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Rotating superconductors and the London moment: Thermodynamics versus microscopics
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Comparing various microscopic theories of rotating superconductors to the conclusions of thermodynamic
considerations, we traced their marked difference to the question of how some thermodynamic quantities~the
electrostatic and chemical potentials! are related to more microscopic ones: The electron’s work function,
mean-field potential, and Fermi energy—certainly a question of general import. After the proper identification
is established, the relativistic correction for the London moment is shown to vanish.
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I. INTRODUCTION

The defining property of superconductors, the well-kno
Meissner effect, is to expel an~undercritical! magnetic field
from its bulk. This property reverses itself when the sup
conductor is rotated, and a spontaneous magnetic
appears—again in the bulk, one or two penetration leng
away from the surface. This is usually referred to as
London moment.1 Its magnitude is2

B52@2me~11z!c/e#V, ~1!

whereV is the rotational velocity,c the vacuum light veloc-
ity, me the bare mass, ande,0 the charge, of the electron
finally, z is a relativistically small correction. All theorie
and experiments agree thatz is small, but strong disagree
ment exists with respect to its actual value and sign. T
microscopic theories, by Anderson,3 Brady,4 Cabrera and
co-workers,5,6 and Baym7 take the main correction to b
positive and given by the Fermi velocity

z'~vF /c!2'231024. ~2!

The thermodynamic theory, on the other hand, findsz to be
negative, and very much smaller:8

z5m̃/c2'210210, ~3!

where m̃ is the chemical potential of the metal, the ener
needed to add a unit mass to the superconducting s
~Since the solid holds its atoms together, the chemical po
tial m̃ is necessarily a negative quantity.! The value of 10210

makes the correction negligible for all conceivable purpo
and renders Eq.~1!, taking the values ofe andc as given, a
very precise expression forme—about three orders of mag
nitude more precise than any present experimental techn
to determine the electron mass directly.9

Generally speaking, although the thermodynamic, mac
scopic theory lacks details and is incapable of answe
many quantitative questions, it is nevertheless a rigor
theory, and uniquely appropriate for understanding the L
don moment. This is because~i! the London moment is an
equilibrium phenomenon,~ii ! the measurement concerns
quotient between two macroscopic fields,B andV, and most
0163-1829/2001/63~18!/184506~8!/$20.00 63 1845
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importantly, ~iii ! the reason for the microscopic paramete
of me and e to appear on the macroscopic level is due
simple symmetry principles, rather than some detailed pr
erties of the interaction.

Comparing both types of theories in detail, we find th
difference to be easy to bridge, if the relations between so
thermodynamic and microscopic quantities had been c
beforehand. More specifically, it is the incorrect identific
tion of electrostatic and chemical potentials on one hand,
work function, mean-field potential, and Fermi energy of t
electron on the other that has led to the above discrepa
The correct identification of these quantities is of rather g
eral interest and transcends the understanding of the Lon
moment alone. The proper identification is the most imp
tant result of the present paper.

Another problem clouding the understanding of the Lo
don moment is the disagreement between experiment an
theories. Although this remains a point we do not und
stand, we took a step towards its clarification by achiev
understanding of the following point: The best present
periment measures the flux,rA•ds5*B•da, outside the ro-
tating superconductor.10 Two effects contribute to this flux
the London moment, and the so-called double layer. T
latter is a result of the fact that a metal may be conceived
as an electrostatic potential of the square-well form, with
depth DF. As the metal rotates, this discontinuity in th
rest-frame electrostatic potential produces a discontinuity
the laboratory-frame vector potential

DA52~V3r !DF/c. ~4!

And this also contributes to the fluxrA•ds, with a contribu-
tion much larger than the relativistic correction of the Lo
don moment. It has been generally suspected that both
tributions are experimentally inseparable, that they
always measured in conjunction.~A double layer of opposite
charge—or one layer of dipoles—produces a discontinuity
the electrostatic potential, hence the name.!

