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Critical currents, flux-creep activation energy, and potential barriers for the vortex motion
from flux-creep experiments
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We present an experimental study of thermally activated flux creep in a superconducting ring-shaped epi-
taxial YBaCuO;_, film as well as a different way of analyzing the experimental data. The measurements
were made in a wide range of temperatures between 10 and 83 K. The upper temperature limit was dictated by
our experimental technique and at low temperatures we were limited by a crossover to quantum tunneling of
vortices. It is shown that the experimental data can very well be described by assuming a simple thermally
activated hopping of vortices or vortex bundles over potential barriers, whereby the hopping flux objects
remain the same for all currents and temperatures. This procedure of data analysis also allows us to establish
the current and temperature dependencies of the flux-creep activation éheagywell as the temperature
dependence of the critical curreht, from the flux-creep rates measured at different temperatures. The
variation of the activation energy with currett(1/1.), is then used to reconstruct the profile of the potential
barriers in real space.
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l. INTRODUCTION YBa,Cu;0,_, (YBCO) in the temperature range between 10
and 60 K, the temperature interval covered in the work pre-
Investigations of the flux-creep process in type-ll superviously published in Ref. 20. The proposed scaling proce-
conductors reveal important information about the interacdure permits us to establish the dependence of the flux-creep
tion of vortices with pinning centers and among the vorticesactivation energyd on the normalized current densityj .,
themselves. Studies of this type are especially rewarding fowhere . is the critical current density, as well as the tem-
high-temperature superconductof$iTSC’s) because in perature dependence of the critical current, directly from the
these materials a particularly rich variety of features of theV-l characteristics of the sample in the flux-creep regime.
vortex state has been established. In principle, the analysis dihe main goal of the present work was to test whether the
flux-creep data obtained at different temperatures permits tg@me procedure may also be applied successfully at tempera-
establish the dependence of the flux-creep activation enerdires closer td';. Therefore we have rearranged the experi-
U on the current density and on temperatur@. Different mental setup such as to allow an extension of the measure-
scaling procedures have been developed and used in order®$NtS up to 83 K. This extension of the measurements to
deduce this informatiof:15°However, the interpretation of hlgher temperatures is important be_ca_luse it prowdes infor-
the experimental results is rather complicated because tHBation abouti(j/j.) for low values ofj/j. In this way the
suggested procedures involve many parameters which atl;@vered range _Of currents has been eXteT‘dEd dowj to
not a priori known. Actually, there is no way to deduce all .~.0.05, approxma’gely an order of magnitude lower than
the parameters from the experimental data alone and SOMQ °%0'4’. _reached |n.Re_f. 20. .
L . L . In addition to monitoring the current decay in zero exter-
additional assumptions have to be made. The lacking input iS4

; ; : : . field as described in Ref. 20, we have extended the data-
usually provided by invoking different theoretical models base by measuring the flux-creep rates also in external mag-
and therefore the final result naturally depends on the pal

. : 'etic fields of 0.3 and 1 kOe.
ticular chosen model. In many cases, different models have

been employed to interpret data obtained from the same kind
of samples, resulting, for example, in rather differidgj) Il. EXPERIMENT
curves. This is why, in spite of the extensive literature on this
subject, the available information following from the analy-
ses of the experimental data is still, to a certain degree, in- The experiments have been made using a ring-shaped ep-
conclusive and often controversial. itaxial YBCO film with a superconducting critical tempera-
Recently we have proposed a different approach for anature T,=87.5 K. The external diameter of the ring is 10 mm
lyzing the flux-creep rates in HTSC®.This approach is and its width is approximately 2 mm. The film thickness is
based on a few basic assumptions and it essentially consis&out 0.3xm. The resistive transition to superconductivity
in merging the experimental voltage-curreht() character- of the sample is shown in the inset of Fig. 3. More details
istics of one sample, obtained at different temperatures, usbout the sample and the basic experimental setup can be
ing their shape as the key to deduce the scaling parameters fttund elsewherd®=22
has been demonstrated that this approach works rather well For the present study we intended, as mentioned above, to
for V-l characteristics of a ring-shaped film of extend the measurements to temperatures as clo$g &3

A. Sample and measurements
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FIG. 1. Examples oV-I characteristics at two different tem- £y 5 variations of the electric curremtin the sample as a
peratures. function of time after magnetic field step at three temperatures in

. . . . the high-temperature range.
possible. The main technical obstacle is the very strong tem-

perature dependence of the flux-creep rate at temperatures B. Heating effects

close toT,, asking for a high stability and accuracy of the In this kind of . titis al tial t id

temperature control for obtaining reliable data. The desired nh '?_ In fothexperlmlen ! '3 also ﬁsste_n lal to a\:jmb at?]

temperature stability has been achieved by using a Platinu/fvérneating of the samplé via Joule neating caused by the
duced current. In the flux-creep regime the dissipation

resistance thermometer for temperatures exceeding 30 K. ) il I and th . heating. H
With this temperature sensor the computer-based temperQ-OWer IS Negigibly small and there IS no overheating. How-
ture controller provided a temperature stability bfL mK. ever, during the abrupt change of the external magnetic field

