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We study the temperature structure of the naive Thouless-Anderson-Palmer equations by means of a recur-
sive algorithm. The problem of the chaos in temperature is addressed using the notion of the temperature
evolution of equilibrium states. The lowest free energy states show relevant correlations with the ground state,
and a careful finite size analysis indicates that these correlations are not finite size effects, ruling out the
possibility of chaos in temperature even in the thermodynamic limit. The correlations of the equilibrium states
with respect to the ground state are investigated. The performance of a heuristic algorithm for the search of
ground states is also discussed.
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[. INTRODUCTION The main focus of this work has been the analysis of the
organization of the equilibrium states at different tempera-
The mean-field theory of spin glass€3G) based on the tures. The motivation that led us to this problem is that
Sherrington-Kirkpatrik(SK) model has revealed very inter- while, at least at the mean-field level, it is well known that
esting properties of its low-temperature phase. Among therbelow T states at the same temperature in the SG phase are
there are a rugged free-energy landscape with many metawontrivially correlated, very little is known about the corre-
stable states, universality of the probability distribution func-lations between states at different temperatures, despite in-
tion of the overlap between states, and their ultrametridense theoretical and numerical efforts on this subject in the
organization: These properties are common to various randast fifteen years.
domly frustrated systems, but the full analytic control is for- The hypothesis of the chaos in temperature can be very
mulated mostly for the SK model. simply stated in terms of absence of correlations between
The first attempt toward a Curie-Weiss theory of the SGstates at different temperatures. It was originally introduced
phase has been done within the TAP thebiy,which a set  as a constitutive ingredient of the phenomenological droplet
of nonlinear equations for the mean site magnetizatjom$ ~ theory’ in order to take into account the absence of strong
has been introduced much in the same spirit of the mearcooling rate dependence experimentally not observed in real
field equations for ordinary ferromagnets. Such a set of equaspin glasse$1° the approach to equilibrium of a given ob-
tions has been analytically investigated in Ref. 3, where iservable after cooling from the high temperature to a work-
has been found that the number of minima increases expang temperaturel,<T. does not depend on the thermal
nentially with the system sizZigrecisely as ex(T)N), be-  history of the experimental sample, but only on the time
ing a(T) some temperature depend@l) constant andl  spent at the last temperatufigy,.!* The puzzle becomes
the number of spirs and that there exists a temperaturemore intricated once we turn our attention to the memory
dependent free energy threshold above which the solutionsffects observed in temperature cycling experiméhtsie
of the TAP equation arencorrelated(i.e., their mutual over- state reached by a system at a given temperature bejow
lap is zero in the limit ofN—o). However a number of recovered after a negative temperature cycle. The memory
guestions about the detailed structure of the metastable statefects are manifestly contradicting the chaotic scenario sug-

of the SK model still remains unanswered. gested by the cooling rate insensitivity, giving rise at the
A direct numerical solution of the TAP equations is dif- same time to a number of theoretical explanations mostly
ficult because of the so called Onsager reaction tevenwill focused on real space point of vigtv*®Let us stress a pos-

