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Against temperature chaos in naive Thouless-Anderson-Palmer equations
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We study the temperature structure of the naive Thouless-Anderson-Palmer equations by means of a recur-
sive algorithm. The problem of the chaos in temperature is addressed using the notion of the temperature
evolution of equilibrium states. The lowest free energy states show relevant correlations with the ground state,
and a careful finite size analysis indicates that these correlations are not finite size effects, ruling out the
possibility of chaos in temperature even in the thermodynamic limit. The correlations of the equilibrium states
with respect to the ground state are investigated. The performance of a heuristic algorithm for the search of
ground states is also discussed.
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I. INTRODUCTION

The mean-field theory of spin glasses~SG! based on the
Sherrington-Kirkpatrik~SK! model has revealed very inte
esting properties of its low-temperature phase. Among th
there are a rugged free-energy landscape with many m
stable states, universality of the probability distribution fun
tion of the overlap between states, and their ultrame
organization.1 These properties are common to various ra
domly frustrated systems, but the full analytic control is fo
mulated mostly for the SK model.

The first attempt toward a Curie-Weiss theory of the S
phase has been done within the TAP theory,2 in which a set
of nonlinear equations for the mean site magnetizations$mi%
has been introduced much in the same spirit of the me
field equations for ordinary ferromagnets. Such a set of eq
tions has been analytically investigated in Ref. 3, where
has been found that the number of minima increases e
nentially with the system size@precisely as exp„a(T)N…, be-
ing a(T) some temperature dependentO(1) constant andN
the number of spins#, and that there exists a temperatu
dependent free energy threshold above which the solut
of the TAP equation areuncorrelated~i.e., their mutual over-
lap is zero in the limit ofN→`). However a number of
questions about the detailed structure of the metastable s
of the SK model still remains unanswered.

A direct numerical solution of the TAP equations is d
ficult because of the so called Onsager reaction term~we will
discuss about it in the following!, which introduces a portion
of the configuration space in which the equations themse
lose their validity.3,4 Here we will study asimplifiedversion
of TAP equations, obtained from the original ones dropp
the numericallydangerousOnsager reaction term. This set
equations is known as thenaive mean-field~NMF! equa-
tions, and they become the exact mean-field equations f
generalized SK model.5 This model turns out to have strik
ingly similar SG properties to the original SK model,6 cap-
turing all the complexities of the SG phase, but with mea
field equations open to easier numerical integration. T
model, as well as the original SK model, displays repl
symmetry breaking.
0163-1829/2001/63~18!/184438~8!/$20.00 63 1844
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The main focus of this work has been the analysis of
organization of the equilibrium states at different tempe
tures. The motivation that led us to this problem is th
while, at least at the mean-field level, it is well known th
belowTC states at the same temperature in the SG phase
nontrivially correlated, very little is known about the corr
lations between states at different temperatures, despite
tense theoretical and numerical efforts on this subject in
last fifteen years.

The hypothesis of the chaos in temperature can be v
simply stated in terms of absence of correlations betw
states at different temperatures. It was originally introduc
as a constitutive ingredient of the phenomenological drop
theory8 in order to take into account the absence of stro
cooling rate dependence experimentally not observed in
spin glasses:9,10 the approach to equilibrium of a given ob
servable after cooling from the high temperature to a wo
ing temperatureTW,TC does not depend on the therm
history of the experimental sample, but only on the tim
spent at the last temperatureTW .11 The puzzle becomes
more intricated once we turn our attention to the mem
effects observed in temperature cycling experiments:11 the
state reached by a system at a given temperature belowTC is
recovered after a negative temperature cycle. The mem
effects are manifestly contradicting the chaotic scenario s
gested by the cooling rate insensitivity, giving rise at t
same time to a number of theoretical explanations mo
focused on real space point of view.12,13 Let us stress a pos
sible source of misunderstanding: in Ref. 9 it was rela
temperature chaos with bond chaos, i.e., perturbation on
systems induced by infinitesimal changes in the quenc
disorder. While the latter it has been clearly shown to
present,14 we believe to be able to demonstrate in what f
lows that the two forms of chaos are different and that,
least at the mean field level, no temperature chaos is pre

On the pure theoretical side, even at the mean-field le
the situation is still far from being satisfactory. Chaos
temperature was first advocated in an unpublished work
Sompolinsky, then reconsidered negatively in Ref. 15
zero-loop order~i.e., for the infinite range limit of the
theory!, then again supported in Ref. 16 at one-loop ord
©2001 The American Physical Society38-1
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~i.e., for the short range case!. Lastly we point out the work
of Franzet al.17 where, by means of the coupled real replic
method,18 they supported the presence of chaos. This
proach was recently reconsidered in Ref. 19, where it w
demonstrated that taking into account higher order pertu
tion terms, there is no chaos in temperature.