For lower temperatures we used a diode thermometer provic}he mdtllJced ér?hn3|ept Cli;]rer;]t mtgy beﬁhlgther thakr; the cr](tjlcal
ing a temperature stability of- 30 mK, sufficient in this currentlc and theretore the heating etiects may be consider-

temperature range. able. During the time period of the magnetic-field step, the

Steplike changes of the external magnetic field ori- voltage around the sample may be estimated as
ented perpendicularly to the ring plane, were used to induce 1 dd
an electrical current in the ring. Three different procedures V=———o, 1
were employed, i.e.(i) switching off a fieldH=1 kOe to c dt
H.=0, (ii) switching the field to a value dl;=1 kOe, and wherec is the speed of light and is the magnetic flux
(iii) switching the field to a value dfi,=0.3 kOe. In the last inside the ring cavity. In our experiments the duration of the
two cases both positive (8H.) and negative Klo—H,) field variation was of the order of 50 ms. This implies a
field steps withHy=1.7 kOe for the casél.=1 kOe and voltageV~100 wV, which is more than five orders of mag-
Hy=0.6 kOe forH.=0.3 kOe were made. nitude higher than typical voltages in the flux creep regime.

After these stepwise variations of the external field, the Our thin-film sample has a low heat capacity and it is in
magnetic induction in the ring cavit; was monitored as a good thermal contact with the substrate. Therefore the ther-
function of timet. For this purpose a LakeShore 450 Gauss-mal equilibrium should be restored much quicker than the
meter with a standard cryogenic Hall probe was used. Fronime given by the delay of a few seconds between the field
the B;(t) data, the current decay curvb@) may be calcu- step and the beginning of monitoridgt). In this case any
lated straightforwardly, taking into account the position of overheating effects are negligible in a large part of the cov-
the Hall probe inside the ring cavity. Using th@) data, the ered temperature range. However, at temperatures close to
voltage around the ring sample can be calculated Wia T,, the situation is quite different. In this case, during the
=Ldl/dt, whereL~8 nH is the sample inductance. The field step, the sample may be heated to abdyeand the
primary experimental data can thus easily be converted intourrent, induced by the field step, may decay considerably
V-I characteristics of the sample. Examples of colledteld  before superconductivity in the sample is restored. If the cur-
curves are shown in Fig. 1. rent decays too strongly, the resulting current density may

In this kind of experiment it is very important to make not be sufficient for the creation of the critical state in the
sure that the current density in the sample, induced by theample and the flux-creep data will be distorted.
magnetic field step, is high enough to create the critical state In order to illustrate this problem we show the current
throughout the sample. In this case the experimental resultslecay curves for three temperatures in the high temperature
represented ag-l curves, are practically independent of the range in Fig. 2. The curve correspondinglte 77.7 K dem-
magnitude of the field step as well as the magnetic history obnstrates a slight upward curvature which is typical for flux-
the sample. We note that fét,=0 andH.=1 kOe, this was creep behavior. AT=78.7 K the situation is already differ-
indeed the case for the whole covered temperature range. Fent. The curvature is of opposite sign, indicating that the
H.=0.3 kOe, however, the step magnitude was insufficienturrent density was insufficient to create the critical state. At
at low temperatures and the measurements were feasible Bt=80.7 K the current is close to zero from the very begin-
T=70 K only. ning and the flux-creep phenomenon is no longer reflected in
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the I(t) curve. In this way, overheating limits the tempera-

[ ]
ture range where useful experiments of this kind may be 0.04 | o [FFrook . 2
made. Different field steps have different upper temperature - o
limits. In our work the lowest limit is attained when the £ I | .
external magnetic field is switched to 1 kOe. As is illustrated § 003 T T z (Kl)m o i
in Fig. 2, in this case meaningful measurements are not pos- £ .® o
sible aboveT~78 K. For H,=0, the limiting temperature T oot oo o o oo
was about 81 K, whereas fét,=0.3 kOe, measurements up QA
to T~83 K were possible. ool

C. Magnetic induction in the sample

The important parameter in the flux-creep process is the
magnetic inductionB in the bulk of the sample. The

magnetic-induction fixes, for instance, the vortex density. InfOIr H.=0 and 1 kOe, as a function of temperature. The symbols

our experllments we did not meaSlBeand_thgre IS no way 1o represent the experimental data. The solid line repre€g{it3 cal-
estimate it accurately. After the magnetic field step has beep |ated for the potential profilei(x), shown in Fig. 11, forV

applied,B must adopt a value somewhere between those that g 1 ny. The temperature dependence of the critical current was
correspond to the initial and the final valuestdfThis is, of  neglected in the calculations. The calculation procedure is described
course, a very rough estimate, especially in the case when thg sec. Iv. The inset shows the resistive superconducting transition
external field is switched offf.=0). A redistribution of the  of the sample.

magnetic induction in the sample only occurs during the field

step and then, in the flux-creep reginBeremains practically  derivative is taken. We have chosen the valu¢=oi00 s to
constant in time. evaluateQ for the data presented in Fig. 3.

For H.=0 the magnetic induction is due to the remnant The normalized relaxation rate may also be defined as
magnetization. At low temperatures, where the critical curQ=—dInl/dInV, which is equivalent taQ=dInl/dInt if
rent density is practically temperature independénB  both derivatives are established at the same value of current.
should be independent of temperature as well. At higher temin our case the chosen time corresponds to the voliage
peratures, howeveB decreases with increasing temperature,=0.01 nV, which is practically independent of temperature
tending to zero aT =T.. This uncertainty irB greatly com-  for T<40 K. At higher temperatures, however, this voltage
plicates the interpretation of the experimental data at temdecreases with increasing temperature.
peratures close td..

