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Scaling of the vortex-liquid resistivity in optimally doped
and oxygen-deficient YBa2Cu3O7Àd single crystals
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The consequences of a recently proposed model@A. Rydh, Ö. Rapp, and M. Andersson, Phys. Rev. Lett.83,
1850~1999!# for the vortex-liquid resistivity close to a vortex liquid-to-glass transition are analyzed in detail.
We find a detailedquantitativeagreement between the model and resistivity measurements on disordered,
optimally doped YBa2Cu3O72d single crystals. For temperatures below the superconducting transition tem-
perature, a scaling of all measured resistivity curves in magnetic field (0,B<12 T) is obtained. Possible
ways of slightly modifying the model in order to fully describe resistivity measurements on more anisotropic
underdoped oxygen-deficient YBa2Cu3O72d single crystals are suggested. The physical interpretation of the
model and its connection to other models of the vortex-liquid resistivity are discussed. In particular, we find
close connections to vortex glass models and to a generalized Coulomb gas model.
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I. INTRODUCTION

In high temperature superconductors~HTS!, the large
broadening of the resistive transition in magnetic field is
direct consequence of thermal fluctuations in the vortex s
tem. In fact, the parameters~high temperatures, large pen
etration depths, small coherence lengths and large elect
anisotropies! are all conspiring to increase the importance
thermal fluctuations in HTS.1,2 Strong thermal fluctuations
lead to the melting of a flux line lattice over a substantial p
of the mixed state phase diagram in clean materials.3 At tem-
peratures below the melting temperature,Tm , the vortex sys-
tem is in a~pinned! superconducting vortex-solid phase wi
nonzero critical current, while atT.Tm it is in a dissipative
vortex-liquid state. Signatures of a first order phase transi
in clean samples are seen from measurements of the sp
heat,4 magnetization measurements,5–7 and jumps in the
resistivity.8

When disorder is introduced, the vortex-solid transfor
into a glassy vortex state and the vortex solid-to-liquid tra
sition becomes second order.9–11 Depending on the type an
strength of the disorder, different types of glassy solid sta
can be obtained, like, e.g., a vortex glass in the presenc
point disorder9 or a Bose glass in the presence of correla
disorder.12 The glass phases will have different critical exp
nents depending on the type of disorder, but the overall
havior seen from an experimental point of view is rath
similar. The linear resistivity disappears in all cases a
power law

r5r0U T

Tg
21Us

~1!

close to the glass transition temperature,Tg . s is here a com-
bination of the universal critical exponents of the glass tr
sition and is the only factor that is related to the kind
disorder giving the transition. From Eq.~1!, r0 is identified
as a characteristic resistivity and should in some way
related to the normal state resistivity. This relation can eit
be direct throughr0}rn or indirect through the flux flow
0163-1829/2001/63~18!/184511~9!/$20.00 63 1845
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resistivity, r f f , which is related torn through the Bardeen
Stephen equation,r f f5rnB/Bc2(T), whereB is the applied
magnetic field andBc2(T) is the upper critical field.

From the formulation used in Eq.~1!, there is no obvious
connection between the glass resistivity itself and the ba
superconducting parameters. However, in a real material,
superconducting condensation energy and thereby the
ning energy are changing with temperature and magn
field. A detailed description of the glass transition in HT
should take this into account. We have recently propo
such a model and showed that it gives a consistent des
tion of the vortex liquid resistivity at all magnetic fields i
our study (B<12 T).13 Here, we further develop this mode
and relate it to other models usually used to describe the
resistivity part of the vortex liquid.

The outline of the paper is as follows. The model is fi
described in general and some useful relations are deri
Then, the experiments are described and an analysis o
resistivity in an optimally doped YBa2Cu3O72d ~YBCO!
single crystal is made and shows that our model give
detailed description of the experimental results. We sh
that the main ideas can be applied also to doped mate
like oxygen-deficient YBCO single crystals. Finally, tw
possible physical interpretations of the model are discus
one based on a vortex glass scenario and the other o
generalized Coulomb gas scaling.

