PHYSICAL REVIEW B, VOLUME 63, 184511

Scaling of the vortex-liquid resistivity in optimally doped
and oxygen-deficient YBaCu;0,_ 5 single crystals
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The consequences of a recently proposed mjgsleRydh, Q Rapp, and M. Andersson, Phys. Rev. L8R,
1850(1999] for the vortex-liquid resistivity close to a vortex liquid-to-glass transition are analyzed in detail.
We find a detailedquantitativeagreement between the model and resistivity measurements on disordered,
optimally doped YBaCu;O,_ 5 single crystals. For temperatures below the superconducting transition tem-
perature, a scaling of all measured resistivity curves in magnetic fiefdB®12 T) is obtained. Possible
ways of slightly modifying the model in order to fully describe resistivity measurements on more anisotropic
underdoped oxygen-deficient YBau;O;_ 5 single crystals are suggested. The physical interpretation of the
model and its connection to other models of the vortex-liquid resistivity are discussed. In particular, we find
close connections to vortex glass models and to a generalized Coulomb gas model.
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[. INTRODUCTION resistivity, pss, which is related tg, through the Bardeen-
Stephen equatiom¢;= p,B/B:(T), whereB is the applied
In high temperature superconductoldTS), the large  magnetic field and.,(T) is the upper critical field.
broadening of the resistive transition in magnetic field is a From the formulation used in E¢l), there is no obvious
direct consequence of thermal fluctuations in the vortex syseonnection between the glass resistivity itself and the basic
tem. In fact, the parametefhigh temperatures, large pen- superconducting parameters. However, in a real material, the
etration depths, small coherence lengths and large electricaliperconducting condensation energy and thereby the pin-
anisotropiesare all conspiring to increase the importance ofning energy are changing with temperature and magnetic
thermal fluctuations in HT$? Strong thermal fluctuations field. A detailed description of the glass transition in HTS
lead to the melting of a flux line lattice over a substantial partshould take this into account. We have recently proposed
of the mixed state phase diagram in clean matefidlstem-  such a model and showed that it gives a consistent descrip-
peratures below the melting temperaturg,, the vortex sys- tion of the vortex liquid resistivity at all magnetic fields in
tem is in a(pinned superconducting vortex-solid phase with our study 8<12 T)!* Here, we further develop this model
nonzero critical current, while &>T,, it is in a dissipative and relate it to other models usually used to describe the low
vortex-liquid state. Signatures of a first order phase transitiomesistivity part of the vortex liquid.
in clean samples are seen from measurements of the specific The outline of the paper is as follows. The model is first
heat? magnetization measurements, and jumps in the described in general and some useful relations are derived.
resistivity® Then, the experiments are described and an analysis of the
When disorder is introduced, the vortex-solid transformsresistivity in an optimally doped YB&u0,_s (YBCO)

into a glassy vortex state and the vortex solid-to-liquid tran-single crystal is made and shows that our model gives a
sition becomes second ordert! Depending on the type and detailed description of the experimental results. We show
strength of the disorder, different types of glassy solid statethat the main ideas can be applied also to doped materials
can be obtained, like, e.g., a vortex glass in the presence tike oxygen-deficient YBCO single crystals. Finally, two
point disorde? or a Bose glass in the presence of correlatecpossible physical interpretations of the model are discussed,
disorder*? The glass phases will have different critical expo-one based on a vortex glass scenario and the other on a
nents depending on the type of disorder, but the overall begeneralized Coulomb gas scaling.
havior seen from an experimental point of view is rather
similar. The linear resistivity disappears in all cases as a Il. MODEL

power law _ :
For the vortex glass model presented in Bq, the linear

s resistivity close toTy mainly depends on the distanceTg
@ and the relevant energy scales are therekgfE andkgT .

In a superconductor, however, energy scales as the conden-
close to the glass transition temperaturg, sis here a com- sation energy or the pinning energy are changing Wwitth
bination of the universal critical exponents of the glass trantemperature and magnetic field. Therefore, as depicted in
sition and is the only factor that is related to the kind of Fig. 1, one should consider the distance to the transition line
disorder giving the transition. From E(l), p, is identified  Bgy(T) in the two-dimensionaB-T diagram instead of the
as a characteristic resistivity and should in some way b@ne-dimensional distance T at constanB. Similar effects
related to the normal state resistivity. This relation can eitheare well known from corrections to the temperature depen-
be direct throughpy>p, or indirect through the flux flow dence of the superconducting condensation energy close to

T
——1

P=Po|T
g

0163-1829/2001/638)/1845119)/$20.00 63184511-1 ©2001 The American Physical Society