discuss about it in the followingwhich introduces a portion sible source of misunderstanding: in Ref. 9 it was related
of the configuration space in which the equations themselvetemperature chaos with bond chaos, i.e., perturbation on the
lose their validity>* Here we will study asimplifiedversion  systems induced by infinitesimal changes in the quenched
of TAP equations, obtained from the original ones droppingdisorder. While the latter it has been clearly shown to be
the numericallydangerousOnsager reaction term. This set of present® we believe to be able to demonstrate in what fol-
equations is known as theaive mean-field(NMF) equa- lows that the two forms of chaos are different and that, at
tions, and they become the exact mean-field equations for laast at the mean field level, no temperature chaos is present.
generalized SK modélThis model turns out to have strik- On the pure theoretical side, even at the mean-field level,
ingly similar SG properties to the original SK modetap-  the situation is still far from being satisfactory. Chaos in
turing all the complexities of the SG phase, but with meantemperature was first advocated in an unpublished work of
field equations open to easier numerical integration. ThisSompolinsky, then reconsidered negatively in Ref. 15 at
model, as well as the original SK model, displays replicazero-loop order(i.e., for the infinite range limit of the
symmetry breaking. theory), then again supported in Ref. 16 at one-loop order
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(i.e., for the short range case.astly we point out the work [l. MODEL AND NUMERICAL METHODS
of Franzet all’ where, by means of the coupled real replicas
method,” they supported the presence of chaos. This aPrap approach is that while in the former we can only cal-
proach was recently r_eco.nsidered in Rgf' 19, where it WaZylate observables averaged over the disorder probability
Qemonstrated thgt taking into .account higher order perturbayistribution function, using the latter we can gain informa-
tion terms, there is no chaos in temperature. tion about single sample quantities, eventually averaging the
On the numerical side, clues of chaos in temperature fofegyits over the disorder at a later stage of the calculation. A

short range spin glass model were discussed in Refs. 20—2ggorous derivation of the self-consistency equations for the
while our results are in substantial agreement with the simumagnetization of the SK model give’s

lations presented in Ref. 23 where it was observed that the

overlap correlation length in 3D Edwards-Anderson model N N ) )

(EA) is a monotonically increasing length scale with respect m;=tanh g8 21 Jijmj+hi—ﬁzl Jij(1=—my)m; | |.
i= i=

The main difference between the replica method and the

of the aging time, and with the more recent simulations of 1)
the SK model and the 3D Edwards-Anderson model pre-
sented in Ref. 24, This formula is a system dfl coupled non-linear equations

In this work we carried out a careful numerical analysis offor the local magnetizations;=(s;). The physical interpre-
the solutions of the naive TAP equations. We solved thesgation of the terms involved in the TAP equations is rather
equations by using a recursive algorithm in the spirit of Refssimple: the first two terms inside the hyperbolic tangent in
6 and 7. We managed to give a coherent description of théhe right-hand sidéRHS) of Eq. (1) are the usual mean-field
temperature structure of the solutions, that we have classifie@rms of ordinary ferromagnets, while the last one is the
into two families: solutions appearing just below the critical Onsager reaction term, which is a measure of the contribu-
temperature which display a bifurcation scenario as the temfion to the internal field acting on the siteoming from the
perature is decreased, and a huge number of solutions a 1agnetizatiomm; itself. Such aterr_n is relevant |nlg1e case of
pearing well below the critical temperature. We have ad-h® SK model because the generic coupling-N ~ while

dressed our investigation on the changes in temperature &' @ ferromagnetic theory the coupling @(1/N) (the free

the free energy landscape by operatively defining the temEN€'9Y mMust be proportional 1), so that, at the mean-field

perature evolution of a generic equilibrium state. This al-1€vel, this term is never taken into account. In the paramag-

lowed us for the analysis of the correlations between thé]ne::(z:aairz)?lsse :gd éc))(r Zr:tig Vtilugsrgf/ ZC_SI tﬂirlg:(al)mig'
ground state and its temperature evolved state: the obtainc—t'ﬁe P B ﬂ,é' 7
results suggest a temperature smoothly varying free ener at the Onsager term Qrops to zero &3S apart frpm a
landscape. and consequently a non chaotic scenario. Exolo onstant term whose main effect is to shift the critical tem-
: Cape, quently : : 10. EXPIOWerature. In the low temperature phagg—{«) a detailed
ing this temperature evolution technique we have also bee

) . . ) plica calculation shows thatz = 1/N2mi2=1—0(,8*2)
able to c_haracterlze the nature of t_he first s_olutlons just be(at least for the lowest energy stateso that 8(1— qea)
low T¢: it turns out that these solution are highly correlated