We disagree. In this paper, we shall discuss both effe
separately, as only the first is universal—the second va
with materials, and is quite independent from supercond
©2001 The American Physical Society06-1
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tivity. Besides, we believe that these effects may, in pr
ciple, be measured independently. Taking the superc
ductor to be a cylinder rotating around its axis, the Lond
moment may be measured immediately outside its top
bottom surface, where any magnetic fieldB is continuous,
see Fig. 1.~It is not continuous across the cylinder surfac
where the field drops to zero within a few penetrati
lengths, due to the presence of persistent currents.! The flux
from the double layer alone may be seen above Tl, or in the
experiment proposed in Sec. V.

In Sec. II, we shall present the simple yet stringe
macroscopic calculation leading to the London moment. T
is followed in Sec. III by a comparison to the microscop
results, which are brought into agreement with the mac
scopic ones by the appropriate identification of the abo
mentioned thermodynamic and microscopic quantities.
Sec. IV, we consider the effect of the double layer, the c
tribution of which may be measured in the experiment
scribed in Sec. V.

II. THE MACROSCOPIC APPROACH

A. Electrostatic and chemical potential

Given any neutral, macroscopic system we may eit
change its numbers of electrons and ions,N2 andN1 , or its
mass and charge,M andQ. They are related as

M5miN11meN2 , ~5!

Q5ueu~N12N2!. ~6!

(mi and me denote the bare mass of the ion and electr
respectively, ande,0 is the elementary charge.! Frequently,
the number of atomsNa[M /(mi1me) is used instead of the
massM. The energy of these changes is given by the resp
tive chemical potentials,

dE5m1 dN11m2 dN2 ~7!

5m dM1DF dQ ~8!

5ma dNa1DF dQ, ~9!

where employing Eqs.~5! and ~6!, we see the chemical po
tentials to be related as

m15mim2eDF, ~10!

FIG. 1. Direct measurement of the London fieldBL .
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m25mem1eDF, ~11!

m5ma /~mi1me!. ~12!

Becausem2 , m1 , ma , m, andDF, respectively, denote the
energy needed to bring an electron, an ion, an atom,
mass, and unit charge from infinity to inside the syste
these are fixed quantities, and we are not at liberty to a
them by an additive constant. We especially have

DF5F~r !2F~`!, ~13!

whereF is the electrostatic potential, which is fixed only u
to an arbitrary gauge transformation, and which forms a fo
vector with the vector potentialA. Note that the energy and
chemical potentials employed in this paper include the r
mass, because otherwise the relativistic transformation
mulas of the following sections will not work. Hence w
define the nonrelativistic chemical potentials with tilde,

m15mic
21m̃1 , ~14!

m25mec
21m̃2 , ~15!

m5c21m̃, ~16!

ma5~mi1me!c
21m̃a . ~17!

Usually, bothm̃a and m̃2 are of the order of a few electro
volts, this being the scale of atomic physics, compare
early model calculation.11 Sinceme /(mi1me)'1025, Eqs.
~11! and ~12! imply, to great accuracy,

m̃25eDF, ~18!

with

m̃2 /me'1025 c2, m̃'10210c2. ~19!

B. Josephson equation and superfluid velocity

The Josephson equation is usually given as

~\/2!ẇ1m250, ~20!

though this equation is not gauge invariant. In view of E
~11! and~13!, the correct form for the Josephson equation
clearly

~\/2!ẇ1mem1eF50, ~21!

implying that Eq.~20! is valid only if F(`)50, a special
gauge choice.@Similarly, takingẇ50 when considering Eq
~21! also constitutes a gauge choice.# Note that the form of
Eq. ~21! does presume rest frame of the crystal, and equi
rium. The superfluid velocity is also defined as a gau
invariant quantity

vs[
1

me
S \

2
“w2

e

c
AD . ~22!

Its equation of motion reads
6-2
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ROTATING SUPERCONDUCTORS AND THE LONDON . . . PHYSICAL REVIEW B63 184506
v̇s1“m5eE/me , ~23!

obtained by inserting Eq.~22! in ~21! and employingE5

2(“F1Ȧ/c). Although this pleasingly simple equation, in
dependent from any coefficients, may be used to justify
definitions of Eqs.~21! and~22!, we must be aware thatvs as
defined need not transform as a velocity under a Galile
Lorentz boost. The transformation behavior ofvs is given by
the Josephson equation~21!: Define a four-velocity

ua[
\

2me

]w

]xa
2

e

mec
Aa ~24!

