PHYSICAL REVIEW B, VOLUME 63, 184428
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Using the constrained-path Monte Carlo method, we studied the magnetic properties of the two-dimensional
periodic Anderson model for electron fillings between 1/4 and 1/2. We also derived two effective low-energy
theories to assist in interpreting the numerical results. For 1/4 filling, we found that the system can be a Mott
or a charge-transfer insulator, depending on the relative values of the Coulomb interaction and the charge-
transfer gap between the two noninteracting bands. The insulator may be a paramagnet or antiferromagnet. We
concentrated on the effect of electron doping on these insulating phases. Upon doping we obtained a partially
saturated ferromagnetic phase for low concentrations of conduction electrons. If the system were a charge-
transfer insulator, we would find that the ferromagnetism is induced by the well-known Ruderman-Kittel-
Kasuya-Yosida interaction. However, we found a novel correlated hopping mechanism inducing the ferromag-
netism in the region where the nondoped system is a Mott insulator. Our regions of ferromagnetism spanned
a much smaller doping range than suggested by recent slave boson and dynamical mean-field theory calcula-
tions, but they were consistent with that obtained by density-matrix renormalization group calculations of the
one-dimensional periodic Anderson model.
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[. INTRODUCTION hybridized with a band of heavy, strongly correlated elec-
trons. Despite intense efforts to determine its phases, only a
Identifying the origin of itinerant ferromagnetism in met- few controlled analytical approximations and numerical cal-
als and specifying simple models exhibiting it are two of theculations exist foD=2. Instead, previous work often stud-
most intriguing and long-standing problems in condensedied the single-impurity Anderson model and focused on the
matter physics. Here we report the results of low-energy pereompetition between Kondo screening and the direct
turbation theory calculations and supporting zero-Ruderman-Kittel-Kasuya-YosiddRKKY') coupling between
temperature quantum Monte Carfl@MC) simulations that the localized spin&° This competition is present when the
suggest the existence and mechanisms for ferromagnetimumber of conduction electrons is at least similar to the num-
(FM) ground states in the two-dimensional periodic Ander-ber of singly occupied low-lying-orbital states. InD=2,
son model. much less attention has been given to the region of the phase
From a historical point of view, the one-band, nearest-diagram where the density of electrons in the conduction
neighbor hopping Hubbard model was one of the modeldand is small; however, it is for this case that ferromag-
proposed to describe itinerant ferromagnetism; however, theetism has been established in one-dimensional
ferromagnetic phase has never been found at physical paramsystemd*1~15
eter values. The numerical calculations, for example, have Using the density matrix renormalizatiotDMRG)
narrowed the extent of this phase to a small region arounchethod in the one-dimension, Guerrero and Ndaft, ex-
the Nagaoka pointthat is, the strong-coupling limit for one ample, found partially and completely saturated ferromag-
hole doped away from half filling. Paradoxically, in two- netism in the PAM. They considered a parameter regime
dimensions(2D), this model exhibits antiferromagnetism at where the energy of orbital state and the strength of the
half filing and antiferromagnetic correlations around half Coulomb repulsiorJ were adjusted so each orbital had just
filing at weak and intermediate couplings. one electron. The position of the orbital energy was below
Recently, Guerrero and Noacksted several possible ex- the lower band of the noninteracting problem, and one elec-
tensions of the Hubbard model that should enhance ferraron per orbital corresponds to a 1/4-filled noninteracting
magnetismi) the addition of frustrating hopping terms problem. For a sufficiently large value &f, the model ex-
(i) the inclusion of more than one orbital per unit cell, andhibited a ferromagnetic ground state. Beyond an interaction-
(i) the addition of more general nearest-neighbordependent value of the doping and a doping-dependent value
interactions>® In fact, a number of frustrated models with of U, this state disappeared. The ferromagnetic phase was a
more general interactions, such as theé Hubbard model, peninsula in a phase diagram that was otherwise a sea of
and multiband models, such as the periodic Anderson modglaramagnetism except at 1/4 and 1/2 filling where the ground
(PAM), have ferromagnetic ground stafes’ In this paper, state of the PAM was antiferromagnetic.
we focus on the properties of the two-dimensional PAM. Ferromagnetism seems to be readily found by mean-field
The PAM is often used to describe the essential physics odpproximations in any dimensioh%.? Using a slave-boson
many transition metals, rare-earth, and actinide metallianean-field theorySBMFT) for the symmetric PAM, Mbler
compounds including the so-called heavy-fermion systéms.and Wadfe'® found results similar to those of Guerrero and
The model includes a band of “light” uncorrelated electronsNoack. At 1/2 filling, they found a paramagnetieM) or
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antiferromagneti¢AF) phase depending on the value of the superexchange interactialy,~V?t*/U°® (for the symmetric
Coulomb repulsiorlJ. By lowering the density of electrons case where V is the strength of the hybridization in the
from 1/2 filling, they also found a smooth crossover from AFPAM. It has also been established that the Kondo lattice
to FM order via a spiral phase. Just before 1/4 filling, theymodel and the Hubbard model for strong coupling are iso-
got a first-order transition from FM to AF order. More re- morphic with particles in one becoming holes in the offfer.
cently, the SBMFT calcualtions of Doradski and The relevance of the Hubbard model gains additional support
SpaleR”*8 found wide regions of ferromagnetism in the in- from Noziges'’s long-standing argument that the dynamics
termediate valence regime that surprisingly extended weff! the screening clouds are described by an effective Hub-
below 1/4 filling. bard model. o _