On the numerical side, clues of chaos in temperature
short range spin glass model were discussed in Refs. 20
while our results are in substantial agreement with the sim
lations presented in Ref. 23 where it was observed that
overlap correlation length in 3D Edwards-Anderson mo
~EA! is a monotonically increasing length scale with resp
of the aging time, and with the more recent simulations
the SK model and the 3D Edwards-Anderson model p
sented in Ref. 24.

In this work we carried out a careful numerical analysis
the solutions of the naive TAP equations. We solved th
equations by using a recursive algorithm in the spirit of Re
6 and 7. We managed to give a coherent description of
temperature structure of the solutions, that we have class
into two families: solutions appearing just below the critic
temperature which display a bifurcation scenario as the t
perature is decreased, and a huge number of solutions
pearing well below the critical temperature. We have a
dressed our investigation on the changes in temperatur
the free energy landscape by operatively defining the t
perature evolution of a generic equilibrium state. This
lowed us for the analysis of the correlations between
ground state and its temperature evolved state: the obta
results suggest a temperature smoothly varying free en
landscape, and consequently a non chaotic scenario. Exp
ing this temperature evolution technique we have also b
able to characterize the nature of the first solutions just
low TC : it turns out that these solution are highly correlat
with the ground state, suggesting a scenario in which the
minima appearing just below the paramagnetic phase
also the deepest ones throughout the whole SG phase. L
stress that our findings are strengthened by a careful fi
size scaling analysis that rules out the possibility that
results are finite size effects. The interpretation of the te
perature structure of the equilibrium phase space has
gested to us the implementation of a heuristic algorithm
the search of the ground states that gives an approxim
value for the ground state energy density which is alw
less than 1% higher than the true ground state.

The paper is organized as follows. In Sec. II we will i
troduce both the model and the numerical method. In Sec
we will discuss the nature of the tree of solutions of the na
TAP equations in terms of their free energy landscape
Sec. IV we will discuss the temperature organization of
equilibrium states. We will show in terms of free ener
landscape that the minimum originating from the grou
state shifts smoothly with respect of temperature chan
with no sign of temperature chaos. In Sec. V we will discu
the performance of a new heuristic algorithm for the sea
of the ground states. In Sec. VI we will briefly summari
our findings and comment on further developments.
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II. MODEL AND NUMERICAL METHODS

The main difference between the replica method and
TAP approach is that while in the former we can only c
culate observables averaged over the disorder probab
distribution function, using the latter we can gain inform
tion about single sample quantities, eventually averaging
results over the disorder at a later stage of the calculation
rigorous derivation of the self-consistency equations for
magnetization of the SK model gives1,2

mi5tanhFbS (
j 51

N

Ji j mj1hi2b(
j 51

N

Ji j
2 ~12mj

2!mi D G .

~1!

This formula is a system ofN coupled non-linear equation
for the local magnetizationsmi[^si&. The physical interpre-
tation of the terms involved in the TAP equations is rath
simple: the first two terms inside the hyperbolic tangent
the right-hand side~RHS! of Eq. ~1! are the usual mean-field
terms of ordinary ferromagnets, while the last one is
Onsager reaction term, which is a measure of the contr
tion to the internal field acting on the sitei coming from the
magnetizationmi itself. Such a term is relevant in the case
the SK model because the generic couplingJi j }N21/2, while
for a ferromagnetic theory the coupling isO(1/N) ~the free
energy must be proportional toN), so that, at the mean-field
level, this term is never taken into account. In the param
netic phase and for small values oft5TC2T the local mag-
netizations are expected to behave asmi5t1/21O(t), so
that the Onsager term drops to zero ast3/2 apart from a
constant term whose main effect is to shift the critical te
perature. In the low temperature phase (b→`) a detailed
replica calculation shows thatqEA[1/N(mi

2512O(b22)
~at least for the lowest energy states!, so thatb(12qEA)
5O(b21) and again the Onsager term drops. The analyt
calculation presented in Ref. 6 and numerically confirmed
Ref. 25, yields a value ofTC52 for the critical temperature
where it has to be noticed that the critical temperature for
SK model @i.e., for the complete TAP equation~1!# is TC
51.

