
PHYSICAL REVIEW B, VOLUME 63, 184436
Accurate results from perturbation theory for strongly frustrated SÄ 1
2 Heisenberg spin clusters
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Department of Physics, State University of New York at Buffalo, Amherst, New York 14260

~Received 12 October 2000; published 24 April 2001!

We investigate the use of perturbation theory in finite-sized frustrated spin systems by calculating the effect
of quantum fluctuations on coherent states derived from the classical ground state. We first calculate the
ground- and first-excited-state wave functions as a function of applied field for a 12-site system and compare
with the results of exact diagonalization. We then apply the technique to a 20-site system with the same
threefold site coordination as the 12-site system. Frustration results in asymptotically convergent series for
both systems which are summed with Pade´ approximants. We find that at zero magnetic field the different
connectivity of the two systems leads to a triplet first excited state in the 12-site system and a singlet first
excited state in the 20-site system, while the ground state is a singlet for both. We also show how the analytic
structure of the Pade´ approximants atulu.1 evolves in the complexl plane at the values of the applied field
where the ground state switches between spin sectors and how this is connected with the nontrivial dependence
of the ^Sz& number on the strength of quantum fluctuations. We discuss the origin of this difference in the
energy spectra and in the analytic structures. We also characterize the ground and first excited states according
to the values of the various spin correlation functions.
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I. INTRODUCTION

The antiferromagnetic spin Heisenberg model has b
the object of intense investigation through the years.
cently it has attracted enormous interest in the study
strongly correlated electron systems, which include the ox
superconductors1 and low-dimensional spin systems. In th
limit where the on-site Coulomb repulsion is very strong
is equivalent to the one-band Hubbard model for half fillin
The inclusion of competing interactions in it has led to no
quantum phases, making it appropriate for the study of qu
tum criticality.2

The solution of the model was calculated by Bethe in o
dimension for nearest-neighbor interactions,3 but a solution
in analytic form is lacking for two or three dimensions, e
cept for special cases.4 Approximation and numerical tech
niques that have been used include diagonalization of s
clusters,5,6 Monte Carlo techniques,7 cluster expansions,8

spin-wave expansions,9–11 and the density matrix renorma
ization group.12 The methods that consider the full Hilbe
space of the problem are limited by the size of the syst
since the number of states is exponentially dependent o
In Monte Carlo calculations the sign problem leads to a l
of statistical accuracy, especially for frustrated systems.7

An alternative approach to these techniques is the di
application of perturbation theory in which corrections to t
classical treatment are calculated order by order in
strength of residual interactions, the effect of fluctuations
out in the mean-field approximation. Although this approa
can also be limited in the size of the systems which can
investigated due to the dimensionality of the Hilbert space
is very different in that it provides analytic information o
the effects of corrections to classical approximations and
complements the other approaches mentioned above. We
this approach to calculate the ground-state wave functio
two systems which have qualitatively different classic
ground states, as we will explain below. We demonstrate
0163-1829/2001/63~18!/184436~16!/$20.00 63 1844
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the differences survive in the exact spin-1
2 ground states

through the difference in the analytic structures of the P´
approximants derived from the perturbation expansions.

We consider the Heisenberg model on closed tw
dimensional spin-12 systems which have three nearest neig
bors. The antiferromagnetic interaction between the sp
leads to frustration at the classical level. One such syste
the 60-site cluster whose relative positions are the sam
those of carbon atoms in C60 ~from now on we will refer to
n-site systems with the spatial symmetry of the fullerenes
Cn). The 60-site system consists of 20 hexagons and 12 p
tagons. Assuming a tight-binding model for its electron
properties where there is one orbital per site and a str
Coulomb repulsion for double occupancy, the Heisenb
model on it gives an effective low-energy description at h
filling. This is a first approximation to the problem, since C60
is estimated to be in the intermediate- and not in the stro
couplingU regime.13 The hopping matrix elements betwee
sites on the same pentagon can be taken to be different
the ones between sites on adjacent pentagons. This lea
two positive exchange constantsJ1 and J2 and the Hamil-
tonian is

H5J1(
^ i , j &

p.

SW i•SW j1J2(
^ i , j &

n.p.

SW i•SW j . ~1!

J1 refers to bonds between the same pentagon andJ2 to
nonpentagon bonds, whilê•••& stands for nearest-neighbo
interactions.

The classical ground state of the Heisenberg Hamilton
has been determined on this and analogous Cn systems.13

The magnetic properties of these ground states show an
expected dependence onn. In some the magnetization is dis
continuous in an applied field whereas in others it is
susceptibility which is discontinuous. It is of interest to d
termine whether this dependence is an artifact of the class
approximation or whether it is present inS5 1

2 solutions. We
©2001 The American Physical Society36-1
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N. P. KONSTANTINIDIS AND D. COFFEY PHYSICAL REVIEW B63 184436
use the classical Cn ground states to define an Ising Ham
tonian where the quantization axis at each site is determ
by the direction of the spin vector in the classical grou
state. Coherent states are defined along these axes and
stitute a mean-field approximation for the quantum grou
state. In this way, each site has a local axis associated wi
in contrast to the basis where all spins are defined in
same coordinate system in spin space. From now on we
the former ‘‘local basis’’ and the latter the ‘‘global basis.
The quantum fluctuations are then built around the class
directions. They are the terms added to the original me
field approximation, and they are multiplied with a parame
l which varies from 0 to 1. Whenl51, the full isotropic
Heisenberg Hamiltonian is recovered. Thus the solution
generated as a series expansion in the perturbation param
l with application of perturbation theory, and the expansio
of the ground-state energy and wave function in the lo
axes basis are known. With this approach we can study
evolution of the system away from the classical ground s
and towards the full quantum limitl51.

However, the Hilbert space for the 60-site system is hu
consisting of 26051.1531018 states, so a perturbation trea
ment in the whole Hilbert space can only give a few orde
This is because the number of states involved in the calc
tion rapidly increases as the order and frustration increas14

In addition, since the spin axes are directed along the cla
cal solution’s directions, the total spin in the global basis
not a good quantum number of the Hamiltonian~when l
,1), so a reduction of the number of states by focusing o
particularSz value is not possible. Another way of gainin
insight into the problem is to consider similar smaller sy
tems, belonging to the same family. In all these syste
there arenh5n/2210 number of hexagons and 12 pen
gons. The smallest member of the group is the 20-site
tem. Again, we considerS5 1

2 spins sitting at their vertices
The frustration of the Hamiltonians studied leaves its s

nature on the various series expansions generated by pe
bation theory, producing functions with nonanalytic structu
in the complexl plane. The presence of branch cuts lim
absolute convergence within a circle centered at the or
with a radius of convergence smaller than 1 and the se
are only asymptotically convergent in the full isotropic lim
wherel51. Therefore, we employ an analytic continuati
with the use of Pade´ approximants. The structure of the fun
tions in thel plane depends strongly on the form of th
perturbing Hamiltonian. We investigate the signature of
changes in the complex plane structure of the related fu
tions as the perturbing Hamiltonian is varied. The gener
zation to complex variables has been proved to be usefu
the study of phase transitions in the two-dimensional Is
model in temperatureT in a complex magnetic field.15 The
systems studied here are closed and do not possess a th
dynamic limit. However, knowledge of the structure in t
complex coupling constant plane provides information ab
the functions studied.16 It can also provide information fo
the evolution of instabilities. Here the only possible tran
tions are between̂Sz& sectors with increasing magnetic fiel
where^Sz& is the expectation value of thez component of the
spin in the global basis.
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The classical ground state at zero magnetic field is dou
degenerate, since a flipping of all the spins does not cha
the energy. Consequently degenerate perturbation theory
to be applied.17 This is done via a similarity transformation
and an effective 232 matrix is generated. This matrix pro
vides information on the ground and first excited states,
cluding the evolution of̂ Sz& as a magnetic field is varied
The structure of this matrix in the complexl plane can be
correlated with the transitions of thêSz& number between
different sectors as a function of the magnetic field.