If He#0, the magnetic inductioB is larger than the
value corresponding tbl, for the negative field step and by ) ) . N
about the same amount smaller for the positive step. In this |f the currentl in the sample is less than its critical value
case it is more appropriate to use the data averaged for twe . @ll vortices are pinned and their motion occurs only due
different field steps rather than the individual results. Theto either thermally activated hopping over the potential bar-
independenB=0.3 kG orB=1 kG for H,=0.3 kOe and dominant at low temperatures. For our sam_ple the crossover
H.=1 kOe, respectively. The averaging also considerabl)from thermal activation to quantum tunneling occursTat
reduces the experimental errors, as it is discussed in morg10 K. The low-temperature features have thoroughly been

detail in Ref. 21. This is why foH,#0 we present only the investigated in Ref. 21 and in the present work we consider
averaged results. thermal activation only. Assuming that the change of the

magnetic flux in the ring cavity is due to thermally activated
hopping of vortices in the sample, i.e., due to flux creep, the
Ill. EXPERIMENTAL RESULTS AND ANALYSIS voltage around the sample is

FIG. 3. The normalized relaxation raf@=d In1/dIn t, obtained

A. Scaling procedure

@

One of the distinct features of the magnetization relax- V=V U
ation in YBCO compounds is the existence of a plateau in = Vo &X kgT)’
the temperature dependence of the normalized relaxation rate

Q=dInM,, /dInt, whereM,,, is the nonequilibrium magne- Where

tization of the sample. Such plateaus with approximately the Vol hopBLereep

same values of) have been observed for different kinds of Vo:f- ()
YBCO samples, including epitaxial filmg:2>?*Figure 3 dis-

plays the temperature dependenciesldrI/dInt, which is  HereU is the flux-creep activation energkg is the Boltz-

an exact equivalent @@, for our sample. We note the typical mann constanty, is an attempt frequency of the vortices to
plateau in the intermediate temperature range, obviouslgross the potential barriet;, is the vortex hopping dis-
more pronounced in the case Hf=0. It should be noted tance, and ., is that length of the sample, which contrib-
that the Inl versus Irt curves are not exactly straight lines. In utes to the flux creef’ Lcreep is difficult to evaluate, how-
this case, the value @ depends on the timg at which the  ever, it does not depend on current, temperature, or external
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magnetic field. An electrical current creates a Lorentz forcas the magnetic-flux quantum. Taking into account the Lor-
acting on the vortices, which tilts the potential profile, entz force, we get the potential profile for a nonzero current
thus reducing the potential barriers for the vortex motion. as
Using Eq.(2), the flux-creep activation energy may be u(x,j)=u(x,0) —xF, . ©6)
expressed as
The important implication of Eq(6) is that for any smooth
U(l)=—kgT[In V()= InV,]. (4)  functionu(x) the distance between the bottom of the well
and the adjacent potential maximum along the posiiagis
The value of the current at whidd(1) vanishes is a formal = decreases with increasing current and vanishes-&{. This
definition of the critical current,. According to Eq(4), the  situation, early pointed out by Beasley al.”” implies that
parameteV, is equal toV at | =1.. the flux-creep activation energy is a nonlinear function of
Equation(4) offers a way to extract(l) from experi- current for any reasonable shape of the potential priffile.

ment. Unfortunately, the experimental data sets/éF) at This nonlinearity ofU(l) results in an upward curvature of -
different temperatures cover only a very narrow range ofn€ current decay curves, which may be seenin Fig. 2, and in
currents. An additional complication in using of Eg) for Ia;igdoi/vnward curvature of the logl curves depicted in
ﬁ:"”g?ggp?g (;))q;zrt]zaihn;'g]vzf}fgbqgré&ﬁfﬂ? Fr)gr?gr;eknr?xvrg.erouH The critical current density is reached if the potential bar-
attempts to scale the data sets obtained at different tempera(-ers vanish. According to Eqs5) and (6), this results in
tures have been made!® The most reliable procedure is ) cu;
provided by the Maley methobwhich does not invoke any e~ 5p0 (7)
a priori assumptions. This method, however, is only appli- 0
cable if both the flux-creep activation energy and the criticaWhereu( is the maximum value affu(j =0)/dx. This value
current are temperature independent. In this case,(&q. is reached at the inflection point, i.e.,xat 0. In the follow-
implies that thev-I curves for different temperatures, plotted ing we assume that not the shape, but only the amplitude of
asTInV versusl, represent different parts of the satd¢l)  theu(x) function is temperature dependent, i.e.,
curve, but are shifted vertically with respect to each other. _
The application of Maley’'s method to experimentatl U()=Uo(MT0) ®
curves provides a direct way to evaluaté/jpand to deter- WhereUgy(T) is the temperature-dependent amplitude of the
mineU(1). In general, however, the activation enetgynd  u(x) function. Equation(8) represents the second assump-
the critical current . are temperature dependent and the scaltion, on which our scaling procedure is based. Using both
ing of the flux-creep data turns out to be a rather complicate@ur assumption that the structure of the hopping flux object
problem. is independent of temperature and E§), the flux-creep
With this in mind we have recently developed a differentactivation energy may be written as
approach of scaling thev-l curves in the flux-creep _
regime?® This procedure is based on merging the experimen- UL T=Uo(MY /1), ©)
tal V-1 curves, using their curvature for establishing the scalwhere the functionY depends only on the ratit/l;.*° By
ing parameters. The main assumption is that the flux creep igomparing Eq.(9) with Egs.(7) and (8), it is obvious that
due to thermally activated hopping of vortices or vortexboth the critical current and the activation energy exhibit the
bundles over potential barriers and that these hopping flugame temperature dependence, given by the funttigiT).
objects remain the same for all temperatures and currents. At currents close td. only a small part of thei(x) func-
This assumption implies that an electric current does notion in the vicinity of the inflection point is essential in the
alter the interaction of vortices with the pinning centers andformation of potential barriers. Sinagx) is virtually a lin-
therefore the potential profile for a nonzero current is ob-ear function in this region, the validity of E8) is practi-
tained by a linear superposition of the zero-current potentia¢ally obvious. At lower currents, however, the flux-creep ac-
profile and a term arising from the Lorentz force. Below wetivation energy is determined by the featuresugk) far
briefly discuss the essential consequences of this assumptioayay from the inflection point and the applicability of Egs.
more details may be found in Ref. 20. (8) and (9) is difficult to justify a priori. As will be shown
We start by considering the profile(x) of the potential below, the analysis of our experimental results strongly indi-
energy for the vortex motion in the vicinity of one of the cates that the conditions expressed in E&.and (9) are
potential wells. Thex axis coincides with the direction of the actually valid for a very wide range of currents downlto
flux motion andx=0 is chosen at the inflection point of the ~0.1l.
u(x) function. The Lorentz force acting on vortices can be In Ref. 20 it was shown that, if the flux-creep activation

