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Rotating superconductors and the London moment: Thermodynamics versus microscopics
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Comparing various microscopic theories of rotating superconductors to the conclusions of thermodynamic
considerations, we traced their marked difference to the question of how some thermodynamic qthetities
electrostatic and chemical potentjasre related to more microscopic ones: The electron’s work function,
mean-field potential, and Fermi energy—certainly a question of general import. After the proper identification
is established, the relativistic correction for the London moment is shown to vanish.
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[. INTRODUCTION importantly, (iii) the reason for the microscopic parameters
of m, and e to appear on the macroscopic level is due to
The defining property of superconductors, the well-knownsimple symmetry principles, rather than some detailed prop-
Meissner effect, is to expel aundercritical magnetic field erties of the interaction.
from its bulk. This property reverses itself when the super- Comparing both types of theories in detail, we find their
conductor is rotated, and a spontaneous magnetic fielgifference to be easy to bridge, if the relations between some
appears—again in the bulk, one or two penetration lengthghermodynamic and microscopic quantities had been clear
away from the surface. This is usually referred to as theyeforehand. More specifically, it is the incorrect identifica-
London moment.Its magnitude i tion of electrostatic and chemical potentials on one hand, the
work function, mean-field potential, and Fermi energy of the
B=—[2me(1+{)c/e]L, (1) electron on the other that has led to the above discrepancy.
where(Q is the rotational velocityc the vacuum light veloc- The correct identification of these quantities is of rather gen-
ity, m, the bare mass, anek 0 the charge, of the electron; eral interest and transcends the understanding of the London
finally, £ is a relativistically small correction. All theories Moment alone. The proper identification is the most impor-
and experiments agree thatis small, but strong disagree- tant result of the present paper. .
ment exists with respect to its actual value and sign. The Another problem clouding the understanding of the Lon-
microscopic theories, by AndersdnBrady? Cabrera and don moment is the disagreement between experiment and all
co-workers>® and Bayni take the main correction to be theories. Although this remains a point we do not under-

positive and given by the Fermi velocity stand, we took a step towards its clarification by achieving
understanding of the following point: The best present ex-
[~(vplc)?=2x1074. (2)  periment measures the flufA-ds=[B-da, outside the ro-

tating superconductdf. Two effects contribute to this flux,
the London moment, and the so-called double layer. The
latter is a result of the fact that a metal may be conceived of
as an electrostatic potential of the square-well form, with the
depth Ad. As the metal rotates, this discontinuity in the
rest-frame electrostatic potential produces a discontinuity in
he laboratory-frame vector potential

The thermodynamic theory, on the other hand, fitide be
negative, and very much smalfér:

{=nlc?~—1071°, €))

where . is the chemical potential of the metal, the energy
needed to add a unit mass to the superconducting solié
(Since the solid holds its atoms together, the chemical poten-

tial 1 is necessarily a negative quantjtfhe value of 10%° AA=—(QX1)AD/C ()
makes the correction negligible for all conceivable purposes '
and renders EdJ), taking the values oé andc as given, a

very precise expression fon.—about three orders of mag- And this also contributes to the flA - ds, with a contribu-
nitude more precise than any present experimental techniqugn much larger than the relativistic correction of the Lon-
to determine the electron mass directly. don moment. It has been generally suspected that both con-
Generally speaking, although the thermodynamic, macrotributions are experimentally inseparable, that they are
scopic theory lacks details and is incapable of answeringlways measured in conjunctiof® double layer of opposite
many quantitative questions, it is nevertheless a rigorousharge—or one layer of dipoles—produces a discontinuity in
theory, and uniquely appropriate for understanding the Lonthe electrostatic potential, hence the name.
don moment. This is becaugp the London moment is an We disagree. In this paper, we shall discuss both effects
equilibrium phenomenon(ii) the measurement concerns a separately, as only the first is universal—the second varies
guotient between two macroscopic fielsand(), and most  with materials, and is quite independent from superconduc-
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M_=Meu+eAd, (11