The plan of this paper is as follows: in Sec. II the meth
for the solution of the problem using perturbation theory
described. In Sec. III this is applied to a 12-site system C12,
where the results are compared with exact diagonaliza
and found to be in complete agreement. We also discuss
the analytic structure of perturbation theory is reflected in
magnetic properties. In Sec. IV perturbation theory is appl
to C20 and the results are tested by recovering expecta
values forSW 2 and Sz very close to integer values. Here w
contrast the magnetic field dependence of the analytic st
ture with the results found in the classical approximatio
For both C12 and C20 ground- and first-excited-state wav
functions are calculated in applied magnetic fields and
dependence of their magnetic properties on the strengt
quantum fluctuations is determined. In the case of C20, the
ground and excited states at zero magnetic field are sing
This result is in agreement with similar ones for strong
frustrated magnetic systems such as thekagome´ lattice and a
one-dimensional analog of the pyrochlore lattice.18 The non-
magnetic nature of the excitation is attributed to the frust
tion and the connectivity of the system.

II. METHOD

The starting point in the calculation is the classical grou
state. The Hilbert space is spanned by spin-1

2 spinors deter-
mined by the classical solution. Localzi axes are defined
along the classical spin directions, and spin states are defi
at each site such that the expectation value of the compo
of the spin along the axis equals its classical value:

K a i

b i
UsW Ua i

b i
L 5SW i , ~2!

wherea i , b i are spinor coefficients anduSW i u51. The coher-
ent states19 are products of spin states along these axes:

uCS&5)
i 51

N

uSi&5)
i 51

N Ua i

b i
L , ~3!

whereN is the number of spins in the system. Here we lim
ourselves to these 2N states out of the overcomplete basis
the coherent states. These are eigenstates of the unpert
Hamiltonian H0 and constitute an orthonormal basis. T
classical ground states are the ones where all the spins
either ‘‘up’’ or ‘‘down’’ so that H0 has the form of an Ising
Hamiltonian with respect to the local quantization axes
fined by the classical result. The fluctuations around the lo
zi axes are raising and lowering spin operators, defined al
6-2
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ACCURATE RESULTS FROM PERTURBATION THEORY . . . PHYSICAL REVIEW B 63 184436
the localxi andyi axes. These are included in the perturbi
part H1 which we scale with a parameterl. Eachxi axis is
defined in the azimuthal plane of the correspondingzi axis
and perpendicular to it, and then theyi axis is constructed
with the right hand rule. Due to the absence of a globaz
axis, the Hamiltonian takes a complicated form. The solut
is generated in perturbation theory as a power series inl.
Therefore the Hamiltonian has the form

H5H01lH1 , ~4!

whereH0 is the classical part andH1 the quantum fluctua-
tions.

There are two well-known issues which complicate t
application of perturbation theory. The first is the doub
degeneracy of the coherent states generated from the c
cal ground state in the absence of an applied magnetic fi
This requires the use of degenerate perturbation theory
overcome this problem, an effective Hamiltonian is co
structed for the degenerate ground states, via a simila
transformation.17 The Hamiltonian is transformed to a bloc
diagonal form and its elements, as well as the coefficient
the Hilbert space states, which contribute to the pertur
wave functions, are expanded as power series inl. Then
recurrence relations can be written down for the effect
Hamiltonian and the wave functions:

Hk
e f f~m,l !5^muH1uCk21

( l ) &, ~5!

^nuCk
( l )&5

1

E02En S ^nuH1uCk21
( l ) &2 (

k851

k21

(
l 851

L

Hk2k8
e f f

~ l 8,l !

3^nuCk8
( l 8)& D . ~6!

Herek is the order of perturbation,um& a degenerate groun
state ofH0 , un& a state in the Hilbert space different fro
um&, En its energy at the classical level, andE0 the classical
ground-state energy.L is the dimensionality of the degene
ate subspace~hereL52) andl runs from 1 toL. The result
of this calculation is anL3L ~here 232) matrix whose
eigenenergies are the ground state and the first excited s
This method can be applied for zero or nonzero magn
field, where all the magnetic field terms in the Hamiltoni
are included in the perturbation. If the magnetic field is
cluded inH0, nondegenerate perturbation theory can be
plied in this case.

The second issue complicating the problem is that
perturbative part of the Hamiltonian generates series exp
sions whose radius of convergence does not extend to
isotropic limit l51 but rather is limited to a circle with a
radius smaller than 1. Therefore, we analytically contin
outside the radius of convergence with the use of Pade´ ap-
proximants. These are described in detail in the literatur20

The algorithms used for their calculation here are the de
minant algorithm and the Viscovatov algorithm.21 We now
apply the method to two systems C12 and C20.
18443
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III. C 12

A smaller system with a geometry similar to the on
considered above is the truncated tetrahedron C12,22 shown
in Fig. 1. This is made up of four triangles and three he
gons, and looks like a closed triangular lattice. Every site
threefold coordinated, and bonds between sites on the s
triangle ~tr.! are calledJ1, while different triangle bonds
~n.tr.! are namedJ2. The exact solution of the Heisenber
Hamiltonian has been found for this system and is used
check the results from perturbation theory here. At the cl
sical level it was found to have a jump in the susceptibility
a critical value of an external magnetic field and so has si
lar properties to the systems discussed in Ref. 13. As m
tioned above the classical solution determines local axe
quantizationzi and determinesH0. Spins belonging to the
same triangle are coplanar at the classical level and e
local xi axis is defined in this plane. With application of th
right hand rule the correspondingyi axis is defined. With
a5J2 /J1 the Hamiltonian becomes

H

J1
5H01lH1 , ~7!

where

H05(
^ i , j &

tr . S 2
1

2DSi
zSj

z1a (
^ i , j &

n.tr .

~21!Si
zSj

z , ~8!

H15
1

2 (
^ i , j &

tr . Fsin2S p

6 DSi
1Sj

2 2cos2S p

6 DSi
1Sj

1

2cosS p

6 DSi
1Sj

z1cosS p

6 DSj
1Si

zG1
a

2 (
^ i , j &

n.tr .

eif Si
1Sj

1

1H.c., ~9!