5
\

2me
~ ẇ/c,“w!2

e

mec
~2F,A!, ~25!

and use Eq.~21! to yield

ua5~2m/c,vs!. ~26!

Now, becauseua transforms as

ua85~u02u•v/c,u2u0v/c! ~27!

under a boost ofv, to linear order inv/c, so does the four-
vector (2m/c,vs), leading to

m85m1vs
•v, ~28!

~vs!85vs1~m/c2!v, ~29!

implying that it is the quantity

vts[~m/c2!21vs5vs/~11z! ~30!

that transforms as a velocity, (vts)85vts1v. We shall refer
to vts as the true-superfluid velocity—although with

z5m̃/c25~m̃22eDF!/mec
2'10210, ~31!

cf. Eqs. ~11!, ~16!, and ~19!, the difference is very smal
indeed. Defining an effective massme* by

me* [me~11z!, ~32!

vts5
1

me*
S \

2
“w2

e

c
AD , ~33!

we shall find in the next section that this is the mass app
ing in the formula for the London moment, Eq.~1!.

C. Thermodynamics and hydrodynamics

In a general inertial frame, the thermodynamics of a
perconducting solid is given as

d«5Tds1md%1vn
•dg1s i j d¹ jui1E•dD1H•dB

1 j s
•dvs. ~34!

Notation and explanation:s is the entropy density, andT the
temperature.m d% and E0

•dD are the respective local ex
pressions form dM and DF dQ of Eq. ~8!, where E•dD
18450
e

n-

r-

-

involves a partial integration, and is manifestly gauge inva
ant;H•dB is the magnetic counter term.j s

•dvs characterizes
the broken phase invariance of superconductivity,
s i j d¹ jui the broken translational invariance of solids—wi
ui the displacement vector. In a general inertial frame,
total, conserved-momentum densitygtot is also a thermody-
namic variable, though we employg[ gtot2D3B instead12,
with vn[]«/]g being the equilibrium velocity of crysta
points, atoms, and normal electrons. In the present cas
interest,

vn5V3r. ~35!

Being a conjugate variable,j s[]«/]vs is a function of these
two thermodynamic variablesvs andvn, which are also odd
under time reversal. In an expansion, to linear order of
variables, we have

j i
s5~c2/m!r i j

s ~v j
s2a jkvk

n!, ~36!

wherer i j
s anda jk are two expansion coefficients, while th

prefactor (c2/m) simply renormalizesr i j
s . A Maxwell rela-

tion then implies

S ]gi

] j j
sD

vn

5S ]v j
s

]v i
nD

j s

5a j i . ~37!

Confining ourselves to the local rest frame and disregard
dissipative terms~then ṡ,u̇i50), the hydrodynamic set o
equations is given by the Josephson equation~23!, the Max-
well equations, and the conservation laws for energy a
mass

«̇52“•Q, %̇1“• j r50, ~38!

Ḃ52c“3E, Ḋ5c“3H2 je , ~39!

whereQ, j r , and je are as yet unknown. Inserting the e
pressions into the temporal derivative of Eq.~34!, «̇5m%̇

1E•Ḋ1H•Ḃ1 j s
• v̇s, and insisting that all equations are sa

isfied simultaneously, we find

j r5 j s , je5ej s /me , ~40!

Q5 j sm1cE3H. ~41!

Clearly, j s[]«/]vs has the significance of being the pers
tent mass and electric current in the rest frame. The rela

j r5ej s /me , ~42!

is a necessary one, as the transfer of one electron is cou
to the transfer of the bare values ofe andme . Starting from
this relation and tracing it back, we would have found th
the chargee in Eq. ~22! must indeed be the bare charge, a
that vs must indeed be gauge invariant. Because of the s
metry of the energy stress four-tensor,gtot5Q/c2, we have

gtot5g5 j sm/c2, ~43!

for E, D50 ~and still in the local rest frame!. This implies
6-3



av

h,
an
o

a

m
s

n

ined
two

f ar-
m to
mic
ed

and

ith

ible:

he

or-

ic
-
,

and
nd
is

-
the

e
we
, it
ur-

ar
-
out
e

p

YIMIN JIANG AND MARIO LIU PHYSICAL REVIEW B 63 184506
S ]gi

] j j
sD

vn

5
m

c2
d i j , ~44!

or in combination with Eq.~37!,

j i
s5r i j

s @~c2/m!v j
s2v j

n#5r i j
s @v j

ts2v j
n#. ~45!