=0(B 1) and again the Onsager term drops. The analytical

with the ground state, suggesting a scenario in which the firsly o ation presented in Ref. 6 and numerically confirmed in
minima appearing just below the paramagnetic phase aiget 25 yields a value 6f =2 for the critical temperature,
also the deepest ones throughout the whole SG phase. Let {$ere it has to be noticed that the critical temperature for the
stress that our findings are strengthened by a careful finitgy model[i.e., for the complete TAP equatioll)] is Tc
size scaling analysis that rules out the possibility that our= 1

results are finite size effects. The interpretation of the tem- | the following we will set to zero the Onsager term and
perature structure of the equilibrium phase space has sughe extern magnetic fiell,, and we will use random sym-
gested to us the implementation of a heuristic algorithm folmetric Gaussian couplings of zero mean and varianbe 1/
the search of the ground states that gives an approximatgnder these assumptions we can rewrite @g.as follows:
value for the ground state energy density which is always
less than 1% higher than the true ground state. N

The paper is organized as follows. In Sec. Il we will in- mi=tam‘( ,321 ‘]ijmj>- 2
troduce both the model and the numerical method. In Sec. Il =
we will discuss the nature of the tree of solutions of the naiveAs we have mentioned above in the low temperature phase
TAP equations in terms of their free energy landscape. I72) has a lot of solutions. We shall label them witi{', and
Sec. IV we will discuss the temperature organization of theye shall use in general the supersciipto denote quantities
equilibrium states. We will show in terms of free energy such as the free enerdy” related to the corresponding so-
landscape that the minimum originating from the groundiution:
state shifts smoothly with respect of temperature changes
with no sign of temperature chaos. In Sec. V we will discuss

3

the performance of a new heuristic algorithm for the search Fe=E"- F ©)
of the ground states. In Sec. VI we will briefly summarize
our findings and comment on further developments. where the internal enerdy® and the entropp” are given by
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The exhaustive enumeration of the solutions at a given
Ev=— > Jiymimy* (4 temperature was achieved following this simple procedure:
each solution obtained by the iteration is accumulated into a

o stack if it is different from all the other solutions already
+(1—mi“)ln( 1-m; ” acc_umulated._ Each solution is also labeled with the number
2 of times that it has been found by the recursion. The search
(5 stops after all solutions in the stack have been found at least
10 times. We also tried to increase this number but we did
modynamic potentials. We shall adopt for these quantitie ot find_ any increase in the ‘0‘6!' number of the_ solutions, at
east within the volume accessible for exhaustive enumera-

the standard lowercase notatibhe“,s”. . . .
o . tions, which for us isN<28 for the whole SG phase, and
Let us stress that, at least for the naive TAP equations, i <200 down toT=Tc/2=1. We insist here on the strict

's easy to demonstrate that the critical temperatligeis requirement of exhaustive enumeration, by checking that
self-averaging observing that in the paramagnetic pfiase d ) . » Oy g he
each solution has the magnetic reversal counterpart. It is in

high temperatunethe equation(2) can be rewritten asn ) S }
=B, Ji;m; . The transition temperatuf&. in this contest is fact obvious that if{m;} is a solution of Eq.(2), also

the temperature where the paramagnetic solufiop=0}  {—m;} will be a solution with the same free energy as a
becomes unstable. From random matrix thédityis known  consequence of the overal, symmetry of the model.

that this temperature corresponds with the higher positive

1+m®

o i
S 2

>

(1+m{)In

N
=1

N| =

In the following we will mainly deal with densities of ther-

eigenvalue(which is 2) and moreover such an eigenvalue IIl. THE TREE OF THE SOLUTIONS
turns out to be self-averaging. ] )
Denoting withNg(T) the number of solutions of Eq2) The detailed knowledge of the temperature scenario of the

at temperaturd, the link between the TAP formalism and states of the mean-field SG phase is lacking so far. The main

the single sample mean-field partition function is given by Problem is that while the more complete description avail-
able today is within the replica approach, this task is very