1= pal(Mi+me). (12

Becauseu , u., pa, i, andA®, respectively, denote the
energy needed to bring an electron, an ion, an atom, unit
mass, and unit charge from infinity to inside the system,
these are fixed quantities, and we are not at liberty to alter
them by an additive constant. We especially have

AD=D(r)— (), (13

where® is the electrostatic potential, which is fixed only up

FIG. 1. Direct measurement of the London fid@ . to an arbitrary gauge transformation, and which forms a four-

vector with the vector potentigh. Note that the energy and

tivity. Besides, we believe that these effects may, in prin-chemical potentials employed in this paper include the rest
ciple, be measured independently. Taking the supercormass, because otherwise the relativistic transformation for-
ductor to be a cylinder rotating around its axis, the Londonmulas of the following sections will not work. Hence we
moment may be measured immediately outside its top odlefine the nonrelativistic chemical potentials with tilde,
bottom surface, where any magnetic fi@dis continuous,

see Fig. 1(It is not continuous across the cylinder surface, pe=mct ., (14

where the field drops to zero within a few penetration

lengths, due to the presence of persistent curpefite flux p_=mC3+ (15

from the double layer alone may be seen aboyeor in the

experiment proposed in Sec. V. w=c?+p, (16)
In Sec. Il, we shall present the simple yet stringent-

macroscopic calculation leading to the London moment. This o= (M +my) 2+ 1y (17)

is followed in Sec. Ill by a comparison to the microscopic

results, which are brought into agreement with the macrotsually, bothxz, and u_ are of the order of a few electron
scopic ones by the appropriate identification of the abovevolts, this being the scale of atomic physics, compare an
mentioned thermodynamic and microscopic quantities. Irearly model calculatioft Sincem,/(m;+my)~10" %, Egs.
Sec. IV, we consider the effect of the double layer, the con{11) and(12) imply, to great accuracy,

tribution of which may be measured in the experiment de-

scribed in Sec. V. n_=eAd, (18
Il. THE MACROSCOPIC APPROACH with
A. Electrostatic and chemical potential w_Ime=10"5¢? u~10"10c2 (19
Given any neutral, macroscopic system we may either _ _ _
change its numbers of electrons and idds,andN ., , or its B. Josephson equation and superfluid velocity
mass and chargé/ andQ. They are related as The Josephson equation is usually given as
M=miN, +meN_, ®) 2o+ =0, 20
Q=le[(N,—N_). (6)  though this equation is not gauge invariant. In view of Egs.

(m; and m, denote the bare mass of the ion and electron,(ll) and(13), the correct form for the Josephson equation is

respectively, an@<O0 is the elementary chargd=requently, clearly
the number of atomil,=M/(m;+m,) is used instead of the

massM. The energy of these changes is given by the respec- (h12) o+ Mep+eP =0, (22)
tive chemical potentials, implying that Eq.(20) is valid only if ®(«)=0, a special
dE=w. dN. +u_ dN_ 7 gauge choiceESimiIarIy, takinge=0 when considering Eq.
o BT @ (21) also constitutes a gauge choichlote that the form of
= dM+A®dQ 8  EQ.(21) does presume rest frame of the crystal, and equilib-
rium. The superfluid velocity is also defined as a gauge-
= ua AN+ AD dQ, (99  invariant quantity
where employing Eqg5) and (6), we see the chemical po- . h e
tentials to be related as =mZzVe—cAl (22)
e
mo=mu—eAd, (10 Its equation of motion reads
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VS+V u=eE/m,, (23
obtained by inserting Eq.22) in (21) and employingE=

—(V®+Alc). Although this pleasingly simple equation, in-
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involves a partial integration, and is manifestly gauge invari-
ant;H - dB is the magnetic counter terij¥- dv® characterizes
the broken phase invariance of superconductivity, as
0i;dV;u; the broken translational invariance of solids—uwith

dependent from any coefficients, may be used to justify thes; the displacement vector. In a general inertial frame, the

definitions of Eqs(21) and(22), we must be aware that as

defined need not transform as a velocity under a Galileanramic variable, though we emplay=