In the following we will set to zero the Onsager term a
the extern magnetic fieldhi , and we will use random sym
metric Gaussian couplings of zero mean and variance 1N.
Under these assumptions we can rewrite Eq.~1! as follows:

mi5tanhS b(
j 51

N

Ji j mj D . ~2!

As we have mentioned above in the low temperature ph
~2! has a lot of solutions. We shall label them withmi

a , and
we shall use in general the superscripta to denote quantities
such as the free energyFa related to the corresponding so
lution:

Fa5Ea2
Sa

b
, ~3!

where the internal energyEa and the entropySa are given by
8-2
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Ea52 (
1< i , j <N

Ji j mi
amj

a ~4!

Sa52
1

2 (
i 51

N F ~11mi
a!lnS 11mi

a

2 D 1~12mi
a!lnS 12mi

a

2 D G .
~5!

In the following we will mainly deal with densities of ther
modynamic potentials. We shall adopt for these quanti
the standard lowercase notationf a,ea,sa.

Let us stress that, at least for the naive TAP equation
is easy to demonstrate that the critical temperatureTC is
self-averaging observing that in the paramagnetic phase~i.e.,
high temperature! the equation~2! can be rewritten asmi
5b(kJi j mj . The transition temperatureTC in this contest is
the temperature where the paramagnetic solution$mi50%
becomes unstable. From random matrix theory26 it is known
that this temperature corresponds with the higher posi
eigenvalue~which is 2) and moreover such an eigenval
turns out to be self-averaging.

Denoting withNS(T) the number of solutions of Eq.~2!
at temperatureT, the link between the TAP formalism an
the single sample mean-field partition function is given b

ZJ5 (
a51

NS(T)

e2bFa
, ~6!

which encodes the intuitive idea of Boltzmann weighted s
over the solutions.27 The internal density of energy can b
expressed, according to Eq.~6!, as

e52
1

V

] ln~ZJ!

]b
5

1

V (
a51

NS(T)
e2bFa

ZJ

]

]b
~bFa!5 (

a51

NS(T)

eawa,

~7!

where we defined the weightswa[e2bFa
/ZJ , and we ex-

ploited the stationarity conditions]mi
F50, which are the

mean-field equations~2!.
In order to solve Eq.~2! we used a recursion algorithm i

the spirit of Refs. 25 and 28. We start by generating a r
dom initial configurationmi

(0) taken from a flat probability
distribution function with support in@21,1#, and then we
start the recursion:

mi
(t11)5tanhS b(

j 51

N

Ji j mj
(t)D . ~8!

The algorithm stops when(umi
(t11)2mi

(t)u,1026. The algo-
rithm was implemented in double precision, in order to av
rounding problems. We also checked that the state obta
by the converging recursion is effectively a solution of E
~2! by direct inspection. In the following we will assume th
two solutions$mi

a%,$mi
b% of Eq. ~2! have to be considered a

different whenever(umi
a2mi

bu.1022. Given this require-
ment we have found no difficulty in distinguishing solution
We have also checked that the results do not change w
more stringent bounds are adopted. Note that the maxim
volume reached in our simulations wasN5200.
18443
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The exhaustive enumeration of the solutions at a giv
temperature was achieved following this simple procedu
each solution obtained by the iteration is accumulated int
stack if it is different from all the other solutions alread
accumulated. Each solution is also labeled with the num
of times that it has been found by the recursion. The sea
stops after all solutions in the stack have been found at l
10 times. We also tried to increase this number but we
not find any increase in the total number of the solutions
least within the volume accessible for exhaustive enume
tions, which for us isN<28 for the whole SG phase, an
N<200 down toT5TC/251. We insist here on the stric
requirement of exhaustive enumeration, by checking t
each solution has the magnetic reversal counterpart. It i
fact obvious that if$m̂i% is a solution of Eq.~2!, also

$2m̂i% will be a solution with the same free energy as
consequence of the overallZ2 symmetry of the model.

III. THE TREE OF THE SOLUTIONS

The detailed knowledge of the temperature scenario of
states of the mean-field SG phase is lacking so far. The m
problem is that while the more complete description ava
able today is within the replica approach, this task is ve
complex from the analytic point of view. The TAP forma
ism bypasses this fundamental difficulty allowing us for
complete description of the single sample Boltzmann sta
at least at a numerical level.