Ng(T) complex from the analytic point of view. The TAP formal-
Z,= >, e FFY (6) ism bypasses this fundamental difficulty allowing us for a
a=1 complete description of the single sample Boltzmann states,
which encodes the intuitive idea of Boltzmann weighted sunft |€ast at a numerical level. _
over the solution€’ The internal density of energy can be ~ We have already mentioned the exponential number of

expressed, according to E@), as solution obeoth TAP equatior?s_and the naive SK mean-
field model” It would be interesting to understand how each
149In(zZy) 1 Ns(T) o—BF* 4 Ng(T) of the solution is related to all the others. The similarity
e=—5 == E —— —(BFY= E e‘we, between states is given by the scalar product between states,
V (9B V a=1 ZJ &B a=1

7 so that if{m®(T)} and{m?(T)} are two different states of
@) magnetization at a given temperatire we can define their

where we defined the weights®=e #7°/Z;, and we ex- Mmutual overlap asj,,(T)=1NZm(T)m{(T). Such a sca-
ploited the stationarity conditions,,F=0, which are the lar product is directly related to the Euclidean distadge

mean-field equation€) of the two vectors, in fact:

In order to solve Eq(2) we used a recursion algorithm in 1 N
the spirit of Refs. 25 and 28. We start by generating a ran- 42 _ — M) —mB(TN2=a%(T) + ol (T
dom initial configurationm(® taken from a flat probability *“F N igl (M (T) = mi(T))"=aEA(T) + dea(T)
distribution function with support in—1,1], and then we

start the recursion: —20,p(T). 9

N In Fig. 1 we present,z(T) calculated fora and 8 running

tr1) t through all the solutions of Eq2) for a given sample oN
mj )—tam'< '3;1 3m;” =16 and all temperatures in the window &U<2.5. De-

creasing the temperature frof=2.5 we have a single para-

The algorithm stops whel|m{**—m("|<107°. The algo-  magnetic solution, until we arrive arouri~1.7 which is
rithm was implemented in double precision, in order to avoidthe critical temperature of the displayed sample. In the low
rounding problems. We also checked that the state obtaine@mperature region untif~0.8 we have two solutions re-
by the converging recursion is effectively a solution of Eq.lated by thezZ, symmetry, so that their mutual overlap is just
(2) by direct inspection. In the following we will assume that +qea(T). At lower temperature we find an interesting phe-
two solutions{m?},{m#} of Eq. (2) have to be considered as nomenon: the sudden appearance of another solution which
different whenever2|mf‘—miﬁ|>10*2. Given this require- is not coming from a bifurcation of the previous ones. Let
ment we have found no difficulty in distinguishing solutions. us recall that from this point down t&d~0.4 we have 4
We have also checked that the results do not change when2x2 solutions, corresponding to=62X (2+ 1) points on
more stringent bounds are adopted. Note that the maximurthe figure, so that in general if at a given temperature we
volume reached in our simulations wisls=200. haven solutions, 2(n+1)/2=n(n+1) points will be dis-

. 8
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F(m)

T FIG. 2. Plot of the free energy landscape relative to the appear-
ance of another solution. Here we only reproduce a schematic plot
of a one-dimensional slice of this scenario since the free energy
depends orN local magnetizations.

FIG. 1. Plot of the single sample mutual overlap of all the so-
lutions of EqQ.(2). HereN=16 and G=sT<2.5. The sample critical
temperature i§-=1.6.

IV. THE ORGANIZATION OF THE STATES
played. BelowT~0.4 we see a great nhumber of solutions, AT DIFFERENT TEMPERATURES

mostly concentrated aroung=0. The merging solutions Given the richness of the low temperature phase space