Lorentz boost. The transformation behavionéfis given by
the Josephson equati@®l): Define a four-velocity

Ao do e 24
2m, gxn Mg 24
-t olc,V ® oA 25
_Zme((P c, @)_mec(_ ’ )! ( )
and use Eq(21) to yield

U,=(—pulc,v°). (26)

Now, because, transforms as
u,=(up—u-v/c,u—ugv/c) (27

under a boost of, to linear order inv/c, so does the four-
vector (— u/c,v®), leading to

n=p+veey, (28
(V) =Vv3+(ulc?)y, (29

implying that it is the quantity
ViS=(u/c?) " WS=vS(1+ () (30

that transforms as a velocityy'f)’ =v'S+v. We shall refer
to V'S as the true-superfluid velocity—although with

{=mlc?=(u_—eAd)/mci~101°, (31

cf. Egs. (11), (16), and (19), the difference is very small
indeed. Defining an effective masg; by

mg =me(1+9), (32
. L1 (% e
\Y :F §V¢_EA , (33)
e

total, conserved-momentum densgy' is also a thermody-
g°— DX B instead?,

with v"'=4de/dg being the equilibrium velocity of crystal
points, atoms, and normal electrons. In the present case of

interest,

V=QXr, (35

Being a conjugate variablg=de/v® is a function of these
two thermodynamic variables’ andv", which are also odd
under time reversal. In an expansion, to linear order of the
variables, we have

J5=(c® w)pf (v§— awp), (36)
wherepfj and aj, are two expansion coefficients, while the
prefactor €2/u) simply renormalizesbisj . A Maxwell rela-

tion then implies

TN

Confining ourselves to the local rest frame and disregarding

dissipative termgthen s,u;=0), the hydrodynamic set of
equations is given by the Josephson equa28), the Max-
well equations, and the conservation laws for energy and
mass

i

)
vy

aj,-s

(37

e=-V-Q, 0+V-j,=0, (39)

B=-CcVXE, D=cVXH—j,, (39)

whereQ, j,, andj. are as yet unknown. Inserting the ex-
pressions into the temporal derivative of E84), e=upe

+E-D+H-B+j%- v, and insisting that all equations are sat-
isfied simultaneously, we find

jp:jS' Je=€js/mg, (40)

Q=ju+CEXH. (41)

we shall find in the next section that this is the mass appeaiclearly,js=ds/v® has the significance of being the persis-

ing in the formula for the London moment, E@.).

C. Thermodynamics and hydrodynamics
In a general inertial frame, the thermodynamics of a su
perconducting solid is given as
de=Tds+ pde+V"-dg+o;;dV u;+E-dD+H-dB
+js-dvs. (39

Notation and explanatiorsis the entropy density, antithe
temperaturex do and E°-dD are the respective local ex-
pressions foru dM and A® dQ of Eq. (8), where E-dD

tent mass and electric current in the rest frame. The relation

jp=€js/mg, (42

is a necessary one, as the transfer of one electron is coupled

to the transfer of the bare values®@&ndm,. Starting from
this relation and tracing it back, we would have found that
the chargee in Eq. (22) must indeed be the bare charge, and
thatv® must indeed be gauge invariant. Because of the sym-
metry of the energy stress four-tensgf!=Q/c?, we have

go'=g=jsulc?, (43)

for E, D=0 (and still in the local rest frameThis implies
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Metal Surface

e®

outside

holds, because the physical significancefand _ , the
0 energy needed to take out an electron, and the energy gained
when putting one in, respectively, is the same. The other two
scales, the Fermi energy: and the mean-field potentis,
are model-dependent quantities, with a large measure of ar-
oD bitrariness attached to them. So we should not expect them to
inside : be directly measurable, or connected to thermodynamic
eV quantities in a simple fashion. Nevertheless, all mentioned
authors employing the microscopic approach to understand
the London momenrt’ adopt the identification

w

: V=AOD, (49)
' ]