written as energy may indeed be written as a product of a temperature
and a current dependent term, the following transformation
_néd, occurs:
FL=] , ©)
c _ TInVv(,T)
ToInV(I/1,Tg)= —————+AT,, (10

wherej is the current densityy is the number of vortices in
the moving vortex bundlej is the sample thickness, ade,  where
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FIG. 4. Covered current ranges at many different temperatures

and atH,=0. The right-hand scale is a renormalized current scale. FIG. 5. Results of the scaling procedure in the form of
ToInV(Ty) versusl/i with To=13 K. The inset shows, on linear

T scales, the small part of the curve fdg,=0 which is indicated by
A= ( 1— _> NV, (11)  therectangle in the main figure. For clarity only very few points for
o each temperature are displayed.

and may be used to merge thel curves at different tem- Figure 6 shows the temperature dependence of the scaling
peratures into a single master curve. Here)(T)/1:(To)  parametei. In our approach, this plot represents the tem-
=Uo(T)/Uo(To) andA are the scaling parameters, anglis  perature dependence of the normalized critical current. Al-
some arbitrary chosen temperature within the investigate¢hough in Fig. 5 thel,InV versusl/i curves forH,=0 and
temperature range. The resulting master curve represents thﬁe:]_ kOe are rather different, the respectif@) curves
current dependence dfinV at T=Ty, as if V(1) could ac-  for these two cases almost coincide. The small difference
tually be measured over this extended range of currents @etween the two sets of data at higher temperatures is to be
this single temperature. For each temperature the values ofexpected, when taking into account the suppression of the
andA can be found from the condition that the overlappingcritical current by the external magnetic field. It is the mag-
parts of theT InV versusl curves for the adjacent tempera- netic inductionB in the sample which dictates the value of
tures match each other. It is important to recall that in thISthe critical current. As has a|ready been mentioned,ng
procedure we do not use the relation betweandA given =0 we are dealing with the temperature-dependent remnant
by Eq.(11), but consider them as independent fitting param-magnetization, and therefor® is not constant across the
eters. Equatiorf11) is used retrospectively to check the va- covered temperature range, but tends to zerdl afT,.
lidity of our approach. Somewhat simpler is the case whefe=1 kOe, corre-

A successful application of the proposed scaling procesponding to a temperature independ@nt 1 kG. For this

dure demands that the current decay measurements are maggiation we note that(T) may very well be approximated
at temperatures separated by sufficiently small intervalspy 5 simple power law

such as to ascertain a considerable overlap olthecurves
for neighboring temperatures. Figure 4 displays the full set i(T)=1—(T/Tgp)* (12)

of the current ranges covered by tid curves at each tem-

perature andd.=0. The left vertical scale denotes the abso-across the whole covered temperature range. This is illus-
lute values of the current, while the right one represents thé&rated in the inset of Fig. 6, where the solid line represents
normalized values. The latter set of data demonstrates that the fit using the function of Eq12), with the fit parameters

all cases the overlap of thé-I curves were sufficient to

ensure a satisfying accuracy of the scaling procedure. "

2 10} 0 B
":; - 0.3kOe 1
B. Results forH,=0 and H.=1 kOe E 1kOe
In this section we present the results of the scaling proce- 2 |, :
dure forH,=0 andH,=1 kOe. The measurements for these é' 05 Q% §
two cases were made down To=10 K. The case oH, “ I Qs
=0.3 kOe, which could only be studied & 70 K, will be = || %]
discussed in the next section. 5 : %
We have applied the scaling procedure according to Eq. T % 20 30 w0 w0 T
(10) to our experimentaV-l curves and the corresponding 0~00 T30 a0 60 80
master curves are shown in Fig. 5. As may be seen, the T ®
outlined scaling procedure provides the corresponding mas-
ter curves by a practically perfect alignment of thénV FIG. 6. The scaling parametéras a function of temperature.
versus| curves obtained at different temperatures, as it isThe inset shows, as the solid line, a fit to the d@pen squarés

emphasized in the inset of Fig. 5. using Eq.(12).
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. be used to establish the value ofMgin this temperature
range. This has already been done in our previous work for
the temperature range between 10 and 17 K, resulting in
IN[Vy(nV)]=18.6 for H,=0 and IfVy(nV)]=20.5 for H,