M. ANDERSSON, A. RYDH, AND O RAPP PHYSICAL REVIEW B63 184511

0.5 — T T T liquid line. This gives a natural explanation of the experi-
- mental fact that a determination of the solid-to-liquid
04} B,(T) . transition line by different experimental methods give similar
'} ¢ result although some methods, strictly speaking, only corre-
é 03k Ty (T,B) ] spond to a constarftow) resistivity level*®
s T ] The main difficulty is to find the explicit field and tem-
€ ol ] perature dependence 0f,. In the following, an approach to
< . . oy .
~ do this for a vortex glass transition is presented. It should be
e ted already here that diff f tional vor-
ok 1 noted already here that differences from a conventional vor
| tex glass model are rather subtle as far as the temperature
o dependence of the resistivity is concerned. In our picture, the
O'%‘s 0.6 0.7 0.8 0.9 1.0 characteristic energy (B, T) replaces the thermal energy at
/T, the glass transition linegkg Ty, in the vortex glass expres-

sions and thus gives a more detailed description of the resis-
FIG. 1. Sketch of the principal physical idea behind our ap-tivity at temperatures away froif, . SinceU, is expected to
proach. The relevant energy scalgg(B,T), at a specific point be a slowly varying function of temperature and the resistiv-
(T,B) in the vicinity of the vortex solid-to-liquid transition is de- ity disappears rapidly close g, it may seem hard to ob-
termined by the distance to theansition ling By(T), in aB-T  serve any differences between these two models from experi-
diagram. This is in contrast to other approaches, where only thenents. However, such differences can be detected by
temperature distance 0, is taken into acocunt(The magnetic  pjotting the experimental data in a proper way, as will be
field has arbitrarily been scaled to the param&gniscussed later shown below. The main advantage of the present model is
on,) that it gives a consistent and detailed description of the mag-
o netic field dependence of the resistive transition.
B¢2. In a general description, we denote the relevant energy A direct consequence of the arguments above andHg.

scale determining flux motion in the vortex liquid by s that the resistivity close to a vortex glass transition, should
Uo(B,T) (at the moment, only the existence of such an enyeg \written

ergy scale is needed and we postpone the discussion con-

cerning the interpretation ofJy). The linear resistivity

caused by thermal fluctuations will be determined from the pP=pn
competition betweeld (B, T) and the thermal energikgT.

In this picture, it is natural to assume that a specific resistiv-
ity level corresponds to a constabty(B,T)/kgT, i.e., the where Uo(B,T) has replacedsT, as the relevant energy

L scale and we have put, as the prefactor in agreement with
resistivity scales as Eqg. (2). To proceed, we note that a good scaling of the re-
P (UO(B T)) sistivity curves of disordered HTS was obtained empirically

S

keT
° 1, (4)

Uo(B.T)

(2) by writing the effective pinning enerdy

pn | keT
whereF is a scaling function. Here, we have chosen to use 1-T/T,
the normal state resistivity, as the characteristic resistivity. Uo= BTCW =Ug(1-T/T,). )
0

This is based both on the empirical results presented below

fgt‘g dotr(‘) th?nfggﬁgﬁaanﬁﬁza\,rsﬁtee;fgﬁ d(-etr:flrig{lizht?:*iitti)gnrq:'ere‘ By and B are field and temperature independent con-
then oc@&rs when they.two relevant energy gcales are equ%ant_s;, and hence the ene“gM:kBTC/(B/BO)B i_s tempera-

. re independent. As will be shown below, this particularly
.e., when simple form forU, is sufficient to give a detailed description

of the vortex-liquid resistivity in an optimally doped, weakly
disordered single crystal of YBCO for magnetic fields up to
Since disordered materials are discussed in the following, wat least 12 T.

denote the transition temperature By as for a glass transi-  Although the exact interpretation &J, and the precise
tion. The main arguments could possibly be valid also for thgemperature and field dependencies are not completely clear,
resistivity above a melting transition. The scaling function the form used in Eq(5) is quite reasonable. One can, e.g.,
is expected to have different functional dependences for difstart from the basic energy scale determining the self-energy
ferent kinds of transitions. This means that one should noof a vortex line, 60~<1>§/47r,u0)\2, where @ is the flux
expect to find scaling for all magnetic fields if the nature ofquantum,u is the permeability of free space andT) is

the transition changes with field, as for example is the casthe temperature dependent penetration depth. In a Ginzburg-
when passing the purported tricritical point in tBeT dia- Landau approximation\(T)=A(0)(1—T/T,) %% which
gram of clean YBCO single crystal$ An interesting obser- directly gives e;<(1—T/T.). The power law in the field
vation is that the proposed model directly suggests that dependence is a characteristic feature for most analyses of
curve in theB-T diagram containing points of equal resistiv- the resistivity in a vortex liquid based on theories for ther-
ity should follow the same behavior as the vortex solid-to-mally activated flux motiort®18 After having noted these

