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Spin-orbit scattering as an experimental tool to measure spin currents
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Impurities with large spin-orbit scattering can be used to detect a finite spin polarization in a conductor. If
one considers a Fermi sphere with only spin-up conduction electrons in the presence of an electric field in the
x direction, then impurities with finite spin-orbit scattering scatter the conduction electrons asymmetrically.
The current in they direction is nonzero, even in the absence of a magnetic field. The magnitude of this
“anomalous” Hall effect is calculated in terms of Friedel phase shifts.
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In a series of recent experimehtave measured the Hall which scatters the plane wave. The asymptotic form of the
resistance of quench-condensed potassium films. When sutbtal wave function, plane wave plus scattered wéfoe
a film is covered withss; of a monolayer of Pb we observe larger), is given by
(on top of the linear Hall resistanca Hall curve that is very
similar to the anomalous Hall resistance of a ferromagnet.
The Pb impurities have a large spin-orbit scatteri8@9.
We believe that the Pb impurities act as detectors of a finite
spin polarization in the K films. This is due to the fact that ikr
|dmpur|t|es with Igrge SOS scatter electrons with spin up or FEAQ)x —, )

own asymmetrically. r
The asymmetric scattering of polarized conduction elec-

trons by spin-orbit scattering was already investigated bXNh . - .
. . 4 ereF «((,) give the non-spin-flip amplitude arfkeL{(,)
Ballentine and Hubermart when they tried to explain the the spin-flip amplitude of the scattered waves?y (1) is

Hall constant of heavy liquid metals such as Tl, Pb, and Bi'then an asymptotiéstationary solution of the impurity po-
They performed the spin-orbit scattering in a perturbatio ymp punty p

calculation. This might not be applicable in the present caseré.ent'al'

ikr
\Pk,tot(r)zexq—i Ker]x, + FnsI(Qr)XJrT

We investigated recently the SOS of Pb and Bi in a numberC aI-Ith Splane wave with spin up can be expressed asymptoti-
of alkali metals, in particular in C$The SOS cross section y

of Pb and Bi in Cs was remarkably large. In units okaﬁ

we foundogy~0.6 for the dimensionless SOS cross section. 47 .

The spin-orbit-scattering cross section is given by the for- exr[ik-r])”:m% Y™ (k)

mula
x[eM—(=D'e ™ Y (P)xs (3

oo

, o-sok,z::Z [(1+1)

Is0™ 47 = 21+1

si(8) 4 — 8. -). (1) so that

Here we use the notation for the Friedel phase shifts: B

Si+12)=06) + and 8_15;=6, _ . (050 and ogg include the
non-spin-flip contribution of the SOB.
If one assumes that the Pb is &)p scatterer and ne-

AT
Vil 1)= = (= D'5 S Y™ (RYT(P)x

ikr

TS T Y™ (F
glects higher-angular-momentulscattering then the value Tl 2ik % Yim OV + Fasf( Qo) | x4
£ is the absolute maximum fargg of Pb impurities in Cs. r
The phase difference betweép.. andd; _ has to be of the TEALO e 4
order of /2. QX @

The purpose of this Brief Report is to calculate the
strength of the asymmetric scattering and the resulting ] ] _ o
“anomalous” Hall resistanceR,, in terms of the Friedel For a sphere with a single SOS impurity in the center, the
phase shifts of the Pb impurity and the polarization of theelectromc. statef, are e[genfunctlons Wlth tqtal angular mo-
conduction electrons and to establish Pb impurities as a dénentum j=I=+3. Their wave function is Wy n (r)
tector for spin polarization. Such a calculation goes beyond=Ry - 1/(r)|l =3,m+3) where|l = 3,m+3) is the angular
perturbation theory and is exact. eigenstate with the quantum numbgrs|+3 and j,=m

| start by considering first a plane electron wave with+ 3. The radial part of the wave functid® | . 1,(r) has the
momentumk, spin up, and one SOS impurity at the origin, asymptotic form
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The first term in the square brackets of Ed). is the poten-
kr— 7T+ o +) tial scattering. It is independent ofi and depends only on

the angle betweek andr. The second term is the non-spin-

flip part of the SOS and the third term is the spin-flip part of

Ry 1+ 1/2(1) = (
1
= k_ 2— i\ kr—5 7T+ )+ the SOS. Both SOS terms vanish & (. — &, _) is zero.
Next it has to be shown that this scattering is asymmetric.
) I
—exp{ - ( kr—sm+ 5':) spin-flip parts. The spin-flip scattering does not contribute to
the anomalous Hall resistivity. Therefore we calculate the

} Such an asymmetry results from the interference of the non-
The wave functiont?', (r) can be expressed in terms of scattering intensity of the non-spin-flip parts. The non-spin-

the eigenfunctions, flip amplitude consists of potential scattering
. ikr
* 0 N P ~
\Pk,tot(r):“'ﬂ';n Y (k)Z a1+ 12m+12% k1 = 172m+ 12T) Fo(r)zgn AYT (k)Y{"(r)T,
11
_4772 i (k)E A= 12m+ U2, 57 _Am ((+1) Q215 4 4 ! Q28 - _ 1
"2k | 21+1 21+1

X (exp{i[kr—(1/12)7+ 6 + 1}
—exp{—i[kr—(1/2) 7+ & DIl +3,m+3).

ikr
® Feolh)= 2 Am¥™ (¥

and spin-orbit scattering

Now one can express the states 3,m+3) again in terms
of Y(F)x, and Y™™ (f) y_ with