In the low temperature dynamical mean-field theory Because of these mappings, it seems consistent to suggest
(DMFT) calculations, Thavildar-Zadett al® also found a ~ the strong-coupling physics found by Guerrero and Noack
region of ferromagnetism and studied its temperature deperfould map onto the domain of a one-dimensional 1/2-filled
dence. At very low temperatures, their ferromagnetic regioriubbard model. The venerable theorem of Lieb and Méis,
extended over a wide range of electron fillings, and in manyowever, excludes the possibility of the Hubbard model
cases, embraced the electron filling of 3/8. They proposed &Vith nearest-neighbor hoppingrom showing ferromag-
specific Kondo-induced mechanism for ferromagnetism af'€tiSm in one dimension. Their proof relied on the obvious
3/8 filling that has the conduction electrons in a spin-ability to order the electrons along the chain. The two-band
polarized charge-density wave antialigned with the ferro-nature of the PAM, however, prevents this ordering by al-
magnetically aligned local moments on the valence orbitals!®Wing processes not possible in the Hubbard model. A simi-
More recently Meyeret al. and Nolting®~?2 appended per- ar situation would occur for the two-legged Hubbard model,
turbation theory to DMFT and also predicted ferromagnetisnif it in fact shows ferromagnetism. We will argue that in the
over a broad range of electron filling extending below 1/4Wo-dimensional PAM these same processes are responsible
filling. for the ferromagnetism. They i\rzg RKKY and Nagaoka-like

our previoud® and new QMC results qualitatively agree and are excluded in Nozies's*#* picture and Thavildar-
with the DMRG work; however, the phases we find quanti-2adehet al's™ interpretation of it. It is important to remark
tatively and qualitatively disagree with those derived fromthat ferromagnetism in the PAM is obtained for a large re-
the mean-field approximations. Quantitatively, we find ferro-gion of parameters that include realistic values.
magnetism in a narrower doping range than the one predicted W€ Will base our arguments on the predictions of effec-
by the DMFT and SBMFT calculations. For fillings between tivé Hamiltonians generated from the PAM by the perturba-
3/8 and 1/2, QMC predicts a paramagnetic region, Whereadon theory and the results of our QMC simulations. For the

mean-field theory predicts ferromagnetic states in part of thaf AM parameters studied, these effective Hamiltonians sug-
region. In fact, at a filling of 3/8 where these calculations9€st a paramagnetic or antiferromagnetic state at 1/4 filling, a

predict ferromagnetism, we find a novel ground state of arfé'romagnetic region between 1/4 and 3/8 filling, a RSDW at

entirely different symmetry. Instead of ferromagnetismﬁls filling, a paramagnetic region between 3/8 and 1/2 filling,

QMC finds a resonating spin-density wai@SDW) state; and an antiferromagnetic state at 1/2 filling. We see all these

that is, the ground state was a linear combination of twdeatures in the QMC simulations.

degenerate spin-density waves characterized by th@)( In the Sec. Il we will define the PAM and sketch our

and (0sr) wave vectors. derivation of the effective Hamiltonians. In Sec. Il we will
We remark that the quantitative differences between theummarize our numencal method,'notlng finite-size limita-

DMRG and QMC calculations and the DMFT and SBMFT tions. Our results will be presented in Sec. IV. In Sec. V, the

calculations most likely result from the expected breakdowrfOncluding section, we will give a detailed contrast between

of mean-field theory in one and two dimensions. Probably?ur Picture and select other works.

the RSDW state was not found because it was not sought. On

the other hand, trying to understand the mechanism for fer- Il. MODELS

romagnetism is more fundamental. It points to the long- ; ; e

standing difficulty of building an understanding of the PAM The PAM is described by the Hamiltonian

upon the better understood single-impurity Anderson model ; : ; ;

(SIAM) or the analogous problem of building an understand- H=—t >, (di d;,+ djgdia)JrVE (digfigt fisdis)

I,o

ing of the Kondo lattice model upon the better understood (i)

single-Kondo impurity problem. Nozies addressed this U

later problem and pro_poseq a recjggciliation in terms of what + Efz nifaJr _ E nif(rnif_' 1)
he calls “the exhaustion picture?® o 20 7

We note that the electron filling near 1/4, place the work + + ) o
of Guerrero and Noackn the exhaustion regime. When the Whered;, andf;, create an electron with spim in d andf
Coulomb repulsiorU associated with the double occupancy Orbitals at sitei in a square lattice, and/,=f] f;, is the
of an orbital is largestrong coupling it is often argued that number operator for theelectrons of spirv at sitei. Else-
around 1/4 filling the PAM behaves like a 1/2-filled one- where, we will use a similar notation to denote quantities like
band Hubbard model. In two-dimensions this Hubbardn® =d! d;,, the number operator af electrons. The lattice
model has an antiferromagnetic ground state generated byheasN sites and the hopping amplitutibetweerd orbitals is

184428-2



FERROMAGNETISM IN THE TWO-DIMENSIONA. . .. PHYSICAL REVIEW B 63 184428

only to nearest-neighbdn.n) sites. The hopping amplitude 10
V hybridizes different orbitals on the same site. We used (a)
periodic boundary conditions.
From Eq. (1) we defineH,, the resulting Hamiltonian
whenU=0. H, has two spin-independent dispersive bands 5+
* 1 2 2
E;(k)=§[ek+efi \/(ek_Ef) + 4V ], (2)
0
separated by a gap . |/
A=E.(0,0—E, () - e
1 54
=—4t+ S| V(4t+ €1)?+4V2+ (4t — €)%+ 4V2].
3
For a square lattice, the energy= — 2t(cosk,+cosk,). 10+
This band structure fdfl g is illustrated in Fig. 1. We note if
€; becomes very negativi@lropping way below the bottom
of the lower banyl A approachese;|. r M X T
We also note that the widths of the upper and lower band
are 10
W*=EZ(m,m)—EZ(0,0 ®©
1
=4tt§[\/(4t—ef)2+4V2— J(4t+ €)%+ 4V2]. 5+
4
As €; becomes very negativ8y~ approaches zero al™* 0
approache®V=8t, the band width whetd =V=0. -
The operators that create quasiparticles in the lower and E&
upper bands are of the form
alazukfl0+vkdlol B
ﬁlo’z_kalza_l_ukdla" (5)
with 104
E+(k) — €¢
Uk: )
VIET (k) — e]°+V? r M X r
—V FIG. 1. Band structure of the noninteractingy €0) two-

U= . (6) dimensional periodic Anderson model. In unitstpf/=—0.5. In
VIET(K) — &:]%+V? (@) €=0.2, and(b) ;=0.5. llustrated is the flatness of the lower
band for caséb).