FIG. 1. Space configuration of C12. Intratriangle bonds are
calledJ1, while intertriangle bonds are calledJ2.
6-3



n-
ns
os

ca
ea
’s
t
wa
ex

ffi
s
s

om
fo
sic
-

um

in

tu
o
-

s
tw

als

a
te

ce
of
the

e
as

l

l

N. P. KONSTANTINIDIS AND D. COFFEY PHYSICAL REVIEW B63 184436
where f5tan21(2A2). The coefficients reflect the depe
dence of the Hamiltonian on the classical spin directio
The Hamiltonian is complicated, since it includes any p
sible combination of raising, lowering andSi

z operators, and
has complex coefficients. There is no choice of the lo
coordinate systems that would make all the coefficients r
once the localz axes are fixed along the classical solution
directions. The localxi and yi can also be defined withou
reference to the specific form of the classical solution, as
stated in Sec. II, but this results in a more complicated
pression for the Hamiltonian.

A. Ground-state energy and wave function

The ground-state energy and the wave function coe
cients are functions ofl anda. Thea50 case correspond
to four isolated triangles, while thea→` case correspond
to spins forming singlets~dimers! via theJ2 bond. There is
no further frustration when assembling the tetrahedron fr
the individual triangles, since this costs nothing in energy
the classical spins. Consequently for this system the clas
ground state is independent ofa and the quantum fluctua
tions select a unique ground state whenlÞ0. This is remi-
niscent of the order-disorder transition induced by quant
fluctuations for frustrated systems.23 The effective Hamil-
tonian for the two degenerate ground states has the follow
form:

He f f5S AN~l! BN~l!

CN~l! DN~l!
D , ~10!

whereAN(l), BN(l), CN(l), and DN(l) are polynomials
in l of Nth order, the order of perturbation.l can assume
complex values, since we are also interested in the struc
of the functions in the complex plane. The coefficients
seriesCN(l) andDN(l) are complex conjugates of the co
efficients of BN(l) and AN(l), respectively. Therefore, in
the case of physical interest wherel is real, CN(l) and
DN(l) are the complex conjugates ofBN(l) and AN(l),
respectively. Diagonalization of the matrix in the latter ca
shows that its eigenvalues are real, as expected. The
classical ground statesu0& and u0̃& evolve in the following
manner as functions ofl:

uC0&N5u0&1 (
n51

N

lnuCn&5u0&1 (
i 51

d2L

FN
i ~l!u i &, ~11!

and similarly for uC 0̃&N , whereFN
i (l) are polynomials of

Nth order in l with complex coefficients,u i & is a Hilbert
space vector different fromu0& and u0̃&, andd is the dimen-
sionality of the Hilbert space.L is again the dimensionality
of the degenerate subspace~hereL52).

1. Analytic continuation

The next step is to analytically continue the polynomi
AN(l), BN(l), CN(l), DN(l), andFN

i (l). Then the 232
matrix is diagonalized and the energies as well as the w
functions are known. This gives the ground and first exci
18443
.
-

l
l,

s
-

-

r
al

g

re
f

e
o

ve
d

states at each value ofl. For C12 the dimensionality of the
Hilbert space isd521254096.

The ground-state energy for differenta ’s is given by the
converged value ofEN

g (l), which is the lowest eigenvalue
for theNth-order approximant. The criterion for convergen
is that at orderN mean-square fluctuations should be 1%
the mean value for the seven approximants placed around
Nth order~i.e., N23, . . . ,N, . . . ,N13). This is easily sat-
isfied for small values ofN whenl,0.5 for a51, but the
mean-square fluctuations increase for larger values ofa. The
dependence onN for different values ofa can be understood
by looking at the structure ofAN(l) in the complex coupling
constant plane~Figs. 2 and 3! which is discussed below. Th
analytically continued form for the polynomials is given
the ratio of two polynomials defined in the complexl plane
so that, for example,

FIG. 2. Zeros and poles of the Pade´ approximant of the diagona
elementAN of the effective Hamiltonian fora51 in C12 with 220
orders of perturbation theory used:s, zeros;3, poles.

FIG. 3. Zeros and poles of the Pade´ approximant of the diagona
elementAN of the effective Hamiltonian fora52 in C12 with 220
orders of perturbation theory used:s, zeros;3, poles.
6-4
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ACCURATE RESULTS FROM PERTURBATION THEORY . . . PHYSICAL REVIEW B 63 184436
AN~l!→AN
a.c.~l!5

PN~l!

QN~l!
, ~12!

wherea.c. stands for analytically continued. Forl on the
real axisDN

a.c.5(AN
a.c.)* and CN

a.c.5(BN
a.c.)* , guaranteeing

real eigenvalues for reall. The structure is revealed by look
ing at zeros and poles ofAN

a.c.(l) for complexl. These are
the roots ofPN(l) and QN(l). Frustration leads to branc
cuts in thel plane which are given by lines of mixed zero
and poles ofAN

a.c.(l). This is how the single-valuedAN
a.c.(l)

tries to reproduce a multivalued function associated wit
cut in the complex plane. This structure is shown fora51 in
Fig. 2 and fora52 in Fig. 3, for N5220. The radius of
convergencelc ~circles! shrinks asa increases and forl
.lc the perturbation expansion is asymptotically conv
gent. This indicates that more orders are needed for P´
approximants to converge as the ratiol/lc increases. One
explanation for this is that, asa increases, the classica
ground state is not as good a starting point as for small,
since the spins tend to form singlets via theJ2 bond in the
quantum limit. Thus it gets harder to reach the quantum s
from the ordered classical ground state, the former made
of independent singlets on the nontriangle bonds at the l
J2 /J1→`.

2. Numerical precision

As we go to higher orders in perturbation theory the nu
ber of calculations goes up, increasing the possibility
significant propagation of numerical error.24 To extend the
calculation to higher orders, the packageMPFUN was used,25

which allows arithmetic to very high precision, limited on
by machine specifications. The perturbation and anal
continuation were done by using typically 94-digit precisi
in MPFUN, except in some cases where 194 digits were us

To reduce memory requirements and execution time, p
turbation theory was first run in double precision. After t
states with equal coefficients or coefficients differing only
sign ~in real and/or imaginary part! due to symmetry were
identified, the program was run withMPFUN, taking advan-
tage of these symmetries. Thus the scale of the calcula
was significantly reduced. The time required to get 250
ders in perturbation theory was approximately 35 min, wh
eight processors were used in parallel on a SGI mach
These were IP27 processors with a frequency of 250 M
We typically used 250 orders to get convergence for fie
smaller thanJ1.