=1 kOe?! The straight line in Fig. 7 is drawn assuming that
InV,=20.5, the value obtained with the Maley method for
H.=1 kOe, while the data points shown in Fig. 7 were ob-
tained by our scaling procedure, which is based on(Eyg.

| e H,=1kOe | As one may see in the inset of Fig. 7, the points Hy=1
1000 ‘ . . ° kOe are very well approximated by the solid line upto
0 20 40 ~5.5, which corresponds to a temperature of about 50 K.
T=i—;0 Since the Maley method provides the value o¥/fwithout

any a priori assumptions, we consider this agreement as an
FIG. 7. The parameteh as a function of the normalized tem- IMmportant confirmation that Eq9), which is based on our
peraturer=T/iT, with To=13 K. The straight line is drawn ac- WO main assumptions, is valid.
cording to Eq.(11) with In[Vy(nV)]=20.5. The inset shows the The deviations of the high-temperature data points for
low-temperature part of the plot on expanded scales. H.=1 kOe from the straight line, which may be seen in Fig.
7 for =6, are most likely due to the temperature depen-
w=2.5+0.01 (Ref. 27 and T4,=84.95-0.05 K*' Quite  dence of the attempt frequeney. In the case oH.=1 kOe
surprisingly, the value of the exponent turns out to be exactlyhe increase ofy, according to Eq(3), results in an increase
5/2. Equation(12) implies a linear dependence of the critical of Vy andA(t) should deviate downward as it is indeed the
current on temperature neag, . case. In the case ¢1,=0 the situation is somewhat differ-
Next we consider the temperature-dependence of the scadnt. As pointed out above, in this case not on}y but also
ing parameteA. According to Eq.(11), A depends on the the magnetic inductioB is temperature dependent. Because
ratio T/i rather than the temperature alone. In FigA7is  V, is proportional to the product,B, a more complicated
plotted as a function of=T/iT. If the temperature depen- behavior of theA(r) dependence is expected in this case.
dence of Inv, is negligible and our procedure is self-

consistent, we gxpect the data tollie on a ;traight line. Al- C. Results forH,=0.3 kOe
though, according to Eq(3), Vg is proportional to the ] )
temperature-dependent attempt frequency, it enters1g. For H.=0.3 kOe the current induced by the magnetic-

only as InV,, and therefore the resulting curve is expected tofi€ld step was considerably smaller than for the other two
deviate rather weakly from linearity. This is indeed the case¢@ses, thus prohibiting reliable measurements belew70

as may be seen in Fig. 7. It is also remarkable that the dat&- For the scaling procedure we have chodgr 71 K. As

for H,=0 andH,=1 kOe are rather close to each other?@ consistency check we have also repeated the scaling pro-
across the entire covered temperature range. This is to ggdures foH.=0 andH.=1 kOe with this value off ; and
expected, however. In our model the only difference betweeM/€ compare the results obtained for all three cases.

these two cases is the different values of the magnetic induc- !t should be noted that in this high-temperature range the
tion B in the sample, which enters EL.1) as InV, [see Eq. induced currents in our ring were rather small and the values

(3)]. In this case an order of magnitude changeBiwill ~ Of the magnetic induction, created by these currents at our
change IV, only by about 10%. Hall probe, were of the order of a few Gauss only. Such
According to Eq.(11), the temperature dependence of Small values of the magnetic induction are difficult to mea-
InV,, may directly be estimated froi(t) as sure accurately if the external magnetic field is high. That is
why the measurements fét.=0.3 kOe could be made with
dA higher accuracy than faf,=1 kOe. The data foH.=0,
InVo=— ar (13 although accurate, are not very meaningful at high tempera-

tures because of the uncertainty in the valueB of the case
Unfortunately, as one may see in Fig. 7, our accuracy is nodf the remnant magnetization.
sufficient to extract reliably the very weak temperature de- Figure 8 showsA(t) in the high-temperature range. One
pendence of this parameter. At low temperatures, where theay see that a straight line is a good approximation to the
temperature dependence oMgpmay definitely be neglected, data up toT~81 K. At higher temperatures, however, there
Eg. (11) may be used to extract the value ofMgfor the  are clear upward deviations even for the caseHgf 0.3
corresponding temperature range. Actually Bd) provides  kOe, which cannot be explained by uncertainty arguments,
two independent possibilities to evaluateVip First, InV,  but rather indicate the breakdown of our approach.

=—dA/d7[Eq. (13)] and second, IN,=A(7=0). Both evalu- Figure 8 demonstrates the good agreement between the
ations result in the same value of\l§, again supporting the data obtained in different fields. The value of\fg(nV)]
validity of our approach. =21.8, estimated for this temperature range slightly exceeds