Mean-field
Potential semee TN

with some apparently plausible consequences. First, with

FIG. 2. The relations between the macroscopic electrostatic poEgs.(31) and(32), we havemj =mg(1+¢) with
tential e®, the work functionW, the Fermi energyg, and the

mean-field potentia¢V, close to a metal surface. L( mecz) = 7,“7 —eAd=W—-eV=c¢¢. (50)
This makes the mass correction positive, and rather tangible:
(@ =B (449 With the estimateswW~-—4 eV, eV=—-96 eV, andzr
ajf‘ . c2 ! ~92 eV (by averaging the electron wave functions over the
" Fermi surfacg the value/~1.8x 10" “ was found for the
or in combination with Eq(37), mass correction—as comparedits — 10~ 1° of the last sec-
tion. Moreover, wither=3mw2, Eq. (50) delivers the
ii=pi[(c? wv—v]1=pi[v*=v]]. (45 simple, kinematic-relativistic interpretation for the mass cor-
rection,

Inserting this expression into E¢B8) with D=0, taking an-
other curl on both sides, and denoting the mapﬁjxasf)s,

1
we finally obtain = E(UF/C)ZQLSX 1074, (52)

So why do we claim that Eq$49)—(51) are in error? The
=V X (V=" identification of Eq.(49) is made by taking the macroscopic
electrostatic potentisAd as the potential felt by supercon-
e ducting electrons fronall charge distributions in the metal,
== WB_ZQ- (46 such as surface dipate.., the screening ha..., and
charge inhomogeneities associated with atomic cores and
This is the equation that accounts for the equilibrium behavvalence electron® (Sentences in italic are quotes, here and
ior of the magnetic field in superconductorsmdc/ below,) Clearly, the one ostentatiously lacking in this list is
e)(;,s ~1yields the square of the inverse-penetration depth, &e contribution from the other band electrdireluding the
quantity that depends on the crystal direction, while the vansuperconducting ongsto the potential, which brings the po-
ishing of the right-hand expression gives the bulk value oftential energy, gained by the last electron to be added to the
the magnetic field, Eq(1). Because of Eq(31), we may System, to
generally neglect the factorl{.

M.C
e

V X (p°) "V xH

W=7n_=eAd, (52

IIl. THE SQUARE-WELL POTENTIAL cf. Eq. (18). This is the thermodynamic definition of the
Consider a square-well potentidee Fig. 2, a popular potentialA(I}, see the disgussion of the last section,. and we
model for metals. Taking the outside value of the energy a&r€ not at liberty to alter it. In fact, as already mentioned, it
zero, the depth of the well BV(<0), with VV the mean-field would have beep highly surprising for the directly measur-
potential for electrons; filling the potential up to the Fermi @ble macroscopic electrostatic potentlathat forms a four-
energys:(>0), the gap still remaining may be identified as vector with the vector pot_entu’ﬂ to be_ simply related to the
the work function of the electroM/(<0). Together, they Model-dependent mean-field potential )
satisfy Clearly, inserting Eq(52) into Eq. (50), we have{m.c
=u_—eAd=0, reducing the mass correction tessen-
W—gp=eV. (47  tially zero—as in the last section. Now, even with E49)

] ) ] false and the derivation of E@51) incorrect, a relativistic-
When making contact with thermodynamics, there are NQinetic interpretation of the Fermi velocity may still appear

doubts that the identification to leave/ = 3 (v /c)? intact. As it is a rather popular precon-
- ception, and employed by two more recent papers without
W=pu_ (48)  the detour via the Fermi enerdywe need to emphasize here
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that this simplistic interpretation is really only valid for the potential will also be discontinuous, contributing to the total
case of free particles, and does not at all work for stronglyflux of the system in the laboratory frame. Since the magni-
interacting systems. tude of this is~A®, taking eAd either asu_=W=

To understand this, consider an atom consisting of an-4 eV, Eqs.(18) and(19), or aseV~—96 eV, Eq.(49),
electron and an ion—the same way the metal consists dflearly makes a big difference. As argued at length in the last
band electrons and the rest. We may write the energy of thevo sections, we believe the first is correct, as does the

atom asE=(m + m’e‘)cz, or book* by Landau and Lifshitz, who unequivocally pro-
nounced the equality between the work function and the po-
(M +mg —m;—mg)c?=W, (53) tential's discontinuity W=eA®, see Sec. 23.