We have already mentioned the exponential number
solution of both TAP equations,2 and the naive SK mean
field model.6 It would be interesting to understand how ea
of the solution is related to all the others. The similar
between states is given by the scalar product between st
so that if $mi

a(T)% and $mi
b(T)% are two different states o

magnetization at a given temperatureT , we can define their
mutual overlap asqab(T)[1/N(mi

a(T)mi
b(T). Such a sca-

lar product is directly related to the Euclidean distanceda,b
of the two vectors, in fact:

da,b
2 [

1

N (
i 51

N

„mi
a~T!2mi

b~T!…25qEA
a ~T!1qEA

b ~T!

22qab~T!. ~9!

In Fig. 1 we presentqab(T) calculated fora andb running
through all the solutions of Eq.~2! for a given sample ofN
516 and all temperatures in the window 0.0<T,2.5. De-
creasing the temperature fromT52.5 we have a single para
magnetic solution, until we arrive aroundT;1.7 which is
the critical temperature of the displayed sample. In the l
temperature region untilT;0.8 we have two solutions re
lated by theZ2 symmetry, so that their mutual overlap is ju
6qEA(T). At lower temperature we find an interesting ph
nomenon: the sudden appearance of another solution w
is not coming from a bifurcation of the previous ones. L
us recall that from this point down toT;0.4 we have 4
5232 solutions, corresponding to 6523(211) points on
the figure, so that in general if at a given temperature
haven solutions, 2n(n11)/25n(n11) points will be dis-
8-3
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played. BelowT;0.4 we see a great number of solution
mostly concentrated aroundq50. The merging solutions
phenomena aroundT50 is due to the fact that at this tem
perature the local magnetizationsmi have modulus 1, there
fore the allowed values ofqab are6k/N for k50,1, . . . ,N.
The reflection symmetry of the figure with respect to t
horizontal axis is a signature of theZ2 symmetry of Eq.~2!.
We have verified that all the solutions are minima of the f
energy defined in Eq.~3!, by a numerical check of the stric
positivity of the Hessian of the matrix]mimj

2 F calculated on

each solution encountered at a given temperature. This
trol has been done using a standard C~Ref. 29! on 10
samples ofN528, and 100 samples ofN524.

Let us now turn back our attention to the phenomenon
appearance of solutions. The first thing we would like
understand is how this could be interpreted in terms of
free energy landscape. Let us denote for definiteness
Ta , the temperature at which the generica solution appears
In principle two different scenarios could happen: a cou
of solutions merging at a certain temperature, or the m
common case according to Fig. 1, the appearance of a s
solution. While the former case can be interpreted in term
the usual Landau-Ginzburg potential, the latter case can
locally described in terms of a cubic free energy functio
of the following form:

F~m!}m31~T2Ta!m2. ~10!

A consequence of this cubic potential is that around
minimumq}A(T2Ta), so that, as it is visible in Fig. 1, th
solutions appear with a sudden increase of their deriva
with respect to the temperature~see also Fig. 2!. We also
tracked some of the solutions, and we verified that they
effectively proportional to the square root ofT2Ta . It is
interesting to note that once a solution appears atTa , it can
be continuously tracked down toT50, which means, from
the point of view of the free energy landscape, that onc
local minimum appears, it persists down to zero temperat

FIG. 1. Plot of the single sample mutual overlap of all the s
lutions of Eq.~2!. HereN516 and 0<T<2.5. The sample critica
temperature isTC.1.6.
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IV. THE ORGANIZATION OF THE STATES
AT DIFFERENT TEMPERATURES

Given the richness of the low temperature phase sp
unveiled by the tree mentioned above, it would be interest
to understand better how these features are connected
the organization of the states. As a first qualitative impr
sion from Fig. 1, we could argue that the relative distance
the free energy minima at neighbor temperatures seem t
highly correlated, since we observe well defined lines. Fr
this observation we cannot conclude that the free ene
landscape changes smoothly with temperature since, at
at the level of the tree, we are measuring the relative dista
of minima but at the same temperature, so that in princi
we could still expect a smooth covariation of minima, ev
in the presence of dramatic changes in temperature of
free energy landscape: the only way to rule out this possi
ity is to measure the relative distance of minima at differe
temperatures.