phenomena around=0 |s_dug to the fact that at this tem- unveiled by the tree mentioned above, it would be interesting
perature the local magnetizations have modulus 1, there- 4 ynderstand better how these features are connected with
fore the allowed values af,z are =k/N for k=0,1,...N.  the organization of the states. As a first qualitative impres-
The reflection symmetry of the figure with respect to thesjon from Fig. 1, we could argue that the relative distance of
horizontal axis is a signature of thl symmetry of EQ(2).  the free energy minima at neighbor temperatures seem to be
energy defined in Eq3), by a numerical check of the strict thjs observation we cannot conclude that the free energy
positivity of the Hessian of the matri&rznimj': calculated on  |andscape changes smoothly with temperature since, at least
each solution encountered at a given temperature. This comt the level of the tree, we are measuring the relative distance
trol has been done using a standard(Ref. 29 on 10 of minima but at the same temperature, so that in principle
samples olN=28, and 100 samples &f=24. we could still expect a smooth covariation of minima, even
Let us now turn back our attention to the phenomenon ofn the presence of dramatic changes in temperature of the
appearance of solutions. The first thing we would like tofree energy landscape: the only way to rule out this possibil-
understand is how this could be interpreted in terms of thety is to measure the relative distance of minima at different
free energy landscape. Let us denote for definiteness wittemperatures.
T, the temperature at which the genesisolution appears. In order to give a measure of how much temperature af-
In principle two different scenarios could happen: a coupldects the phase space structure, we have the following strat-
of solutions merging at a certain temperature, or the mosegy: We calculate the ground state for a given sample
common case according to Fig. 1, the appearance of a sing{@é(T=0)}. We plug the ground state into the recursion
solution. While the former case can be interpreted in terms oéquation(8) at T;=6T=0.01 initialized with mi(o)= m;(T
the usual Landau-Ginzburg potential, the latter case can be 0). We repeat this procedure until we arrive in the high
locally described in terms of a cubic free energy functionaltemperature phase of the sample arotire?2.
of the following form: We will call this proceduréheatingof the ground states.
In general we can use this procedure with any state, and we
can decide to decrease instead of increasing the temperature.
F(mycem®+(T—T,)m2. (20 Hereafter we will address to the thermal path followed by
any state according to the technique abovegcasling or
heatingof a state?®
A consequence of this cubic potential is that around the We calculated the ground states up to voluries 200
minimumqs(T—T,), so that, as it is visible in Fig. 1, the using aReluctantalgorithm®® Then we calculated the fol-
solutions appear with a sudden increase of their derivativéowing quantity:
with respect to the temperatufeee also Fig. 2 We also
tracked some of the solutions, and we verified that they are 1
effectively proportional to the square root &T,. It is a3%(0,1)= N Zl m;(0)m;(T), (13)
interesting to note that once a solution appears atit can a
be continuously tracked down tb=0, which means, from where we used thém;(T)} obtained from the ground state
the point of view of the free energy landscape, that once &eating procedure discussed above, and we have stressed
local minimum appears, it persists down to zero temperaturewith subscript) the sample dependence of the quantity, since

N
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FIG. 3. Plot of the correlationg?(0,T) defined in Eq(11) (see FIG. 4. Plot of the single sampig]%(0,T) defined in Eq(11).
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1.0

text). The details of the simulations are displayed in Table I. NoteFour different typical samples are displayeste text