The jump of the vector potential follows from the
rentz-transformation property of the electromagnetic four-
potentialA,. Consider a frame comoving with the metal. If
A} denotes the electric potential outside the metal, the poten-
tial inside the metal will beA;—A®. So the four-potential

where the superscrigt denotes the effective mass including Lo
the mass defect, whilgV the binding energy between the
electron and the ion, the analog of the work function above
Note that the binding energW includes all contributions,
especially the kinetic energy of the electron. Microscopi-" " . o0 _
cally, we may divideW betweerm? andm? arbitrarily. But ~ “\a I the local rest frame isAg ,A’) outside the metal, and
if the division is in proportion to the rest mass, a natfial  (Ro—A®,A’) inside it. In the laboratory frame, the four-
not obvious procedure, the mass defect of the electron is PotentialA, becomes, in linear order afic,

m (Ag—V-A'lc,A’—Ayvic)
* _ e
Me=Mmel 1+ — T m. | (54 outside the metal, and
meC i e
in agreement with the result of the last section, see B@, (Ap—AD—v-A'/c,A’—Ajvic+Advic)

(17I)3’a€;1/rr17?| ((:301r)1:sidered the problem of mass correction withininSid‘? the ”."'et_aL yvhere is the velocity Of. the boundary. So
the Landau theory of Fermi liquid in his wofkThe theory is € discontinuity in the vector potential is

beyond the usual mean-field ' approach and accounts for AA=ACU— AINt= _ (AdD/c)v. (56)
many-body effects. Because his arguments and calculations

are complicated, we shall only quote his final expression For a metal cylinder uniformly rotating about tzeaxis e, ,

we havev=0Qe,xR, with R the position vector of the
boundary. So the magnetic flux of a nonsuperconducting,
whereeg,;, is the kinetic energy of a Fermi electron, similar rotating metal is

to er above, while the last two terms are nev; is given by

the average of the electrostatic potential within a given unit 3g AA-ds= — 27R2ADQ/c. (57)

cell (e.g., the Wigner-Seitz cgllarising from the charges

within the cell.And &, is the interaction energy of an elec- gjince the experimettmeasures both this boundary flux and
tron at the Fermi surface, containing electrostatic as well asghe | ondon field simultaneously, it is convenient to introduce
exchange contributiongbut excluding the boundary dipole 5, gpserved mass, (if the effect due to the penetration

layen. The value ofeV, was given as-19.8 eV, while the depth is negligible, as is the casédn We write it as
value of ¢;,; remains unknown. Becausg,; not only in-

cludes many-body interactions, but also electrostatic contri- Mops= (1+ ) (1— @)me=(1—a)m? , (58)
bution, it may well be an appreciable term, canceling other

contributions to yield virtually vanishing total correction, in Where o accounts for the flux from the boundary double
agreement with the thermodynamic result. Baym also pointéayer. In the cited microscopic consideraticifs,” it is the
out that corrections from the presence of the lattice are to bE€rmi energysg~92 eV that enterg, and the mean-field
expected, because the Landau Fermi liquid theory is confine@otentialeV~—96 eV that enters, though in opposite di-
to translationally invariant systems, of which metal electrongections. Combined, the observed mass is corrected only by
are not one. Only a generalized Landau theory that also corthe work functionW=eV+eg~—4 eV, cf. Eq.(47), lead-
siders the ions, would indeed be dealing with a system thdfld to a total correction of about>810~°. Thermodynami-
is, in its totality, translationally invariant. This should result cally, althoughf~—10"*° is negligible, yet since the work
in more generally valid relations, replacing relations such agunction W does enterr, the measured effect is again given
g=[un_/(ms?)]js as given in Ref. 7, withg=[u,/(m, by a value around-4 eV.