A second criterion of convergence comes from the to
spin component̂Sz&, which is a good quantum number fo
the Hamiltonian in the isotropic case wherel51. If the
analytically continued wave function coefficients converg
then the calculation of̂ Sz& should yield an integer in an
applied field. Any deviation from an integer value indicate
lack of convergence, which could be due to insufficient
ders of perturbation theory used or propagation of numer
error, and indicates that higher numerical accuracy is nee
This criterion is more stringent since now all the coefficie
FN

i (l) have to converge but once convergence is achie
any expectation value can be calculated, since the knowle
18443
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of the wave function fully solves the problem. Since all t
states in the Hilbert space determined by the localz axes
contribute to the ground- and first-excited-state coeffici
functions, the calculated wave function is essentially exa

3. Degeneracy

In the absence of an applied field states with different^Sz&
values are degenerate and the excited state, a triplet in12,
is a linear combination ofSz50,61 states. However, it is
found that starting in theSz50 sector as we do the perturbe
state stays in this sector for alll for both ground and excited
states ath50. Although this degeneracy is lifted by the a
plied field, there is an additional degeneracy due to the g
metrical symmetries of C12. The exact diagonalization
shows that there are three degenerate triplet states at the
excitation energy so that even in an applied field the exc
state withSz51 is triply degenerate. Choosing a particul
classical ground state to generate the starting statesu0& and
u0̃& picks out a linear combination of these degenerate sta

4. Correlation functions

After the calculation of the ground-state wave functio
its correlation functions can be directly evaluated. In C12
there are five kinds of qualitatively different correlation fun
tions, two of which refer to nearest neighbors. In Figs. 4 a
5 these are plotted as a function of the strength of the qu
tum fluctuationsl for the casea51 for the ground and
excited states, respectively. The magnitude of the correla
function ^SW 1•SW 9& is smaller than 0.02 and is not plotted. F
l51 the solution of the full isotropic case agrees with t
one found from exact diagonalization.22 The nearest-
neighbor correlation functions arêSW 1•SW 2&520.125 and

^SW 1•SW 4&520.250 at the classical level wherel50. Spins 1
and 4 are antiparallel, whilêSW 1•SW 2& is one-half of^SW 1•SW 4&.

In the ground state~Fig. 4! ^SW 1•SW 2& increases in magni-
tude withl and atl51 equals20.183, being roughly 50%

FIG. 4. Correlation functions forJ251 in the ground state of

C12 at h50: solid line,^SW 1•SW 2&; dotted line,^SW 1•SW 4&; dashed line,

^SW 1•SW 5&; long dashed line,̂SW 1•SW 8&.
6-5
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N. P. KONSTANTINIDIS AND D. COFFEY PHYSICAL REVIEW B63 184436
bigger than its classical value.^SW 1•SW 4& increases in magni
tude as the quantum fluctuations become stronger
reaches its maximum just beforel50.8. Then it does no
change significantly and its magnitude atl51 is more than
2 times larger than its classical one, being equal to20.586.
This is because as the perturbation is turned on adja
spins belonging to different triangles want to create sing

bonds due to theirJ2 interaction. The value of̂SW 1•SW 4& at
l51 is close to the value for a singlet state between t
spins, which is20.750. The other two correlation function
have a nontrivial dependence onl, but their values in the
isotropic case do not significantly differ from their classic
ones.

The excited-state correlation functions of Fig. 5 do n
differ significantly from the ones of Fig. 4. However, w
observe a smaller value for̂SW 1•SW 5& compared with the
ground-state value, whilêSW 1•SW 4& has a smaller magnitude a
l51 again compared to the ground-state value, indicatin
more triplet character for this bond.

In Figs. 6 and 7 we plot the correlation functions fora
52. We observe that for both the ground and excited sta
all the correlations decrease in magnitude, except the o
between neighboring spins connected via theJ2 bond. The
value of ^SW 1•SW 4& in the ground state is now20.697, ap-
proaching the singlet value20.750 even closer.

B. Magnetic field

We next introduce a magnetic field in the problem a
study the ground and excited states as a function ofl. There
are two possible approaches to this calculation. The first i
perturb around the zero-magnetic-field classical ground s
The second is to calculate the classical ground state in
presence of a magnetic field, and then apply perturba
theory. Because the field breaks the time reversal symm

FIG. 5. Correlation functions forJ251 in the first excited state

of C12 at h50: solid line, ^SW 1•SW 2&; dotted line,^SW 1•SW 4&; dashed

line, ^SW 1•SW 5&; long dashed line,̂SW 1•SW 8&.
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the classical ground state is nondegenerate, and in the se
case nondegenerate perturbation theory is used. The re
of the two methods should agree at the isotropic limit,l
51. However, their dependence onl is different.

1. Degenerate case: Field-independent classical ground state

The Hamiltonian for the first method has the form

H

J1
5H01l~H11H2!, ~13!

whereH0 andH1 were defined before andH2 is the part that
relates to the magnetic field. Specifically,

FIG. 6. Nearest-neighbor correlation functions forJ252 in the

ground state of C12 at h50: solid line, ^SW 1•SW 2&; dotted line,

^SW 1•SW 4&; dashed line,̂ SW 1•SW 5&; long dashed line,̂SW 1•SW 8&.

FIG. 7. Nearest-neighbor correlation functions forJ252 in the

S51, Sz50 first excited state of C12 at h50: solid line,^SW 1•SW 2&;
dotted line, ^SW 1•SW 4&; dashed line,^SW 1•SW 5&; long dashed line,

^SW 1•SW 8&.
6-6
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H252h(
i 51

N

cosu iSi
z1

h

2 (
i 51

N

sinu i~Si
11Si

2!. ~14!

h is the strength of the magnetic field in units ofJ1 andu i
the classical solution’s angles with the globalz axis. The
direction of the magnetic field is taken along the globaz
axis, so it is perpendicular to the plane of one of the fo
triangles of the system. The spins belonging to any trian
are coplanar in the classical case~in spin space!, and they
can be chosen to lie in the physical plane of the triangle

2. ŠSz
‹

For l51, the ground state lies in theSz50 sector when
there is no magnetic field.^Sz& is defined along the globalz
axis, and it commutes with the Hamiltonian~13! at l51. As
the field is turned on the energy of the ground state, whic
a singlet, will not change at the isotropic limit. However, t
triplet excited state hasSz51 there, and its energy decreas
linearly with the magnetic field due to the Zeeman term. A
critical value of the field the triplet-state energy becom
equal to the one of the singlet state, so the triplet state
comes the ground state. As the magnetic field increases
ther the ground state moves towards spin sectors with hig
value ofSz, until the magnetization saturates. The results
the energies found from perturbation theory and anal
continuation are found in Fig. 8, and they reproduce the
act values (l51). By extrapolation of the straight line
which give the ground and first excited energies back to z
field, we recover the energies of excited states in the z
field case. The diagonalization of the effective Hamiltoni
matrix gives the following eigenenergies:

E1,25
AN

a.c.~l!1DN
a.c.~l!

2

7UABN
a.c.~l!CN

a.c.~l!1S AN
a.c.~l!2DN

a.c.~l!

2 D 2U,
~15!
in
s

a
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where AN
a.c.(l), BN

a.c.(l), CN
a.c.(l), and DN

a.c.(l)
are the analytically continued values of the correspond
polynomials of Nth order. At the critical fields at which
the two states exchange ‘‘roles’’ as the ground a
first excited states, the square root goes to zero
l51. This occurs whenBN

a.c. and the imaginary part o
AN

a.c. go to zero. In this way, we start from tw
degenerate ground states and we end up with two degen
states.