In order to give a measure of how much temperature
fects the phase space structure, we have the following s
egy: We calculate the ground state for a given sam
$mi(T50)%. We plug the ground state into the recursio
equation~8! at T15dT50.01 initialized with mi

(0)5mi(T
50). We repeat this procedure until we arrive in the hi
temperature phase of the sample aroundT52.

We will call this procedureheatingof the ground states
In general we can use this procedure with any state, and
can decide to decrease instead of increasing the tempera
Hereafter we will address to the thermal path followed
any state according to the technique above, ascooling or
heatingof a state.29

We calculated the ground states up to volumesN5200
using aReluctantalgorithm.30 Then we calculated the fol
lowing quantity:

qJ
gs~0,T!5

1

N (
i 51

N

mi~0!mi~T!, ~11!

where we used the$mi(T)% obtained from the ground stat
heating procedure discussed above, and we have stre
with subscriptJ the sample dependence of the quantity, sin

-

FIG. 2. Plot of the free energy landscape relative to the app
ance of another solution. Here we only reproduce a schematic
of a one-dimensional slice of this scenario since the free ene
depends onN local magnetizations.
8-4
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AGAINST TEMPERATURE CHAOS IN NAIVE . . . PHYSICAL REVIEW B 63 184438
we will be eventually interested in its average over t
sample realizations, which we will denote with the notati
qgs(0,T). In Fig. 3 we display the behavior ofqgs(0,T), av-
eraged over 1000 samples and for volumeN ranging from 50
to 200. It is clear that the heated ground state remains sim
to its origin atT50 up to the critical temperature atT52,
where one has to keep in mind thatmi(T;TC)}(T
2TC)1/2, so thatqgs(0,T) above the critical temperature
zero by definition. It is interesting to note that we have fitt
the behavior ofqgs(0,T) nearTC obtaining a well behaved
square root regime in temperature. In terms of the free
ergy landscape we can conclude that the minimum origin
ing the ground state shifts continuously in temperature w
no sign of temperature chaos. It is interesting to point
that, as we can see from the inset of Fig. 3, the finite s
effects even enforce this interpretation since the higher
volume, the smaller is the effect of the temperature shift
the minima~the same effect is present throughout the wh
low-temperature phase, as it is barely visible from the m
body of Fig. 3!. This last observation allow us reasonably
rule out the possibility that we are observing finite size
fects.

One may wonder if the disorder average actually hid
something interesting. Some of the single sampleqJ

gs(0,T)
are displayed in Fig. 4. We start from the top left sam
which shows the behavior which we would expect from t
sample averagedqgs(0,T) ~see Fig. 3!, but the other three
samples deserve some comments. As the temperatu
raised fromT50 one encounters sudden jumps in the ov
lap with the ground state which can be more or less sm
but in each case the next valley selected by the recursio
always positively correlated with the ground state. It is int
esting to study the finite size dependence of these jumps
that we have defined a jump a discontinuity in theqJ

gs(0,T)
profile such that@qJ

gs(0,T)2qJ
gs(0,T1d)#.0.05 ~here d

50.01). In Table I we show the average size of the jum
Dqgs: this quantity is almost stable with the size or at le
very slowly decreasing~at least within the volume consid

FIG. 3. Plot of the correlationsqgs(0,T) defined in Eq.~11! ~see
text!. The details of the simulations are displayed in Table I. N
the finite-size scaling in the zoom in which we show a tempera
window 0,T,0.2: the bigger the volume, the higher the corre
tions; the same results hold for the whole displayed tempera
range.
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ered!. At the same time we have also calculated the aver
number of jumps per sample which turns out to be linea
increasing with the size of the system. It is tempting
speculate a thermodynamic limit scenario in which ea
sample has an infinite number of jumps of zero size.

So far we have concentrated our attention on the temp
ture properties of the ground state free energy valley, in ot
words we explored only the correlations in temperature o
single valley. One of the advantage of working within th
TAP formalism is that one can easily get reliable informati
on single sample Boltzmann-Gibbs averages. In order to g
a quantitative estimate of the degree of correlation of all
TAP states$mi

a(T)%, a51, . . . ,NS(T), at a certain tempera
ture T,TC with the ground state, we will define the follow
ing observable:

QJ
gs~T!5 (

a51

NS(T)

waqJa
gs~0,T!5

(
a51

NS(T)

qJa
gs~0,T!e2Nb f a

(
a51

NS(T)

e2Nb f a

,

~12!

whereqJa
gs(0,T)5(1/N)(mi(0)mi

a(T). Since, as we already
pointed out, for each solution$mi

a(T)% we have the
$2mi

a(T)% counterpart with the same free energy, in E
~12! we considered only solutions with positive overlap wi

e
e

-
re

FIG. 4. Plot of the single sampleqJ
gs(0,T) defined in Eq.~11!.