The symmetric PAM, which has the electron filling
=1/2 andU = — €;/2, has particle-hole symmetry. This sym- filling down to a filling of 3/8. For a large enough value 4f
metry is sufficient to prevent the fermion sign problem thatwe also found antiferromagnetism at 1/2 filling. This state
plagues QMC simulations. Such simulations, performed bywvas rapidly suppressed upon doping. At 3/8 filling we saw a
Vekic et al,?® suggest the existence of a charge and spin gapharp peak appear in the spin-spin correlation at the wave
for small values ofJ with the spin gap disappearing wheh  numbersk=(0,77) and (077). We interpreted this peak as a
is increased to somd.~2. AboveU., the system exhibits consequence of a state resonating between two degenerate
long-range antiferromagnetic order. spin-density waves characterized by reciprocal wave vectors
In a previous work we presented QMC results for the(0,7) and (Og).
asymmetric model. QMC simulations for the asymmetric In the present paper, we explore the doping range from
model experience a sign problem that is the reason why w&/4 to 3/8 filling, arguing for a region of ferromagnetism.
used the constrained-path Monte Carlo metfioHor fixed ~ Part of our arguments will be based on the properties of
values ofe;, we variedU and hole doped away from half effective Hamiltonians for two different regions of param-
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eters used in the simulations. These Hamiltonians will bdt does so by generating a set of random walkers initialized
derived in Sec. IV. We now summarize the the constrainedby replicating| ) many times. Each walker is then propa-

path Monte Carlo method. gated independently by sampling<arom P(x) and propa-
gating it with B(x). After the propagation has “equili-
lll. NUMERICAL METHOD brated,” the sum over the walkers provides an estimate of
The constrained path Monte CaflGPMC) method is ex-  the ground-state wave functidik).
tensively described and benchmarked elsewRtHere we In practice, we performed an importance-sampled random

only discuss its basic strategy and approximation. In thévalk by using the transformed iterative equation
CPMC method, the ground-state wave functjgi) is pro-

jected from a known initial wave functionyt), by a branch- 11 |¢"T>zz—lf dxP(x) [ B,(x)|]] ¢0>, (11)
ing random walk in an over-complete space of Slater deter- o o o

minants |¢). In such a space, we can writ¢y)

=3 ,x(¢)|¢). The random walk produces an ensemble of
|¢), called random walkers, which represdmt,) in the

In this equation

sense that their distribution is a Monte Carlo sampling of H (#71Bo(X)| o)

x(¢), that is, a sampling of the ground-state wave function. P(x)=2P(x) 7 . (12)
More specifically, starting with some trial stdté), we H (%] b,)

project out the ground state by iterating p "o

|y y=e A7 H-ED|y), (7)  Thus, importance sampling changes the probability distribu-

where E- is some guess of the around-state ener Pur‘gion of the Hubbard-Stratonovich fields, biasing it towards
re 9 9 9y- the generation of states with large overlap with the initial
posely, A7 is a small parameter so fdi=T+V we can

state. The factog is the normalization constant for the new

write distribution. It is associated with the weight assigned to each
—ATH _ o= ATT20— ATV o~ A7T/2 walker and the weight is used in a branching process to con-
e e e e , (8) , i . .
trol the variance of the results. We will not discuss this pro-
whereT andV are the kinetic and potential energies. cess here.
For the study at hand, the initial staft¢r) is the direct We used two different estimators for the expectation val-
product of two spin Slater determinants, i.e., ues of some observabl@. One is the mixed estimator
@]
lyr) =11 169). 9 <o>mixed=M, (13
T <¢T| ¢0>

Because the kinetic energy is a quadratic form in the creatiognd the other is the back-propagated estimator

and destruction operators for each spin, the action of its ex-

ponential on the trial state is simply to transform one direct (1€ 2O o)

product of Slater determinants into another. While the poten- (O)op= (drle 2] o) ' (14)
tial energy is not a quadratic form in the creation and de- o Yo

struction operators, its exponential is replaced by the sum ofthere|,) is the QMC estimate of the ground state anis

exponentials of such forms via the discrete Hubbard+typically in the range of 20 to 40. For observables that com-

Stratonovich transformation mute with the Hamiltonian, the mixed estimator is a very
accurate one and converges to the exact answikascon-
e—ATUni’gni',Uzl S e AN N, ) gURATU(R ) verges to exact ground state. For observables that do not
235 ' commute with the Hamiltonian, like correlation functions,

) A2 . the back-propagated estimator has been found to give very
providedU=0 and cosAr)=¢ - Accordingly we re- 400 rate estimates of ground-state properties. Significant dif-

express the iteration step as ferences between the predictions of these two estimators of-
ten exist.
H |p! )= f dx p()Z)H BU(§)|¢U>, (10) To completely specify the ground-state wave function for

a system of interacting electrons, only determinants satisfy-
- . ing (Yol p,)>0 are needed becausg,) resides in either of
VSVSZ:EH (;(V|_c(hxfl|e)l(<§$one 'f);Nr)ea(I:Sh IattTi((e:e ;ftN igftheHr?l:)ra%?r- two degenerate halves of the Slater determinant space, sepa-
o 1N : “e ST rated by a nodal surfacH that is defined by #;|¢,)=0.
of lattice snesP(x)f(;) is the probability distribution for The degeneracy is a consequence of Hat) and — )
these fields, an8 ,(x) is an operator function of these fields satisfying Schrdinger's equation. The sign problem occurs
formed from the product of the exponentials of the kineticbecause walkers can cradssas their orbitals evolve continu-
and potential energies. ously in the random walk. Asymptotically, they populate the
The Monte Carlo method is used to perform the multidi-two halves equally, leading to an ensemble that has zero
mensional integration over the Hubbard-Stratonovich fieldsoverlap with| ). If N were known, we would simply con-

184428-4



FERROMAGNETISM IN THE TWO-DIMENSIONA. . .. PHYSICAL REVIEW B 63 184428

strain the random walk to one half of the space and obtain an 1 ,

exact solution of Schidinger’'s equation. In the constrained- =N ; e iy,

path QMC method, withow priori knowledge ofN, we use

a trial wave function 1) and require{ 1| ,)>0. This is

what is called the constrained-path approximation. B
The quality of the calculation clearly depends on the trial bij =

wave function|+). Since the constraint only involves the

overall sign of its overlap with any determindt), it seems whereR;;=r;—r,.