The strict criterion for successful convergence of t
wave functions is the calculation of the^Sz& number. This
should be an integer atl51. We calculate its evolution with
l in the global spin basis, where the quantization axis is
same for all spins. The expression for its expectation va
^Sz& is

FIG. 8. Ground-state and first-excited-state energy as a func
of applied magnetic field for C12: s, Sz50; h, Sz51; L, Sz

52.
^Sz&5
^C0uSzuC0&1uGu2^C 0̃uSzuC 0̃&12 Re~G^C0uSzuC 0̃&!

^C0uC0&1uGu2^C 0̃uC 0̃&12 Re~G^C0uC 0̃&!
, ~16!

whereG is given by

G5

AN
a.c.~l!2DN

a.c.~l!

2
6ABN

a.c.~l!CN
a.c.~l!1S AN

a.c.~l!2DN
a.c.~l!

2 D 2

BN
a.c.~l!

. ~17!
d
tion

ult
e
s

The plus sign corresponds to the ground state and the m
sign to the excited one. The magnitude of this coefficient i
for any reall, since in this caseDN

a.c.5(AN
a.c.)* and CN

a.c.

5(BN
a.c.)* . The accurate calculation of the wave functions

the critical fieldshc involves taking the limit liml→1 G(l).
In this case the magnitude ofBN

a.c.(l) as well as the imagi-
us
1

t

nary part ofAN
a.c.(l) go to zero, thus both the numerator an

denominator vanish. The success of the analytic continua
is such that the calculation ofAN

a.c.(l) and BN
a.c.(l) is so

accurate after analytic continuation that the res
liml→1 G(l)561 is recovered and this is reflected in th
calculated̂ Sz&. The calculation was done for various field
6-7
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for a51, and the results are shown in Figs. 9 and 10. Th
it is shown that indeed̂Sz& assumes integer values whenl
51, confirming the success of analytic continuation. For
ample, whenh50.7, atl51 ^Sz&50.999 999 999 98 for the
ground state and̂Sz&51.0310211 for the excited state.

As seen in Fig. 9, the quantum fluctuations raise the va
of ^Sz& for small values of the magnetic field, but eventua
it goes to zero at the isotropic limit. However, just above
transition to theSz51 sector, which occurs athc150.6878
in agreement with the exact answer,^Sz& has a nontrivial
behavior for intermediatel ’s before assuming a value equ

FIG. 9. Sz vs l for C12 for a magnetic fieldh ~ground state!
starting from the magnetic-field-independent classical ground s
J251.0: solid-plus line,h50.500; dotted line,h50.670; dashed
line, h50.687; long dashed line,h50.688; dot-dashed line,h
50.690; solid line,h50.700.

FIG. 10. Sz vs l for C12 for a magnetic fieldh ~excited state!
starting from the magnetic-field-independent classical ground s
J251.0: solid-plus line,h50.500; dotted line,h50.670; dashed
line, h50.687; long dashed line,h50.688; dot-dashed line,h
50.690; solid line,h50.700.
18443
re
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to 1. Thus forh50.688 there is a rapid change in the ma
netization at a value ofl close to 1. There is competition
between the 0 and 1 spin sector for the ground state,
finally quantum fluctuations lead to the latter. The magne
field terms of the perturbing Hamiltonian favor a magnetiz
ground state, while the rest favor zero spin. The sud
change in̂ Sz& as a function ofl moves closer tol51 as
h→hc from below. If we go farther away from this critica
field, the jump is pushed towards smaller values ofl, and
eventually it vanishes. Similar effects are observed in F
10, which includes the corresponding graphs for the exc
state. In this case, the excited state hasSz51 below andSz

50 above the transition. The conclusion is that there i
‘‘window’’ around the critical field where thel dependence
of ^Sz& is very strong.

As the magnetic field gets bigger, more terms are nee
to analytically continue the wave function so that the sp
number assumes the proper integer values. There is al
need for greater numerical precision, due to the increa
number of calculations which tend to propagate the num
cal errors,24 and so 194 digits ofMPFUN accuracy were used
The transition between theSz51 andSz52 spin sectors for
the ground state takes place athc250.9869. For a magnetic
field equal to 1.01, 501 orders were generated to get con
gence. This requirement for more orders in perturbat
theory and more accuracy makes the calculation of the fa
G of Eq. ~16! harder as the second critical field is a
proached. The behavior of^Sz& as a function ofl is shown
in Fig. 11, where thêSz& value of the ground state remain
constant over a range ofl, and eventually ‘‘jumps’’ to the
final value^Sz&52. On the other hand, the excited state^Sz&
approaches 2 close tol'1 only to settle at 1 whenl51.

Nonmonotonic behavior of the quantum numberSz near a
transition is observed for other values ofJ2 as well. These
are shown in Figs. 12 and 13, forJ2 values equal to 0.8 and

te,

te,

FIG. 11. Sz vs l for C12 for a magnetic fieldh starting from the
magnetic-field-independent classical ground state,J251.0: solid
line, h51.010, ground state; dotted line,h51.010, excited state
dashed line,h51.050, ground state; long dashed line,h51.050,
excited state.
6-8
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ACCURATE RESULTS FROM PERTURBATION THEORY . . . PHYSICAL REVIEW B 63 184436
1.8. For the second case the higher value ofJ2 stabilizes the
spin value forl ’s close to 1. It was observed that conve
gence was harder to get asJ2 and/orh were increased, for
the reasons already mentioned.

3. Correlation functions

Although the calculated eigenstates atl51 are indepen-
dent of magnetic field they do depend on the field for int
mediate values ofl. This can be seen clearly in̂Sz& as a
function ofl in Figs. 9 and 10. As pointed out previously th
choice of the starting classical ground state picks out a
ticular linear combination of the three degenerate (S51,
Sz51) states. Different linear combinations lead to differe
values of thê SW i•SW j&. However, when adding the values

FIG. 12. Sz vs l for C12 for a magnetic fieldh starting from the
magnetic-field-independent classical ground state,J250.8: solid
line, h50.530; dotted line,h50.535; dashed line,h50.540; long
dashed line,h50.547; dot-dashed line,h50.600.

FIG. 13. Sz vs l for C12 for a magnetic fieldh starting from the
magnetic-field-independent classical ground state,J251.8: solid
line, h51.3423; dotted line,h51.400; dashed line,h51.500.
18443
-

r-

t

nearest-neighbor̂ SW i•SW j& for different choices of starting
classical ground states the values of the energies, calcu
directly in Eq.~15!, are recovered.

A further check on the two-point correlation function
calculated for the wave functions is^SW 2&5( i , j^SW i•SW j&. Cal-
culating ^SW 2& in the ground and excited states ath50.7 we
find 2.001 88 and20.002 836 1 consistent witĥS2&5S(S
11) for S51 andS50. This measurement tests the acc
racy of all two-point correlation functions. The ones for nea
est neighbors forh50.7 are plotted in Figs. 14 and 15 for th
ground and excited states. Comparing these with thel de-
pendence of the states in Figs. 6 and 7, the only differenc
a nonmonotonic dependence atl.0.5, especially for the
nearest-neighbor correlation functions^SW 1•SW 2& and^SW 1•SW 4&.