There is yet another way to evalua¥#. Since at low the value of 20.5 obtained from the analysis of the low-
temperatures the critical current of our sample is practicallfemperature data. We argue that it is the temperature depen-
temperature independefsee Fig. 6, the Maley method may dence of the attempt frequency that is responsible for this
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FIG. 9. U(l/1.) calculated forT=0. The dashed lines are cal-
FIG. 8. The parameteA as a function of the normalized tem- culated using data from the measurements at high temperatures,
peraturer=T/iT, with To,=71 K. The straight line is drawn ac- where the applicability of the scaling procedure is uncerfaie
cording to Eq.(11) with In[Vy(nV)]=21.8. The temperatures re- text).
lated with several data points are indicated in the diagram. The data

points forH,=0 andH,=1 kOe are shown down t6=54 K. , 3
u(x)=u/x—bx>. (14

difference. It should be pointed out, however, that fty
=0, the deviation of the points upwards starts at lower temUsing this analytical expression foi(x), one obtains
peratures than it is the case fldp=0.3 kOe. AtH.=0 the
magnetic induction in the samplB vanishes atT=T,,

which should result in a noticeable decrease &fjiclose to 4(ul)%? o
T, [see Eq.3)]. In this case, according to E¢l1), A at a U(l/le)= W(l_”m : (15

given value ofr should increase in agreement with Fig. 8.
The scaling procedure provides, as before, the tempera-

ture dependence of the scaling parame(@), and in this  Hence the current dependence of the activation energy for
casel :IC(T)/IC(71K_). For a comparison with da_ta_ln Fig. 6, (1—1/1)<1 should follow Eq.(15), independently of the
the present seti(T) has to be multiplied by particular shape ofi(x). In this case, one can use HG5)
Ic(71K)/1(13K). Because forH.=0.3 kOe the lowest together with Eq(4) to estimatel,, InV,, andb from the
achieved temperature was 70 K(71K)/1;(13K) could not  v/| gata. In our already cited previous publication the high
be evaluated directly. However, as one may see in Fig. 6, thgyrent part of the IV versus curve was fitted in this wag?
difference between thgT) sets forH.=0 andH.=1 kOe  Thjs procedure worked reasonably well, but introducing
is small. Therefore there is no risk of a significant error if wenree fitting parameters led to a substantial uncertainty. Now
equatel (71K)/I(13K) for He=0.3 kOe with the arith- \ye have rather accurate estimates d¥jnas obtained using
metic mean of the corresponding values Fr=0 andH.  \jaley’s method in Ref. 21, and therefore we can use the
=1 kOe. The points calculated in this way are also shown isame fitting procedure as in Ref. 20 but with only two fitting
Fig. 6. parameters. In this way we obtalp(H,=0)=290 A and
I.(1 kOe)=301.5 A, very similar values, as expected.
These are the values for=Ty= 13 K. Sincel . is practically
temperature independent at low temperatures, these values
As demonstrated above, the assumption that the hoppingay safely be considered as the critical currentsTier0.
flux objects remains the same for all currents and tempera- Sincel (T=0) and InV, are now known, we may apply
tures together with E(9) are sufficient for the scaling of the EQq.(4) to calculateJ(l/1.) from the master curves presented
InV versus! curves obtained at different temperatures. Inin Fig. 52° The results are shown in Fig. 9 on double loga-
this procedure the scaling paramategpresents the tempera- rithmic scales. As mentioned above, the data at the highest
ture dependence of the normalized critical current, but théemperatures cannot be described by our approach. Therefore
absolute value of; remains unknown. Below we show that the corresponding parts of th&(1/1.) curves, still calculated
the same assumptions are also sufficient to establish the ainthe same way, are indicated by the dashed lines. The dif-
solute value of the critical current from the experimentalferent parts of theJ(l/1.) curves presented in Fig. 9 are
data. The approach that we consider in this section was firgtalculated from thé&/-1 characteristics measured at different
used by Beaslegt al?® At currents close td, only a small  temperatures. As we saw, the parametaf,is slightly tem-
part of theu(x) function in the vicinity ofx=0 represents perature dependent, however, the exact value 6f is only
the essential part of the potential barrier. In this caée) important for currents close t, and hence low activation
may be expanded in a Taylor series about the prinD.  energies, i.e., for the analysis of measurements made at low
Taking into account thati?u/dx?=0 atx=0 and keeping temperatures. This justifies the use of the low-temperature
only the first two nonzero terms, value of InV, for the whole temperature range.

D. Evaluation of the critical current and the activation energy
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0 FIG. 12. Calculated variations of the potential profile, shown in

x Fig. 11 forH,=1 kOe, with increasing current. The corresponding
values ofl/l are indicated near the curves. The dotted lines indi-

FIG. 10. Schematic plots af(x) near the bottom of the poten-
P (x) P cate extrapolations using E({L4).

tial well which have been used in our calculatigsse text

on the fact that the hopping flux object remains the same, is
E. Reconstruction of the shape of the potential barriers rather successful for this wide range of temperatures, it
seems most likely that we are dealing with a hopping of
the profile of the potential barriens(x) in real space and Usmgle vortices, 1.en=1. Thgu(x) funct|ons.shown In Fig.
: ) 11 represent pinning potentials for three different values of
U(I/I). The functionu(x) may be derived from thel(1/1c)  the applied magnetic field. These pinning potentials include
data as they follow from experiment. Howeve(x) can be  nq¢ only the interaction of the vortex line with one particular
found unambiguously only if some additional assumptionsyinning center, but also with other vortices. Note that only
abOUtzc')tS features are made. Here, as well as in our previoyge solid lines in Fig. 11 represent reliable results. The
work,” we assume that the shape of ) function is as  gashed lines are obtained by formally using our approach in
illustrated in Fig. 10e), i.e., the point wherelu/dx has its  the temperature range where its application is not really
maximum corresponds to the bottom of the potential well.g]id.
The somewhat more realistic potential shown in Figtbl0  The electric current does not change the vortex interaction
does not alter the result of the calculation procedure. with the pinning centers or other vortices, but it causes a
The calculation procedure is described in detail in Ref grentz force to act on the vortices. This force tilts the po-
20. The value ofi;/n~2000 K/A can be estimated from the tential profile as is illustrated in Fig. 12. This figure clearly
critical current density using Eq7). The results of the cal- demonstrates that the position of the maximum of the poten-
culations are presented in Fig. 11 as a function of the produgtal barrier moves closer to the bottom of the potential well
nx, with n being the number of the vortex lines in the hop- with increasingl/I.. Figure 13 shows th& position of the
ping vortex bundle. We have postulated thadoes not de-  maxima ofu(x,1) as a function ol/I.. It may be seen that
pend on current and temperature and the experimental réor most of the investigated current range, the extension of

