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Accurate results from perturbation theory for strongly frustrated S=3 Heisenberg spin clusters

N. P. Konstantinidis and D. Coffey
Department of Physics, State University of New York at Buffalo, Amherst, New York 14260

(Received 12 October 2000; published 24 April 2001

We investigate the use of perturbation theory in finite-sized frustrated spin systems by calculating the effect
of quantum fluctuations on coherent states derived from the classical ground state. We first calculate the
ground- and first-excited-state wave functions as a function of applied field for a 12-site system and compare
with the results of exact diagonalization. We then apply the technique to a 20-site system with the same
threefold site coordination as the 12-site system. Frustration results in asymptotically convergent series for
both systems which are summed with Paggroximants. We find that at zero magnetic field the different
connectivity of the two systems leads to a triplet first excited state in the 12-site system and a singlet first
excited state in the 20-site system, while the ground state is a singlet for both. We also show how the analytic
structure of the Padapproximants af\|=1 evolves in the complex plane at the values of the applied field
where the ground state switches between spin sectors and how this is connected with the nontrivial dependence
of the (S*) number on the strength of quantum fluctuations. We discuss the origin of this difference in the
energy spectra and in the analytic structures. We also characterize the ground and first excited states according
to the values of the various spin correlation functions.
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[. INTRODUCTION the differences survive in the exact sginground states
through the difference in the analytic structures of the Pade
The antiferromagnetic spin Heisenberg model has beeapproximants derived from the perturbation expansions.
the object of intense investigation through the years. Re- We consider the Heisenberg model on closed two-
cently it has attracted enormous interest in the study oflimensional spiry systems which have three nearest neigh-
strongly correlated electron systems, which include the oxid®ors. The antiferromagnetic interaction between the spins
superconductotsand low-dimensional spin systems. In the leads to frustration at the classical level. One such system is
limit where the on-site Coulomb repulsion is very strong, itthe 60-site cluster whose relative positions are the same as
is equivalent to the one-band Hubbard model for half filling.those of carbon atoms ingg:(from now on we will refer to
The inclusion of competing interactions in it has led to noveln-site systems with the spatial symmetry of the fullerenes as
quantum phases, making it appropriate for the study of quar<,). The 60-site system consists of 20 hexagons and 12 pen-
tum criticality tagons. Assuming a tight-binding model for its electronic
The solution of the model was calculated by Bethe in onegProperties where there is one orbital per site and a strong
dimension for nearest-neighbor interactidnsyt a solution ~Coulomb repulsion for double occupancy, the Heisenberg
in analytic form is lacking for two or three dimensions, ex- model on it gives an effective low-energy description at half
cept for special casésApproximation and numerical tech- filling. This is a first approximation to the problem, sincg,C
niques that have been used include diagonalization of smai$ estimated to be in the intermediate- and not in the strong-
clusters’® Monte Carlo technique5,cluster expansiorfs, couplingU regime®® The hopping matrix elements between
spin-wave expansioris*! and the density matrix renormal- sites on the same pentagon can be taken to be different from
ization group'? The methods that consider the full Hilbert the ones between sites on adjacent pentagons. This leads to
space of the problem are limited by the size of the systemtwo positive exchange constanig andJ, and the Hamil-
since the number of states is exponentially dependent on itonian is
In Monte Carlo calculations the sign problem leads éo a loss o
of statistical accuracy, especially for frustrated systems. N s = - -
An alternative approach to these techniques is the direct H:JlUED Si'SJ'+‘]2<i2j> S-S @
application of perturbation theory in which corrections to the ' '
classical treatment are calculated order by order in thd, refers to bonds between the same pentagon Bntb
strength of residual interactions, the effect of fluctuations lefinonpentagon bonds, white - -) stands for nearest-neighbor
out in the mean-field approximation. Although this approachinteractions.
can also be limited in the size of the systems which can be The classical ground state of the Heisenberg Hamiltonian
investigated due to the dimensionality of the Hilbert space, ihas been determined on this and analogoyssystems?
is very different in that it provides analytic information on The magnetic properties of these ground states show an un-
the effects of corrections to classical approximations and sexpected dependence onin some the magnetization is dis-
complements the other approaches mentioned above. We usentinuous in an applied field whereas in others it is the
this approach to calculate the ground-state wave function afusceptibility which is discontinuous. It is of interest to de-
two systems which have qualitatively different classicaltermine whether this dependence is an artifact of the classical
ground states, as we will explain below. We demonstrate thaapproximation or whether it is present®* 3 solutions. We

n.p.

0163-1829/2001/638)/18443616)/$20.00 63 184436-1 ©2001 The American Physical Society



N. P. KONSTANTINIDIS AND D. COFFEY PHYSICAL REVIEW B63 184436

use the classical {Oground states to define an Ising Hamil- ~ The classical ground state at zero magnetic field is doubly
tonian where the quantization axis at each site is determinedegenerate, since a flipping of all the spins does not change
by the direction of the spin vector in the classical groundthe energy. Consequently degenerate perturbation theory has
state. Coherent states are defined along these axes and cémbe applied This is done via a similarity transformation,
stitute a mean-field approximation for the quantum grounddnd an effective X2 matrix is generated. This matrix pro-
state. In this way, each site has a local axis associated with iyjdes information on the ground and first excited states, in-
in contrast to the basis where all spins are defined in the€luding the evolution ofS*) as a magnetic field is varied.
same coordinate system in spin space. From now on we callhe structure of this matrix in the complex plane can be
the former “local basis” and the latter the “global basis.” correlated with the transitions of th&?) number between
The quantum fluctuations are then built around the classicaifferent sectors as a function of the magnetic field.
directions. They are the terms added to the original mean- The plan of this paper is as follows: in Sec. Il the method
field approximation, and they are multiplied with a parameterfor the solution of the problem using perturbation theory is
\ which varies from 0 to 1. Wheh =1, the full isotropic  described. In Sec. lll this is applied to a 12-site systes, C
Heisenberg Hamiltonian is recovered. Thus the solution igvhere the results are compared with exact diagonalization
generated as a series expansion in the perturbation parame&#d found to be in complete agreement. We also discuss how
\ with application of perturbation theory, and the expansionghe analytic structure of perturbation theory is reflected in the
of the ground-state energy and wave function in the locamagnetic properties. In Sec. IV perturbation theory is applied
axes basis are known. With this approach we can study th® C,, and the results are tested by recovering expectation
evolution of the system away from the classical ground statgalues forS? and S? very close to integer values. Here we
and towards the full quantum limk=1. contrast the magnetic field dependence of the analytic struc-
However, the Hilbert space for the 60-site system is hugeture with the results found in the classical approximation.
consisting of 2°=1.15x 10'® states, so a perturbation treat- For both G, and G ground- and first-excited-state wave
ment in the whole Hilbert space can only give a few ordersfunctions are calculated in applied magnetic fields and the
This is because the number of states involved in the calculadependence of their magnetic properties on the strength of
tion rapidly increases as the order and frustration incré”ase.quamum fluctuations is determined. In the case gf, Ghe
In addition, since the spin axes are directed along the classground and excited states at zero magnetic field are singlets.
cal solution’s directions, the total spin in the global basis isThis result is in agreement with similar ones for strongly
not a good quantum number of the Hamiltoniewhen N frustrated magnetic systems such askhgomdattice and a
<1), so a reduction of the number of states by focusing on @ne-dimensional analog of the pyrochlore lattit&@he non-
particular §* value is not possible. Another way of gaining magnetic nature of the excitation is attributed to the frustra-
insight into the problem is to consider similar smaller sys-tion and the connectivity of the system.
tems, belonging to the same family. In all these systems

there aren,=n/2—10 number of hexagons and 12 penta- Il. METHOD
gons. The smallest member of the group is the 20-site sys-
tem. Again, we consideB=} spins sitting at their vertices. The starting point in the calculation is the classical ground