Four different typical samples are displayed~see text!.

TABLE I. In this table we display the results for the avera
sizeDqgs of the jumps~second column!, and the average number o
jumps per sample~third column!. The number of samples consid
ered is in the fourth column.

N Dqgs No. of jumps No. of samples

50 0.149~4! 0.78~1! 10 000
75 0.154~4! 0.82~1! 10 000
100 0.150~4! 0.86~1! 10 000
125 0.149~4! 0.90~1! 10 000
150 0.147~4! 0.95~1! 10 000
175 0.144~8! 0.97~1! 20 000
200 0.14~1! 1.00~2! 17 186
8-5
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the ground state. We show the behavior of the disorder
erage of this quantity@which we will denote asQgs(T)# as a
function of the temperature for sizesN550,100,150 in Fig.
5. Here the considered number of samples is 1000 for e
size. Given the relevant computational effort required in
exhaustive enumeration of the solutions, we have limited
search in a temperature regionTC/2,T,TC . The curves
show again a high degree of correlation, and it is interes
to note that, at least belowT,1.6, the bigger the volumes
the lower the correlations with the ground state. We ha
interpreted this phenomenon as a consequence of the ap
ing of a huge number of zero-overlap solutions. It is evid
that in order to maintain such a correlated scenario,
Boltzmann-Gibbs weights of those uncorrelated solutio
must be definitely lower compared with the correlated on
we will try to be more precise in the following~see discus-
sion of Fig. 6!. Turning our attention to the behavior o
Qgs(T) near the critical temperature a different finite si
scenario holds: the bigger the volumes, the higher the co
lations ~in this region we have for most of the samples ju
one solution!.

FIG. 5. Weighted overlapQgs(T) ~12! of the equilibrium states
at a given temperature with the ground states~see text!.

FIG. 6. Scatter plot~upper panel! of the free energy densityf J
a

2 f J
min of each equilibrium state at temperatureT51.2 vs overlap

with the sample ground stateqJa
gs(0,T). HereN5150 and the results

of 1000 different samples are superimposed. In the lower pane
display the averaged probability distribution function defined in E
~13! ~see text!.
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We now present some additional information about
properties of the solutions of Eq.~2!. In figure Fig. 6~upper
panel! we display a scatter plot ofqJa

gs(0,T) vs the rescaled
free energy densityf J2 f J

min at T51.2 calculated forN
51000. The results for 1000 samples are superimposed.
bell-shaped pattern shows that there is a systematic cor
tion between lower free energy and higher correlation w
the ground state. We think that the cloud of these unco
lated states is a signature of solutions appearing in deep
temperature phase. In the lower panel of Fig. 6 we disp
the probability distribution function of the lowest energ
states overlaps with the ground states averaged over 1
realizations of the disorder defined by

P~qgsu f 5 f min!5F (
a51

NS(T)

d„q2qJa
gs~0,T!…u f a5 f minG

J

,

~13!

where the square brackets denote averages over the quen
disorder. We can observe that the distribution is stron
peaked aroundqgs570.6 confirming at a more quantitativ
level that the lower the free-energy, the higher the numbe
states highly correlated with the ground state is. Let us po
out that a finite size scaling analysis on theP(qgsu f 5 f min)
~not shown in the plot!, shows a behavior insensitive to th
system size, so that it is impossible at this level to guess
thermodynamic limit of Eq.~13!.

V. A HEURISTIC ALGORITHM FOR THE SEARCH
OF THE GROUND STATES

The interpretation of the organization of the states at d
ferent temperatures we have given also seems to sugges
the first valleys appearing just below the critical temperat
are also the deepest ones down toT50. This feature sug-
gested us to try a simple minded scheme for the search o
ground states. We start at very high temperatures, i.e
temperatures where we are sure that the recursion find
the paramagnetic solutions$mi50%, then we lower the tem-
perature smoothly until we find the first state different fro
zero. At this point we reproduce the heating technique int
duced above, but now decreasing the temperature until
arrive at zero. We have compared the states obtained
this cooling scheme with the output of the Reluctant alg
rithm we have used in the previous analyses and we h
verified that we obtain the same results in average for 2
of the samples.