the finite-size scaling in the zoom in which we show a temperature

window 0<T<0.2: the bigger the volume, the higher the correla- €r€d. At the same time we have also calculated the average
tions; the same results hold for the whole displayed temperaturBUmber of jumps per sample which turns out to be linearly
range. increasing with the size of the system. It is tempting to
speculate a thermodynamic limit scenario in which each
we will be eventually interested in its average over thesample has an infinite number of jumps of zero size.
sample realizations, which we will denote with the notation  So far we have concentrated our attention on the tempera-
q?%(0,T). In Fig. 3 we display the behavior @f(0,T), av-  ture properties of the ground state free energy valley, in other
eraged over 1000 samples and for volusmenging from 50  words we explored only the correlations in temperature of a
to 200. Itis clear that the heated ground state remains similagingle valley. One of the advantage of working within the
to its origin atT=0 up to the critical temperature &=2,  TAP formalism is that one can easily get reliable information
where one has to keep in mind that(T~Tc)<(T  on single sample Boltzmann-Gibbs averages. In order to give
—Tc)¥2 so thatq?S(0,T) above the critical temperature is a quantitative estimate of the degree of correlation of all the
zero by definition. It is interesting to note that we have fittedTAP state§m{*(T)}, a=1,... Ng(T), at a certain tempera-
the behavior ofg?%(0,T) nearT obtaining a well behaved ture T<T with the ground state, we will define the follow-
square root regime in temperature. In terms of the free ening observable:
ergy landscape we can conclude that the minimum originat-
ing the ground state shifts continuously in temperature with NSO B
. .. . . gs Ngf
no sign of temperature chaos. It is interesting to point out Ng(T) 0;1 a3.(0.T)e “
that, as we can see from the inset of Fig. 3, the finite size  QI%T)= >, w,q33(0,T)= NG
effects even enforce this interpretation since the higher the S e NBT
volume, the smaller is the effect of the temperature shift of =
the minima(the same effect is present throughout the whole
low-temperature phase, as it is barely visible from the main gs N )
body of Fig. 3. This last observation allow us reasonably to WNeredze(0.T) =(1/N)=m;(0)mi’(T). Since, as we already
rule out the possibility that we are observing finite size ef-Pointed out, for each solutiofmj(T)} we have the
fects. {—m{(T)} counterpart with the same free energy, in Eq.
One may wonder if the disorder average actually hide$12) we considered only solutions with positive overlap with
something interesting. Some of the single sang#&0,T)

1
a=

(12

are displayed in Fig. 4. We start from the top left sample TABLE 1. In this table we display the results for the average
size Aq%° of the jumps(second colump and the average number of

which shows the behavior which we would expect from the’ , )
sample averaged?S(0,T) (see Fig. 3 but the other three 1UTPS Per sampléthird column. The number of samples consid-
samples deserve some comments. As the temperature %ed Is in the fourth column.

raised fromT=0 one encounters sudden jumps in the over-

s .
lap with the ground state which can be more or less small, Ag? No. of jumps No. of samples
but in each case the next valley selected by the recursion, &0 0.1494) 0.7911) 10000
always positively correlated with the ground state. It is inter-75 0.1544) 0.821) 10000
esting to study the finite size dependence of these jumps, s®o 0.1504) 0.861) 10 000
that we have defined a jump a discontinuity in t(0,T) 125 0.1494) 0.901) 10000
profile such that[q$%0,T)—q$%0,T+8)]>0.05 (here § 150 0.1474) 0.951) 10000
=0.01). In Table | we show the average size of the jumpsL75 0.1448) 0.971) 20000
Aq%: this quantity is almost stable with the size or at least200 0.141) 1.002) 17186

very slowly decreasindat least within the volume consid-
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We now present some additional information about the

045 F = _ f;foe) — ] properties of the solutions of E). In figure Fig. 6(upper
04 b TR L2150 vomes pane} we display a scatter plot af$3(0,T) vs the rescaled
035 + free energy densityf,—f]"" at T=1.2 calculated forN
03 b =1000. The results for 1000 samples are superimposed. The
§ 025 | bell-shaped pattern shows that there is a systematic correla-
& 02 | tion between lower free energy and higher correlation with
) the ground state. We think that the cloud of these uncorre-
0.15 1 lated states is a signature of solutions appearing in deep low
0.1t temperature phase. In the lower panel of Fig. 6 we display
0.05 t N the probability distribution function of the lowest energy
- . . - : - . . states overlaps with the ground states averaged over 1000
12 13 14 15 16 17 18 19 2 realizations of the disorder defined by
T
FIG. 5. Weighted overla@9%(T) (12) of the equilibrium states P(QOSlf=Ff. . )= Ng) 5 90T
at a given temperature with the ground staese text (Q%°1F=Fruin) = = @= 0320t