FIG. 14. Nearest-neighbor correlation functions for C12 for J2

51, h50.7, ground state: solid line,̂ SW 1•SW 2&; dotted line,

^SW 1•SW 4&; dashed line,̂ SW 1•SW 5&; long dashed line,̂SW 1•SW 8&.

FIG. 15. Nearest-neighbor correlation functions for C12 for J2

51, h50.7, excited state: solid line,̂ SW 1•SW 2&; dotted line,

^SW 1•SW 4&; dashed line,̂ SW 1•SW 5&; long dashed line,̂SW 1•SW 8&.
6-9
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4. Analytic structure

The motion of the zero of the square root appearing
Eqs.~15! and~17! in the complexl plane can be traced ou
with the help of the Pade´ approximants, which are ratios o
two polynomials. Since the analytic continuation was qu
successful in the vicinity ofl51, we can look for the struc
ture of approximants in this area. To this end, we consi
the function

BN
a.c.~l!CN

a.c.~l!1S AN
a.c.~l!2DN

a.c.~l!

2 D 2

, ~18!

which is inside the square root in Eqs.~15! and~17!, and we
plot the zeros of the numerator and denominator of the
proximants as a function of the magnetic field. The appro
mants were generated with 220 orders of perturbation the
~the order of the numerator and denominator of the P´
approximant is one-half of this number!. In Fig. 16 the com-
plex plane structure is plotted for a magnetic fieldh
50.688. The Pade´ approximant is seen to reproduce t
branch cuts of the function in the complex plane. There
also zeros and poles in the complex plane not falling on
of the branch cuts. These are present only in approximan
specific order and they are artifacts of the analytic contin
tion. It can be seen how the zeros of Eq.~18! appear in the
complexl plane close tol51. The coefficients of the ex
pansion of Eq.~18! are real, so the zeros and the poles app
in complex conjugate pairs.

Another feature of the picture is that it is asymmetric w
respect to the imaginaryl axis. This asymmetry gets mor
and more pronounced with increasing field. This is beca
negativel ’s correspond to different ferromagnetic couplin
between neighboring sites, and these interactions fa
aligned spins, a state similar to the one favored by the m
netic field. In this case it is more difficult to get convergen
because of the competition of the classical antiferromagn

FIG. 16. Zeros and poles of the Pade´ approximant of the square
root in C12 with 220 orders of perturbation theory used, magne
field h50.688: s, zeros;3, poles.
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interactions with the quantum ferromagnetic ones and
magnetic field. Consequently the radius of convergence
smaller.

In Fig. 17 the roots of the approximants are plotted
various magnetic fields close tohc150.6878 in the vicinity
of l51. The zeros of the square root approachl51 in
conjugate pairs and they finally hit the axis at the transiti
As the strength of the field is further increased, the ro
move away froml51 in the opposite direction. We see th
behavior in a small range of the fields around the transit
with roots aroundl51, which is reflected in the rapid non
monotonic variation of̂ Sz& around the critical field. Since
the square root of function~18! has to eventually be taken
its zeros will turn into branch points in the complexl plane.

5. Nondegenerate case: Field-dependent classical ground stat

The alternative approach to the problem is to calculate
classical ground state in the presence of the magnetic fi
and then introduce the remaining terms as perturbation
this case the Hamiltonian is

H

J1
5H01H081l~H11H28!, ~19!

where

H0852h(
i 51

N

cosu iSi
z, ~20!

H285
h

2 (
i 51

N

sinu i~Si
11Si

2!, ~21!

andH0 andH1 have already been defined in Eqs.~8! and~9!.
Since the magnetic field breaks the degeneracy of the cla
cal ground state, Rayleigh-Schro¨dinger perturbation theory
can be applied directly for the wave functions. The resu
after the analytic continuation are shown in Fig. 18. Th

FIG. 17. Zeros of the Pade´ approximant for the square roo
using 270 orders of perturbation theory for various magnetic fie
s, h50.686; h, h50.687; L, h50.6875;1, h50.688; 3, h
50.689; *, h50.690.
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method can be compared with the one of the previous sec
only at l51, where in both cases the isotropic Heisenb
Hamiltonian is recovered. Starting from the field-depend
classical ground state is not any better as far as comp
memory and execution time are concerned, since symme
reduce memory requirements at the same level in both ca
However, the first method also gives the ground and fi
excited states very accurately; consequently the approac
the transitions betweenSz sectors as a function of the applie
magnetic field is easily seen. On the other hand, the sec
method works better for higher fields, since now the class
ground state is related to the strength of the magnetic fi
thus it has a nonzero value for^Sz&. Various fields up toh
51.3 were employed in the calculation. The results for
energy agree with the exact diagonalization answer.22

Looking at Fig. 18, we see that the dependence of^Sz& on
l is not monotonic for the various magnetic fields. This c
be attributed to the fact that the starting point is now
magnetic-field-dependent classical ground state. The term
the Hamiltonian related to the magnetic field tend to incre
the spin, while the rest favor a zero-spin quantum state; t
there is competition between the two at the classical
quantum levels. In the degenerate case the field-depen
terms entered only in the perturbing part of the Hamiltoni
making the perturbation stronger and dominant in the de
mination ofSz for higherl ’s.

The structure of the analytic continuation of the ener
was also studied in the nondegenerate case, and it was
sistent with the structure found from the degenerate per
bation. For a magnetic fieldh50.8 the expression in Eq.~17!
has a zero atl1'0.78810.337i , while the analytically con-
tinued function for the energy in the nondegenerate case
a branch cut which starts at a value ofl equal to l2
'0.89810.217i and extends almost parallel to thex axis.
SinceAul1u.ul2u, the branch cut of the square root in th
degenerate case corresponds to the one of the nondegen

FIG. 18. Sz vs l for C12 for a magnetic fieldh starting from the
magnetic-field-dependent classical ground state,J251.0: solid line,
h50.5; dotted line,h50.6; dashed line,h50.8; long dashed line
h50.9; dot-dashed line,h51.200.
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case, demonstrating the consistency of the two approa
starting from the classical ground state in the absence
magnetic field and the magnetic-field-dependent class
ground state.

IV. C 20

Next we consider the 20-site system on the vertices o
dodecahedron, shown in Fig. 19. In C20 there is only one
kind of bond, which we callJ, and each atom has thre
nearest neighbors as in the C12 case. In the classical solutio
spins belonging to the same pentagon are not coplanar,13 and
the energy per bond is2A5/3520.7454. This is bigger
than the energy per bond for the coplanar spins on an
lated pentagon, which is cos(4p/5)520.8090. Thus when
the dodecahedron is assembled from the individual pe
gons there is a cost in energy, in contrast to the 12-site
tem case. This system has a discontinuity in^Sz& as a func-
tion of the magnetic field at the classical level unlike t
12-site system. The discontinuity has a magnitude of 0
and occurs at a magnetic fieldh51.432J. This is also the
case for C60 whereas in C12, C70, and C84 there is a discon-
tinuity in the slope of the magnetization with applied field13

We start again from the classical ground states and per
them with the quantum fluctuations. The difference now
that the exact solution of the problem is not known and
Hilbert space is much larger with 22051,048,576 states.