Inserting this expression into Eq.~38! with Ḋ50, taking an-
other curl on both sides, and denoting the matrixr i j

s as r̂s,
we finally obtain

“3Fmec

e
~ r̂s!21

“3HG5“3~vts2vn!

52
e

me~11z!c
B22V. ~46!

This is the equation that accounts for the equilibrium beh
ior of the magnetic field in superconductors: (mec/
e)(r̂s)21 yields the square of the inverse-penetration dept
quantity that depends on the crystal direction, while the v
ishing of the right-hand expression gives the bulk value
the magnetic field, Eq.~1!. Because of Eq.~31!, we may
generally neglect the factor 11z.

III. THE SQUARE-WELL POTENTIAL

Consider a square-well potential~see Fig. 2!, a popular
model for metals. Taking the outside value of the energy
zero, the depth of the well iseV(,0), with V the mean-field
potential for electrons; filling the potential up to the Fer
energy«F(.0), the gap still remaining may be identified a
the work function of the electronW(,0). Together, they
satisfy

W2«F5eV. ~47!

When making contact with thermodynamics, there are
doubts that the identification

W5m̃2 ~48!

FIG. 2. The relations between the macroscopic electrostatic
tential eF, the work functionW, the Fermi energy«F , and the
mean-field potentialeV, close to a metal surface.
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holds, because the physical significance ofW and m̃2 , the
energy needed to take out an electron, and the energy ga
when putting one in, respectively, is the same. The other
scales, the Fermi energy«F and the mean-field potentialV,
are model-dependent quantities, with a large measure o
bitrariness attached to them. So we should not expect the
be directly measurable, or connected to thermodyna
quantities in a simple fashion. Nevertheless, all mention
authors employing the microscopic approach to underst
the London moment3–7 adopt the identification

V5DF, ~49!

with some apparently plausible consequences. First, w
Eqs.~31! and ~32!, we haveme* 5me(11z) with

z~mec
2!5m̃22eDF5W2eV5«F . ~50!

This makes the mass correction positive, and rather tang
With the estimatesW'24 eV, eV'296 eV, and «F
'92 eV ~by averaging the electron wave functions over t
Fermi surface!, the valuez'1.831024 was found5 for the
mass correction—as compared toz'210210 of the last sec-
tion. Moreover, with «F5 1

2 mevF
2 , Eq. ~50! delivers the

simple, kinematic-relativistic interpretation for the mass c
rection,

z5
1

2
~vF /c!2'1.831024. ~51!

So why do we claim that Eqs.~49!–~51! are in error? The
identification of Eq.~49! is made by taking the macroscop
electrostatic potentialDF as the potential felt by supercon
ducting electrons fromall charge distributions in the metal
such as surface dipoles . . . , the screening hole . . . , and
charge inhomogeneities associated with atomic cores
valence electrons.4 ~Sentences in italic are quotes, here a
below.! Clearly, the one ostentatiously lacking in this list
the contribution from the other band electrons~including the
superconducting ones!, to the potential, which brings the po
tential energy, gained by the last electron to be added to
system, to

W5m̃25eDF, ~52!

cf. Eq. ~18!. This is the thermodynamic definition of th
potentialDF, see the discussion of the last section, and
are not at liberty to alter it. In fact, as already mentioned
would have been highly surprising for the directly meas
able macroscopic electrostatic potentialF that forms a four-
vector with the vector potentialA to be simply related to the
model-dependent mean-field potentialV.

Clearly, inserting Eq.~52! into Eq. ~50!, we havezmec
2

5m̃22eDF50, reducing the mass correction to~essen-
tially zero—as in the last section. Now, even with Eq.~49!
false and the derivation of Eq.~51! incorrect, a relativistic-
kinetic interpretation of the Fermi velocity may still appe
to leavez5 1

2 (vF /c)2 intact. As it is a rather popular precon
ception, and employed by two more recent papers with
the detour via the Fermi energy,13 we need to emphasize her

o-
6-4
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ROTATING SUPERCONDUCTORS AND THE LONDON . . . PHYSICAL REVIEW B63 184506
that this simplistic interpretation is really only valid for th
case of free particles, and does not at all work for stron
interacting systems.