The frustration of the Hamiltonians studied leaves its sig-state. The Hilbert space is spanned by shispinors deter-
nature on the various series expansions generated by pertunined by the classical solution. Local axes are defined
bation theory, producing functions with nonanalytic structurealong the classical spin directions, and spin states are defined
in the complex\ plane. The presence of branch cuts limits at each site such that the expectation value of the component
absolute convergence within a circle centered at the origi®f the spin along the axis equals its classical value:
with a radius of convergence smaller than 1 and the series

>

g

ﬂi>:S, 2

are only asymptotically convergent in the full isotropic limit <ai

wherex=1. Therefore, we employ an analytic continuation Bi

with the use of Padapproximants. The structure of the func- .

tions in the\ plane depends strongly on the form of the Whereq;, g; are spinor coefficients ar|&|=1. The coher-
perturbing Hamiltonian. We investigate the signature of theent stateS’ are products of spin states along these axes:
changes in the complex plane structure of the related func- N N

tions as the perturbing Hamiltonian is varied. The generali- @

zation to complex variables has been proved to be useful in |\PS>:i1:[1 |S‘>:i1:[1 ,3i>' ©)

the study of phase transitions in the two-dimensional Ising

model in temperaturd in a complex magnetic fieltP The ~ whereN is the number of spins in the system. Here we limit
systems studied here are closed and do not possess a thermar¥selves to these2states out of the overcomplete basis of
dynamic limit. However, knowledge of the structure in the the coherent states. These are eigenstates of the unperturbed
complex coupling constant plane provides information abouHamiltonian Hy and constitute an orthonormal basis. The
the functions studiet It can also provide information for classical ground states are the ones where all the spins are
the evolution of instabilities. Here the only possible transi-either “up” or “down” so that Hy has the form of an Ising
tions are betwee(iS”) sectors with increasing magnetic field, Hamiltonian with respect to the local quantization axes de-
where(S?) is the expectation value of threcomponent of the  fined by the classical result. The fluctuations around the local
spin in the global basis. z; axes are raising and lowering spin operators, defined along
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the localx; andy; axes. These are included in the perturbing
partH; which we scale with a parameter Eachx; axis is
defined in the azimuthal plane of the correspondingxis
and perpendicular to it, and then tlge axis is constructed
with the right hand rule. Due to the absence of a glabal
axis, the Hamiltonian takes a complicated form. The solution
is generated in perturbation theory as a power series. in
Therefore the Hamiltonian has the form

H:H0+)\H1, (4)

whereHg is the classical part and; the quantum fluctua-
tions.

There are two well-known issues which complicate the
application of perturbation theory. The first is the double
degeneracy of the coherent states generated from the class
cal ground state in the absence of an applied magnetic field
This requires the use of degenerate perturbation theory. T¢
overcome this problem, an effective Hamiltonian is con-
structed for the degenerate ground states, via a similarity
transformatiort” The Hamiltonian is transformed to a block
diagonal form and its elements, as well as the coefficients of
the Hilbert space states, which contribute to the perturbea

FIG. 1. Space configuration of ;& Intratriangle bonds are
alledJ,, while intertriangle bonds are calleq.

wave functions, are expanded as power serie&.irThen M. C 4,
recurrence relations can be written down for the effective
Hamiltonian and the wave functions: A smaller system with a geometry similar to the ones
considered above is the truncated tetrahedren?€shown
in Fig. 1. This is made up of four triangles and three hexa-
HE'(m, 1) =(mlH, W ), (5) J . 0

gons, and looks like a closed triangular lattice. Every site is
threefold coordinated, and bonds between sites on the same
0 L eff 1, triangle (tr.) are calledJ;, while different triangle bonds
(n[H W) — 2 2 Hw(D) (ntr) are named,. The exact solution of the Heisenberg
K=11=1 Hamiltonian has been found for this system and is used to
check the results from perturbation theory here. At the clas-
x(n|\lf(k',/)>) , (6) sical level it was found to have a jump in the susceptibility at
a critical value of an external magnetic field and so has simi-
lar properties to the systems discussed in Ref. 13. As men-
Herek is the order of perturbationm) a degenerate ground tioned above the classical solution determines local axes of
state ofHy, |n) a state in the Hilbert space different from quantizationz; and determinesd,. Spins belonging to the
|m), E,, its energy at the classical level, akg the classical same triangle are coplanar at the classical level and each
ground-state energy. is the dimensionality of the degener- local x; axis is defined in this plane. With application of the
ate subspacéhereL=2) andl runs from 1 toL. The result right hand rule the corresponding axis is defined. With
of this calculation is anL XL (here 2<2) matrix whose «=J,/J; the Hamiltonian becomes
eigenenergies are the ground state and the first excited state.
This method can be applied for zero or nonzero magnetic E—H I\H @
field, where all the magnetic field terms in the Hamiltonian J ° b
are included in the perturbation. If the magnetic field is in- h
cluded inHy, nondegenerate perturbation theory can be ap\—N ere
plied in this case. tr. 1 n.tr.
The second issue complicating the problem is that the HO:E (_ _) SiZSjZJraE (—1)S,ZSjZ, 8
perturbative part of the Hamiltonian generates series expan- .5 2 {0
sions whose radius of convergence does not extend to the .
isotropic limit \=1 but rather is limited to a circle with a 1 E
radius smaller than 1. Therefore, we analytically ,continue Hl_i o
outside the radius of convergence with the use of Rame

k-1

(I —
<n|qjk > EO_En

gﬂqu—m49$$

n.tr.

proximants. These are described in detail in the literatlire. T m L, o« 6 ot ot
The algorithms used for their calculation here are the deter- —Co8 5 |S Sjtcos 1S S|+ 5 UE> eSS
minant algorithm and the Viscovatov algoritfmWe now !

apply the method to two systemsQand Gy. +H.c., 9
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where ¢=tan 1(2,/2). The coefficients reflect the depen- 1.00

dence of the Hamiltonian on the classical spin directions. gs

The Hamiltonian is complicated, since it includes any pos- 0.7 o ]

sible combination of raising, lowering ar@f operators, and 0.50 2. § ﬁ(@ -
has complex coefficients. There is no choice of the local % %® G
coordinate systems that would make all the coefficients real,  0.25 &

once the locak axes are fixed along the classical solution’s
directions. The locak; andy; can also be defined without
reference to the specific form of the classical solution, as was