)\|:4.—7T ! (e?0+—e? 07y |
1+ hme e Vi+m+ L= g ) 2ik | 21+1
’ Va2l+1 BNCEE ’
The SOS depends on the direction of the incident wave
vectork. Therefore it has to be averaged over all directions
_1 1y _ ym+ of k (wit =cons}. To simulate a shifted Fermi sphere in
=3 m+1) \ Yo — V f k (with |k }. To simul hifted Fermi sphere i
’ N V2l thex direction the weight of the plane wake= (k, 6, , &) is

. . ) ) chosen as
By comparing the asymptotic forms of the incoming waves

in Egs.(4) and(5), one finds 3
W( 6k !¢k)ko: ESin 0k C05¢dek

(s NI+m+1
7 =i e e
em vz J2i+1) so that the averaged flow density iI5,@,0), the same as for
the plane wave eXjkx] in the x direction.
—m We are interested here in the flqdue to scatteringper-
@) _1jomi10=1€" (6)  pendicular to the direction ok(0,0), i.e., in they direction.
(2| +1) Therefore we have to multiply the outgoing intensity of the
With these coefficients one obtains the outgoing wave. Th%(;;\t;[ered wave byksing sind; d}, (and integrate over
P r
yields for the scattered wave The sum of the potential and the non-spin-flip spin-orbit
4 oikr scattering is proportional toA;+m\;). So the flow of the
_772 mk T scattered wavs) is given by the integral
: Yo (k)
2ik r
1+1 | 3 D ’
1 i . J=—kff (A + M) YF (K Y (P
25 2i5 _ _ m y [ Ym I,m
X[ 1S T ® 1)Y' (F)x+ A Lm

X sin, cosg¢, sin 6, sing,dQ,dQ, .

+ 5 (€20 =AY () s | |
Only the interference between the two parts contributes to
the anomalous resistivity. It is proportional ta\{m’\,
(e2‘5|~+—e2‘5'v)Y["”(f))(_}. +MAFA)).
After a lengthy calculation we obtain for the current in the
(7) y direction

Ja+m+1)(I—m)
21+1
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1 1
3y= =i gk A N+ 2+ D+AF ALl (1+1) Oy=~i g 2 [1+2) (1 AT A=A A
—AFN (=) =N A I+ D)} IO+ DOFN 1= AT )]
The ratioJ, divided by the flow in thex direction j,=k In the next step we evaluateA{\;,;—\{.;A;) and
yields the Hall cross section of the SOS impurity, (NFA 11— AL 1\)). This yields for the Hall cross section

2 SIN(Sj414+,—O1+1-) .
o= 2 | e (120 DI (1SN )e0s b+ 821~ 61.0)
sin(dy 4+ —6,-)

—lcossifd) -)cog 51+ + 641~ )]+ @+ 2+3)

L1+ 1)[+ (1 +2)sin( 8 1 . )cOL &), + 8 _

=81 14) H(1+1)SINS 41 )OS 4+ 8 = F41-)] ] 8
|
If we restrict ourselves tés,p scattering then the dominant o
term is tana=-=—-".
Xy
w__ A7 - ity i
Txy =7 32 Sin( 8y + — 01 -)SiNJp COY 81 4 + 81— — Jp). The current density is
€) o
j=(jx0.,0),

(For =0 we havedy . =6y _=Jy.)

In the next step | calculate the Hall resistance due to the
SOS. For this purpose one has to treat the current self- j =n(—e)hKX.
consistently. | choose the direction of the current asxhe X m
direction. The displacement of the Fermi sphere us
=(k,,0,0). The electric field forms the angle with the  The normal resistivity is

current. The rate equation for the average momentum is

d E, E, m 1
K K = = = J—
h—==(—e)Ecosa—h —, P T n(Ce)ro(—e)E, /m €2n 7y’
dt To
The Hall resistivity is
dxy Ky .
ﬁwzﬁ—-i‘(—e)ESIna{, (10
Txy _Ey_—ﬁK/(—e)TXy
where Py T (= e)hik/m
1 _ ~m 1
Ty OWUF T @,
(The contributions ofk, on the right side are dropped be- m hike
causex, is zero) The elastic scattering tims, generally has T en NioxyWE= — &n Nioyy-

contributions from other scattering centers besides the SOS.
(Note that the sign of,, determines whether the scattering
is in the positive or negative direction)

In the stationary statéwith «,=0) we have

It is interesting to note that the Hall resistance does not de-
pend on the relaxation time of the conduction electi@.
course, the Hall angle depends af)
p For the conduction electrons with the opposite spin direc-
h —=(—e)E,=(—e)Ecosa, tion one obtains analogous expressions, containing the den-
o sity n, the relaxation rate, and the Hall cross sectian,,, for
the other spin direction. In the final step one has to add the
3 M (—e)E,=eEsina, cpnductancéconductivity) matrices of both spins, which are
Txy given by
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Px,x Px,y _ e?/m

2 2 12 2 - 2 2
px,x+px,y 71 px,x+pxyy 1 ( ) (1/7-0) +(1/Tx,y)

ZpX’yZ _#2_ (nﬁ“nl)i (m_nl)i
px,x+px,y 11 px,x+ Px.y 11 % 70 Tx,y

simple:

11
e’/m 7o Txy
TN Wny? | 1 1|
_;y 70
1 1
e’/m o Txy
TN WP+ (Uny?| 1 1 |
Ty T
which yields

If the relaxation rates do not depend on the spin and only
the density of the spins is different then the result is rather

1 N 1
(n, nl)?,y (n, nl)r_o

In this case the Hall conductivity is proportional to the po-
larization of the conduction electrons. If only tk&p scat-
tering has to be included then one finds for the Hall conduc-
tivity

2
en—ny)
—niv,:— 7'0

a
xmsin( 014+ —61-)siNdyCcOg 1+ Oy — ).

The Hall resistivity is given by the inverse matrix of the
conductivity (which can yield rather lengthy expressigns
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