Uo(B,Tg):kBTg . (3)
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similarities with well established results, we will use E§) In fact, Eq.(11) can be considered as a more detailed de-
to derive some useful relations. scription of the glass transition explicitly giving the field and
The first observation to be made is that E@.and(5)  temperature dependence @f. We see that the temperature
immediately gives the temperature dependence of the vortedependence g, is only slowly varying in the neighborhood
glass line, of T4. This once again indicates the similarities with the
1 vortex gla!ss picture._ _ _ _
B.(T)=B (1_T/Tc) ©) There is also an interesting connection between our field
9 o TIT, dependence dfJ, and that found from analyzing the resis-
tivity by models based on thermally assisted flux flow
AFF) or on plastic deformatioR$in the vortex system. In
these models, the resistivity follows a temperature depen-
dence,p=pexp(—U*/kgT), where the activation energy for
flux motion, U*, is magnetic field dependent. Experimen-
tally, U* is obtained from the slope in an Arrhenius plot
since we have

This relation has experimentally been shown to describe th
vortex glass line very well for various HTS having different
anisotropies? Secondly, by instead considering,(B) as
obtained by inverting Eq(6), the temperature independent
energy Ug as defined in Eq.(5) can be writtenUg
=kgTTy/(Tc—Tgy), which leads to a reformulation of Eq.

| dlnp U~
(7) J(UT) kg

) o ) From Eqg.(8), the same derivative can be calculated and we
where the field dependence is implicit through the field deptain

pendence iT4(B). From Egs.(4) and(7), we finally obtain

T~T
9T~ T,

12
UOZkBT ( )

the relation dlnp Ug [1+(p/py)*]?
AU ke (plp™ (13
B T(TC_Tg) S B (P/Pn)
P=Pn Ty(Tc—T) e ®) where the derivative has been rewritten in terms of the en-

, ) . _ergy Ug as defined in Eq(5) and the reduced resistivity,
which will turn out to be useful when analyzing the experi- /p,. By comparing these two equations, it is seen that

mental data. Note that the field dependence of the resistivity , 4 \y* will have the same field dependence provided that
only comes in througf ¢(B) in this relation. the slope in the Arrhenius plots are taken at a congiay,

From the similarities between Eqdl) and(4), itis clear  hich s aimost always the case in experimental studies. As
that our description can be seen as a modification of thgjiscyssed below, there is even a quantitative agreement be-

vortex glass theory. Let us therefore explore the cOnsegeen these two equations when analyzing the experimental
quences of these modifications and compare them with thg, ;o

ordinary theory. From Eq.1), one directly obtains

dlnp\ =t T-T,4
aT | s

The equations above were all derived for a particular
simple form of the characteristic enerth(B,T) in Eq. (5).
(9) A more general discussion is given in Appendix B.

The usual way of extracting the vortex glass temperature is . EXPERIMENT
to calculate the inverse of the logarithmic derivative of Eq.
(1) from experimental data and to extrapolate the plotted dat;)h
to (91n p/dT)~*=0 in order to obtairil,.*° In our approach,
we instead find

Single crystals of YBCO were grown by a self-flux
ethod in yttria stabilized zirconia crucibles as previously

described® Twinned crystals of varying oxygen content
were obtained by annealing for 3—7 days at various tempera-
-1 T_ _ tures ranging from 450°C to 700°C. The oxygen-deficient

dlnp T-Tg[ T—T o . :

= (10) samples were annealed in air, while the optimally doped one

a s (T Ty was annealed in flowing oxygen. A summary of the anneal-

by taking the logarithmic derivative of Eq8). The only  iNg conditions and some important parameters are shown in

difference between Egs(9) and (10) is a factor T, lablel. _ _

—T)/(T.—T,), which is nearly one for temperatures suffi- _ Electr!cal contacts were prepared by applying strips of
ciently close toT,. This establishes that Eq9) is still a  Silver paint, followed by heat treatment under the same con-
good approximation in our case. Furthermore, by a serieditions as during annealing, giving contact resistances below

expansion of our expressions aboVg (see Appendix A 1.5 Q. Typical dimensions of the s_amples were RH2
the resistivity can be written X0.03 mni. Measurements of the in-plane resistance for

magnetic fields &B=<12 T applied along the crystallo-

1+ (B/Bg)”]® . graphic c-axis were made in a flowing gas cryostat. The
?} T=Ty)" (1)) samples were placed in a vacuum space inside the variable
¢ temperature insert of the cryostat to protect them from tem-
This expression is similar to the one usually used for theperature variations in the flowing gas. A current bf
resistivity close to a vortex glass transitigns= po(T—Tg)°. =0.3 mA was used and a voltage resolution down to 0.3 nV

P=Pn
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TABLE I. Annealing conditions, transition temperatuii,, 15 T T

transition widthAT,, and anisotropy parameter of the studied =) 1o Cor T
YBa,Cu,0;_ 5 single crystals. = B=21
g 051 .;;/‘ .