II. MODEL

For the vortex glass model presented in Eq.~1!, the linear
resistivity close toTg mainly depends on the distance toTg
and the relevant energy scales are thereforekBT andkBTg .
In a superconductor, however, energy scales as the con
sation energy or the pinning energy are changing withboth
temperature and magnetic field. Therefore, as depicted
Fig. 1, one should consider the distance to the transition
Bg(T) in the two-dimensionalB-T diagram instead of the
one-dimensional distance toTg at constantB. Similar effects
are well known from corrections to the temperature dep
dence of the superconducting condensation energy clos
©2001 The American Physical Society11-1



rg
y
en
co

th

tiv

s
.
lo
r

n
u

, w
-
th

d
n
o
as

t
v-
to

ri-
id
lar
rre-

-

be
or-
ture
the

at
-
sis-

tiv-
-
eri-
by

be
l is
ag-

.
uld

y
h
re-
lly

n-

rly
n
ly
to

lear,
.,
rgy

urg-

s of
r-

p

-

th

M. ANDERSSON, A. RYDH, AND Ö. RAPP PHYSICAL REVIEW B63 184511
Bc2. In a general description, we denote the relevant ene
scale determining flux motion in the vortex liquid b
U0(B,T) ~at the moment, only the existence of such an
ergy scale is needed and we postpone the discussion
cerning the interpretation ofU0). The linear resistivity
caused by thermal fluctuations will be determined from
competition betweenU0(B,T) and the thermal energy,kBT.
In this picture, it is natural to assume that a specific resis
ity level corresponds to a constantU0(B,T)/kBT, i.e., the
resistivity scales as

r

rn
5FS U0~B,T!

kBT D , ~2!

whereF is a scaling function. Here, we have chosen to u
the normal state resistivityrn as the characteristic resistivity
This is based both on the empirical results presented be
and on the fact that any characteristic energy should be
lated torn in some way. The vortex solid-to-liquid transitio
then occurs when the two relevant energy scales are eq
i.e., when

U0~B,Tg!5kBTg . ~3!

Since disordered materials are discussed in the following
denote the transition temperature byTg as for a glass transi
tion. The main arguments could possibly be valid also for
resistivity above a melting transition. The scaling functionF
is expected to have different functional dependences for
ferent kinds of transitions. This means that one should
expect to find scaling for all magnetic fields if the nature
the transition changes with field, as for example is the c
when passing the purported tricritical point in theB-T dia-
gram of clean YBCO single crystals.14 An interesting obser-
vation is that the proposed model directly suggests tha
curve in theB-T diagram containing points of equal resisti
ity should follow the same behavior as the vortex solid-

FIG. 1. Sketch of the principal physical idea behind our a
proach. The relevant energy scale,U0(B,T), at a specific point
(T,B) in the vicinity of the vortex solid-to-liquid transition is de
termined by the distance to thetransition line, Bg(T), in a B-T
diagram. This is in contrast to other approaches, where only
temperature distance toTg is taken into acocunt.~The magnetic
field has arbitrarily been scaled to the parameterB0 discussed later
on.!
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liquid line. This gives a natural explanation of the expe
mental fact that a determination of the solid-to-liqu
transition line by different experimental methods give simi
result although some methods, strictly speaking, only co
spond to a constant~low! resistivity level.15

The main difficulty is to find the explicit field and tem
perature dependence ofU0. In the following, an approach to
do this for a vortex glass transition is presented. It should
noted already here that differences from a conventional v
tex glass model are rather subtle as far as the tempera
dependence of the resistivity is concerned. In our picture,
characteristic energyU0(B,T) replaces the thermal energy
the glass transition line,kBTg , in the vortex glass expres
sions and thus gives a more detailed description of the re
tivity at temperatures away fromTg . SinceU0 is expected to
be a slowly varying function of temperature and the resis
ity disappears rapidly close toTg , it may seem hard to ob
serve any differences between these two models from exp
ments. However, such differences can be detected
plotting the experimental data in a proper way, as will
shown below. The main advantage of the present mode
that it gives a consistent and detailed description of the m
netic field dependence of the resistive transition.

A direct consequence of the arguments above and Eq~1!
is that the resistivity close to a vortex glass transition, sho
be written

r5rnU kBT

U0~B,T!
21Us

, ~4!

where U0(B,T) has replacedkBTg as the relevant energ
scale and we have putrn as the prefactor in agreement wit
Eq. ~2!. To proceed, we note that a good scaling of the
sistivity curves of disordered HTS was obtained empirica
by writing the effective pinning energy13

U05kBTc

12T/Tc

~B/B0!b
5UB~12T/Tc!. ~5!

Here,B0 and b are field and temperature independent co
stants, and hence the energyUB5kBTc /(B/B0)b is tempera-
ture independent. As will be shown below, this particula
simple form forU0 is sufficient to give a detailed descriptio
of the vortex-liquid resistivity in an optimally doped, weak
disordered single crystal of YBCO for magnetic fields up
at least 12 T.

Although the exact interpretation ofU0 and the precise
temperature and field dependencies are not completely c
the form used in Eq.~5! is quite reasonable. One can, e.g
start from the basic energy scale determining the self-ene
of a vortex line, e0'F0

2/4pm0l2, where F0 is the flux
quantum,m0 is the permeability of free space andl(T) is
the temperature dependent penetration depth. In a Ginzb
Landau approximation,l(T)5l(0)(12T/Tc)

20.5, which
directly gives e0}(12T/Tc). The power law in the field
dependence is a characteristic feature for most analyse
the resistivity in a vortex liquid based on theories for the
mally activated flux motion.16–18 After having noted these
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SCALING OF THE VORTEX-LIQUID RESISTIVITY IN . . . PHYSICAL REVIEW B63 184511
similarities with well established results, we will use Eq.~5!
to derive some useful relations.