reasonable to expect the results to show some insensitivity 0 Rewriting H, in the Wannier basis, we find that

|7). Through extensive benchmarking on the Hubbard

model, it has been found that simple choices of this function

can give very good resulfs. Ho= >, (f aiT(raj ot Tﬁgi’fmgj”), 17
Besides as a starting point and as a condition constraining .o

a random walker, we also usér) as an importance func-

tion. To reduce variance, we uégr|¢,) to bias the random with

walk into those parts of Slater determinant space that have a

large overlap with the trial state. For all three use$/gf, it

clearly is advantageous to haye:) approximate|y,) as Th=—t2 bybjt e agay+VX (byay+byay),

closely as possible. Only in the constraining of the path does (. ! !

|47)# | o) generate an approximation.
We constructediyr) =11 | $7) from the eigenstates of the

noninteracting problem. Because theomponent of the total = _t<%> Aajnt EfEI biyjy _Vz (byaj +byjaq).

spin-angular momenturfs, and the total spin-angular mo- ’ (18)

mentumS are good quantum numbers, we could choose un-

states and, henpe, ground states vith S, = 3(N;—N)). the lower and the upper bands. By construction, no hybrid-
Whenever possible, we would simulate closed shells of U ation exists between these two bands. The cost for this

and down electrons, as such cases usually provided energymplification is nonzero hoppings® and 7 between any
. . . j i
estimates with the least statistical error, but because WEair of Wannier orbitals and] in the same band.

wanted to study the ground—statg energy as a functiog of Next, we rewrite the interaction term

we frequently had to settle for just the up or down shell

being closed. In some cases, the desired valugaofuld not 1

be generated from either shell being closed. Also, we would H :_UE £ 19
: : . u 2, iGN, (19

select the noninteracting states|gg) would be translation- 275

ally invariant, even if these states used did not all come from

the Fermi sea. The use of unrestricted Hartree-Fock eigenn the Wannier basis

states to generateby) instead of the noninteracting eigen-

states generally produced no significant improvement in the . .

results. Hy=U > (aij e+ by Biy) (@i +birBirg)

i

; ek iy, | (16)

Z| -

IV. RESULTS X (ayjef| +by; Bl (@ e +by B ). (20)

A. Effective Hamiltonian: Wannier orbital approach This expression appears more complex than the one in the

Our first effective Hamiltonian explicitly targets cases original basis; however, from it we can more conveniently
where the lower band of the non-interacting model is veryderive a low-energy effective Hamiltonian for electron fill-
flat. Such cases exist for e;=W/2>V>0. In this regime ings less than 1/2 filling.
of parameters and around 1/4 filling, single-electron occu- To do this we first require that>U, i.e., the system is a
pancy of the f states can occur because of the depth of thelott insulator for 1/4 filling, so we can initially consider a
orbital state as opposed to the double occupancy penalty ¢§{9)_ . that does not have processes involving the upper
the Coulomb repulsion. We will begin by building Wannier pand
orbital operator® for each band from the quasiparticle op-
erators defined in Eq5)

Hgolgand: ”20 TﬁaiTUajo-l— U 2 gii r||raiTTairTC¥|TLa|rl y

i’

ajTU:EI (a”frg'f‘b“dro_), (21)
with @i =2;a;a/;a;;;. To identify more easily the
Bl :2 (_b'IfT +a-|dT ) (15) physically different contributions, we rewrite thé term to
79 e =591 e produce
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Hlband_E T|1a|aa|a+UE annli+ E J

+UZ

(AN ES K

X|S-

t
[OH]] r(nﬁaua,,l

+ ’ 1 T
+nfafiap) U X ginalainalian

i’
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nal form of this interaction, it still only affects singlet states,
but these states can now be nonlocal. We note that even if
U/t~1 this one-band model is in the strong-coupling re-
gime:U~U and{~t(V%|&f%) if i andj are nearest neigh-
bors soU/7j>1. In the new basis, the narrow band appears
narrower, the heavy fermions appear heavier, but the inter-
action experiences little renormalization.

The nonlocality is the origin of the ferromagnetic Heisen-
berg term. In this term, provided is not arbitrarily large,

(22 the ferromagnetic exchange interactidj ~ Ut2v*/| &,
with however, is smaller than the antiferromagnetic super-
exchange interaction, which is of order rﬁOZIU
U= v a’ ~t2V4/U|&|*. We remark that the magnitude of the AF
N T interaction is very small. For this reason, the lowest-order
terms involving the upper band are crucial to determining the
E 2 magnetic phase of the system doped above 1/4 filling.
= J a;a These lowest-order upper-band processes come from
terms in the Eq(20) with one B operator and can be written
as
will’:; aizjajlajlu (23
whereX’ means that there are no repeated indices. We see HY band u 2 UIJU(am-BJ;_I_ ﬁl(ram) (26)
that H{% 4 is an extended Hubbard model with long-range
hoppings, a ferromagnetic exchange interaction, correlated
hoppings, and a term that destroys a spin-antialigned pair it
electrons in site$’ andl’ and creates an antialigned pair at
i andl. - T
Again, for a large range of parameters, the lower band of Vijo™ 2 bjn@inaindi naj e o (27)

the PAM is quite flat. If we regartk;| as very large, we can LI%n

Taylor series expand E@6), substitute the result into Eq.

(16), and obtain Here the terms with#1’ can be neglected when the lower

band is flat so we can rewrite EQ7) as

|5,J, for i=j
ajj~ 2| I3 i i \ t
—tV?|el® for i andj n.n. U [P
Uijo nm|€f| 5l,j+|€f|5ll—]\,1 . (29)
—Vl|el|,  for i=j
bij~ —tV/|&|? for i andj n.n. (24 Thus the lowest-order interband process are correlated hop-

pings betweeny; and §; orbitals and are proportional to the
spin polarization(opposite to the spin of the electron which
hop9 surrounding th¢ site: the hoping occurs out of regions
of ferromagnetically aligned electron spins.
It is interesting to note that the origin of this ferromag-
With these results, we see thé#ft and w;;, are propor- netic alignment is not an exchange mechanism but processes
tional to t2V4|e]® while g;.. is proportional to involving charge transfer. To see this more clearly, we show
3V6/|.s |°. This means that we can neglect the last term ofin the Appendix that by using a Schrieffer-Wolff transforma-
tion we can reduce the multiband term to an effective one-
band term

Matrix elements foi andj beyond nearest neighbofs.n)
are smaller by higher powers &f/|e;|. Thus, the Wannier
operatora;r is predominatel;tjT as the amplitudes;; andby;
strongly decrease with the distance betweandj.