Sample Annealing Te (K) AT, (K) ¥ 10 EL _ -wx":=46 .

~ = I g
1 0,, 450°C 91.3 0.15 8.7 = T s 8 ]
2 air, 500 °C 86.2 1.0 13 /a T &)
3 air, 525°C 73.2 2.5 19 St ]
4 air, 700°C 51.8 2.0 35
was achieved with the use of a dc picovoltmeter as preamp- 060 70 80 90 100
lifier. The samples were cooled in field through the super- T (K)

conducting transitions and data were recorded during in-

creasing temperatures.

IV. OPTIMALLY DOPED SINGLE CRYSTALS

We start by discussing the vortex-liquid resistivity in op-
timally doped single crystals of YBCO with a small amount

of disorder. The defects in the crystal described here con-

&0

sisted of twin boundaries, point defects from adatoms in th
starting materials and oxygen disordarcreasingly impor-
tant for the oxygen-deficient samplesThe resistivity
showed a glassy behavior at all magnetic fields studie
which is believed to come mainly from point disord@r.
p(B,T) of the optimally doped samplegample ] is shown

in the Arrhenius plot in Fig. 2. The zero field transition has a

width of 0.15 K and the resistivity has a low value of about
70 pQ) cm just abovel ., showing the good sample quality.

Furthermore, the normal state resistivity extrapolates to zer

as shown in the inset of Fig. 2. This extrapolated line ha
been taken as the normal state resistivjty, in all the
analyses presented below.

We start our analysis by considering the vortex glass tem

perature, which is usually obtained from E@®). In our
model, however, the situation becomes more complicate
due to the correction factak(T)=(T.—T)/(T.—Tg) in Eq.
(10), which gives an implicit equation fof,. However, the
correction factor is roughly one close Tg and it is possible

£

FIG. 3. Field dependence of the vortex glass line. Solid points
were determined as shown in the inset. The solid curve is a fit to
Eq. (6) with B;=36.9 T and 8=0.83. Inset: Determination
of the glass transition temperature from E@10). Here
A(T)=(T—Tg)/(T,—T) is the correction factor to the result for
an ordinary vortex glass in E¢9).

find a good value of 4 from Eq. (9) in a first approxima-
tion. In a second approach, one can use Thjfor a more
detailed analysis as shown in the inset of Fig. 3. As predicted
y Eq. (10), a linear relation is found close @, between
temperature an&(T)(d In p/dT) L. The differences iy be-
tween these two approaches lies within the experimental er-
rors of the extrapolations and can be neglected for most prac-
tical purposes. One may also expect a difference in the
linearity of the data close td, when comparing E¢(9) and

g.(10). We have not been able to distinguish any clear such

ifference from our analyses due to the noise level in this
regime.

The main part of Fig. 3, shows the field dependence of the
vortex glass transition. As shown by the solid curve, a good
fit to Eq. (6) is obtained. The fitting parameters aBy
Cf36.9 andB=0.83. For this sample, we also note that a
reasonable fit can be obtained by the ordinary vortex glass
expressionBy<(1—T/T.)", with n=1.4. Such an expres-
sion will, however, not give the consistent description dis-
cussed below.

As previously discussed, it is not possible to find a defi-

A206_ T nite proof for our approach from the differences between
10t E150 ] Egs.(9) and(10). A much more sensitive test is provided by
s, 20 Eg. (4). By solving forU,, one obtains
— 100 3 s a 50.- Pie 43
g F 030100150 200 ] p\¥7t
G 100 T (K) Uo(B,T)=kgT| 1+ — (14
= E 1 n
02 3 _ .
: Uo(B,T) can therefore be calculated directly from experi-
103 mental data provided that one knows the exporemind
5 e ] pn(T). sis easily obtained as the inverse slope in Ef)
1000 o0E 004 ooie 0018 and the nprmal state resistivity is dgtermmed by the I|ne_ar
T (K extrapolation shown in the inset of Fig. 2. The result of this