(m:_me)czzskin+8int_evc+'"u (59

+m;)c?ljs, or Eq.(43). Since the same value fon,,is predicted by all theories,
one may conjecture that the values{obr « individually are
IV. THE BOUNDARY DOUBLE LAYER unimportant, because any experiment can only observe

(Mgps/Me) —1=¢— . This does not seem right to us. First,

Because of the presence of surface dipoles, the electrdvoth the strength of surface double layer of a metal and the
static potential is discontinuous at the surface of the superondon field are well-defined physical quantities. And the
conductor,A®+#0. If the metal is in rotation, the vector parameterg and« are unambiguously related to the chemi-
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Q is proportional toa{), renderinge, or the flux from the
— boundary layer, measurable.

The magnetic fields and the current density inside the cyl-
inders can be obtained by solving Eg6) in the cylindrical
symmetry. Considering the isotropic casg= 06;; with @
the superfluid density, we write the vector fields as

Superconductor
Rings

B=Be,, A=A(eXrlr),

J5=]%eXrlr). (59
The general solution foH=B is
B:27*Q+C1|0+ C2Ko (60)

Notations: y*=—mjc/e; C,_s are integration constants;
A=(mec/|e|) V(1+ )/ o is the penetration deptH;,Ky
(N=0,1) are Bessel functions with the arguments; ¢,
= —fic/2e is the quantum fluxoid.

Inserting Eq.(60) into Eqs.B=V XA, j*=cV XB, and
noting the quantization propert$Ve-ds=2zn for the
phase in Eq33), we obtain the magnetic potential and cur-

FIG. 3. Apparatus for measuring the boundary flux in the superf€nt density
conducting state. Superconducting metal is depicted by shaded area. A= 7% QO =N/t +M(Cyl 1~ CoKy), 61)

cal potential and the work function, respectively. Second, e _

both effects aréat least in principlgindependently measur- 7= (M€l = CoKy). (62)
able. The London field could be observed directly by mea-The integern denotes quantum state of the cylinder. The
suring the flux near the top center of a rotating superconinductionB is constant outside the rings, while the potential
ductor (see Fig. 1, and the flux from the double layer only is of the form

may be observed in the normal state, or even in the super-

conducting state, by the method given in the next chapter. A=Bri2+Cir (63)

with C again a constant. Using the above solutions, it can be

V. A PROPOSED EXPERIMENT easily seen that the field of our apparatus is

Consider two concentric, corotating, hollow cylinders Bi1, r<R;
made of the same superconducting metal. The electric cur- 29*Q+Cilg+CoKy, Ri<r<R,
rent J flowing through the inner cylinder is measured by a B= 5 R R (64)
superconducting quantum interference dei8®UID), see 2 2<I'<Rs
Fig. 3. The cylinders rotate with the angular velodity We 2y Q0+ Cslg+CyuKg, R3<r<Ry,

calculate the magnetic field and the current in the apparatu(sa.nd the potential is
For simplicity we assume that the cylinders are of infinite P

height, and no surface charge@s electric field are present. B,r/2 r<R,
This geometry was first analyzed by Bratiyho esti- . ’

mated the effect of penetration depthdy simply assuming | 7 Qr—nggo/r+A(Cil1—CoKy), Ri<r<R,

constant magnetic fields in the regimessO<R;+\ and B,r/2+Cglr, R,<r<Rj

R,—N<r<Rs+N\, in other words, by assuming that the ac- *
tual internal spaces,<OR; andR,<r <R, are increased by YO =Nadolr A (Cal1=CaKy), Re=<r=<Ry.