Hl band>

0 ~ T T _ e
Hg.gand““ijz Tﬁaiaaja+uzi ning A Jii
3,0 sy

N 1 .
H(lzgandZE[Tl ) H(llt))and]

+UZ

i

X|S-

t
[OH]] ,(nﬁaua,,l

u2v? ni,n J(r(a a](,+a Sig)~
=—4 2 2 L|J(k)r
N|Ef| i,k o Ek _Ef U

(25

In this one-band Hamiltonian the Coulomb repulsion is no
longer just on site. Its spatial extension depends on the spa-
tial extension of the Wannier orbitals. Because of the origi-where

+nﬁa’r7a|/T).
(29)
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nism. The virtually hopping electron has reachedk=a0
band state. It is antialigned with tHeorbitals that are ferro-
magnetically aligned among themselves. The moment of this
band state partially compensates the fully saturated ferro-
v 7777 X 7 2% magnetic alignment of these orbitals. This compensation pic-
—4t v ; v k= ture differs from “the exhaustion picture”of Nozies*?®
B TR evoked by Thavildar-Zadeét al'® The compensation is on a
W - collective-state-to-collective-state  basis and not the

‘ ‘ collective-state-to-single-moment basis argued by Neszie
“‘ ‘ ‘\ ) ‘ This difference highlights the difficulty building the physics
of the periodic Anderson model from the physics of its

single-impurity version.
a)  Ferromagnetic Background The process in Fig. () contrasts that in Fig. (3. The
process in Fig. @) compensates on a site-to-site basis and is
the one present for a paramagnetic or an antiferromagnetic
alignment of thef orbitals. The energy cost for virtual hop-
ping is higher than that in Fig.(2). This leads to larger
energy denominators in perturbation theory and in turn, leads
to a smaller lowering of the ground-state energy.

‘ 1‘ 4 B. Effective Hamiltonian: Canonical transformation
_l'_ _‘_ _‘_ Here we will present an effective low-energy model valid
' ' in a different region of parameter spadé>W/2,— ¢;>V

b)  Non-magnetic Background >0. In this regime of parameters and around 1/4 filling,
, _ ) single-electron occupancy of thestates occurs mainly be-

FIG. 2. Conduction-electron compensatiorfafbital moments. ¢, qq of the double-occupancy penalty of the Coulomb re-
(@) The mechanism for the effective one-band Hamiltonian. An . ; . .

i ) ! pulsion. As we will see, the interaction between the moments
electron at the bottom of the conduction band is partially compen-.n thesef states is dominated by the RKKY interaction
sating the collecive ferromagnetic state. This process more effed! NESE s.a es .s 0 .a ed by . € . e.ac on.

To derive this effective Hamiltonian, we will make a

tively lowers conduction-electron kinetic energy than mechanism h-ord hrieff iff f 3535 i f )
(b). In the latter, the conpensation is a one-to-one on-site procesfg'urt -order Schrieffer-Wolff transformationas in Ref. 34:

and is present for an antiferromagnetic or paramagnetic alignment _ o N N
of the f orbitals. A paramagnetic alignment is shown H=eWseWiHe Wig=Ws, (31)

> e

<

where the transformation operatofs, and W5 are of order
V and V3. With this transformation, we get a new Hamil-

B —s,, fori andj n.n. tonian H withopt terms of ordgr\/ and V.3. .By means of

tij(k)= | &l another canonical transformation, we eliminate the term of

2 orderV2. In this way we get the low-energy effective Hamil-

——sZ, for i andj second and third n.n., tonianHs, correct throughv4. The details of the derivation

\ |er]? are given in the Appendix.

(30) The final expression for the effective Hamiltonian is a
Heisenberg Hamiltonian

(1, for i=j

with s, = cosk,+cosk, . The hopping between twe orbitals

is only possible if Wannier orbitals are occupied with elec-

trons having the same polarization. Froy?),q it is clear Hepin= 2 35S+ S, (32)
that the itinerancy of the carriers trough the upper band in- 1

duces a ferromagnetic interaction between the localized
states. In addition, to maximize the energy gain, the adde
carriers must occupk~0 states. In this way, the magnitude
of the hoppingt;;(k) is maximized at the same time the
denominator E* (k) —¢;—U is minimized (tends to A
—U). The electrons can be addedke 0 states only if the
background is ferromagnetic and, of course, opposite to the

&vhere
3, =30+ 31+ 3D+ 3+ 9 (39

The RKKY contributionJ(” is given by

i % 2(no(1 (N )o)
spin of the added electron. These charge-transfer processegy) V. S ik Ry k/0 k’/0 n 2
enhancing ferromagnetism involve the states in the lower'i — 42 = © —eu et )%,
part of the upper band. ’ (34)

This interband process is illustrated in FigaR The rep-
resentation emphasizes the collective nature of the mechavhere
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1 1

YK:ek—ef—U B

e (35

(nd), is defined in the Appendix.
Ji(jl) is associated with virtual processes where bakec-

tron at sites andj go through the conduction band, doubly
occupy thed-sitesj andi, and one of these two electrons

comes back to an empfyorbital. The expression fai{") is

V4 N
W= 2, & 20k 1280+ o).

K,k
(36)
The other contributions td;; are given by
4

\% . -
IP=— 2 e KRB Sy S Miger + Xuger Vi),
AN~ g k'

(37)
V4
R . e i(k—k') R s
AN E [ 7k Yie M
+AMy Vi — TYE v 37t vie) 1, (39
V4 e 5
Ji(jzl):_z E g ! (k=k)R; Ve Yk Myr s (39
2N* !

wheremy,:, N, X, andyy are defined in the Ap-

pendix. These four contributions 8y are about one order of

magnitude smaller tha”.
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which implies that

p~t3IU2. (41)
This expression qualitatively agrees with the numerical re-
sults of Ref. 2.