FIG. 2. Arrhenius plot of the resistivity for optimally doped
YBCO single crystal for(from left to righy B=0.5, 1, 1.5, 2, 3, 4,

analysis is shown in Fig. 4, whetg, is shown as a function
of temperature at different magnetic fields. A striking feature
is the linear behavior oJy(T) at the lowest temperatures

6,9, and 12 T. Inset: Extrapolation of the normal state resistivity to(i.€., closest tdT g). When extrapolating this linear behavior

Zero.

at different fields, one realizes that the lines all merge in
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FIG. 4. The energy, as obtained from Eq14) for (from left FIG. 5. Magnetic field dependence 0f; as obtained from Eq.

to right B=12,9, 6,4, 3,2,1.5,1,0.7,0.5,0.3, 0.2, and 0.1 T. As(5) and the slopes in Fig. 4. The solid line is a fit to the data giving
clearly shown by the dashed lines, the low resistivity parts of thethe relation Ug/kg=1831B %84 |nset: Activation energies ob-

curves are well described by E¢p) with a field dependenty . tained by analyzing the resistivity within a TAFF model. The solid
The glass transition temperature is obtained whigncrosses the line is a fit to the points with the equation)*/kg=(5.7
solid lineUg=kgT. X 10MB 078 with B in T.

the pointT=T, andU,=0. Therefore, Fig. 4 immediately field dependence dfig is shown in Fig. 5, where a power
shows that one can write 4=Ug(1—T/T,) as stated in Eq. 1aw dependence is found over an extended magnetic field
(5). FurthermoreT, can be directly obtained from Fig. 4 by region from 0.1 to 12 T. A fit to the data givedg/kg
considering the crossing points of the lindg(T,B) and the = 1831B~ %% with B in T. First, we note that we obtain the
line Uy=kgT, which is the criterion we used for findirl, =~ Same exponenj3, for the magnetic field dependence in this
in Eq. (3). We therefore conclude that Fig. 4 gives stronganalysis as in the analysis of the glass transition (fig. 3).
evidence for the proposed model. Secondly, the prefactor in this fit is equalkchBg accord-
Another important point is that the temperature depening to Eq.(5). From this relation we calcula@,=37.1 T in
dence ofUy, illustrated by Fig. 4 directly shows that the excellent agreement with the fit ®,(T) with Bo=36.9 T
ordinary vortex glass expression is insufficient for describingn Fig. 3. This shows theuantitative consistency of our
the data. For an ordinary vortex glass model, one expects analyses and the relationship between the glass transition

horizontal line since Eq(1l) implies a constantUy(B) line at T=T, and the characteristic enerdy, at tempera-
=kgT4(B) at all temperatures close T,. This is obviously — turesT>T,, which is inherent in our model.
not the case in Fig. 4. One can also find a qualitative agreement between our

A potentially weak point in our argumentation is the way model and previous models of the vortex liquid resistivity
we have chosen the parametemndp,. We have therefore based on a thermally activated behavior, despite the fact that
slightly changed the parameters to investigate the sensitivitthe physics behind these models are different. As seen in the
of the analysis in Fig. 4. For changessiwithin the uncer-  Arrhenius plots in Fig. 2, the resistivity in our sample can to
tainty limits given by the extrapolations used in Fig. 3, therea reasonably good approximation be described by a ther-
are only small changes in Fig. 4. In brief, the lines becomenally activated behaviop = p;exp(—U*/kgT). The field de-
somewhat curved and the crossing point shifts slightly frompendence of the activation energies determined in this way,
the pointT=T, andU,=0. The analysis is also rather ro- using resistivity levels between >610°% and 5
bust to changes irp,. However, if one considers large X10 % w(Q cm, are shown in the inset of Fig. 5. Although
changes in the parametgy by more than one order of mag- the data is somewhat scattered, a fit to a power law behavior
nitude (requiring another physical meaning of the prefagtor givesU*/kg=(5.7x10")B~%"8with Bin T, i.e., roughly the
the slopes in Fig. 4 change and there is no crossing poingame field dependence as fo, where the exponeng
Even when attempting such large changes, it is not possible0.83 was obtained. Furthermore, the prefactor in the field
to obtain constantJ, at all magnetic fields, which again dependence df* can be directly compared with the prefac-
shows that our data are incompatible with the ordinary vortor in the field dependence dfg in Eq. (13). From this
tex glass theory. comparison, we find that the prefactors are equal when