The first observation to be made is that Eqs.~3! and ~5!
immediately gives the temperature dependence of the vo
glass line,

Bg~T!5B0S 12T/Tc

T/Tc
D 1/b

. ~6!

This relation has experimentally been shown to describe
vortex glass line very well for various HTS having differe
anisotropies.19 Secondly, by instead consideringTg(B) as
obtained by inverting Eq.~6!, the temperature independe
energy UB as defined in Eq.~5! can be written UB
5kBTcTg /(Tc2Tg), which leads to a reformulation of Eq
~5!,

U05kBTg

Tc2T

Tc2Tg
, ~7!

where the field dependence is implicit through the field
pendence inTg(B). From Eqs.~4! and~7!, we finally obtain
the relation

r5rnUT~Tc2Tg!

Tg~Tc2T!
21Us

, ~8!

which will turn out to be useful when analyzing the expe
mental data. Note that the field dependence of the resist
only comes in throughTg(B) in this relation.

From the similarities between Eqs.~1! and ~4!, it is clear
that our description can be seen as a modification of
vortex glass theory. Let us therefore explore the con
quences of these modifications and compare them with
ordinary theory. From Eq.~1!, one directly obtains

S ] ln r

]T D 21

5
T2Tg

s
. ~9!

The usual way of extracting the vortex glass temperatur
to calculate the inverse of the logarithmic derivative of E
~1! from experimental data and to extrapolate the plotted d
to (] ln r/]T)2150 in order to obtainTg .20 In our approach,
we instead find

S ] ln r

]T D 21

5
T2Tg

s S Tc2T

Tc2Tg
D ~10!

by taking the logarithmic derivative of Eq.~8!. The only
difference between Eqs.~9! and ~10! is a factor (Tc
2T)/(Tc2Tg), which is nearly one for temperatures suf
ciently close toTg . This establishes that Eq.~9! is still a
good approximation in our case. Furthermore, by a se
expansion of our expressions aboveTg ~see Appendix A!,
the resistivity can be written

r5rnF11~B/B0!b

Tc2T Gs

~T2Tg!s. ~11!

This expression is similar to the one usually used for
resistivity close to a vortex glass transition,r5r0(T2Tg)s.
18451
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In fact, Eq. ~11! can be considered as a more detailed
scription of the glass transition explicitly giving the field an
temperature dependence ofr0. We see that the temperatur
dependence ofr0 is only slowly varying in the neighborhood
of Tg . This once again indicates the similarities with th
vortex glass picture.

There is also an interesting connection between our fi
dependence ofU0 and that found from analyzing the resi
tivity by models based on thermally assisted flux flow21

~TAFF! or on plastic deformations22 in the vortex system. In
these models, the resistivity follows a temperature dep
dence,r5r1exp(2U!/kBT), where the activation energy fo
flux motion, U!, is magnetic field dependent. Experime
tally, U! is obtained from the slope in an Arrhenius pl
since we have

] ln r

]~1/T!
52

U!

kB
. ~12!

From Eq.~8!, the same derivative can be calculated and
obtain

] ln r

]~1/T!
52s

UB

kB

@11~r/rn!1/s#2

~r/rn!1/s
, ~13!

where the derivative has been rewritten in terms of the
ergy UB as defined in Eq.~5! and the reduced resistivity
r/rn . By comparing these two equations, it is seen thatUB
and U! will have the same field dependence provided t
the slope in the Arrhenius plots are taken at a constantr/rn ,
which is almost always the case in experimental studies.
discussed below, there is even a quantitative agreemen
tween these two equations when analyzing the experime
data.

The equations above were all derived for a particu
simple form of the characteristic energyU0(B,T) in Eq. ~5!.
A more general discussion is given in Appendix B.

III. EXPERIMENT

Single crystals of YBCO were grown by a self-flu
method in yttria stabilized zirconia crucibles as previou
described.23 Twinned crystals of varying oxygen conten
were obtained by annealing for 3–7 days at various temp
tures ranging from 450°C to 700°C. The oxygen-deficie
samples were annealed in air, while the optimally doped
was annealed in flowing oxygen. A summary of the anne
ing conditions and some important parameters are show
Table I.