the ground state. We show the behavior of the disorder av- (13
erage of this quantitjwhich we will denote af)9%(T)] asa where the square brackets denote averages over the quenched
function of the temperature for sizé&6=50,100,150 in Fig. disorder. We can observe that the distribution is strongly
5. Here the considered number of samples is 1000 for eagheaked around?®s= + 0.6 confirming at a more quantitative
size. Given the relevant computational effort required in thdevel that the lower the free-energy, the higher the number of
exhaustive enumeration of the solutions, we have limited oustates highly correlated with the ground state is. Let us point
search in a temperature regidn/2<T<T.. The curves out that a finite size scaling analysis on tRéq%9f=f ;)
show again a high degree of correlation, and it is interestingnot shown in the plot shows a behavior insensitive to the
to note that, at least below< 1.6, the bigger the volumes, system size, so that it is impossible at this level to guess the
the lower the correlations with the ground state. We havehermodynamic limit of Eq(13).

interpreted this phenomenon as a consequence of the appear-

ing of a huge number of zero-overlap solutions. It is evident \, A HEURISTIC ALGORITHM FOR THE SEARCH

that in order to maintain such a correlated scenario, the OF THE GROUND STATES

Boltzmann-Gibbs weights of those uncorrelated solutions

must be definitely lower compared with the correlated ones: The interpretation of the organization of the states at dif-
we will try to be more precise in the followin(see discus- ferent temperatures we have given also seems to suggest that
sion of Fig. 6. Turning our attention to the behavior of the first valleys appearing just below the critical temperature
QYS(T) near the critical temperature a different finite sizeare also the deepest ones downTte 0. This feature sug-
scenario holds: the bigger the volumes, the higher the corregested us to try a simple minded scheme for the search of the
lations (in this region we have for most of the samples justground states. We start at very high temperatures, i.e., at
one solution. temperatures where we are sure that the recursion find only
the paramagnetic solutiogsn, =0}, then we lower the tem-
perature smoothly until we find the first state different from
zero. At this point we reproduce the heating technique intro-

0.03 T=12

0.02 %: duced above, but now decreasing the temperature until we

oot L RS arrive at zero. We have compared the states obtained with

T lEs this cooling scheme with the output of the Reluctant algo-
o L rithm we have used in the previous analyses and we have

0.25 - - - - - y y verified that we obtain the same results in average for 20%

0.2 1 1 :5 of the samples.

0.15 | T4 We have implemented a systematic analysis of the perfor-
011 N gg mance of our algorithm for sizes ranging frak=19 to N

0.05 18 =200, for 10000 samples. The results are displayed in Fig.

008 ola 0'4 0'2 (') 0'2 0'4 0'6 08 7. They are systematically higher out of the error bars, but it
o L ) ) ’ is interesting to note that the free energy difference with the
a true ground states, as showed in the inset of Fig. 7, do not

FIG. 6. Scatter plotupper panélof the free energy densitff ~ Increase too much with respect to the system siz_e, lying al-

— 7" of each equilibrium state at temperatiFe-1.2 vs overlap ~ Ways below 1%. Let us stress that the time required by our

with the sample ground statg3(0,T). HereN= 150 and the results algorithm in order to find thesquasi ground-statesias a

of 1000 different samples are superimposed. In the lower panel wgolynomial increase with timéapproximately as the square

display the averaged probability distribution function defined in Eq.0f the system size

(13) (see text The partial failure of the algorithm has suggested to us a
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-0.62 — T =0, and that the free energy difference is of the same order
N . . A
064 : of magnitude of the results displayed in Fig. 7.
7103 | SO -
066 F }/{/ 4 1 VI. CONCLUSIONS AND PERSPECTIVES
068 b A 5107 v/ 12 | In this work we have studied the temperature organization
m@ }/ of the equilibrium states of the naive TAP mean-field equa-
0.7 | . . ' tion. Our main focus has been the problem of the chaos in
temperature, i.e., whether or not correlations between equi-
e T librium states at different temperatures exist. We have nu-
074 | Cooling —— el ] merically solved the naive TAP equations with a recursion
True e — algorithm which is able to detect only solutions relative to
-0.76 R the minima of the free energy functional. The equilibrium