We now discuss the magnetic field dependencdgf  p/p,~1x10 3, which corresponds to a resistivity level of
From Eq.(5), it is clear that the field dependence only comesabout (5-8)x10 2 wQ cm in good agreement with the
in through the termUgz. Ug can in principle be found di- resistivity region used for determinind*. Our model thus
rectly from the slopes in Fig. 4. A more convenient way is,gives a good quantitative description of battB,T) and its
however, to calculat&Jg=U,/(1—T/T;) from the experi- logarithmic temperature derivative closeTyg.
mental data and to plotyg(T). This gives a temperature Equation(8) also predicts a scaling behavior between the
independent and constant valueldf (within =2%) at each normalized resistivity,p/p,,, and the scaled temperature
magnetic field as briefly reported previouéfyThe magnetic T(Te—Tg)/Ty(Tc—T)—1, with Tg=T4(B). Such a scaling
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FIG. 6. Normalized resistivity versus scaled temperature accord- FIG. 7. Characteristic features of our oxygen-deficient crystals

ing and 12 T. The slope of the curve gives the critical exponentShown here for sample Z(=86.2 K). As clearly seen, the simple
s=4.6+0.3. description ofU, used for the optimally doped crystal in Fig. 4

cannot be used. Inset: Extrapolated normal state resistivity versus

is shown in Fig. 6, where the resistive transitions at 13 fielddeémperature for this sample.
between 0.1 and 12 T have been scaled onto one ¢orust
of the resistivity curves are shown in Fig.. Zrom the slope our case is expected to be related to the average pinning
in Fig. 6, we find the critical exponemst=4.6 in agreement energy and thus to the superconducting condensation
with previous analyses using E@.0) and data from Fig. 3. energy®® In this picture, one can consider many different
An interesting point is that the scaling also works for tem-choices forUy(T). As a first approximation, we have con-
peratures close td,, although the derivation above was sidered a power law behaviod,=Ug(1—T/T)™, where
only made for temperatures close Tg. This clearly indi- the exponentnis a fitting parameter common for all resis-
cates that the general arguments we have used are of fundévity curves and the magnetic field dependence is contained
mental nature for understanding the full behavior of the vordn the prefactorUg, which is taken as a constant at each
tex liquid. The analysis presented above has been made gnagnetic field. The low resistivity parts of the curves are
data taken as a function of temperature at constant magnetiidted to a power law in the scaling variadtgT/Uy— 1, and
field. However, the scaling works equally well on data takenthe results give a fairly good scaling as shown in Fig) 8
as a function of magnetic field at constant temperattire.  This analysis is rather to be seen as qualitative evidence that
the present theory can describe also these data since the ex-
plicit temperature dependence Of is unknown and there
are difficulties in determining a corret@t, to be used in the

We now apply this model to oxygen-deficient crystals inanalysis. Here, we have defin@d at every resistivity level
the underdoped regime of HTS. With decreasing total oxy-as the temperature at which the zero field curve has the same
gen content in the crystals, oxygen is successively removetesistivity, in order to compensate for the width of the super-
from the CuO chains lying in between the superconductingonducting transition. This gives a better scaling than con-
CuG, planes. This results in a decreased conductivity in thesidering a constant temperature like the 50% level of the
chains and thereby a decreased coupling between the Cu@ormal state resistivity or the zero resistivity point. However,
planes which is equivalent to a higher electrical anisotropy agt the lowest magnetic fields, the scaling becomes sensitive
observed in many studies on YBG®?%27Since the oxygen to the choice ofT.. This can to some extent explain the
content can be easily controlled by annealing conditionssmall deviations observed in the upper part of the curve.
oxygen-deficient single crystals of YBCO is a suitable test The second approach is to naively use E), although
system for vortex dynamics in HTS. such a scaling may not be expected from the plott gfin

The general features &f, as obtained from Eq14) are  Fig. 7. However, as seen in Fig(i8, this apparently gives a
shown in Fig. 7 for one of the oxygen-deficient samples.better scaling of the data over the whole temperature range
First, we note that the ordinary vortex glass equation will notfrom Ty to T,. We also note that the curve is not perfectly
be applicable for these samples either since we do not obtalimear in the low resistivity regime. Therefore, a power
a constant value of)o(T) as required. This conclusion re- law relation betweenp/p, and the scaling variable
mains unaltered even if the parameteendp, used for the  T(T.—Tg)/Ty(T.—T)—1 is strictly speaking not correct as
calculation ofU, are chosen far outside of their expectedwas implicitly assumed when calculatituy. This may then
ranges. Secondly, the simple expressiondgrused to de- give a plausible explanation for the observed deviations from
scribe the optimally doped sample in Fig. 4 is clearly nota Ug=Ug(1—T/T;) behavior in Fig. 7.
sufficient here. Below, we give two possible ways to gener- As seen in Fig. 9, this approach also gives a reasonable
alize our picture in order to describe these data. scaling for sample 3 and 4. In sample 4, there are larger