Electrical contacts were prepared by applying strips
silver paint, followed by heat treatment under the same c
ditions as during annealing, giving contact resistances be
1.5 V. Typical dimensions of the samples were 0.530.2
30.03 mm3. Measurements of the in-plane resistance
magnetic fields 0<B<12 T applied along the crystallo
graphic c-axis were made in a flowing gas cryostat. T
samples were placed in a vacuum space inside the vari
temperature insert of the cryostat to protect them from te
perature variations in the flowing gas. A current ofI
50.3 mA was used and a voltage resolution down to 0.3
1-3
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M. ANDERSSON, A. RYDH, AND Ö. RAPP PHYSICAL REVIEW B63 184511
was achieved with the use of a dc picovoltmeter as prea
lifier. The samples were cooled in field through the sup
conducting transitions and data were recorded during
creasing temperatures.

IV. OPTIMALLY DOPED SINGLE CRYSTALS

We start by discussing the vortex-liquid resistivity in o
timally doped single crystals of YBCO with a small amou
of disorder. The defects in the crystal described here c
sisted of twin boundaries, point defects from adatoms in
starting materials and oxygen disorder~increasingly impor-
tant for the oxygen-deficient samples!. The resistivity
showed a glassy behavior at all magnetic fields stud
which is believed to come mainly from point disorder13

r(B,T) of the optimally doped sample~sample 1! is shown
in the Arrhenius plot in Fig. 2. The zero field transition has
width of 0.15 K and the resistivity has a low value of abo
70 mV cm just aboveTc , showing the good sample quality
Furthermore, the normal state resistivity extrapolates to z
as shown in the inset of Fig. 2. This extrapolated line h
been taken as the normal state resistivity,rn , in all the
analyses presented below.

We start our analysis by considering the vortex glass te
perature, which is usually obtained from Eq.~9!. In our
model, however, the situation becomes more complica
due to the correction factorA(T)5(Tc2T)/(Tc2Tg) in Eq.
~10!, which gives an implicit equation forTg . However, the
correction factor is roughly one close toTg and it is possible

TABLE I. Annealing conditions, transition temperatureTc ,
transition widthDTc , and anisotropy parameterg of the studied
YBa2Cu3O72d single crystals.

Sample Annealing Tc ~K! DTc ~K! g

1 O2 , 450 °C 91.3 0.15 8.7
2 air, 500 °C 86.2 1.0 13
3 air, 525 °C 73.2 2.5 19
4 air, 700 °C 51.8 2.0 35

FIG. 2. Arrhenius plot of the resistivity for optimally dope
YBCO single crystal for~from left to right! B50.5, 1, 1.5, 2, 3, 4,
6, 9, and 12 T. Inset: Extrapolation of the normal state resistivity
zero.
18451
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to find a good value ofTg from Eq. ~9! in a first approxima-
tion. In a second approach, one can use thisTg for a more
detailed analysis as shown in the inset of Fig. 3. As predic
by Eq. ~10!, a linear relation is found close toTg between
temperature andA(T)(] ln r/]T)21. The differences inTg be-
tween these two approaches lies within the experimenta
rors of the extrapolations and can be neglected for most p
tical purposes. One may also expect a difference in
linearity of the data close toTg when comparing Eq.~9! and
Eq. ~10!. We have not been able to distinguish any clear su
difference from our analyses due to the noise level in t
regime.

The main part of Fig. 3, shows the field dependence of
vortex glass transition. As shown by the solid curve, a go
fit to Eq. ~6! is obtained. The fitting parameters areB0
536.9 andb50.83. For this sample, we also note that
reasonable fit can be obtained by the ordinary vortex g
expression,Bg}(12T/Tc)

n, with n51.4. Such an expres
sion will, however, not give the consistent description d
cussed below.

As previously discussed, it is not possible to find a de
nite proof for our approach from the differences betwe
Eqs.~9! and~10!. A much more sensitive test is provided b
Eq. ~4!. By solving forU0, one obtains

U0~B,T!5kBTF11S r

rn
D 1/sG21

. ~14!

U0(B,T) can therefore be calculated directly from expe
mental data provided that one knows the exponents and
rn(T). s is easily obtained as the inverse slope in Eq.~10!
and the normal state resistivity is determined by the lin
extrapolation shown in the inset of Fig. 2. The result of th
analysis is shown in Fig. 4, whereU0 is shown as a function
of temperature at different magnetic fields. A striking featu
is the linear behavior ofU0(T) at the lowest temperature
~i.e., closest toTg). When extrapolating this linear behavio
at different fields, one realizes that the lines all merge

o

FIG. 3. Field dependence of the vortex glass line. Solid poi
were determined as shown in the inset. The solid curve is a fi
Eq. ~6! with B0536.9 T and b50.83. Inset: Determination
of the glass transition temperature from Eq.~10!. Here
A(T)5(Tc2Tg)/(Tc2T) is the correction factor to the result fo
an ordinary vortex glass in Eq.~9!.
1-4
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SCALING OF THE VORTEX-LIQUID RESISTIVITY IN . . . PHYSICAL REVIEW B63 184511
the pointT5Tc and U050. Therefore, Fig. 4 immediately
shows that one can write U05UB(12T/Tc) as stated in Eq.
(5). Furthermore,Tg can be directly obtained from Fig. 4 b
considering the crossing points of the linesU0(T,B) and the
line U05kBT, which is the criterion we used for findingTg
in Eq. ~3!. We therefore conclude that Fig. 4 gives stro
evidence for the proposed model.