To understand this, consider an atom consisting of
electron and an ion—the same way the metal consists
band electrons and the rest. We may write the energy of
atom asE5(mi* 1me* )c2, or

~mi* 1me* 2mi2me!c
25W, ~53!

where the superscript* denotes the effective mass includin
the mass defect, whileW the binding energy between th
electron and the ion, the analog of the work function abo
Note that the binding energyW includes all contributions,
especially the kinetic energy of the electron. Microsco
cally, we may divideW betweenmi* andme* arbitrarily. But
if the division is in proportion to the rest mass, a natural~if
not obvious! procedure, the mass defect of the electron is

me* 5meS 11
W

mec
2

me

mi1me
D , ~54!

in agreement with the result of the last section, see Eqs.~12!,
~17!, and~31!.

Baym considered the problem of mass correction wit
the Landau theory of Fermi liquid in his work.7 The theory is
beyond the usual mean-field approach and accounts
many-body effects. Because his arguments and calculat
are complicated, we shall only quote his final expression

~me* 2me!c
25«kin1« int2eVc1•••, ~55!

where«kin is the kinetic energy of a Fermi electron, simil
to «F above, while the last two terms are new:Vc is given by
the average of the electrostatic potential within a given u
cell ~e.g., the Wigner-Seitz cell!, arising from the charges
within the cell.And « int is the interaction energy of an elec
tron at the Fermi surface, containing electrostatic as well
exchange contributions~but excluding the boundary dipol
layer!. The value ofeVc was given as219.8 eV, while the
value of « int remains unknown. Because« int not only in-
cludes many-body interactions, but also electrostatic con
bution, it may well be an appreciable term, canceling ot
contributions to yield virtually vanishing total correction,
agreement with the thermodynamic result. Baym also po
out that corrections from the presence of the lattice are to
expected, because the Landau Fermi liquid theory is confi
to translationally invariant systems, of which metal electro
are not one. Only a generalized Landau theory that also c
siders the ions, would indeed be dealing with a system
is, in its totality, translationally invariant. This should resu
in more generally valid relations, replacing relations such
g5@m2 /(mec

2)# j s as given in Ref. 7, withg5@ma /(me
1mi)c

2# j s , or Eq. ~43!.

IV. THE BOUNDARY DOUBLE LAYER

Because of the presence of surface dipoles, the elec
static potential is discontinuous at the surface of the su
conductor,DF5” 0. If the metal is in rotation, the vecto
18450
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potential will also be discontinuous, contributing to the to
flux of the system in the laboratory frame. Since the mag
tude of this is ;DF, taking eDF either as m25W'
24 eV, Eqs.~18! and ~19!, or aseV'296 eV, Eq.~49!,
clearly makes a big difference. As argued at length in the
two sections, we believe the first is correct, as does
book14 by Landau and Lifshitz, who unequivocally pro
nounced the equality between the work function and the
tential’s discontinuity,W5eDF, see Sec. 23.

The jump of the vector potential follows from th
Lorentz-transformation property of the electromagnetic fo
potentialAa . Consider a frame comoving with the metal.
A08 denotes the electric potential outside the metal, the po
tial inside the metal will beA082DF. So the four-potential
Aa8 in the local rest frame is (A08 ,A8) outside the metal, and
(A082DF,A8) inside it. In the laboratory frame, the four
potentialAa becomes, in linear order ofv/c,

~A082v•A8/c,A82A08v/c!

outside the metal, and

~A0
82DF2v•A8/c,A82A08v/c1DFv/c!

inside the metal, wherev is the velocity of the boundary. So
the discontinuity in the vector potential is

DA[Aout2A int52~DF/c!v. ~56!

For a metal cylinder uniformly rotating about thez axis êz ,
we have v5Vêz3R, with R the position vector of the
boundary. So the magnetic flux of a nonsuperconduct
rotating metal is

R DA•ds522pR2DFV/c. ~57!