sults, presented in this work, strongly indicate that this isthe potential barriers is limited to small valuesof
indeed the case. There is no way to dedoatirectly from

the experimental data. Since, however, our analysis, based IV. DISCUSSION

In our approximation, there is a direct connection betwee

In this work we have applied a different scaling proce-

dure, described in Ref. 20, to analyze the experimental flux-
- 40 1 ——— —
v H,=03k0e
“ 100 £ :
S .
—
S’
=) ~~
X 20t g g
= <10t
= g
= [
x _
1 1 0 1 .10 1
0 100 200 : ]
nx (A) 0.1 10

/)
FIG. 11. The potential profiles for zero current, calculated from ¢

U(l/1.). The dashed lines correspond to the dashed lines in Fig. 9. FIG. 13. The position of the potential barrier maxima as a func-
The inset emphasizes the behaviorugk) for small x. The solid  tion of I/I.. The solid, dashed, and dotted lines are calculated from
lines are calculated from the experimental data. The dotted line ithe corresponding curves shown in Fig. 11. Here we assume that the
an extrapolation ofi(x) using Eq.(14). numbern of vortices in the moving flux bundle is (see text
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creep data obtained for a superconducting YBCO film in ahermodynamic critical field>2 This means that. should
wide range of temperatures. The two basic assumptions ovanish atT., which is about 2 K higher thaffiy,. In addi-
which the scaling procedure relies dig the hopping flux tion the GL theory provides a different temperature depen-
object remains the same for all currents and temperatures aénce ofl . in this regime than is dictated by E(L2). How-
(ii), the temperature dependence of the flux-creep activatiogver, this disagreement may just as well be fictitious because
energy can be described by E®), implying that not the  for H,=1 kOe we have established thg(T) curve up to
shape, but only the amplitude of potential barriers is tem-T~78 K only, and we cannot exclude that there will be a
perature dependent. change of theT dependence of. at higher temperatures.
With these assumptions, our approach does not allow angithough we do not have any experimental indication for
freedom in the treatment of the experimental data. The tw@uch a change, it is important to state that our results do not
scaling parametersand A of Eq. (10) and their variations exclude this possibility.
with temperature are unambiguously determined by the e now return to the temperature dependence of the nor-
shape of the experiment&t| curves. It is to be noted that malized relaxation rat€, which is shown in Fig. 3. In our
Eq. (12) provides the possibility to verify the consistency of approach all the features of the flux-creep process follow
the approach. Although the parameterand A are solely  from the profiles of the potential barriers, which are shown in
evaluated by using Eq10), they should also obey E¢l1),  Fig. 11. Using these profiles, one may also calcu@(d).
if our approach makes sense. As one may see in Figs. 7 anfl an exact calculation, the temperature dependence of the
8, the relation betweenandA indeed follows Eq(11) from  critical current should be taken into account. But even our
the lowest investigated temperature of 10 K uplte81 K. simplified calculation, neglecting the temperature depen-
Taking into account that in this temperature range dence ofl . gives a fairly good account d(T), as may be
=T/iT, changes by almost a factor of 60, we consider theseen from the solid line shown in Fig. 3. It thus turns out that
validity of Eq. (11) in this wide range ofr as unequivocal the appearance of a plateau@{T) may be traced back to a
evidence that the chosen approach is meaningful and that Egery simple shape of the potential barrier and no additional
(9) is indeed valid in the corresponding range of currents. Aassumptions are needed to explain this, at first glance, very
similar approach has successfully been applied in the analygstonishingQ(T) curve. This kind ofQ(T) curves is a com-
sis of the same type of-l data at low temperatures, where mon feature of different YBCO material, including not only
quantum tunneling of vortices is predominaht. films, but also flux-grown and melt-processed crystafs:>
Small deviations of the experimental points from theThe close similarity of thed(T) curves for all these materi-
straight line given by Eq(11), which may be seen in Fig. 8 als leads to the natural conclusion that the plateau in the
for the highest investigated temperatures &hg=0.3 kOe,  Q(T) curves must have a common origin, implying that the
indicate that our approach is not adequate for describing thgrofiles of the potential barriers in different YBCO materials
flux-creep process close T . Taking into account the sim- are similar. There are also sufficient physical grounds for
plicity of the assumptions that have been made, this failure igsuch a conclusion. The potential profile for a chosen pinning
not surprising at all. We believe that the most likely reasoncenter is determined by the structure of the vortex line. The
for these deviations is that E(R) does not correctly describe distribution of the order parameter near the vortex core and
the temperature dependence of the activation energy for tenthe distribution of the magnetic field around the vortex line
peratures in the vicinity off .. As has already been dis- are the most important ingredients. Because the coherence
cussed, the experimentally available range oflttig values  |ength ¢ and the magnetic-field penetration deptrare the
decreases with increasing temperature. It means that at higblevant material parameters, it seems quite likely that the
temperatures we get the low current partifil /1), which is  profiles of the potential barriers are similar in different
mainly determined by the behavior of thx) function far  samples of the same compound. We conclude that the par-
away from the bottom of the potential well. In other words, ticular combination of¢ and\ in YBCO compounds is the
at high temperatures the flux-creep activation energy is dereason for the formation of a plateau @(T).
termined byu(x) at largex, while at low temperatures(x) In this paper we have usédi(1/1.) to calculate the profile
at small values ok is essential. It is not obvious that our of potential barriers as illustrated in Figs. 11 and 12. On the
assumption expressed in E@®) is valid for largex. As we  other hand, it is well known that HTSC samples are not
have seen, our description of the flux-creep process breakmiform and one should expect that different barriers have
down for T>81 K (Fig. 8. At T=81 K, the top of the different shapes. In this situation, the physical relevance of
potential barrier is located at a distancg,, approximately  the potential profiles calculated in the way outlined above is
100 A away from the bottom of the potential wéffig. 13.  not obvious. In order to clarify the situation, we consider the
Comparing this distance with the coherence leng{im  flux-creep process in more detail. There are very many dif-
=81 K)~50 A we may therefore conclude that E@®)  ferent trajectories by which the vortices are allowed to cross
provides an adequate description of thie) function up to  the ring sample. It is obvious, however, that only those tra-
x~2&(T). jectories containing the lowest potential barriers will actually
As has been shown in the inset of Fig.I§(T) can very be used. There are also many different potential barriers
well be approximated by Eq.l2). This is a rather unex- along each trajectory, but the very few with the largest am-
pected result. One may argue that closeTtg where the plitudes are essential in limiting the vortex motion. In our
Ginzburg-LandayGL) theory is applicablel,.(T) should be experiments an average value GfkgT is 25. This ratio,
proportional toH .&(T)~(1—T/T.)%? whereH,, is the according to Eq(2), is related with the probability of the
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thermally activated hopping. For such large values ofces across the sample and, still in the flux-creep regime, a
U/kgT, even very small variations of the amplitude Of crossover from one to several trajectories with increasing
between different barriers result in a considerable differenc&oltage is expected. Such a transition is expected to be indi-
in the probability of hopping. cated by a corresponding alteration of the shape of\tHe