Another important point is that the temperature dep
dence ofU0 illustrated by Fig. 4 directly shows that th
ordinary vortex glass expression is insufficient for describ
the data. For an ordinary vortex glass model, one expec
horizontal line since Eq.~1! implies a constantU0(B)
5kBTg(B) at all temperatures close toTg . This is obviously
not the case in Fig. 4.

A potentially weak point in our argumentation is the w
we have chosen the parameterss andrn . We have therefore
slightly changed the parameters to investigate the sensit
of the analysis in Fig. 4. For changes ins within the uncer-
tainty limits given by the extrapolations used in Fig. 3, the
are only small changes in Fig. 4. In brief, the lines beco
somewhat curved and the crossing point shifts slightly fr
the pointT5Tc and U050. The analysis is also rather ro
bust to changes inrn . However, if one considers larg
changes in the parameterrn by more than one order of mag
nitude~requiring another physical meaning of the prefacto!,
the slopes in Fig. 4 change and there is no crossing po
Even when attempting such large changes, it is not poss
to obtain constantU0 at all magnetic fields, which agai
shows that our data are incompatible with the ordinary v
tex glass theory.

We now discuss the magnetic field dependence ofU0.
From Eq.~5!, it is clear that the field dependence only com
in through the termUB . UB can in principle be found di-
rectly from the slopes in Fig. 4. A more convenient way
however, to calculateUB5U0 /(12T/Tc) from the experi-
mental data and to plotUB(T). This gives a temperatur
independent and constant value ofUB ~within 62%) at each
magnetic field as briefly reported previously.24 The magnetic

FIG. 4. The energyU0 as obtained from Eq.~14! for ~from left
to right! B512, 9, 6, 4, 3, 2, 1.5, 1, 0.7, 0.5, 0.3, 0.2, and 0.1 T.
clearly shown by the dashed lines, the low resistivity parts of
curves are well described by Eq.~5! with a field dependentUB .
The glass transition temperature is obtained whenU0 crosses the
solid line U05kBT.
18451
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field dependence ofUB is shown in Fig. 5, where a powe
law dependence is found over an extended magnetic fi
region from 0.1 to 12 T. A fit to the data givesUB /kB
51831B20.84 with B in T. First, we note that we obtain th
same exponent,b, for the magnetic field dependence in th
analysis as in the analysis of the glass transition line~Fig. 3!.
Secondly, the prefactor in this fit is equal tokBTcB0

b accord-
ing to Eq.~5!. From this relation we calculateB0537.1 T in
excellent agreement with the fit toBg(T) with B0536.9 T
in Fig. 3. This shows thequantitative consistency of our
analyses and the relationship between the glass trans
line at T5Tg and the characteristic energyU0 at tempera-
turesT.Tg , which is inherent in our model.

One can also find a qualitative agreement between
model and previous models of the vortex liquid resistiv
based on a thermally activated behavior, despite the fact
the physics behind these models are different. As seen in
Arrhenius plots in Fig. 2, the resistivity in our sample can
a reasonably good approximation be described by a t
mally activated behavior,r5r1exp(2U!/kBT). The field de-
pendence of the activation energies determined in this w
using resistivity levels between 531023 and 5
31021 mV cm, are shown in the inset of Fig. 5. Althoug
the data is somewhat scattered, a fit to a power law beha
givesU!/kB5(5.73104)B20.78 with B in T, i.e., roughly the
same field dependence as forUB , where the exponentb
50.83 was obtained. Furthermore, the prefactor in the fi
dependence ofU! can be directly compared with the prefa
tor in the field dependence ofUB in Eq. ~13!. From this
comparison, we find that the prefactors are equal wh
r/rn'131023, which corresponds to a resistivity level o
about (528)31022 mV cm in good agreement with th
resistivity region used for determiningU!. Our model thus
gives a good quantitative description of bothr(B,T) and its
logarithmic temperature derivative close toTg .