T o000 &

g

stated in Sec. IlI, but this results in a more complicated ex- 0.2 g ©
pression for the Hamiltonian. —0.50 e @, @
©° B
A. Ground-state energy and wave function -0.75 y @ %
The ground-state energy and the wave function coeffi-  _; 4,
cients are functions of anda. The =0 case corresponds -06 -04 -02 O-OR 02 04 06 08
to four isolated triangles, while the—c case corresponds o)
to spins forming singletédimers via the J, bond. There is FIG. 2. Zeros and poles of the Paalgproximant of the diagonal

no further frustration when assembling the tetrahedron fronglementay, of the effective Hamiltonian for=1 in C;, with 220
the individual triangles, since this costs nothing in energy foforders of perturbation theory use@: zeros;X, poles.

the classical spins. Consequently for this system the classical

ground state is independent af and the quantum fluctua-
tions select a unique ground state whe# 0. This is remi-
niscent of the order-disorder transition induced by quantu . L
fluctuations for frustrated systerfisThe effective yH?lmil- The ground-state energy for differeats is given by the

g S .
tonian for the two degenerate ground states has the fonowingonverged value OEN()‘,)' which is the !OWESt eigenvalue
form: or theNth-order approximant. The criterion for convergence

is that at ordelN mean-square fluctuations should be 1% of
Ay(N) By(\) the mean value for the seven approximants placed around the
e”:( ) (100  Nth order(i.e.,, N=3,... N, ... ,N+3). This is easily sat-
Cn(A) Dn(M) isfied for small values oN when\<0.5 for =1, but the
mean-square fluctuations increase for larger values dhe
dependence oN for different values otx can be understood
u|1%y looking at the structure %y (\) in the complex coupling
fconstant planéFigs. 2 and Bwhich is discussed below. The
analytically continued form for the polynomials is given as
the ratio of two polynomials defined in the complexplane
so that, for example,

states at each value af For C, the dimensionality of the
Hilbert space i =21%=4096.

where Ay(N), By(N), Cy(N), andDy(A) are polynomials
in A of Nth order, the order of perturbatioh. can assume
complex values, since we are also interested in the struct
of the functions in the complex plane. The coefficients o
seriesCy(N) andDy(\) are complex conjugates of the co-
efficients of By(\) and Ay(\), respectively. Therefore, in
the case of physical interest whekeis real, Cy(\) and
Dn(N) are the complex conjugates &y(\) and Ay(\),
respectively. Diagonalization of the matrix in the latter case
shows that its eigenvalues are real, as expected. The tw

classical ground statg®) and|0) evolve in the following
manner as functions of: 0.4

d-t 0.2 %% T

N
I\Ifo>N=|0>+n§1 A“I\Ifn>=|0>+i§1 FhMY, (1D

0.8

0.6 Q

&
®

Im(™)

0.0
and similarly for| W)y, where FiN()\) are polynomials of ~02 | %%
Nth order in\ with complex coefficients|i) is a Hilbert ® @9@ % %X &
space vector different froff0) and|0), andd is the dimen- -0.4 @
sionality of the Hilbert space. is again the dimensionality
of the degenerate subspaterelL =2). —0.6 o

1. Analytic continuation _0'8-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3

The next step is to analytically continue the polynomials Ret)

An(N), BN(M), Cy(N), Dy(N), andFy(N). Then the 22 FIG. 3. Zeros and poles of the Paaleproximant of the diagonal
matrix is diagonalized and the energies as well as the wavelementA, of the effective Hamiltonian forr=2 in C;, with 220
functions are known. This gives the ground and first excitecbrders of perturbation theory use®:; zeros;x, poles.
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PN()\) 0.2 T T T T
AN — AN = , 12
MM ZAT N =5 ) 12 P . )
wherea.c. stands for analytically continued. Faron the o L ]

real axisDy®=(AY®)* and Cy®=(B{)*, guaranteeing
real eigenvalues for real. The structure is revealed by look-
ing at zeros and poles &°(\) for complex\. These are
the roots ofPy(\) and Qy(\). Frustration leads to branch
cuts in then plane which are given by lines of mixed zeros
and poles oA{ “(\). This is how the single-valuedy“(\)
tries to reproduce a multivalued function associated with a ~ _, ,
cut in the complex plane. This structure is shownder 1 in

correlation function
|
o
N
T
\

Fig. 2 and fora=2 in Fig. 3, for N=220. The radius of 05 | ]
convergence\. (circles shrinks asa increases and fok

>\ the perturbation expansion is asymptotically conver- 08 = Y o4 06 YY)
gent. This indicates that more orders are needed for Pad ' ' T ' '

approximants to converge as the rakib\ . increases. One

explanation for this is that, as increases, the classical ~ FIG. 4. Correlation functions fod;=1 in the ground state of
ground state is not as good a starting point as for simall Cj, ath=0: solid line,(S;-S,); dotted line(S,-S;); dashed line,
since the spins tend to form singlets via thebond in the  (S,-S); long dashed ling(S, - Sy).

guantum limit. Thus it gets harder to reach the quantum state

from the ordered classical ground state, the former made u@f the wave function fully solves the problem. Since all the

of independent singlets on the nontriangle bonds at the limistates in the Hilbert space determined by the lacalkes
Jy1Jy—ce. contribute to the ground- and first-excited-state coefficient

functions, the calculated wave function is essentially exact.

2. Numerical precision
. ical precisi 3. Degeneracy

As we go to higher orders in perturbation theory the num- L L
ber of calculations goes up, increasing the possibility for In the absence of an applied field states with diffe(&i

significant propagation of numerical errdrTo extend the values are degenerate and the excited state, a triplef,in C

calculation to higher orders, the packagerun was used® is a linear combination 08’=0,+1 states. However, it is
, 1 H H Z__
which allows arithmetic to very high precision, limited only found that starting in th&’=0 sector as we do the perturbed

by machine specifications. The perturbation and analyti(:State stays in this sector fqr allfor both 9“?“’?0' and excited
continuation were done by using typically 94-digit precision states_ah=0. Alt_hough th'.s. degeneracy is lifted by the ap-
in MPFUN, except in some cases where 194 digits were use _I|ed field, there is an additional degeneracy due to the geo-