We have implemented a systematic analysis of the per
mance of our algorithm for sizes ranging fromN519 to N
5200, for 10000 samples. The results are displayed in F
7. They are systematically higher out of the error bars, bu
is interesting to note that the free energy difference with
true ground states, as showed in the inset of Fig. 7, do
increase too much with respect to the system size, lying
ways below 1%. Let us stress that the time required by
algorithm in order to find thesequasi ground-stateshas a
polynomial increase with time~approximately as the squar
of the system size!.

The partial failure of the algorithm has suggested to u
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more detailed analysis of the correlations of the true f
energy minima with the ground states. When we refer to t
free energy minima, we refer to the lowest free energy sta
calculated with the exhaustive enumeration of solution p
viously explained. The results are reported in the main b
of Fig. 8 where it is shown that these minima are alwa
highly correlated with the ground states~lower curve! but
less correlated compared to the states obtained from
ground-states heating procedure explained above~the upper
curve is taken from theN5150 curve of Fig. 3!. The results
in Fig. 8 are obtained forN5150, but it seems that they d
not depend sensibly on the system size. In inset of Fig. 8
show the free energy difference between states obtaine
heating the ground state, and true minima. At tempera
higher thanT;1.6 we see there is no difference between t
two classes of states, while at lower temperature the hea
procedure gives a free energy difference lesser than 122.
Note that this difference will eventually become zero atT

FIG. 7. Average ground state energy for sizes ranging fromN
519 toN5199. We label withCooling the output of our algorithm
and withTrue the exact ground state. We have averaged each p
over 1000 samples. In the inset we show the difference of the
results.

FIG. 8. In the main body of this figure we display the averag
overlapqgs(0,T) vs T. The upper curve is the same in Fig. 3 f
N5150 ~here we have reduced the number of considered temp
tures!, while the lower curve is obtained considering only the lo
est free energy states. In the inset we display the free energy
ferencef min2 f heatedas a function ofT.
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50, and that the free energy difference is of the same or
of magnitude of the results displayed in Fig. 7.

VI. CONCLUSIONS AND PERSPECTIVES

In this work we have studied the temperature organizat
of the equilibrium states of the naive TAP mean-field equ
tion. Our main focus has been the problem of the chaos
temperature, i.e., whether or not correlations between e
librium states at different temperatures exist. We have
merically solved the naive TAP equations with a recurs
algorithm which is able to detect only solutions relative
the minima of the free energy functional. The equilibriu
solutions, according to our analysis, can be classified
two families: solutions rising just below the critical temper
ture following a bifurcation scenario, and solutions appe
ing at temperatures well below the critical one. We ha
introduced the notion of state heating, which we have use
order to characterize the change in temperature of the
energy landscape. We have measured the correlation at
ferent temperatures of the free energy minimum relative
T50 the ground state. These states are always positi
correlated throughout all the low temperature phase. The
nite size analysis of these correlations are such that we
exclude that we are observing finite size effects. We h
measured also the weighted~according to their Boltzmann
Gibbs thermodynamic weights! correlations of all states ap
pearing below the critical temperatureTC with the ground
state and again the scenario suggested is highly noncha
Another instructive information gained from our numeric
study is that the first minimum appearing atTC is almost
every time the deepest one. We have exploited this un
pected feature to implement a heuristic algorithm for t
search of the ground state, just by tracking the first solut
we find at T5TC down to T50. The obtained results ar
interesting, since thepseudo ground statescalculated with
this algorithm always are less then 1% away the true m
mum energy density.

We believe that our findings support clearly a nonchao
scenario~at least forN<200). The natural question is how
much of this scenario remains once we take into account
the Onsager reaction term, i.e., in the SK model case. Le
recall that such a term goes to zero asT→0 so that, at
sufficient low temperature, we should find the same pheno
enology. Moreover, it is known that the naive TAP equati
shows full replica symmetry breaking~RSB!, much the same
the SK model, another hint in the sense that what we obse
it might be common to all mean-field model with RSB sc
nario. However, it would be interesting to define the sa
notion of state temperature evolution, for the full fledg
TAP equations~1!. But if, on one hand, we are confiden
that, at least at the mean field level, the nonchaotic scen
seems to be likely enough, on the other hand we believe
chaos in short range systems remains the most challen
problem, and an extension of our techniques for
Edwards-Anderson problem should be instructive.
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