Equation~8! also predicts a scaling behavior between t
normalized resistivity,r/rn , and the scaled temperatur
T(Tc2Tg)/Tg(Tc2T)21, with Tg5Tg(B). Such a scaling

e

FIG. 5. Magnetic field dependence ofUB as obtained from Eq.
~5! and the slopes in Fig. 4. The solid line is a fit to the data giv
the relation UB /kB51831B20.84. Inset: Activation energies ob
tained by analyzing the resistivity within a TAFF model. The so
line is a fit to the points with the equation,U!/kB5(5.7
3104)B20.78 with B in T.
1-5
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M. ANDERSSON, A. RYDH, AND Ö. RAPP PHYSICAL REVIEW B63 184511
is shown in Fig. 6, where the resistive transitions at 13 fie
between 0.1 and 12 T have been scaled onto one curve~most
of the resistivity curves are shown in Fig. 2!. From the slope
in Fig. 6, we find the critical exponents54.6 in agreement
with previous analyses using Eq.~10! and data from Fig. 3.
An interesting point is that the scaling also works for te
peratures close toTc , although the derivation above wa
only made for temperatures close toTg . This clearly indi-
cates that the general arguments we have used are of fu
mental nature for understanding the full behavior of the v
tex liquid. The analysis presented above has been mad
data taken as a function of temperature at constant mag
field. However, the scaling works equally well on data tak
as a function of magnetic field at constant temperature.25

V. UNDERDOPED SINGLE CRYSTALS

We now apply this model to oxygen-deficient crystals
the underdoped regime of HTS. With decreasing total o
gen content in the crystals, oxygen is successively remo
from the CuO chains lying in between the superconduct
CuO2 planes. This results in a decreased conductivity in
chains and thereby a decreased coupling between the C2
planes which is equivalent to a higher electrical anisotropy
observed in many studies on YBCO.19,26,27Since the oxygen
content can be easily controlled by annealing conditio
oxygen-deficient single crystals of YBCO is a suitable t
system for vortex dynamics in HTS.

The general features ofU0 as obtained from Eq.~14! are
shown in Fig. 7 for one of the oxygen-deficient sampl
First, we note that the ordinary vortex glass equation will n
be applicable for these samples either since we do not ob
a constant value ofU0(T) as required. This conclusion re
mains unaltered even if the parameterss andrn used for the
calculation ofU0 are chosen far outside of their expect
ranges. Secondly, the simple expression forU0 used to de-
scribe the optimally doped sample in Fig. 4 is clearly n
sufficient here. Below, we give two possible ways to gen
alize our picture in order to describe these data.

The first approach is based on a generalized tempera
dependence ofU0. This is a natural extension, sinceU0 in

FIG. 6. Normalized resistivity versus scaled temperature acc
ing and 12 T. The slope of the curve gives the critical expone
s54.660.3.
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our case is expected to be related to the average pin
energy and thus to the superconducting condensa
energy.13 In this picture, one can consider many differe
choices forU0(T). As a first approximation, we have con
sidered a power law behavior,U05UB(12T/Tc)

m, where
the exponentm is a fitting parameter common for all resis
tivity curves and the magnetic field dependence is contai
in the prefactorUB , which is taken as a constant at ea
magnetic field. The low resistivity parts of the curves a
fitted to a power law in the scaling variablekBT/U021, and
the results give a fairly good scaling as shown in Fig. 8~a!.
This analysis is rather to be seen as qualitative evidence
the present theory can describe also these data since th
plicit temperature dependence ofU0 is unknown and there
are difficulties in determining a correctTc to be used in the
analysis. Here, we have definedTc at every resistivity level
as the temperature at which the zero field curve has the s
resistivity, in order to compensate for the width of the sup
conducting transition. This gives a better scaling than c
sidering a constant temperature like the 50% level of
normal state resistivity or the zero resistivity point. Howev
at the lowest magnetic fields, the scaling becomes sens
to the choice ofTc . This can to some extent explain th
small deviations observed in the upper part of the curve.

The second approach is to naively use Eq.~8!, although
such a scaling may not be expected from the plots ofU0 in
Fig. 7. However, as seen in Fig. 8~b!, this apparently gives a
better scaling of the data over the whole temperature ra
from Tg to Tc . We also note that the curve is not perfect
linear in the low resistivity regime. Therefore, a pow
law relation between r/rn and the scaling variable
T(Tc2Tg)/Tg(Tc2T)21 is strictly speaking not correct a
was implicitly assumed when calculatingU0. This may then
give a plausible explanation for the observed deviations fr
a U05UB(12T/Tc) behavior in Fig. 7.