To reduce memory requirements and execution time, pernetrical symmetries of . The exact diagonalization
turbation theory was first run in double precision. After theshows that there are three degenerate triplet states at the first

states with equal coefficients or coefficients differing only in €Xcitation energy so that even in an applied field the excited
sign (in real and/or imaginary pardue to symmetry were state'wnhS =1 is triply degenerate. Choos'lng a particular
identified, the program was run withpFUN, taking advan- (E!aSSICEU ground state to generate the starting st@jeand
tage of these symmetries. Thus the scale of the calculatiol®) picks out a linear combination of these degenerate states.
was significantly reduced. The time required to get 250 or-
ders in perturbation theory was approximately 35 min, when
eight processors were used in parallel on a SGI machine. After the calculation of the ground-state wave function,
These were IP27 processors with a frequency of 250 MHzits correlation functions can be directly evaluated. Ip, C
We typically used 250 orders to get convergence for fieldshere are five kinds of qualitatively different correlation func-
smaller thanj;. tions, two of which refer to nearest neighbors. In Figs. 4 and
A second criterion of convergence comes from the totab these are plotted as a function of the strength of the quan-
spin component{S”), which is a good quantum number for tum fluctuations\ for the casea=1 for the ground and
the Hamiltonian in the isotropic case wheke=1. If the excited states, respectively. The magnitude of the correlation

analytically continued wave function coefficients Converge’function<§l~§9> is smaller than 0.02 and is not plotted. For
then the calculation ofS?) should yield an integer in an \ -1 the solution of the full isotropic case agrees with the
applied field. Any deviation from an integer value indicates aone found from exact diagonalizatiéh. The nearest-

lack of convergence, which could be due to insufficient or-__. : . 2 av_
ders of perturbation theory used or propagation of numeric Z?lghbor correlation functions args, - S,)=—0.125 and

error, and indicates that higher numerical accuracy is needeffS1- S4) = —0.250 at the classical level whexe=0. Spins 1
This criterion is more stringent since now all the coefficientsand 4 are antiparallel, whilgS, - S,) is one-half of(S; - Sy).
Fn(N) have to converge but once convergence is achieved In the ground statéFig. 4) (§1-§2) increases in magni-
any expectation value can be calculated, since the knowledgade with\ and at\ =1 equals—0.183, being roughly 50%

4. Correlation functions
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0.2 T T 7 T

o N

0.0 + ]

correlation function

1.0

FIG. 5. Correlation functions fod,=1 in the first excited state
of Cy, at h=0: solid line, (S;-S,); dotted line,(S,-S,); dashed
line, (S;-Ss); long dashed ling(S; - Sg).

bigger than its classical valué§1-§4> increases in magni-

tude as the quantum fluctuations become stronger an

reaches its maximum just before=0.8. Then it does not

correlation function

PHYSICAL REVIEW B63 184436

FIG. 6. Nearest-neighbor correlation functions 3k 2 in the
ground state of G at h=0: solid line, (S;-S,); dotted line,
(S;-S,); dashed line(S; - Ss); long dashed lineg(S; - Sg).

the classical ground state is nondegenerate, and in the second

case nondegenerate perturbation theory is used. The results
the two methods should agree at the isotropic linnit,

=1. However, their dependence anis different.

change significantly and its magnitude)at 1 is more than

2 times larger than its classical one, being equat-@586.
This is because as the perturbation is turned on adjacent
spins belonging to different triangles want to create singlet
bonds due to theid, interaction. The value ofS;-S,) at
A=1 is close to the value for a singlet state between two
spins, which is—0.750. The other two correlation functions
have a nontrivial dependence an but their values in the

H
_:H0+)\(H1+H2),
J1

1. Degenerate case: Field-independent classical ground state

The Hamiltonian for the first method has the form

(13

isotropic case do not significantly differ from their classical whereH, andH; were defined before ard, is the part that

ones.
The excited-state correlation functions of Fig. 5 do not
differ significantly from the ones of Fig. 4. However, we

observe a smaller value fofS;-Ss) compared with the

ground-state value, Whil(ér §4> has a smaller magnitude at
A =1 again compared to the ground-state value, indicating
more triplet character for this bond.

In Figs. 6 and 7 we plot the correlation functions fer
=2. We observe that for both the ground and excited statess
all the correlations decrease in magnitude, except the one=
between neighboring spins connected via dhebond. The

value of (S;-S,) in the ground state is now-0.697, ap-
proaching the singlet value 0.750 even closer.

unction

correlatio

B. Magnetic field

We next introduce a magnetic field in the problem and
study the ground and excited states as a functiox. dthere
are two possible approaches to this calculation. The first is to
perturb around the zero-magnetic-field classical ground state.

0.2
0.1
0.0

0.1

02

03

-0.4

-0.5

-0.7

-0.8

0.0

relates to the magnetic field. Specifically,

0.2

0.4 0.6 0.8 1.0

A

FIG. 7. Nearest-neighbor correlation functions 32 in the

The second is to calculate the classical ground state in th8=1, S’=0 first excited state of G ath=0: solid line,(S;- S,);
presence of a magnetic field, and then apply perturbatlodotted line, (S;-S,); dashed line,(S;-Ss); long dashed line,
theory. Because the field breaks the time reversal symmetrys, - S,).
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N N
h
H,=—h> cos9i32+§2 sing(S'+S7). (14 o
i=1 i=1

h is the strength of the magnetic field in units Bf and 6;
the classical solution’s angles with the glotmbxis. The
direction of the magnetic field is taken along the global o

axis, so it is perpendicular to the plane of one of the four o
triangles of the system. The spins belonging to any triangle2
are coplanar in the classical ca8e spin spacg and they §

can be chosen to lie in the physical plane of the triangle. $%7¢ o o o ©o © o & o o0 7

2.(S%
[m]

For =1, the ground state lies in tH&=0 sector when =
there is no magnetic fieldS*) is defined along the global 8
axis, and it commutes with the Hamiltoniah3) atA=1. As
the field is turned on the energy of the ground state, which is —6.200 oE 0

a singlet, will not change at the isotropic limit. However, the
triplet excited state haS*=1 there, and its energy decreases
linearly with the magnetic field due to the Zeeman term. Ata  FiG. 8. Ground-state and first-excited-state energy as a function
critical value of the field the triplet-state energy becomesy applied magnetic field for G: O, S¢=0; O, =1; ¢, &
equal to the one of the singlet state, so the triplet state be-=5

comes the ground state. As the magnetic field increases fur-

ther the ground state moves towards spin sectors with higher

value ofS?, until the magnetization saturates. The results fowhere AR“(\), BR*“(\), CJ“(\), and D{“(\)

the energies found from perturbation theory and analyticre the analytically continued values of the corresponding
continuation are found in Fig. 8, and they reproduce the expolynomials of Nth order. At the critical fields at which
act values X=1). By extrapolation of the straight lines the two states exchange “roles” as the ground and
which give the ground and first excited energies back to zerfirst excited states, the square root goes to zero at
field, we recover the energies of excited states in the zerox=1. This occurs wherB3¢ and the imaginary part of
field case. The diagonalization of the effective Ham|lton|anAﬁl.c. go to zero. In this way, we start from two

magnetic field

matrix gives the following eigenenergies: degenerate ground states and we end up with two degenerate
A%C()\)‘l‘ D%C()\) States. ) ) )
E = 5 The strict criterion for successful convergence of the

wave functions is the calculation of tH&?) number. This
should be an integer at=1. We calculate its evolution with

\ in the global spin basis, where the quantization axis is the
same for all spins. The expression for its expectation value
(159 (SHis