The question we wish to address is whether the diff
ences between C12 and C20 seen at the classical level in mag
netic properties survive for theS5 1

2 case. As we will show
below these differences do survive and are seen in the
lytic structure of the perturbation theory for the two system
Since spins are not coplanar at the classical level, the Ha
tonian, which is defined as described in Sec. II, assumes
following complicated form:

H

J
5H01lH1 , ~22!

FIG. 19. Space configuration of C20. All the bonds are equal to
J.
6-11
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H052
A5

3 (
^ i , j &

Si
zSj

z, ~23!

H15(
^ i , j &

~a i j Si
1Sj

11b i j Si
1Sj

21g i j Si
1Sj

z1d i j Sj
1Si

z!

1H.c., ~24!

wherea i j , b i j , g i j , andd i j are complex coefficients define
analytically. For example, for theSW 1•SW 2 term a125

1
4 (1

1A5/3), b125
1
8 (12A5/3)(12A3i ), g1252 1

6 (11A3i ),
and d125g12* . Since here the starting point is the classic
ground state, defining a localz axis at each site, the coeffi
cients ofH1 are in general different for different bonds. Fu
thermore, they are complex because of the nonplanar c
acter of the spins in the classical ground state. We apply
same methods towards the solution as in the 12-site sys
case. The elements of the 232 effective Hamiltonian matrix
He f f in Eq. ~10! are now real for all applied magnetic field

A. Ground and excited states

The energies and wave functions of the two lowest-ly
states were calculated up toh50.72J. The ground state (s)
and the excited state (L) are shown in Fig. 20. By drawing
straight lines through the energies and extrapolating to z
field the lowest-energy state in each spin sector is recove
as well as the second lowest energy in theS50 sector. We
find these energies to beE1(S50)529.722J, E2(S50)5
29.345J, E3(S51)529.208J, and E4(S52)528.523J.
The magnetic field dependence is given by a Zeeman te
2h( i 51

20 Si
z . Unlike C12 the first excited state ath<0.137 is a

singlet rather than a triplet.18

FIG. 20. Ground-state and first-excited-state energy for differ
values of applied magnetic field for C20: s, ground state;L, ex-
cited state. The dotted line is a fit for the ground state and the l
dashed line for the excited state.
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B. Correlation functions

In Fig. 21 we plot thel dependence of the expectatio
value ^Sz& for h50.4. We see a behavior similar to the on
of C12, as the ground state assumes the value22.731028

and the excited state the value 0.999 999 7 atl51. Again
this points to the accuracy of the calculated wave functio
The ferromagnetic or antiferromagnetic character of the c
relation between any two sites remains the same in
ground state and the two lowest-lying excited states ah
50. In each of these states the nearest-neighbor correla
;20.3, while all other^SW i•SW j& have magnitudes;0.03
→0.08 at l51. Correlation functions are plotted for th
lowest-lying singlet and triplet states ath50.4, where they
are the ground and first excited states in Figs. 22 and 23.
first consider the nearest-neighbor correlations. For the
glet state, Fig. 22, thêSW 1•SW 2& and^SW 1•SW 6& are equal only at
l50 andl51. Thel dependence for 0,l,1 depends on
both the starting classical ground state and the value oh.
For the lowest-energy singlet state,^SW 1•SW 2& and ^SW 1•SW 6&
grow in magnitude from their classical value,20.186 atl
50, to 20.324 atl51 for all nearest-neighbor correlation
Thus they are comparable to the value of the near
neighbor correlation in the ground state of an isolated pe
gon, 20.375.

In the lowest-lyingS51, Sz51 state, Fig. 23, two values
of the nearest-neighbor correlation functions are prese
20.297 and20.327 atl51. This state can be described b
considering the bonds on a pentagon, on its diametric
opposite mirror, and on a chain formed by the ten remain
sites. On these bonds^SW i•SW j&520.297 while on the bonds
connecting the chain to the two pentagons^SW i•SW j&
520.327. Since this configuration can be chosen in six d
ferent ways, the tripletS51, Sz51 state is sixfold degener
ate. There is little difference between the next-nearest ne
bors and more distant correlations in the singlet and trip

t

g

FIG. 21. ^Sz& as a function ofl for the ground state and firs
excited state of C20 for a magnetic fieldh50.4 starting from the
magnetic-field-independent classical ground state: solid l
ground state; dotted line, excited state.
6-12
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ACCURATE RESULTS FROM PERTURBATION THEORY . . . PHYSICAL REVIEW B 63 184436
states. The quantum fluctuations significantly reduce
magnitude of these correlations compared with their class
values atl50.

As a further check of the accuracy of the wave functi
the calculated values of these correlations give for^SW 2&
5( i , j^SW i•SW j& the value20.000 89 for the ground state an
the value 1.991 54 for the excited state atl51. These are
consistent with the calculated̂Sz& values in Fig. 21. The
change in the value of̂SW 2& between the singlet and triple
states comes from changes in all the^SW i•SW j&. The change due
to the nearest-neighbor^SW i•SW j& ’s is ;1 and the rest come
from small changes,;0.005, from the other bonds. Thi
suggests that there is no simple characterization of the
cited states.

FIG. 22. Spin correlations in the ground state of C20 as a func-

tion of l for h50.4: solid line, ^SW 1•SW 2&; dotted line, ^SW 1•SW 6&;
dashed line,̂ SW 1•SW 3&; long dashed line,̂SW 1•SW 9&; dot-dashed line,

^SW 1•SW 11&; thick solid line,^SW 1•SW 18&.

FIG. 23. Spin correlations in the first excited state of C20 as a

function of l for h50.4: solid line,^SW 1•SW 2&; dotted line,^SW 1•SW 6&;
dashed line,̂ SW 1•SW 3&; long dashed line,̂SW 1•SW 9&; dot-dashed line,

^SW 1•SW 11&; thick solid line,^SW 1•SW 18&.
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In the classical ground state all the spins in the top a
bottom pentagons have the same azimuthal anglea with the
z axis, which is later taken to be the direction of the magne
field. The rest of the spins form a different angleb with the
z axis, so there are two different angles in the classical so
tion. There are only two distinct functionŝSW i•hW & of the
spins for the calculated states in the magnetic field, and t
represent these two kinds of sites in the classical gro
state. They were calculated fori 51 and 6 and they are plot
ted in Fig. 24 for the ground and excited states. They
consistent with^( iSW i•hW &5^Sz&h calculated in the ground
and excited states in Fig. 21.

For h<0.137 the excited state is a singlet. This state
the same symmetry as in the triplet state with two types
nearest-neighbor bonds equal to20.304 and20.324. As in
the triplet case the longer-range correlations, both ferrom
netic and antiferromagnetic, are still comparable in mag
tude and;0.05.

