave plus scattered wave~for
large r!, is given by

Ck,tot~r !.exp@ ik•r #x11Fnsf~V r !x1

eikr

r

1Fsf~V r !x2

eikr

r
, ~2!

whereFnsf(V r) give the non-spin-flip amplitude andFsf(V r)
the spin-flip amplitude of the scattered waves.Ck,tot(r ) is
then an asymptotic~stationary! solution of the impurity po-
tential.

The plane wave with spin up can be expressed asymp
cally as

exp@ ik•r #x1.
4p

2ikr (
l ,m

Yl
m* ~ k̂!

3@eikr2~21! le2 ikr #Yl
m~ r̂ !x1 ~3!

so that

Ck,tot~r !.2~21! l
4p

2ik (
l ,m

Yl
m* ~ k̂!Yl

m~ r̂ !x1

e2 ikr

r

1S 4p

2ik (
l ,m

Yl
m* ~ k̂!Yl

m~ r̂ !1Fnsf~V r ! D x1

eikr

r

1Fsf~V r !x2

eikr

r
. ~4!

For a sphere with a single SOS impurity in the center,
electronic states are eigenfunctions with total angular m
mentum j 5 l 6 1

2 . Their wave function is Ck, j ,mj
(r )

5Rk,l 61/2(r )u l 6 1
2 ,m1 1

2 & whereu l 6 1
2 ,m1 1

2 & is the angular
eigenstate with the quantum numbersj 5 l 6 1

2 and j z5m
1 1

2 . The radial part of the wave functionRk,l 61/2(r ) has the
asymptotic form
©2001 The American Physical Society01-1
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Rk,l 61/2~r !.
1

kr
sinS kr2

l

2
p1d l ,6D

5
1

kr

1

2i H expF i S kr2
l

2
p1d l ,6D G

2expF2 i S kr2
l

2
p1d l ,6D G J .

The wave functionCk,tot(r ) can be expressed in terms
the eigenfunctions,

Ck,tot~r !54p(
l ,m

Yl
m* ~ k̂!(

6
a l 61/2,m11/2Ck,l 61/2,m11/2~r !

54p(
l ,m

Yl
m* ~ k̂!(

6
a l 61/2,m11/2

1

kr

1

2i

3„exp$ i @kr2~ l /2!p1d l ,6#%

2exp$2 i @kr2~ l /2!p1d l ,6#%…u l 6 1
2 ,m1 1

2 &.

~5!

Now one can express the statesu l 6 1
2 ,m1 1

2 & again in terms
of Yl

m( r̂ )x1 andYl
m11( r̂ )x2 with

u l 1 1
2 ,m1 1

2 &5S Al 1m11

A2l 11
Yl

mx11
Al 2m

A2l 11
Yl

m11x2D ,

u l 2 1
2 ,m1 1

2 &5S Al 2m

A2l 11
Yl

mx12
Al 1m11

A2l 11
Yl

m11x2D .

By comparing the asymptotic forms of the incoming wav
in Eqs.~4! and ~5!, one finds

a l 11/2,m11/25 i leid1
Al 1m11

A~2l 11!
,

a l 21/2,m11/25 i leid2
Al 2m

A~2l 11!
. ~6!

With these coefficients one obtains the outgoing wave. T
yields for the scattered wave

4p

2ik (
l ,m

Yl
m* ~ k̂!

eikr

r

3F S l 11

2l 11
e2id l ,11

l

2l 11
e2id l ,221DYl

m~ r̂ !x1

1
m

2l 11
~e2id l ,12e2id l ,2!Yl

m~ r̂ !x1

1
A~ l 1m11!~ l 2m!

2l 11
~e2id l ,12e2id l ,2!Yl

m11~ r̂ !x2G .

~7!
19310
s

is

The first term in the square brackets of Eq.~7! is the poten-
tial scattering. It is independent ofm and depends only on
the angle betweenk andr . The second term is the non-spin
flip part of the SOS and the third term is the spin-flip part
the SOS. Both SOS terms vanish if (d l ,12d l ,2) is zero.

Next it has to be shown that this scattering is asymmet
Such an asymmetry results from the interference of the n
spin-flip parts. The spin-flip scattering does not contribute
the anomalous Hall resistivity. Therefore we calculate
scattering intensity of the non-spin-flip parts. The non-sp
flip amplitude consists of potential scattering

F0~ r̂ !5(
l ,m

L lYl
m* ~ k̂!Yl

m~ r̂ !
eikr

r
,

L l5
4p

2ik S ~ l 11!

2l 11
e2id l ,11

l

2l 11
e2id l ,221D

and spin-orbit scattering

FSO~ r̂ !5(
l ,m

l lmYl
m* ~ k̂!Yl

m~ r̂ !
eikr

r
,

l l5
4p

2ik S 1

2l 11
~e2id l ,12e2id l ,2! D .

The SOS depends on the direction of the incident wa
vectork. Therefore it has to be averaged over all directio
of k ~with uku5const!. To simulate a shifted Fermi sphere
thex direction the weight of the plane wavek5(k,uk ,fk) is
chosen as

w~uk ,fk!dVk5
3

4p
sinuk cosfkdVk

so that the averaged flow density is (k,0,0), the same as fo
the plane wave exp@ikx# in the x direction.

We are interested here in the flow~due to scattering! per-
pendicular to the direction of (k,0,0), i.e., in they direction.
Therefore we have to multiply the outgoing intensity of t
scattered wave byk sinur sinfr dV r ~and integrate over
dV r!.