T \/B§~°-<x> SINE . ,

AaN'°-(>x>—D’°‘N'°'(x>>2

(Wo| S Wo) +| G| W5| S| W) + 2 Re(G(Wo| S| W5))

($)= CY— - (16)
(Wo|¥o)+|G|H V5| ¥5)+ 2 REG(Wo|P5))
whereG is given by
Aa.c.()\)_Da.c.()\) Aa.c.()\)_Da.c.()\) 2
N 5 N i\/Bﬁ'c'()\) f\‘l'c'()\)'i_ N 5 N
. . (17
BR (M)

The plus sign corresponds to the ground state and the minugary part ofAy“(\) go to zero, thus both the numerator and
sign to the excited one. The magnitude of this coefficient is Idenominator vanish. The success of the analytic continuation

for any real\, since in this cas®{“=(Ay*)* andC{“ is such that the calculation d&3%(\) and B®(\) is so
=(B{®)*. The accurate calculation of the wave functions ataccurate after analytic continuation that the result
the critical fieldsh, involves taking the limit lim_; G(\). lim,_ 1 G(\)==1 is recovered and this is reflected in the

In this case the magnitude 8{;°(\) as well as the imagi- calculated(S?). The calculation was done for various fields
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FIG. 9. S* vs A for C,;, for a magnetic fielch (ground state FIG. 11. S* vs \ for C,, for a magnetic fielch starting from the

starting from the magnetic-field-independent classical ground statenagnetic-field-independent classical ground stdtes 1.0: solid
J,=1.0: solid-plus line,h=0.500; dotted lineh=0.670; dashed line, h=1.010, ground state; dotted line=1.010, excited state;
line, h=0.687; long dashed lineh=0.688; dot-dashed lineh dashed lineh=1.050, ground state; long dashed lires 1.050,
=0.690; solid line h=0.700. excited state.

for =1, and the results are shown in Figs. 9 and 10. Theréo 1. Thus forh=0.688 there is a rapid change in the mag-

it is shown that indeedS?) assumes integer values when netization at a value ok close to 1. There is competition

=1, confirming the success of analytic continuation. For exbetween the 0 and 1 spin sector for the ground state, and

ample, wherh=0.7, at\ =1 (S?)=0.999 999 999 98 for the finally quantum fluctuations lead to the latter. The magnetic

ground state andS?)=1.0x 10" ! for the excited state. field terms of the perturbing Hamiltonian favor a magnetized
As seen in Fig. 9, the quantum fluctuations raise the valug@round state, while the rest favor zero spin. The sudden

of (S?) for small values of the magnetic field, but eventually change in(S) as a function o\ moves closer to.=1 as

it goes to zero at the isotropic limit. However, just above theh—h from below. If we go farther away from this critical

transition to theS*=1 sector, which occurs dt,;=0.6878 field, the jump is pushed towards smaller values\pfand

in agreement with the exact answég?) has a nontrivial ~eventually it vanishes. Similar effects are observed in Fig.

behavior for intermediata’s before assuming a value equal 10, which includes the corresponding graphs for the excited
state. In this case, the excited state Bas 1 below andS?

10 7 =0 above the transition. The conclusion is that there is a
“window” around the critical field where thé. dependence
of (S%) is very strong.

As the magnetic field gets bigger, more terms are needed
to analytically continue the wave function so that the spin
number assumes the proper integer values. There is also a
need for greater numerical precision, due to the increased
number of calculations which tend to propagate the numeri-
cal errors** and so 194 digits oftPFUN accuracy were used.
The transition between th&=1 andS*=2 spin sectors for
the ground state takes placehab=0.9869. For a magnetic
field equal to 1.01, 501 orders were generated to get conver-
gence. This requirement for more orders in perturbation
theory and more accuracy makes the calculation of the factor
G of Eq. (16) harder as the second critical field is ap-
0.0 ¥ proached. The behavior ¢5%) as a function ofx is shown

0.0 0.5 1.0 in Fig. 11, where théS?) value of the ground state remains
A constant over a range af, and eventually “jumps” to the

FIG. 10. 7 vs \ for Cy, for a magnetic fielch (excited state  final value(S%)=2. On the other hand, the excited stq®)
starting from the magnetic-field-independent classical ground staté@Pproaches 2 close to~1 only to settle at 1 when=1.

J,=1.0: solid-plus line,n=0.500; dotted lineh=0.670; dashed Nonmonotonic behavior of the quantum numBénear a
line, h=0.687; long dashed lineh=0.688; dot-dashed lineh transition is observed for other values &f as well. These
=0.690; solid line/h=0.700. are shown in Figs. 12 and 13, fds values equal to 0.8 and
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1
correlation function
|
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N
!

-0.5 I L I I
0.0 0.2 0.4 0.6 0.8 1.0

A

0.0
0.0 0.5 1.0

FIG. 12. 5 vs \ for Cy, for a magnetic fielch starting from the FIG. 14. Nearest-neighbor correlation functions faor, @r J,

magnetic-field-independent classical ground stdie-0.8: solid =1, h=0.7, ground state: solid Iine<§’l'§22; dotted line,
line, h=0.530; dotted lineh=0.535; dashed lineh=0.540; long  (S;-S,); dashed line(S; - Ss); long dashed lineg(S; - Sg).
dashed lineh=0.547; dot-dashed lindy=0.600.

nearest-neighbo(éi-§j> for different choices of starting
classical ground states the values of the energies, calculated
directly in Eq.(15), are recovered.

A further check on the two-point correlation functions
calculated for the wave functions {§%) ==, (S - §;). Cal-
3. Correlation functions culating (S?) in the ground and excited stateshat 0.7 we
find 2.00188 and-0.002836 1 consistent withS?)=S(S
+1) for S=1 andS=0. This measurement tests the accu-
racy of all two-point correlation functions. The ones for near-
est neighbors fon=0.7 are plotted in Figs. 14 and 15 for the

1.8. For the second case the higher valud-o$tabilizes the
spin value for\’s close to 1. It was observed that conver-
gence was harder to get ds and/orh were increased, for
the reasons already mentioned.

Although the calculated eigenstateshat 1 are indepen-
dent of magnetic field they do depend on the field for inter-
mediate values of. This can be seen clearly {5 as a

function of\ in Figs. 9 and 10. As pointed out previously the

choice of the starting classical ground state picks out a paidround and excited states. Comparing these withaifie-
ticular linear combination of the three degeneraB:=(, pendence of the states in Figs. 6 and 7, the only difference is

S?=1) states. Different linear combinations lead to different? Nonmonotonic dependence Xt-0.5, especially for the

values of the(éiéj). However, when adding the values of nearest-neighbor correlation functiof8, - S) and(S; - Sy).