This ferromagnetic phase must disappear above some up-
per critical concentration of carriers where the volume en-
closed by the Fermi surface is no longer small. For this con-
centration we do not expect an ordered phase unless nesting
is present. In the presence of nestitg, (k)=E~ (k+ Q)
=Eremi,» the Fermi surface may be unstable towards the
development of a spin-density wave. This instability is mani-
fested in Eq(34) from the divergence of th® Fourier com-
ponent of J{. For a commensurate stat€ is a high-
symmetry point of the Brillouin zone and equals one half of
a reciprocal lattice vector. For a square lattice, two such
points exist: (Og) for p=1/4 and @r,7) for p=1/2. In the
absence of nesting, no well-defin€dvector connects differ-
ent points of the Fermi surface, and preferred ordering for
the spins is absent. For this reason, if we were to incrpase
over the upper ferromagnetic phase boundary, we would ex-
pect a paramagnetic phase for any concentration different
from 1/4 and 1/2. This picture is similar to the one already
obtained in 1D’ The only difference between 1D and 2D is
in 1D, nesting exists at the Fermi level for any concentration
of carriers. This nesting explains why spiral critical order at
2k is obtained for any value qf in 1D.’

C. Quantum Monte Carlo results

We expressed the magnitude of the effective spin-spin

interactionsJ;; (33) in terms ofk-space states because in the

All our simulations were performed for lattices ofx4

absence of hybridization they are the eigenstates of the prond 6< 6 unit cells. The cost of performing these simulations
lem. From this point of view, the ferromagnetism for low IS @pproximately the same as simulating an & and 12

density of carriers comes from the RKKY terdf’ and the

small volume enclosed by the Fermi surface: When th

Fermi volume is small, the transferr&evector between dif-

X 12 one-band Hubbard model. As mentioned previously, we

dised ground states derived from the noninteracting problem

as |#7). When we simulated the PAM witle;=—5, we

ferent points on the surface is small, and the relevant phad&®€d the noninteracting states fef=—2 because this

factors of Eq.(34) are positive for small distances between
sitesi andj. This positivity gives an effective ferromagnetic

choice consistently produced a lower estimate of the ground-
state energy with a smaller statistical error then we would

interaction between near neighbors, which is proportional t&Pt@in if we had used the noninteracting statesefor —5.

the density of carriers and competes with the usual anti-

While we will only report results for the energy per site as

ferromagnetic super-exchange interaction included in th& function ofN, or S, all inferences about the spin symme-

other components af;; .

Because the ferromagnetic interac-

tries of the ground state were supported by calculations of

tion increases with the concentration of carriers, we exped® Spin-spin  correlation  functionC(r;—r;)=(SfS})

the appearance of a ferromagnetic phase above some critical((nifT— nifl)(n 1

concentrationp.. Due to the non-interacting casé& €0)

{:—nf)) and the spin-structure fact@(k)

= (1/N) Eijeik'hi_’i)C(ri—rj).

being paramagnetic, we also expect a ferromagnetic phase Most of our simulations were performed for electron fill-
above some critical value .. To derive a simple expression ings of 1/4 through 3/8. In our previous wotkwhere we
for the phase boundaty.=U(p.), we have to compare the studied the region from 3/8 to 1/2 and found the RSDW

effective ferromagnetic interactiod{” with the the antifer-

ground state at 3/8 filling for a 6 system. At 1/2 filling,

romagnetic super-exchange interaction, which is proporwe found the expected AF ground far=2 in agreement

tional to V4t?/U® for the symmetric PAM. From E¢(34) it
is clear that, for the dilute casé§j°) is proportional to the
concentration of carrierp, and V#/tU2. Consequently, the
phase boundary of the ferromagnetic region is given by

pVAtUZ~V42/US, (40)

with other QMC simulations. In between, we found a para-

magnetic(PM) ground state. For these previous studies, we
hade;=—2. As part of the present paper, we repeated some
simulations over this 3/8 to 1/2 range with= —5 but did

not find any indications of a FM state. We note again that the
predictions of DMFT and SBMFT are inconsistent with
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0.2 singlet ground state as a function of electron filling. Figure 3
is for the 4x4 lattice, and Fig. 4 is for the 6 lattice. In
01} both figures,t=1, V=0.5, U=4, and e=—5. For the
T noninteracting problem, these parameters are the “flat band”
s 0.0k e case illustrated in Fig.(b).
0 At 1/4 filling, the two energies are equal to within statis-
"'i ~0.1 tical error. Our effective one-band Hamiltonian has long
g r range hopping. So, for a sufficiently large value Wf we
ﬁ 02 expected an AF ground state as was observed in the one-
o dimensional DMRG calculations. Calculatidgyyy for the
effective Heisenberg model, we found that whefj, the
-03 magnitude of the exchange interaction is about two orders of
magnitude smaller than the magnitude of our statistical error.
—0-416 1'8 20 o Py 26 Thus, we should not expect to see this state easily. If we used
N an anti-ferromagnetic state fdgyr), we would see a AF

8

ground state, but the energy of this biased result and the one

FIG. 3. Energy difference between the partially polarized andfrom a PM| ) were typically equal within statistical error.
singlet ground-state energies as a function of electron filling. Thdn other words, the fluctuations of the numerically computed

lattice has 66 unit cell and the model hdd=4, V=-0.5, and

€= —O.