In the ring geometry, the evaluation of the numbepf  Curves.
vortices which are leaving or entering the ring cavity per
second is straightforward. Using E{.) and taking into ac- V. SUMMARY AND CONCLUSIONS
count that the experimentally accessible voltages range be- we present a detailed experimental study of flux-creep
tween 104 and 1 nV, we getN between 50 and 5 rates in a ring-shaped superconducting YBCO film. A very
X 10° s~! for the lowest and the highest voltage, respec-wide range of temperatures between 10 and 83 K has been
tively. The value ofN for low voltages is only 50 vortex investigated. It is shown that all the details of the flux-creep
lines per second and it is difficult to imagine that many dif- process can be traced back to simple thermally activated
ferent trajectories are used in this case. Most likely all theséopping of vortices or vortex bundles over potential barriers
vortices cross the sample along the easiest way and on thigith the hopping flux object remaining the same for all cur-
trajectory, only the barrier with the largest amplitude deter-rents and temperatures. This is, in fact, the simplest possible
mines the actual flux-creep rate. In our approach we assunapproach for describing the flux-creep phenomenon. Using a
that theu(x) function which describes the potential profile recently developed scaling procedéfaye have succeeded
remains the same, independently of the vortex transfer ratén extracting the current dependence of the flux-creep activa-
This is why it is important to verify whether one single tra- tion energy(Fig. 9) and the temperature dependence of the
jectory is also sufficient for transferring a much larger num-critical current(Fig. 6) from the primaryV-l data. In the
ber of vortices, corresponding ¥6=1 nV. ForB=1 kG the  whole covered temperature range, the temperature depen-
distance between vortices is of the order of 1@m. This  dence of the critical current(T) can very well be approxi-
implies an average vortex velocity~5 cm/s, if we force all mated by a simple power lafq. (11)]. The current depen-
5x10° vortices to follow the same trajectory across thedence of the activation energy(l/l) is then used to
sample in one second. This valuevefs rather low and there reconstruct the profiles of the potential barriers in real space
is no reason to expect that a single trajectory would ndFigs. 11 and 1R It is important to emphasize that the out-
longer suffice for the transfer of vortices with increasinm lined scaling procedure passes internal consistency checks
this voltage range. and it appears that the proposed approach adequately de-

An important consequence of this line of thoughts is thatscribes the real flux-creep process.
the analysis of flux-creep rates provides information only In practically all previous reports where scaling proce-
about one particular pinning center, which represents theures have been used to extrabfl) from flux-creep data,
highest potential barrier for the vortex motion on the enerthe condition imposed by Eq9) has been adopted. There-
getically most favorable trajectory across the sample. This ifore the main difference between our approach and other
true not only for our experiments, but for all measurementsnodels is that, instead of complicated assumptions, we con-
of magnetization relaxation. It should be noted that at volt-sider the simplest possible case of the vortex hopping. It is
ages a few orders of magnitude higher but still correspondinglso important that we have chosen the shape of the experi-
to the flux-creep regime, nonlinear effects connected with thenental InV versusl curves as a criterion for deriving the
vortex motion may already be important. In this case onescaling parameters. This renders our approach free from any
trajectory will not be sufficient for transferring all the vorti- additional assumptions.
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