0 20 40 60 80 100 120 140 160 180 200

solutions, according to our analysis, can be classified into
N

two families: solutions rising just below the critical tempera-
FIG. 7. Average ground state energy for sizes ranging flom ture following a bifurcation scenario, ar_lq solutions appear-
=19 toN=199. We label witrCoolingthe output of our algorithm INd at temperatures well below the critical one. We have
and with True the exact ground state. We have averaged each poirifitroduced the notion of state heating, which we have used in
over 1000 samples. In the inset we show the difference of the tw@rder to characterize the change in temperature of the free
results. energy landscape. We have measured the correlation at dif-
ferent temperatures of the free energy minimum relative to

more detailed analysis of the correlations of the true freel =0 the ground state. These states are always positively
energy minima with the ground states. When we refer to tru€orrelated throughout all the low temperature phase. The fi-
free energy minima, we refer to the lowest free energy state@ite size analysis of these cprrel_at!ons_are such that we can
calculated with the exhaustive enumeration of solution pre€xclude that we are observing finite size effects. We have
viously explained. The results are reported in the main bodyn€asured also the weight¢gccording to their Boltzmann-

of Fig. 8 where it is shown that these minima are alwaysG'bb_S thermodynamlt_:_Welghtsorrelatlons _of all states ap-
highly correlated with the ground statéewer curvg but ~ Pearing below the critical temperatuile with the ground
less correlated compared to the states obtained from th@ate and again the scenario suggested is highly nonchaotic.
ground-states heating procedure explained aljthes upper Anothgr instructive |nf0rm§1t|on gained from our numerical
curve is taken from th&l= 150 curve of Fig. ® The results ~ Study is that the first minimum appearing B¢ is almost

in Fig. 8 are obtained foN=150, but it seems that they do €Very time the deepest one. We have exploited this unex-
not depend sensibly on the system size. In inset of Fig. 8 weected feature to implement a heuristic algorithm for the
show the free energy difference between states obtained bssearph of the ground state, just by trackm_g the first solution
heating the ground state, and true minima. At temperaturé/@ find atT=Tc down to T=0. The obtained results are
higher thariT~ 1.6 we see there is no difference between thighteresting, since th@seudo ground statesalculated with
two classes of states, while at lower temperature the heatin@is algorithm always are less then 1% away the true mini-
procedure gives a free energy difference lesser tharf.10 Mum energy density.

Note that this difference will eventually become zeroTat ~ We believe that our findings support clearly a nonchaotic
scenario(at least forN<200). The natural question is how

much of this scenario remains once we take into account also

0.8 - the Onsager reaction term, i.e., in the SK model case. Let us
07 L recall that such a term goes to zero Bs»0 so that, at
06 b (= Freatea) sufficient low temperature, we should find the same phenom-
) enology. Moreover, it is known that the naive TAP equation
g 05 P shows full replica symmetry breakif®SB), much the same
S g4l i the SK model, another hint in the sense that what we observe
~ 03 Ty | it might be common to all mean-field model with RSB sce-
' / I3 LS 17 19 nario. However, it would be interesting to define the same
0.2 1 EF=frin) l notion of state temperature evolution, for the full fledged
0.1 . TAP equations(1). But if, on one hand, we are confident
0 , , , , , , , that, at least at the mean field level, the nonchaotic scenario
12 13 14 15 16 17 18 19 2 seems to be likely enough, on the other hand we believe that
T chaos in short range systems remains the most challenging

problem, and an extension of our techniques for the

FIG. 8. In the main body of this figure we display the averagedEdwards-Anderson problem should be instructive.

overlapq®%(0,T) vs T. The upper curve is the same in Fig. 3 for
N=150 (here we have reduced the number of considered tempera- ACKNOWLEDGMENTS
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