Since the experiment10 measures both this boundary flux an
the London field simultaneously, it is convenient to introdu
an observed massmobs ~if the effect due to the penetratio
depth is negligible, as is the case in10!. We write it as

mobs5~11z!~12a!me5~12a!me* , ~58!

where a accounts for the flux from the boundary doub
layer. In the cited microscopic considerations,3,7,10 it is the
Fermi energy«F'92 eV that entersz, and the mean-field
potentialeV'296 eV that entersa, though in opposite di-
rections. Combined, the observed mass is corrected onl
the work functionW5eV1«F'24 eV, cf. Eq.~47!, lead-
ing to a total correction of about 831026. Thermodynami-
cally, althoughz'210210 is negligible, yet since the work
function W does entera, the measured effect is again give
by a value around24 eV.

Since the same value formobs is predicted by all theories
one may conjecture that the values ofz or a individually are
unimportant, because any experiment can only obse
(mobs/me)215z2a. This does not seem right to us. Firs
both the strength of surface double layer of a metal and
London field are well-defined physical quantities. And t
parametersz anda are unambiguously related to the chem
6-5
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YIMIN JIANG AND MARIO LIU PHYSICAL REVIEW B 63 184506
cal potential and the work function, respectively. Seco
both effects are~at least in principle! independently measur
able. The London field could be observed directly by m
suring the flux near the top center of a rotating superc
ductor ~see Fig. 1!, and the flux from the double layer onl
may be observed in the normal state, or even in the su
conducting state, by the method given in the next chapte

V. A PROPOSED EXPERIMENT

Consider two concentric, corotating, hollow cylinde
made of the same superconducting metal. The electric
rent J flowing through the inner cylinder is measured by
superconducting quantum interference device~SQUID!, see
Fig. 3. The cylinders rotate with the angular velocityV. We
calculate the magnetic field and the current in the appara
For simplicity we assume that the cylinders are of infin
height, and no surface charges~or electric field! are present.

This geometry was first analyzed by Brady,4 who esti-
mated the effect of penetration depthsl by simply assuming
constant magnetic fields in the regimes: 0<r ,R11l and
R22l,r ,R31l, in other words, by assuming that the a
tual internal spaces, 0,R1 andR2,r ,R3, are increased by
l at the superconducting boundaries. Moreover, because
magnitudes of the field was estimated by dividing the m
netic flux by the respective area, the contributions from
boundary layer have also been neglected.

The currentJ in the inner cylinder as determined b
Brady is proportional to the observed massmobs and the dif-
ference of the angular velocities of the two cylinders. T
was given as a method to measure the London field. In
case, both angular velocities are the same, soJ would vanish
in his approximation. Our more detailed calculation, ho
ever, shows thatJ is finite and observable if the distanc
between the two cylindersR32R2 is small enough. In fact, it

FIG. 3. Apparatus for measuring the boundary flux in the sup
conducting state. Superconducting metal is depicted by shaded
18450
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is proportional toaV, renderinga, or the flux from the
boundary layer, measurable.

The magnetic fields and the current density inside the c
inders can be obtained by solving Eq.~46! in the cylindrical
symmetry. Considering the isotropic caser i j

s 5%sd i j with %s

the superfluid density, we write the vector fields as

B5Bez , A5A~ez3r /r !,

je5 j e~ez3r /r !. ~59!

The general solution forH5B is

B52g* V1C1I 01C2K0 . ~60!

Notations: g* [2me* c/e; C125 are integration constants
l5(mec/ueu)A(11z)/%s is the penetration depth;I N ,KN
(N50,1) are Bessel functions with the argumentsr /l; f0
52\c/2e is the quantum fluxoid.

Inserting Eq.~60! into Eqs.B5“3A, je5c“3B, and
noting the quantization propertyr“w•ds52pn for the
phase in Eq~33!, we obtain the magnetic potential and cu
rent density

A5g* Vr 2nf0 /r 1l~C1I 12C2K1!, ~61!

j e52~c/l!~C1I 12C2K1!. ~62!

The integern denotes quantum state of the cylinder. T
inductionB is constant outside the rings, while the potent
is of the form

A5Br/21C/r ~63!

with C again a constant. Using the above solutions, it can
easily seen that the field of our apparatus is

B55
B1 , r ,R1

2g* V1C1I 01C2K0 , R1,r ,R2

B2 , R2,r ,R3

2g* V1C3I 01C4K0 , R3,r ,R4 ,

~64!

and the potential is

A55
B1r /2, r ,R1

g* Vr 2n1f0 /r 1l~C1I 12C2K1!, R1,r ,R2

B2r /21C5 /r , R2,r ,R3

g* Vr 2n2f0 /r 1l~C3I 12C4K1!, R3,r ,R4 .
~65!