As seen in Fig. 9, this approach also gives a reason
scaling for sample 3 and 4. In sample 4, there are lar
deviations close toTc in the scaling, which occurs at both th
lowest (B,0.5 T) and at the highest (B.6 T) fields. First,

d-
t,

FIG. 7. Characteristic features of our oxygen-deficient crys
shown here for sample 2 (Tc586.2 K). As clearly seen, the simpl
description ofU0 used for the optimally doped crystal in Fig.
cannot be used. Inset: Extrapolated normal state resistivity ve
temperature for this sample.
1-6
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FIG. 8. Scaling attempts of the resistivity curves for sample
using ~a! U05UB(12T/Tc)

m with m50.75 and~b! the scaling
form in Eq. ~8!. The scaling is shown for magnetic fields 0.5<B
<12 T.

FIG. 9. Scaling according to Eq.~8! for samples 3 and 4.
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there is a broadening of the fluctuation region aboveTc in
this sample indicating that there may be small regions in
sample with a somewhat higherTc . This affects the analysis
in the upper part of the transition by giving an uncertainty
the determination ofTc ~taken as the temperature at whic
the zero field curve has the same resistivity!. Such an effect
will be particularly important at the lowest fields. Second
we have not considered any magnetic field dependence oTc
in our analysis. This effect will be most important at hig
fields in samples with lowBc2 and for temperatures close t
Tc , i.e., it may explain the deviations we observe at hi
fields.

Although we cannot unambiguously distinguish betwe
different approaches for the underdoped samples, the rea
able scaling of the resistive curves obtained in Fig. 8 clea
suggests that the underlying ideas are still valid. This gi
support for a general description of the vortex-liquid regim
in HTS materials based on these results.

VI. DISCUSSION

Experimentally, our approach gives a fully consistent d
scription of the vortex-liquid resistivity at all fields studied
an optimally doped YBCO single crystal. It also gives a go
qualitative~or even semiquantitative! description of the field
dependent resistivity in underdoped samples. This stron
suggests a direct connection between these results and
fundamental properties of the vortex liquid and thus of ph
fluctuations in the superconducting condensate of H
However, when it comes to an understanding of the fun
mental processes, the picture is still ambiguous. Two p
sible scenarios are discussed below based on interpreta
of the scaling obtained for the underdoped samples.

The first scenario starts with the observation that the
sistivity disappears as a power law~see Fig. 6!. As shown by
Eq. ~11!, this scaling implies that in a first approximation, th
resistivity close toTg disappears as a power law inT2Tg as
predicted for a second order phase transition like the vo
glass or Bose glass transitions.9,12 It is natural to assume tha
the characteristic energyU0(B,T) is related to the effective
average pinning energy in the system. The vortex solid
liquid transition occurs whenU0(B,Tg)5kBTg as discussed
above. Here, it is important to make a clear distinction b
tween the average pinning energy,U0, and the activation
energy for flux motion,U!. U! diverges atTg due to the
diverging glass correlation length in the vortex liquid, whi
U0 only changes slowly withB andT when passingTg . This
can also be seen directly by comparing Eqs.~12! and ~13!.
While U05UB(12T/Tc) remains finite for T5Tg , U!

}] ln r/](1/T)}r21 diverges, sincer in Eq. ~13! becomes
zero atTg . This distinction is similar to the one made i
collective pinning theory between the underlying average
ergy scale and the relevant energy scale for flux moti
where the latter is obtained by a summation of the aver
energy scale taken over the coherently jumping volume.2 The
difference in our case is that the changes in the cohere
volume is driven by the diverging glass correlation leng
~and time! due to the proximity toTg .

2

1-7
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This description works very well for the optimally dope
sample. For underdoped samples, a good scaling of the
resistance part of the transition is also obtained by allow
for a generalized temperature dependence ofU0. In contrast
to the optimally doped sample, this approach can seemin
not be extended to the region close toTc . Starting from a
description based on a glass transition, one would a priori
expect the scaling to work close toTc . It is then surprising to
find that the scaling works so well for the optimally dop
sample. As suggested above, the transition is connecte
the energy scaleU0, which is connected to the supercondu
ing condensation energy and therefore goes to zero atTc . If
this follows a specific relation, one would in our model al
expect the resistivity to scale close toTc , since it is the same
energy scale that determines the resistivity both close toTg
and close toTc .

The second scenario is based on the observation tha
vortex liquid resistivity scales as a function ofT(Tc
2Tg)/Tg(Tc2T)21 as shown in Figs. 6 and 8. For th
optimally doped sample, the resistivity disappears with
power law behavior as seen in Fig. 6. However, for the
derdoped sample in Fig. 8 there is no clear power law
havior at low resistivities. One may consider several poss
explanations such as the signature of a cutoff in the gla
behavior for example caused by screening28 or a crossover
between two glassy behaviors with different critical exp
nents. This would then explain the observation in Fig. 7 t
the apparentU0 calculated from the assumption of a gla
transition deviates from the behavior observed for the o
mally doped sample.