The first approach is based on a generalized temperatureviations close t@ . in the scaling, which occurs at both the
dependence ofJ,. This is a natural extension, sinté, in lowest B<<0.5 T) and at the highesB(>6 T) fields. First,

V. UNDERDOPED SINGLE CRYSTALS
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there is a broadening of the fluctuation region abdyen
this sample indicating that there may be small regions in the
sample with a somewhat high& . This affects the analysis
in the upper part of the transition by giving an uncertainty in
the determination off; (taken as the temperature at which
the zero field curve has the same resistivi§uch an effect
will be particularly important at the lowest fields. Secondly,
we have not considered any magnetic field dependen@g of
in our analysis. This effect will be most important at high
fields in samples with lovB., and for temperatures close to
T., i.e., it may explain the deviations we observe at high
fields.

Although we cannot unambiguously distinguish between
different approaches for the underdoped samples, the reason-
able scaling of the resistive curves obtained in Fig. 8 clearly
suggests that the underlying ideas are still valid. This gives
support for a general description of the vortex-liquid regime
in HTS materials based on these results.

VI. DISCUSSION

Experimentally, our approach gives a fully consistent de-
scription of the vortex-liquid resistivity at all fields studied in
an optimally doped YBCO single crystal. It also gives a good
qualitative(or even semiquantitatiyalescription of the field
dependent resistivity in underdoped samples. This strongly
suggests a direct connection between these results and the
fundamental properties of the vortex liquid and thus of phase

using (@) Uy=Ug(1—T/T,)™ with m=0.75 and(b) the scaling
form in Eq. (8). The scaling is shown for magnetic fields €.B
<12 T.

10—
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FIG. 9. Scaling according to E¢8) for samples 3 and 4.

However, when it comes to an understanding of the funda-
mental processes, the picture is still ambiguous. Two pos-
sible scenarios are discussed below based on interpretations
of the scaling obtained for the underdoped samples.

The first scenario starts with the observation that the re-
sistivity disappears as a power lgsee Fig. 6. As shown by
Eq. (11), this scaling implies that in a first approximation, the
resistivity close torl'y disappears as a power lawTn-Tg as
predicted for a second order phase transition like the vortex
glass or Bose glass transitioh¥’ It is natural to assume that
the characteristic energy (B, T) is related to the effective
average pinning energy in the system. The vortex solid-to-
liquid transition occurs whelly(B,T,4) =kgT, as discussed
above. Here, it is important to make a clear distinction be-
tween the average pinning enerdyq, and the activation
energy for flux motion,U*. U* diverges atTy due to the
diverging glass correlation length in the vortex liquid, while
Ug only changes slowly witfB and T when passing . This
can also be seen directly by comparing EG®) and (13).
While Uy=Ug(1-T/T;) remains finite forT=Ty, U*
«dInpld(LT)xp~1 diverges, since in Eq. (13) becomes
zero atT,. This distinction is similar to the one made in
collective pinning theory between the underlying average en-
ergy scale and the relevant energy scale for flux motion,
where the latter is obtained by a summation of the average
energy scale taken over the coherently jumping voldifiee
difference in our case is that the changes in the coherence
volume is driven by the diverging glass correlation length
(and time due to the proximity tal .
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This description works very well for the optimally doped tem. The anisotropy in BSLCO is very large, of the order of
sample. For underdoped samples, a good scaling of the loyw~100-200, thus implying a quasi-two-dimensional vortex
resistance part of the transition is also obtained by allowingystem, with possibly independent pancake vortices in each
for a generalized temperature dependenct @fin contrast  superconducting layefdue to weak coupling along the
to the optimally doped sample, this approach can seeminglgxis). This will certainly affect the scaling of the resistivity
not be extended to the region closeTp. Starting from a  just aboveT,. The small deviations we observe in the un-
description based on a glass transition, one would a priori naderdoped samples as compared to the optimally doped one,
expect the scaling to work close Q. It is then surprisingto may in fact be a consequence of change in behavior when
find that the scaling works so well for the optimally doped going from an almost three-dimensional vortex system to-
sample. As suggested above, the transition is connected tards a quasi-two-dimensional one with increased anisot-
the energy scaldy, which is connected to the superconduct-ropy.
ing condensation energy and therefore goes to zefq atf In summary, we have shown that the resistive transition
this follows a specific relation, one would in our model alsocurves in magnetic fields of optimally doped and underdoped
expect the resistivity to scale closeTp, since it is the same disordered YBCO single crystals can be scaled and described
energy scale that determines the resistivity both closggto in a consistent way. In the case of optimally doped crystals,
and close tdl . we find a detailed quantitative description of the vortex lig-