1.0 S— 0.2 ; ; \ .

i 0.1 + B

correlation function
|
o
N
T
1

-0.3 7
04+ T 1
-0.5 r |
-0.6 : ' : .
1.0 0.0 0.2 0.4 0.6 0.8 1.0

FIG. 13. §* vs \ for Cy, for a magnetic fielch starting from the FIG. 15. Nearest-neighbor correlation functions fop, @r J,

magnetic-field-independent classical ground stdte=1.8: solid =1, h=0.7, excited state: solid Iine(§1-§22; dotted line,
line, h=1.3423; dotted lineh=1.400; dashed lineh=1.500. (S1-Sy); dashed line{S; - Ss); long dashed lineg(S; - Sg).
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FIG. 17. Zeros of the Padapproximant for the square root
FIG. 16. Zeros and poles of the Paajgproximant of the square using 270 orders of perturbation theory for various magnetic fields:
root in C;, with 220 orders of perturbation theory used, magneticO, h=0.686; (0, h=0.687; ¢, h=0.6875;+, h=0.688; X, h

field h=0.688: O, zeros; X, poles. =0.689; *, h=0.690.
4. Analytic structure interactions with the quantum ferromagnetic ones and the
magnetic field. Consequently the radius of convergence is

The motion of the zero of the square root appearing i

Egs.(15 and(17) in the complex\ plane can be traced out |, 'rig 17 the roots of the approximants are plotted for

with the helpl of the. Padapproxma}nts, Wh'Ch are ratios O.f various magnetic fields close tg;=0.6878 in the vicinity
two polynomials. Since the analytic continuation was quite

ful in the vicinity of = 1 look for th of A\=1. The zeros of the square root approachk 1 in
successiulin t. e V'Cm!ty OA=1, We can looK Tor the struc.- conjugate pairs and they finally hit the axis at the transition.
ture of approximants in this area. To this end, we conside

' As the strength of the field is further increased, the roots
the function move away from\ =1 in the opposite direction. We see this
behavior in a small range of the fields around the transition
AZC(N)—D&%(N)\2 with roots arounch =1, which is reflected in the rapid non-
2 ) (18 monotonic variation of S?) around the critical field. Since
the square root of functiofil8) has to eventually be taken,
its zeros will turn into branch points in the complexplane.

Smaller.

BY(MCH® () +

which is inside the square root in Eq45) and(17), and we

plot the zeros of the numerator and denominator of the ap- 5 nondegenerate case: Field-dependent classical ground state
proximants as a function of the magnetic field. The approxi- ) )

mants were generated with 220 orders of perturbation theory 1Ne alternative approach to the problem is to calculate the
(the order of the numerator and denominator of the Pagé&lassical ground state in the presence of the magnetl_c field,
approximant is one-half of this numbetn Fig. 16 the com- and then mtroducg thg remaining terms as perturbation. In
plex plane structure is plotted for a magnetic fighd this case the Hamiltonian is

=0.688. The Padepproximant is seen to reproduce the H

branch cuts of the function in the complex plane. There are —=Ho+H{+N(H+H)), (19)

also zeros and poles in the complex plane not falling on any J1

of the branch cuts. These are present only in approximants of
specific order and they are artifacts of the analytic continua-
tion. It can be seen how the zeros of Efj8) appear in the N

complex\ plane close tov=1. The coefficients of the ex- Ho= —hz cosh; S, (20)
pansion of Eq(18) are real, so the zeros and the poles appear i=1
in complex conjugate pairs.

Another feature of the picture is that it is asymmetric with
respect to the imaginary axis. This asymmetry gets more
and more pronounced with increasing field. This is because
negative\’'s correspond to different ferromagnetic couplings andH, andH; have already been defined in E¢®). and(9).
between neighboring sites, and these interactions favdBince the magnetic field breaks the degeneracy of the classi-
aligned spins, a state similar to the one favored by the mageal ground state, Rayleigh-Scliinger perturbation theory
netic field. In this case it is more difficult to get convergencecan be applied directly for the wave functions. The results
because of the competition of the classical antiferromagnetiafter the analytic continuation are shown in Fig. 18. This

here

H§=;i21 sing(S"+S7), (21)
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FIG. 18. $* vs \ for C,, for a magnetic fielch starting from the
magnetic-field-dependent classical ground state; 1.0: solid line,
h=0.5; dotted lineh=0.6; dashed lineh=0.8; long dashed line, 3
h=0.9; dot-dashed lineh=1.200.

FIG. 19. Space configuration of,§ All the bonds are equal to

case, demonstrating the consistency of the two approaches

method can be compared with the one of the previous sectiopfarting from the classical ground state in the absence of a
only at A\ =1, where in both cases the isotropic Heisenberd“agnet'c field and the magnetic-field-dependent classical
Hamiltonian is recovered. Starting from the field-dependen@round state.
classical ground state is not any better as far as computer
memory and execution time are concerned, since symmetries
reduce memory requirements at the same level in both cases. Next we consider the 20-site system on the vertices of a
However, the first method also gives the ground and firstjodecahedron, shown in Fig. 19. In,dhere is only one
excited states very accurately; consequently the approach @fnd of bond, which we call, and each atom has three
the transitions betwee®f sectors as a function of the applied nearest neighbors as in the,@ase. In the classical solution
magnetic field is eaSin seen. On the other hand, the SeCOF‘K;binS be]onging to the same pentagon are not Copﬂém}d
method works better for higher fields, since now the classicalhe energy per bond is-5/3= —0.7454. This is bigger
ground state is related to the strength of the magnetic fieldhan the energy per bond for the coplanar spins on an iso-
thus it has a nonzero value f¢8°). Various fields up th  |ated pentagon, which is cos/s)=—0.8090. Thus when
=1.3 were employed in the calculation. The results for thethe dodecahedron is assembled from the individual penta-
energy agree with the exact diagonalization ansier. gons there is a cost in energy, in contrast to the 12-site sys-
Looking at Fig. 18, we see that the dependenceséfon  tem case. This system has a discontinuity ) as a func-
A is not monotonic for the various magnetic fields. This cantjon of the magnetic field at the classical level unlike the
be attributed to the fact that the starting point is now thejp_site system. The discontinuity has a magnitude of 0.64
magnetic-field-dependent classical ground state. The terms g occurs at a magnetic fietd=1.432). This is also the
the Hamiltonian related to the magnetic field tend to increasgase for G, whereas in §,, C;o, and G, there is a discon-
the spin, while the rest favor a zero-spin quantum state; thugn ity in the slope of the magnetization with applied fiéfd.
there is competition between the two at the classical angye start again from the classical ground states and perturb
quantum levels. In the degenerate case the field-dependeem with the quantum fluctuations. The difference now is
terms entered only in the perturbing part of the Hamiltonianhat the exact solution of the problem is not known and the
making the perturbation stronger and dominant in the deteryjipert space is much larger with?2=1,048,576 states.
mination of S* for higher\’s. . The question we wish to address is whether the differ-
The structure of the analytic continuation of the energyences between,gand G, seen at the classical level in mag-
was also studied in the nondegenerate case, and it was cORgtic properties survive for the= 1 case. As we will show
sistent with the structure found from the degenerate pertulpg|oy these differences do survive and are seen in the ana-
bation. For a magnetic fieki=0.8 the expression in EGL7) - ytic structure of the perturbation theory for the two systems.
has a zero ak,~0.788+0.331, while the analytically con-  sjnce spins are not coplanar at the classical level, the Hamil-

tinued function for the energy in the nondegenerate case hagnjan, which is defined as described in Sec. II, assumes the
a branch cut which starts at a value df equal toX,  following complicated form:

~0.898+0.2171 and extends almost parallel to thkeaxis.