Interestingly, the scaling factor used for the temperat
in Figs. 6 and 8 is similar to the one predicted for the Co
lomb gas scaling used to describe a zero-field tw
dimensional Kosterlitz-Thouless transition.29,30 In that case,
Tg is replaced with the Kosterlitz-Thouless temperatu
TKT , and X5T(Tc02TKT)/TKT(Tc02T) is the scaling
parameter, whereTc0 is the superconducting transitio
temperature. In HTS, such a scaling has previously b
used for describing the zero-field resistivity
YBa2Cu3O72d /PrBa2Cu3O72d multilayers.31 Recently, a
modified scaling law has also been shown to describe
field dependent resistivity ~up to 5 T! in
Bi21ySr22x2yLaxCuO61d ~BSLCO! thin films.32 These au-
thors found a clear relation between the scaling relations
the field dependence of the thermally activated resistivity
vortex motion similar to our results.24 In their description,
the resistive tails were assumed to be described by
Halperin-Nelson relation33 R(T,B)5Rnexp@2A/(X21)0.5#,
where A is a constant. This implies a scaling relatio
ln@R/Rn#52A/(X21)0.5, which has been shown to give
good description of all the data in the vortex liquid regime
an optimally doped BSLCO thin film.32 In our case, the re-
sistivity tail of the optimally doped sample is instead d
scribed by a power law as expected for a second order p
transition.

A plausible explanation for these different behavio
comes from the large differences in electrical anisotropy
tween the systems. In optimally doped YBCO, the anis
ropyg'8, results in an almost three-dimensional vortex s
18451
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tem. The anisotropy in BSLCO is very large, of the order
g'100–200, thus implying a quasi-two-dimensional vort
system, with possibly independent pancake vortices in e
superconducting layer~due to weak coupling along thec
axis!. This will certainly affect the scaling of the resistivit
just aboveTg . The small deviations we observe in the u
derdoped samples as compared to the optimally doped
may in fact be a consequence of change in behavior w
going from an almost three-dimensional vortex system
wards a quasi-two-dimensional one with increased ani
ropy.

In summary, we have shown that the resistive transit
curves in magnetic fields of optimally doped and underdop
disordered YBCO single crystals can be scaled and descr
in a consistent way. In the case of optimally doped cryst
we find a detailed quantitative description of the vortex l
uid resistivity and its derivatives close toTg . In addition, the
scaling analysis suggested from this model is shown to
applicable for the whole vortex liquid regime. We have al
discussed possible extensions of our model to allow fo
detailed description of the vortex liquid in underdop
YBCO single crystals. Finally, two possible physical inte
pretations of our model based on a vortex glass and a g
eralized Coulomb gas scenario have been discussed.
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APPENDIX A: COMPARISON WITH VORTEX GLASS
THEORY

A first order series expansion inU0 aroundTg gives

kBT2U0'FkB2S ]U0

]T D
Tg

G ~T2Tg!5kBTc

T2Tg

Tc2Tg
,

~A1!

where we have used Eq.~7! in the last equality to calculate
]U0 /]T at the glass transition temperature. Furthermo
from the glass transition line, Eq.~6!,

Tg~B!5TcF11S B

B0
D bG21

. ~A2!

Putting this together with the description of the resistivity
Eq. ~4!, we finally obtain

r5rnF11~B/B0!b

Tc2T Gs

~T2Tg!s. ~A3!

APPENDIX B: TEMPERATURE DEPENDENCE OF U0

Our model can easily be generalized to the situat
whereU0(B,T) has a different temperature dependence.
us consider the situation where the field and temperature
pendencies ofU0 can be separated from each other, i.e.,
1-8
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U05UBf ~T!, ~B1!

whereUB contains the magnetic field dependence andf (T)
is a general function of temperature.U0 is here considered to
be the effective pinning energy in the system and is there
related to the condensation energy in the superconduc
state. As before, we expect the vortex solid-to-liquid tran
tion to occur whenU0(B,Tg)5kBTg , which gives UB
5kBTg / f (Tg). Thus,U0 can be written

U05kBTg

f ~T!

f ~Tg!
~B2!

and Eq.~4! gives

r5rnUT f~Tg!

Tgf ~T!
21Us

. ~B3!
,

a,

H

.

an

a,

ild

J.
ic
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Taking the logarithmic temperature derivative of Eq.~B3!
and inverting, we obtain the extrapolation formula used
determine the transition temperature

S ] ln r

]T D 21

5
T2Tg

s F 12
Tg

f ~Tg! S ] f

]TD
Tg

12
T

f ~T! S ] f

]TD
T

G , ~B4!

where the indices on the derivatives mark the temperatur
which they should be evaluated. To derive Eq.~B4!, we have
also used a first order series expansion off (T) aroundT
5Tg .
er,

,

it-
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