Note thatn1 ,n2 may be different, because the two cylinde
can be in different quantum states. The current per u
length in the inner cylinder is

J5E
R1

R2
j e dr

52c@C1~ I 022I 01!1C2~K022K01!#. ~66!

Here and below we will use the notations

I NM5I N~RM /l!, KNM5KN~RM /l!,

r-
ea.
6-6
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where the integersN50,1, M5124. The unknown con-
stantsC125 , B1 ,B2 are determined from the boundary co
ditions. At R1, according to Eqs.~64! and ~65!, we have

B152g* V1C1I 011C2K01, ~67!

B1R1/25~g* 2DF/c!VR12n1f0 /R11l~C1I 112C2K11!,
~68!

where Eq.~67! shows that the induction varies continuous
at the surface. Equation~68! is obtained from the jump of the
potential Eq.~56!. Similarly, atR2 we have

B252g* V1C1I 021C2K02, ~69!

B2R2/21C5 /R25~g* 2DF/c!VR22n1f0 /R2

1l~C1I 122C2K12!, ~70!

and atR3 ,

B252g* V1C3I 031C4K03, ~71!

B2R3/21C5 /R35~g* 2DF/c!VR32n2f0 /R3

1l~C3I 132C4K13!. ~72!

The induction is zero beyondR4. ~We consider the case o
no externally applied field, i.e., all the sources of the field
from supercurrents in the rings.! We have then

2g* V1C3I 041C4K0450. ~73!

Solving Eqs.~67!–~73! for C125 , B1 ,B2 and inserting them
into Eq.~66!, we obtain the current. The result can be writt
as

J5@ f 3n11 f 4~n22n1!#J01cg* ~ f 22 f 1a!V, ~74!

with

a52
eDF

me* c2
, J052

\c2

2eR1
2

. ~75!

Here the factorsf 124 depend only on the penetration dep
and geometry of the system. For observing the bound
effect, it is convenient to choose the geometry such t
u f 2u!ua f 1u. One example satisfying the requirement is:R1
52.5 cm,R22R151mm, R32R2540 nm,R42R351mm,
l540 nm. We have obtained, by the numerical computati
the values

f 151.333 33, f 251.852310211,

f 3521.999 996 8, f 452.0833107.
n
n

18450
e

ry
at

,

Becausef 4 is very large, it is not probable for the two ring
to lay in different quantum states. So within a good appro
mation ~and also neglectingz!1) we have

J522J0n12 f 1~DF!V, ~76!

with f 154/3 for the geometry considered. This shows th
the strength of the surface double layerDF can be measured
by measuring the change of the current with the rotati
Note that the factorf 1 decreases with increasing distan
R32R2 between the two cylinders, see Fig. 4. When t
distance is large,f 1→0, the last term in Eq.~74! is negli-
gible and we return to the result by Brady.4

VI. CONCLUSIONS

The conclusion of this paper is that the relativistic corre
tion to the London field is not the result of the Fermi velo
ity. Instead, it is given by the chemical potentialm of the
metal, which quantifies the complicated interaction amo
all the particles, including that between electrons and io
Because the interaction energy is typically several elect
volt per atom, while the mass of an atom is arou
104 MeV, the relativistic correction is tiny, of order 10210,
and beyond the scope of any present experimental te
niques. When previous microscopic theories considered
London moment, they considered the kinetic contribution
the correctionz of the electron’s mass, but neglected oth
contributions, especially from the interaction between
electrons and the lattice. In addition, the discontinuity of t
macroscopic electrostatic potential at the metal surface
incorrectly taken to be the mean-field potential, or the sum
the kinetic energy and the work function. As soon as th
errors are revised,z is found to essentially vanish. Unfortu
nately, the reason for the discrepancy between
experiment10 and all theories remains unclear.

FIG. 4. Variation of the factorf 1 with the separation distance o
the two rings.
s
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