The sum of the potential and the non-spin-flip spin-or
scattering is proportional to (L l1ml l). So the flow of the
scattered wave~s! is given by the integral

Jy5
3

4p
k E E U(

l ,m
~L l1ml l !Yl ,m* ~ k̂!Yl ,m~ r̂ !U2

3sinuk cosfk sinu r sinf rdVkdV r .

Only the interference between the two parts contributes
the anomalous resistivity. It is proportional to (L l* m8l l 8
1ml l* L l 8).

After a lengthy calculation we obtain for the current in th
y direction
1-2
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Jy52 i
1

8p
k(

l
$L l* l l 11~ l 12!~ l 11!1l l* L l 11l ~ l 11!

2L l* l l 21l ~ l 21!2l l* L l 21l ~ l 11!%.

The ratio Jy divided by the flow in thex direction j x5k
yields the Hall cross section of the SOS impurity,
t

th
e
e

-

O
g

19310
sxy52 i
1

8p (
l

@~ l 12!~ l 11!~L l* l l 112l l 11* L l !

1 l ~ l 11!~l l* l l 112L l 11* l l !#.

In the next step we evaluate (L l* l l 112l l 11* L l) and
(l l* L l 112L l 11* l l). This yields for the Hall cross section
sxy5
2p

k2 (
l

S sin~d l 11,1 ,2d l 11,2!

~2l 11!~2l 13!
~ l 12!~ l 11!@2~ l 11!sin~d l ,1!cos~d l 11,11d l 11,22d l ,1!

2 l cos sin~d l ,2!cos~d l 11,11d l 11,22d l ,2!#1
sin~d l ,12d l ,2!

~2l 11!~2l 13!
l ~ l 11!@1~ l 12!sin~d l 11,1!cos~d l ,11d l ,2

2d l 11,1!1~ l 11!sin~d l 11,2!cos~d l ,11d l ,22d l 11,2!# D . ~8!
de-

ec-
den-

the
e

If we restrict ourselves to~s,p! scattering then the dominan
term is

sxy
~1!52

4p

3k2 sin~d1,12d1,2!sind0 cos~d1,11d1,22d0!.

~9!

~For l 50 we haved0,15d0,25d0 .!
In the next step I calculate the Hall resistance due to

SOS. For this purpose one has to treat the current s
consistently. I choose the direction of the current as thx
direction. The displacement of the Fermi sphere isk
5(kx,0,0). The electric field forms the anglea with the
current. The rate equation for the average momentum is

\
dkx

dt
5~2e!E cosa2\

kx

t0
,

\
dky

dt
5\

kx

txy
1~2e!E sina, ~10!

where

1

txy
5nisxyvF .

~The contributions ofky on the right side are dropped be
causeky is zero.! The elastic scattering timet0 generally has
contributions from other scattering centers besides the S
~Note that the sign oftxy determines whether the scatterin
is in the positive or negativey direction.!

In the stationary state~with ky50! we have

\
kx

t0
5~2e!Ex5~2e!E cosa,

\
kx

txy
52~2e!Ey5eEsina,
e
lf-

S.

tana52
t0

txy
.

The current density is

j5~ j x,0,0!,

j x5n~2e!
\kx

m
.

The normal resistivity is

rxx5
Ex

j
5

Ex

n~2e!t0~2e!Ex /m
5

m

e2n

1

t0
.

The Hall resistivity is

rxy5
Ey

j
5

2\k/~2e!txy

n~2e!\k/m

52
m

e2n

1

txy

52
m

e2n
nisxyvF52

\kF

e2n
nisxy .

It is interesting to note that the Hall resistance does not
pend on the relaxation time of the conduction electron.~Of
course, the Hall angle depends ont0 .!

For the conduction electrons with the opposite spin dir
tion one obtains analogous expressions, containing the
sity n, the relaxation ratet, and the Hall cross sectionsxy for
the other spin direction. In the final step one has to add
conductance~conductivity! matrices of both spins, which ar
given by
1-3
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s↑↓5S S rx,x

rx,x
2 1rx,y

2 D
↑↓

2S rx,y

rx,x
2 1rx,y

2 D
↑↓

S rx,y

rx,x
2 1rx,y

2 D
↑↓

S rx,x

rx,x
2 1rx,y

2 D
↑↓

D . ~11!

If the relaxation rates do not depend on the spin and o
the density of the spins is different then the result is rat
simple:

s↑5n↑
e2/m

~1/t0!21~1/tx,y!2 S 1

t0

1

tx,y

2
1

tx,y

1

t0

D ,

s↓5n↓
e2/m

~1/t0!21~1/tx,y!2 S 1

t0
2

1

tx,y

1

tx,y

1

t0

D ,

which yields
19310
ly
r

s5
e2/m

~1/t0!21~1/tx,y!2

3S ~n↑1n↓!
1

t0
~n↑2n↓!

1

tx,y

2~n↑2n↓!
1

tx,y
~n↑1n↓!

1

t0

D .

In this case the Hall conductivity is proportional to the p
larization of the conduction electrons. If only the~s,p! scat-
tering has to be included then one finds for the Hall cond
tivity

sH52nivF

e2~n↑2n↓!

m
t0

2

3
4p

3k2 sin~d1,12d1,2!sind0 cos~d1,11d1,22d0!.

The Hall resistivity is given by the inverse matrix of th
conductivity ~which can yield rather lengthy expressions!.
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