The second scenario is based on the observation that thed resistivity and its derivatives close Tq . In addition, the
vortex liquid resistivity scales as a function GF(T,  scaling analysis suggested from this model is shown to be
—~Tg)/T4(Tc—T)—1 as shown in Figs. 6 and 8. For the applicable for the whole vortex liquid regime. We have also
optimally doped sample, the resistivity disappears with adiscussed possible extensions of our model to allow for a
power law behavior as seen in Fig. 6. However, for the undetailed description of the vortex liquid in underdoped
derdoped sample in Fig. 8 there is no clear power law beYBCO single crystals. Finally, two possible physical inter-
havior at low resistivities. One may consider several possibl@retations of our model based on a vortex glass and a gen-
explanations such as the signature of a cutoff in the glassgralized Coulomb gas scenario have been discussed.
behavior for example caused by screeffngr a crossover
between two glassy behaviors with different critical expo- ACKNOWLEDGMENTS

nents. This would then explain the observation in Fig. 7 that . . .
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in Figs. 6 and 8 is similar to the one predicted for the Cou-

lomb gas scaling used to describe a zero-field two- APPENDIX A: COMPARISON WITH VORTEX GLASS

dimensional Kosterlitz-Thouless transitiéh™° In that case, THEORY

Ty is replaced with the Kosterlitz-Thouless temperature,

. . A first order series expansion lo, aroundT, gives
Ter, and X=T(Teo— T/ Tkr(To—T) is the scaling P 0 9

parameter, wherel,, is the superconducting transition U, r
temperature. In HTS, such a scaling has previously been kgT—Ug~|kg—|——| [(T—Tg)=kgTc—=",

o . S : aT T~ Ty
used for describing the zero-field resistivity in Ty

-1

1+ (A2)

S

1+ (B/By)?
1+(B/Bo)” (T-Ty)". (A3)

T—T

YBa,Cu;0;_ 5/PrBaCu,0,_ s multilayers®® Recently, a (A1)

modified scaling law has also been shown to describe thghere we have used E) in the last equality to calculate

field dependent resistivity (up 1o 5 D in gyg /4T at the glass transition temperature. Furthermore,

Biz+ySh_x—_yLayCuQs, 5 (BSLCO) thin films3 These au-  from the glass transition line, E¢6),

thors found a clear relation between the scaling relations and

the field dependence of the thermally activated resistivity for B\#

vortex motion similar to our resulfé. In their description, Ty(B)=T, B_)

the resistive tails were assumed to be described by the 0

Halperin-Nelson relatiofi R(T,B)=R,exd—A/(X—1)°%],  Putting this together with the description of the resistivity in

where A is a constant. This implies a scaling relation, Eq. (4), we finally obtain

IN[R/R,]=—A/(X—1)°5 which has been shown to give a

good description of all the data in the vortex liquid regime of _

an optimally doped BSLCO thin filr¥? In our case, the re- P=Pn

sistivity tail of the optimally doped sample is instead de-

scribed by a power law as expected for a second order phase .

transition?/ P P PRaSEApPENDIX B:  TEMPERATURE DEPENDENCE OF U,
A plausible explanation for these different behaviors Our model can easily be generalized to the situation

comes from the large differences in electrical anisotropy bewhereUq(B,T) has a different temperature dependence. Let

tween the systems. In optimally doped YBCO, the anisot-us consider the situation where the field and temperature de-

ropy y~8, results in an almost three-dimensional vortex syspendencies ot can be separated from each other, i.e.,

184511-8



SCALING OF THE VORTEX-LIQUID RESISTIVITY IN . .. PHYSICAL REVIEW B63 184511

Uo=Ugf(T), (B1)  Taking the logarithmic temperature derivative of E&3)
and inverting, we obtain the extrapolation formula used to

whereUg contains the magnetic field dependence &fi0) determine the transition temperature

is a general function of temperatutgy is here considered to
be the effective pinning energy in the system and is therefore

related to the condensation energy in the superconducting Ty [of
state. As before, we expect the vortex solid-to-liquid transi- 1 1- f(T,) aT
tion to occur whenUy(B,Ty)=kgT,, which gives Ug (‘9 '”P) :T_Tg ¢ T (B4)
=kgT4/f(Tg). Thus,U, can be written aT s . T (ﬁf) '
Uo=kgT 1M B2 et
0~ "Blg f(Tg) ( )
) where the indices on the derivatives mark the temperature at
and Eq.(4) gives which they should be evaluated. To derive E84), we have
THT,) s also used a first order series expansionf@f) around T
9 _
_ _ =T,.
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