IV. C oo

Since V|\1|=|\,|, the branch cut of the square root in the E—H +AH (22)
degenerate case corresponds to the one of the nondegenerate J 0 b
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FIG. 20. Ground-state and first-excited-state energy for different FIG. 21.(S% as a function of\ for the ground state and first
values of applied magnetic field for,¢2 O, ground state;0, ex- gy iiteq state of & for a magnetic fielch=0.4 starting from the
cited state. The dotted line is a fit for the ground state and the lon%agnetic-field-independent classical ground state: solid line
dashed line for the excited state. ground state; dotted line, excited state.

B. Correlation functions

%‘3 Suzsjz’ (23 In Fig. 21 we plot thex dependence of the expectation
’ value(S?) for h=0.4. We see a behavior similar to the one
of Cy,, as the ground state assumes the vah®7x 10 8
and the excited state the value 0.999 999 A atl. Again
Hy=> (aijs'|+ 5j+ +,3i13|+ S + yij3|+ S+ 5ijsj+ S this points to the accuracy of the calculated wave functions.
{5 The ferromagnetic or antiferromagnetic character of the cor-
YtHc (24) relation between any two sites remains the same in the
o ground state and the two lowest-lying excited states at

=0. In each of these states the nearest-neighbor correlation

wherea;;, Bjj, vi;, ands;; are complex coefficients defined ~—0.3, while all 0ther<§i-§j> have magnitudes-0.03
analytically. For example, for thé,; S, term aj,=3(1  —0.08 atA=1. Correlati(_)n functions are plotted for the
+\5/3), Bro=2(1—\5/3)(1—3i), 7y1=—L(1+3i), lowestlying singlet and triplet states hat=0.4, where they
and 8,,= ¥%,. Since here the starting point is the classical"® the grpund and first exmtgd states in Flgs. 22 and 23. We
ground state, defining a localaxis at each site, the coeffi- first consider the nearest-neighbor correlations. For the sin-

cients ofH, are in general different for different bonds. Fur- glet state, Fig. 22, theS, - S,) and(S, - Sg) are equal only at
thermore, they are complex because of the nonplanar chal=0 and\=1. The\ dependence for @\ <1 depends on
acter of the spins in the classical ground state. We apply thBoth the starting classical ground state and the valuk. of
same methods towards the solution as in the 12-site systefor the lowest-energy singlet stattS;-S,) and (S;-Sg)
case. The elements of thex2 effective Hamiltonian matrix grow in magnitude from their classical value,0.186 at\
He'"in Eq. (10) are now real for all applied magnetic fields. =0, to —0.324 at\ =1 for all nearest-neighbor correlations.
Thus they are comparable to the value of the nearest-
neighbor correlation in the ground state of an isolated penta-
A. Ground and excited states gon, —0.375.
In the lowest-lyingS=1, S$*=1 state, Fig. 23, two values

V5
Ho:_?

The energies and wave functions of the two lowest-lying : ; :
states were calculated up he=0.72). The ground stateQ) of the nearest-neighbor correllatlon functions are present,
and the excited state{) are shown in Fig. 20. By drawing — 0-297 and—0.327 at\=1. This state can be described by
straight lines through the energies and extrapolating to zer6onsidering the bonds on a pentagon, on its diametrically
field the lowest-energy state in each spin sector is recovere@PPOSite mirror, and on a chain formed by the ten remaining
as well as the second lowest energy in 80 sector. We sites. On these bonds;- S;) = —0.297 while on the bonds
find these energies to g, (S=0)=—9.722], E,(S=0)= connecting the chain to the two pentagor(éiéj}
—9.345), E5(S=1)=-9.208), and E,(S=2)=—28.523. = —0.327. Since this configuration can be chosen in six dif-
The magnetic field dependence is given by a Zeeman ternferent ways, the tripleb=1, S*=1 state is sixfold degener-
—h=%,S7. Unlike C,, the first excited state &i<0.137 isa  ate. There is little difference between the next-nearest neigh-
singlet rather than a tripléf bors and more distant correlations in the singlet and triplet
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FIG. 22. Spin correlations in the ground state gf @s a func- FIG. 24. Ground- and excited-state spin correlations Hor
tion of X for h=0.4: solid line,(S;-S,); dotted line,(S;-Sg); =0.4 as a function ok for Cy at sitesi=1 andi=6: solid line,
dashed line(S;-S;); long dashed line(S, - So); dot-dashed line, (S;-h) in the ground state; dotted linéSs- h) in the ground state;
(S;-S,1); thick solid line,(S;- S). dashed line(S, - h) in the excited state; long dashed lif&- h) in

. o the excited state.
states. The quantum fluctuations significantly reduce the

magnitude of these correlations compared with their classical

values at\ =0. . -
.__bottom pentagons have the same azimuthal aaghéth the
As a further check of the accuracy of.the nge flincnonz axis, which is later taken to be the direction of the magnetic
the calculated values of these correlations give @8f)  field. The rest of the spins form a different anglewith the
=3 (S5 5;) the value—0.000 89 for the ground state and z axis, so there are two different angles in the classical solu-
consistent with the calculate(5") values in Fig. 21. The spins for the calculated states in the magnetic field, and they
change in the value ofS?) between the singlet and triplet represent these two kinds of sites in the classical ground
states comes from changes in all & S;). The change due ~State. They were calculated for 1 and 6 and they are plot-
to the nearest—neighb@éééj)'s is ~1 and the rest comes ted |r1 Fig. 2_4 for tﬁhe%grounzd and excited §tates. They are
from small changes;~0.005, from the other bonds. This consistent with(Z;S;-h)=(S")h calculated in the ground
suggests that there is no simple characterization of the ex@nd excited states in Fig. 21.
cited states. For h=<0.137 the excited state is a singlet. This state has
the same symmetry as in the triplet state with two types of

In the classical ground state all the spins in the top and

020 T———— T ' ' nearest-neighbor bonds equal+d®.304 and—0.324. As in
0.15 T . the triplet case the longer-range correlations, both ferromag-
0.10 - el )l netic and antiferromagnetic, are still comparable in magni-
------------------------- e tude and~0.05.
0.05 r S
c
S 000F . )
2 C. Analytic structure
2 -0.05 ) ) _
5 010 Next we study the structure of the analytic continuation of
: the off-diagonal elemenB{“(\). In Fig. 25 we plot the
g 015 structure at a magnetic field equal to 0.3. Again we observe
-0.20 the asymmetry with respect to tlyeaxis. As in the case of
025 C,, the transition of the ground state between different spin
| sectors as a function of applied field can be tracked in the
-0-30 complex\ plane. However, the trajectory of the zeros of
I ( 1 ) a.c. _di . . o
-035 o2 02 o5 08 o N ()\)., the off d|e}goqal element in the effective Hamil
" tonian in Eq.(10), is different from G, where the zeros

move from the complex plane onto the real axid. at1 and
FIG. 23. Spin correlations in the first excited state gf &s a h=h. and then move away fon>h, as seen in Fig. 17.
function of A ff)r @:0.4: solid Iine,(Sl-Sg); gotted line(S;-Ss);  These values ok are branch points of the energy function
dashed line(S; - Sg); long dashed line(S, - So); dot-dashed line, for the ground and first excited states. Ig;Con the other
(S;-S,y); thick solid line,(S;- Syg). hand, close to the critical field),=0.514, two zeros o8
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FIG. 25. Zeros Q) and poles K) of the Padeapproximant
B3 “(\) in the complexn plane for Gy in an applied fielch=0.3;
here 240 orders of perturbation theory were used.