\ at the superconducting boundaries. Moreover, because the (65)
magnitudes of the field was estimated by dividing the magNote thatn;,n, may be different, because the two cylinders
netic flux by the respective area, the contributions from thecan be in different quantum states. The current per unit

boundary layer have also been neglected. length in the inner cylinder is
The currentd in the inner cylinder as determined by o

Brady is proportional to the o_b_served Masg,s an(_i the dif- _ J:J Zjedr

ference of the angular velocities of the two cylinders. This Ry

was given as a method to measure the London field. In our

case, both angular velocities are the samel would vanish =~ C[Calloz=loa) + Ca(Koy~ Ko ]. (66)
in his approximation. Our more detailed calculation, how-Here and below we will use the notations

ever, shows thafl is finite and observable if the distance

between the two cylindefR;— R, is small enough. In fact, it Inm=In(Ru/N),  Kym=Kn(Ru/N),
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where the integeréN=0,1, M=1—-4. The unknown con-
stantsC,_s, B4,B, are determined from the boundary con-
ditions. AtR;, according to Eqs(64) and(65), we have

B1=2y*Q+Cylo1+CoKoy, (67)
BlR1/2: ( ’y* - A(D/C)QR]__ n1¢0/R1+ )\(Cll 11— C2K11)7
(68)

where Eq.(67) shows that the induction varies continuously
at the surface. Equatiq®8) is obtained from the jump of the
potential Eq.(56). Similarly, atR, we have

B,=2vy* Q)+ Cyl gt CyKpo, (69)
B,R,/2+ Cs /Ry =(7* — AD/C) R, — Ny b /R,
+A(Cyl12— CoKypy), (70)
and atRj,
B,=29* O+ Cal ga+ C4K o3, (71)
BoRa/2+ Cs/Ry= (7% — AD/C)QRy— Ny /Ry
TA(Csl13~ ChKyy). (72)

The induction is zero beyonR,. (We consider the case of

PHYSICAL REVIEW &3 184506

s

RsR,

¢

nm

-

1 A
10° 10
FIG. 4. Variation of the factof, with the separation distance of
the two rings.

Becausef, is very large, it is not probable for the two rings
to lay in different quantum states. So within a good approxi-
mation (and also neglecting<1) we have

J=—2J0n1—f1(A(I))Q, (76)
with f;=4/3 for the geometry considered. This shows that
the strength of the surface double laye® can be measured
by measuring the change of the current with the rotation.
Note that the factorf; decreases with increasing distance
R;—R, between the two cylinders, see Fig. 4. When the

no externally applied field, i.e., all the sources of the field aredistance is largef;—0, the last term in Eq(74) is negli-

from supercurrents in the ringsNVe have then
2’)/*Q+C3|04+ C4K04:O. (73)

Solving Egs.(67)—(73) for C,_5, B;,B, and inserting them
into Eq.(66), we obtain the current. The result can be written
as

J=[fsn+f4(n;—ny) ot cy* (fo—F10)Q, (74
with
eAd fic? -
aA=——0/F, = - .
m? ¢? 2eR

Here the factorg,_, depend only on the penetration depth
and geometry of the system. For observing the boundar

gible and we return to the result by Bratly.

VI. CONCLUSIONS

The conclusion of this paper is that the relativistic correc-
tion to the London field is not the result of the Fermi veloc-
ity. Instead, it is given by the chemical potentjal of the
metal, which quantifies the complicated interaction among
all the particles, including that between electrons and ions.
Because the interaction energy is typically several electron
volt per atom, while the mass of an atom is around
10" MeV, the relativistic correction is tiny, of order 16°,
and beyond the scope of any present experimental tech-
niques. When previous microscopic theories considered the

ondon moment, they considered the kinetic contribution to

effect, it is convenient to choose the geometry such that® correction{ of the electron’s mass, but neglected other

|fo|<|afy]. One example satisfying the requirement R:
=25 Cm,Rz_ R]_: 1,(Lm, R3_ RZZ 40 nm, R4_ R3: 1,(Lm,

A =40 nm. We have obtained, by the numerical computation
the values

f,=1.33333, f,=1.852x10 1

fs=—1.9999968, f,=2.083<10'.

contributions, especially from the interaction between the
electrons and the lattice. In addition, the discontinuity of the
macroscopic electrostatic potential at the metal surface was
incorrectly taken to be the mean-field potential, or the sum of
the kinetic energy and the work function. As soon as these
errors are revised; is found to essentially vanish. Unfortu-
nately, the reason for the discrepancy between the
experiment® and all theories remains unclear.
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