spin-spin correlation function are very large due to the very
small energy scale of the effective magnetic interactions.
By doping 1/4 filling with one extra election, we found

these PM and RSDW states. The effective Hamiltonians prethat the FM state has a lower energy. Adding one electron
sented in this paper are expected to be inappropriate for thisiore produced a PM state. This behavior with the doping of
filling range. We will not discuss this range further. one and two electrons is reminiscent of Nagaoka ferromag-
In the present paper, we also did a series of rough simunetism and its instability in théJ = nearest-neighbor-
lations at fillings less than 1/4 for various valuesWfand  hopping Hubbard model. While our model is not the same,
€. We only found PM ground states. DMFT and SBMFT the proposed mechanism for ferromagnetism is very similar:
find FM ground states for identical parameter choices. An electron lowers its kinetic energy by moving through a
We note that we found a PM ground state for one electrorfierromagnetic background. In our mechanism, the electron
removed from 1/4 filling, even for large values df As we  |owers its kinetic energy by interband processes enabling its
will discuss below, when one electron was added to 1/4 fill-hopping between two occupiddstates antialigned with its
ing, we found a FM state fog;=—5. Clearly, the properties spin. The need for interband processes differentiates our
of the PAM are asymmetric about 1/4 filling in contrast to mechanism from Nagaoka’s.
generally accepted suggestions that it behaves as a half- We believe the disappearance of the FM with the second
filled, nearest-neighbor-hopping Hubbard model that diselectron is not analogous to the known instability of the Na-
plays particle-hole symmetry. gaoka state but rather is a finite-size effect. It is well docu-
Figures 3 and 4 show the main results of our simulationsmented that the shell structure of a finite-sized noninteracting
They plot the energy difference between a polarized and @roblem is reflected in the behavior of the filling dependence

0.2

0.1 r

0)
g
=}

6x6

—

S —E(S

E(S=
|
(=]
N

-0

FC

oH

4 -
36 38

40 42 44 46 48 50 52 54 56
N

L]

of the energy in the interacting probleii®3 At least to a
first approximation, the chemical potential is constant in a
shell and is discontinuous between such shells. According to
our effective one-band model, if we were to add one electron
to the 1/4-filled case, it would most effectively lower its
kinetic energy by moving between oppositely aligrietiates
by virtually hopping through &=0 conduction-(upper)
band state. The Pauli principle blocks, or frustrates, this pro-
cess for a second electron of the same spin if finite-size ef-
fects make th&= (= 7/2,= 7/2) states of the next shell en-
ergetically inappropriate: The second electron would have to
enter thek=0 shell oppositely aligned with the first, and the
ferromagnetic background df states cannot accommodate
the two different alignments.

The influence of finite-size and interband process is also
seen in Fig. 4 where we show the energy rati
|E(S=0)| as the number of electrons increases from 18 to

FIG. 4. Energy difference between the partially polarized and26 electrons, from one closed conduction-band shell
singlet ground-state energies as a function of electron filling. The=18 through anotherN,=24 and ending at an open

lattice has 4<4 unit cell and the model hd$=4, V=-0.5, and

Ef:75.

conduction-electron shell. At first, the polarized ground state
becomes much lower than the PM state and then two become

184428-9
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-0.998 : : : : : : this diverging Fourier component correspondsjffé being

&=—-5 zero if sitesi andj are on different sublattices and behaving
0999 | YU=4 4x4 T antiferromagnetically if the sites are on the same sublattice.
V=-0.5 This is precisely the pattern observed in the spin-spin corre-

i lation function reported in our previous work, but we do not

5 -1.000E see it for the &4 lattice size. Finite sizes effects and the
é limited range of system sizes we can afford to simulate have
% 1001 | prevented us from performing the scaling analysis need to

establish the RSDW state as one of long-range order.

Both the ferromagnetism and conduction-band shell struc-
ture is evident for the & 6 case shown in Fig. 3. Adding one
electron to the 1/4 filled caséN(=36) produces a FM state.
Adding another closes thie=(0,0) shell that frustrates the

1008 3 4 s & 7 ferromagnetism. Adding more electrons to readp=54
s successively populates the= (= 7/3,= 7/3) and (*2/3,
+2/3) conduction-band shells. At the middle of each shell,

FIG. 5. Ground-state energy as a function of the value of thethe energy difference is a maximum and the shell is half
total initial spinSfor several different values of electron filling. The fjjled.
lattice has 4<4 unit cell and the model hds$=4, V=-0.5, and
e;=—5.The number of electrons varies as 18, 20, 22, 24, and 26.

-1.002 r

V. CONCLUSION

approximately equal atl,=24. This variation is highlighted Our numerical results indicate that several important fea-
in Fig. 5, which shows the ground-state energy as a functiotures of the phase diagram of the one-dimensional PAM
of S for different electron fillings. For 18 and 26 electrons, (Refs. 2,7 are preserved in two dimensions. In both dimen-
the energy per site either does not vary within statistical errosions and for half filling, the Coulomb interaction induces an
or increase. For 20, 22, and 24 electrons, it has a clear mininsulating gap, and the system can have AF of@ét insu-

mum but the minimum for 24 electrons is just barely belowlator), or it can remain in a paramagnetic stéte@ndo insu-
unity. We note that the minimum in energy and the maxi-lator) if there is a strong enough hybridization between
mum inS occurs for a half-filled conduction-electron shell. It both bands. In this latter case, there is also a spin gap asso-
is as if a Hund’s rule coupling is operative in a nonmultior- ciated with the energy necessary to break a Kondo singlet.
bital situation. In Fig. 4,S,ax is the value ofS for which ~ The AF order originates in the Fermi surface nestingat

E/|E(S=0)| is a minimum. If this ratio had no clear mini- =(m,7).

mum, then we use8,,,,= 3 (N.— Ng) whereN is the num- When doped away from half filling, the system in two
ber of lattice sitegthe number off orbitalg and N, is the  dimensions becomes paramagnetic. In one dimension, how-
number of electrons. ever, critical incommensurate spin-spin correlations peaked