FIG. 27.(S") as a function of magnetic field for the ground state
of C,, for various\’s: O, A=0.70; 0, A=0.75; +, A=0.80; X,
A=0.85. The lines are fits.
approach the real axis from above and below at~=0.85.  independent classical ground state the magnetic field is part
The critical field is the value dfi where the triplet state first of the perturbation and is scaled hy So the effective field
becomes the ground state)at 1. As h is increased further at which discontinuities ifS?) take place is\h. In the clas-
the two zeros move along the real axis in opposite directionssical approximation for &, there is a jump in the magneti-
as shown in Fig. 26. At these values ofthere are discon- zation as a function df at 1.43 equal to 0.68 , whereS; is
tinuous jumps in the value ofS’) in the ground state as the magnitude of the classical spin. In the ground state cal-
opposed to the rapid variation withas seen in G,. These culated here the jump i6S?) occurs forh=0.72 and grows
jumps occur as the ground and excited states with differenih magnitude until, ah = 1, the jump discontinuity ifS?) is
values of(S?) switch roles wherB{“(\) changes sign. 1 for h,=0.514.

In Fig. 27 we plot{S?) for the ground state as a function  Different magnetic properties for th=3 solutions of
of applied magnetic field for different values af. The C;,and Ggare thus seen to come from the different analytic
curves fora<1 are strongly reminiscent of the results for behavior of the wave functions in the compbexylane. Simi-
the magnetization of the classical approximations fgyahd  larity of the quantum solutions with the classical solutions
Ceo- 2 Forh>0.5 there are discontinuities {{8?) for differ-  suggests that this difference in analytic structure comes from
ent values of\. In these calculations starting from the field- the different connectivities of the two systems.

0.05 T T T T T V. CONCLUSION
0.00 =" We have applied perturbation theory in the strength of
////* quantum fluctuations around the classical ground states and
-005 | T ] found essentially exact results for the ground and first ex-
T cited states for two frustrated spin systems, &d G,. For
0106 i C,g large orders in perturbation expansion and a high degree
3 of numerical precision are required to get convergence of the
-0.15 | _ analytic continuation of the matrix elements of the effective
Hamiltonian and the wave function coefficients calculated
—0.20 [ _ perturbatively.
e We found that although sites in both systems are threefold
_025 L . o | coordinated, the spectra are qualitatively different with the
@y lowest-lying excited state being a triplet in Cwhile it is a
""""" singlet in Gy. The difference in the behavior of the two

—0.30 ' L L ' L L L L S
0.502 0.504 0.506 0.508 0.510 0.512 0.514 0.516 0.518 0.520

magnetic field h

FIG. 26. Zeros of the PadapproximantBi®(\) along thex

systems is attributed to their difference in the connectivity.
The average energies per nearest-neighbor bondfot
spins, —0.325) (in C,5) and —0.3109 (in C;,), taking J;

real axis for Gy. Here 240 orders of perturbation theory were used=32=J., are comparable so that the “average” .degree of
andO and ¢ are the values calculated. The dotted and long-dasheffustration is the same for both systems. I, @e first ex-

lines are fits.

cited state arises by taking a linear combination of states
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each associated with a triplet excitation of a single nontri-of the system at low temperatures. This is an important fea-

angle bond. By comparingS,-S,) in Figs. 14 and 15 the ture in analysis of experimental data on any physical realiza-
nontriangle bond is seen to take on a more strongly tripletion of a kagomelattice. This result for thkagomelattice
character in the excited state. IagCon the other hand, there May not generalize to other frustrated lattices if the sensitiv-
is no nearest-neighbor bond which can be singled out tdfy to connectivity seen in ¢ and Gy is a guide to larger
describe the character of the singlet and triplet excited state§ystems.

The different values of? for states in G arise from small The accuracy, of the wave functi_ons foundat-1 sug-
changes in long-range correlations. In order to distinguisty€Sts that the Padgpproximants derived from the perturba-

between G and Go We observe that in I all bonds tion series are very accurate representations of the wave

are members of closed loops in which all bonds arefunctlons and energies in the complex plane between the

equivalent while in G, the nontriangle bonds form alternat- °Mgin and\=1 and that the analytic structure of these func-

ing sides with triangle bonds to make hexagons. Howevert?Ons accurately represents the dependenck end applied

ot o field. We have shown how the rapid change(8f) for A
characterization of connectivity by the nature of bonds form-
ed =1 andh=h, and the discontinuity i{S?) for C,, can be

ing closed loops is not sufficient in itself since the excited K he Pa : h i K
state of the Heisenberg model on a cube has a triplet excit 'ced back to the Padgpproximants. The ability to trac

state. this order-disorder transition from coherent states to eigen-

In the classical approximation it was possible tostates ofS* andS” as a function oh and applied field may
characterize the ground state for different systems in termge developed for richer many-body systems with the calcu-
of a topological number, the Skyrmion number, and tolational resources available today.
associate this with the presence or absence of discontinuities These calculations are being extended to higher values of
in the magnetization. We have shown that this differencespin and to finite temperatures and will be used to investigate
seen in the classical approximation fop,@nd G, survives the temperature evolution of the properties of magnetic mol-
in & for the exact states of the isotrop= % Heisenberg €cules, Mn,, Fe;, etc., and, in particular, the quantum me-
model and that it is associated with the analytic behavio€hanical description of the large moments presently used in
in the complex coupling constant plane. Although it their analysig®
seems clear that it is the combination of frustration and
connectivity which is responsible for the nature of
the spectrum and the response of the system to a
magnetic field, how exactly these are determined is not D.C. thanks G. Baker, R. Singh, and S. Trugman for dis-
obvious. cussions on some of the points raised in the calculations and

The connection between frustration and the characteD. C. Mattis for comments and suggestions on the manu-
of the excitation spectrum is also of interest for infinite script. The authors thank N. Bock and M. Jones for technical
lattices. The apparent singlet nature of the excitatiorassistance. Numerical calculations were performed on the
spectrum in thekagomelattice arises from frustratidf?®  machines of the Center of Computational Research at SUNY
and leads to a large nonmagnetic contribution to the entropuffalo.
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