C. Analytic structure

Next we study the structure of the analytic continuation
the off-diagonal elementBN

a.c.(l). In Fig. 25 we plot the
structure at a magnetic field equal to 0.3. Again we obse
the asymmetry with respect to they axis. As in the case of
C12 the transition of the ground state between different s
sectors as a function of applied field can be tracked in
complex l plane. However, the trajectory of the zeros
BN

a.c.(l), the off-diagonal element in the effective Hami
tonian in Eq. ~10!, is different from C12 where the zeros
move from the complex plane onto the real axis atl51 and
h5hc and then move away forh.hc as seen in Fig. 17
These values ofl are branch points of the energy functio
for the ground and first excited states. In C20, on the other
hand, close to the critical field,hc50.514, two zeros ofB

FIG. 24. Ground- and excited-state spin correlations forh
50.4 as a function ofl for C20 at sitesi 51 and i 56: solid line,

^SW 1•hW & in the ground state; dotted line,^SW 6•hW & in the ground state;

dashed line,̂SW 1•hW & in the excited state; long dashed line,^SW 6•hW & in
the excited state.
6-13
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approach the reall axis from above and below atl'0.85.
The critical field is the value ofh where the triplet state firs
becomes the ground state atl51. As h is increased further
the two zeros move along the real axis in opposite directio
as shown in Fig. 26. At these values ofl there are discon-
tinuous jumps in the value of̂Sz& in the ground state a
opposed to the rapid variation withl as seen in C12. These
jumps occur as the ground and excited states with diffe
values of^Sz& switch roles whenBN

a.c.(l) changes sign.
In Fig. 27 we plot̂ Sz& for the ground state as a functio

of applied magnetic field for different values ofl. The
curves forl,1 are strongly reminiscent of the results f
the magnetization of the classical approximations for C20 and
C60.13 For h.0.5 there are discontinuities in̂Sz& for differ-
ent values ofl. In these calculations starting from the fiel

FIG. 25. Zeros (s) and poles (3) of the Pade´ approximant
BN

a.c.(l) in the complexl plane for C20 in an applied fieldh50.3;
here 240 orders of perturbation theory were used.

FIG. 26. Zeros of the Pade´ approximantBN
a.c.(l) along thel

real axis for C20. Here 240 orders of perturbation theory were us
ands andL are the values calculated. The dotted and long-das
lines are fits.
18443
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independent classical ground state the magnetic field is
of the perturbation and is scaled byl. So the effective field
at which discontinuities in̂Sz& take place islh. In the clas-
sical approximation for C20 there is a jump in the magneti
zation as a function ofh at 1.43 equal to 0.68Sc , whereSc is
the magnitude of the classical spin. In the ground state
culated here the jump in̂Sz& occurs forl>0.72 and grows
in magnitude until, atl51, the jump discontinuity in̂Sz& is
1 for hc50.514.

Different magnetic properties for theS5 1
2 solutions of

C12 and C20 are thus seen to come from the different analy
behavior of the wave functions in the complexl plane. Simi-
larity of the quantum solutions with the classical solutio
suggests that this difference in analytic structure comes f
the different connectivities of the two systems.

V. CONCLUSION

We have applied perturbation theory in the strength
quantum fluctuations around the classical ground states
found essentially exact results for the ground and first
cited states for two frustrated spin systems, C12 and C20. For
C20 large orders in perturbation expansion and a high deg
of numerical precision are required to get convergence of
analytic continuation of the matrix elements of the effecti
Hamiltonian and the wave function coefficients calculat
perturbatively.

We found that although sites in both systems are three
coordinated, the spectra are qualitatively different with t
lowest-lying excited state being a triplet in C12 while it is a
singlet in C20. The difference in the behavior of the tw
systems is attributed to their difference in the connectiv
The average energies per nearest-neighbor bond forS5 1

2

spins,20.325J ~in C20) and 20.3105J ~in C12), taking J1
5J25J, are comparable so that the ‘‘average’’ degree
frustration is the same for both systems. In C12 the first ex-
cited state arises by taking a linear combination of sta
d

FIG. 27. ^Sz& as a function of magnetic field for the ground sta
of C20 for variousl ’s: s, l50.70; h, l50.75; 1, l50.80; 3,
l50.85. The lines are fits.
6-14
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each associated with a triplet excitation of a single non
angle bond. By comparinĝSW 1•SW 4& in Figs. 14 and 15 the
nontriangle bond is seen to take on a more strongly trip
character in the excited state. In C20, on the other hand, ther
is no nearest-neighbor bond which can be singled ou
describe the character of the singlet and triplet excited sta
The different values ofSW 2 for states in C20 arise from small
changes in long-range correlations. In order to distingu
between C12 and C20 we observe that in C20 all bonds
are members of closed loops in which all bonds
equivalent while in C12 the nontriangle bonds form alterna
ing sides with triangle bonds to make hexagons. Howe
characterization of connectivity by the nature of bonds for
ing closed loops is not sufficient in itself since the excit
state of the Heisenberg model on a cube has a triplet exc
state.

In the classical approximation it was possible
characterize the ground state for different systems in te
of a topological number, the Skyrmion number, and
associate this with the presence or absence of discontinu
in the magnetization. We have shown that this differen
seen in the classical approximation for C12 and C20, survives
in Sz for the exact states of the isotropicS5 1

2 Heisenberg
model and that it is associated with the analytic behav
in the complex coupling constant plane. Although
seems clear that it is the combination of frustration a
connectivity which is responsible for the nature
the spectrum and the response of the system to
magnetic field, how exactly these are determined is
obvious.

The connection between frustration and the chara
of the excitation spectrum is also of interest for infin
lattices. The apparent singlet nature of the excitat
spectrum in thekagome´ lattice arises from frustration18,26

and leads to a large nonmagnetic contribution to the entr
ev

3

.
,

ics
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of the system at low temperatures. This is an important f
ture in analysis of experimental data on any physical real
tion of a kagome´ lattice. This result for thekagome´ lattice
may not generalize to other frustrated lattices if the sensi
ity to connectivity seen in C12 and C20 is a guide to larger
systems.27

The accuracy of the wave functions found atl51 sug-
gests that the Pade´ approximants derived from the perturb
tion series are very accurate representations of the w
functions and energies in the complex plane between
origin andl51 and that the analytic structure of these fun
tions accurately represents the dependence onl and applied
field. We have shown how the rapid change of^Sz& for l
.1 andh.hc and the discontinuity in̂Sz& for C20 can be
traced back to the Pade´ approximants. The ability to track
this order-disorder transition from coherent states to eig
states ofSz andSW 2 as a function ofl and applied field may
be developed for richer many-body systems with the cal
lational resources available today.

These calculations are being extended to higher value
spin and to finite temperatures and will be used to investig
the temperature evolution of the properties of magnetic m
ecules, Mn12, Fe8, etc., and, in particular, the quantum m
chanical description of the large moments presently use
their analysis.28
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