N.= 24 corresponds to 3/8 filling. Instead of being a pos-at Q=2kg develop. This can be understood with the effec-
sibly weak FM state, we argue that it is actually an unpolartive Heisenberg theory derived in Section IV B: The RKKY
ized RSDW state; however, while we do not clearly see thisnteraction J{ has a divergent Fourier component @t
state for the &4 lattice, we clearly saw it for the 66 =2k because there is nesting for any concentration of elec-
lattice whenN,=56.2% There is an important and subtle dif- trons. This results in a Luttinger liquid with spin-spin corre-
ference between the two lattices: Our performance gain imations that are critical and peakedQ@t= 2k . The situation
constructing ¢+) is based on using closed shell states of theis different in two dimensions where there is nesting only for
noninteracting problemand these states mix information fillings 1/2, 3/8, and close to 1/mall Fermi surface Our
about both the valent and conduction bands. For these stateajmerical evidence suggests that the system is paramagnetic
the No=24 singlet for 4<4 is a half-filled shell, but the between 3/8 and 1/2 filling. For 3/8 filling, where the nesting
Ne=56 singlet for 6x6 is a closed shell. This difference appears aQ=(0,7) and (7,0), our CPMC results indicate
makes it much more difficult to see the RSDW state for thethe presence of a RSDW phase. In this phase, the two inter-
4% 4 lattice. We emphasize that the shell in Fig. 4 is differ-penetrating sublattices are decoupled, and there is AF order
ent. It is a remnant of a shell in thmnductionband. in each. This spatial ordering can be also understood by con-

We remark that our effective Heisenberg model admits aidering the effective Heisenberg theory for the PAM: It is
RSDW state. In particular, within the effective Heisenbergclear that in going from 1/2 to 1/4 filling, the nearest-
model, the ferromagnetic nature of the RKKY exchange in-neighbor RKKY interaction changes its si¢AF close to 1/2
teraction depends on the volume enclosed by the Fermi suend FM close to 1/4). A cancellation then must occur at
face being small. Increasing the number of electrons insome intermediate concentration. We can easily see that this
creases the volume, lengthens keector for transfer across intermediate filling is 3/8 where there is nesting for two dif-
the Fermi surface, and decreases the strength of the interaferent wave vectorsQ=(0,7) and (7,0). These two trans-
tion until the Fermi surface becomes unstable because dérred wave vectors give canceling contributions to the
nesting. Direct calculation of the Fourier componentﬁi@f nearest-neighbor RKKY interactions. For instance, the near-
shows that it diverges close to nesting. The spatial pattern afst neigbhor in the direction will feel an antiferromagnetic
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interaction coming fronQ=(,0) and a ferromagnetic one magnetic and the paramagnetic state as function of concen-
of the same magnitude coming frofr= (0,7). On the other tration. It is clear that for small systems and closed-shell

hand, the next-nearest neighbors have an overall phdse conditions, the noninteracti.ng)aramggnetDc solution will

both wave vectorgconstructive interferengeand the effec- be more stable L!nder the introduction of correlations. The

tive interaction is therefore AF. This is the origin of the Small systems will generally have larger energy gaps be-
RSDW state obtained for 3/8 filling. tween two shells.

By decreasing the filling below 3/8, the CPMC results Due to size effects, we must assume that we are dealing

indicate that the system becomes paramagnetic again dovath states of long-range order, and we cannot say much

to some critical filling beyond which nonsaturated ferromag—abOUt the order of the paramagnetic-ferromagnetic transi-

netism appears. Again, this behavior is related to the nestin O(;'S' 'I;othes:ablls_?_ Iong_—trgnge order atnd to Id(ettﬁrmlnekthef
of the Fermi surface. Below 3/8 filling there is no nesting raer of Ihe transitions, 1t1S necessary to scaie the peaxs o

down to some small concentration of conduction eIectron%.he Spin structgre factor with fche system size for a fixed
near 1/4 filling where the Fermi surface of the conduction iling. To do this properly requires larger systems than the

electrons can be very well-approximated by a small spher8nes considered in this paper.
and the wave vectork connecting two different points is

very close to zero. Under these conditions, the RKKY inter- ACKNOWLEDGMENTS
actionJ” diverges with a negative value indicating the pres- e thank M. Guerrero, M. Giai, M. Jarrell, Th. Prus-
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the Mott insulating regime Y<A) where the one band-

effective modeIHlband.is a valid effective low-energy APPENDIX A

theory, the ferromagnetism is related to the long-range hop-

ping processes involving charge virtually tranferring from  To make the derivation oH,;, clearer, we begin by
the lower to the upper band. The relevance of these processeswriting Eq. (1) as

is related to the flatness of the lower band and the dispersive

character of the upper one. Without considering processes H=H©®+H®), (A1)
connecting the two different band$i( ,ang=H{%and, the ith

effective one-band Hamiltonian is an extended Hubbar(yv

model (the hopping is not restricted to nearest neighpors U

Due to the flatness of the lower band, the effective ratio H(°)=k2 ekdlgd;«ﬁ efz nifg+§ 2 nifanif;, (A2)
U/Ti‘f is very large, and the model is in a Nagaoka-like re- 7 " "

gion even for small values of the bare interactidn The

relevant low-energy scale that determines the magnetic or- HO=v Y (e*rnidf fi,+e ®nfl d,). (A3
dering comes from the comparison betweer} (energy per Lk,
link of the Nagaoka stajeand {;%/U (energy per link of the The next step is the application td of a Schrieffer-

AF statg. As this difference is extremely small, any other \ypfff-like transformatior® to eliminate terms of ordev and
term added to the Hamiltonian, which favors one of the twoy3 from the Hamiltonian. We do this by expanding the ex-

competitive phases, will be relevant. As we have explaineghonentials of Eq(31) and imposing the conditions

in Section IV A, H{%)_ 4 stabilizes the ferromagnetic phase.

If the localized electrons are polarized in the same direction, HO+ W, , HO]=0, (A4)

the added carriers can gain energy from virtual processes

transferring charge betwedn-0 states of the lower and the 1 . . ~

upper band. §{W1,[W1,H(l’]}+[W3,H(°)]=0, (A5)
It is also important to make some additional comments

about the finite-size effects in our numerical results. In anpat defineW, andWs,. With these conditions

infinite system, it is necessary to have a finite critical con-

centration of electrons in order to induce the ferromagnetic _ 1 . 1 . . .

phase. We argue that this must be the case because the galh=H+ E[WLH“)]JF g{le(le[Wl,H(l)])}Jf R

in kinetic energy of the added particles must overcompensate (AB)

the loss of magnetic energy of the localized electr@visich

is proportional to the system sizeThe numerical results The following expression o, satisfies Eq(A4)

show that the system becomes ferromagnetic with the addi-

tion of only one conduction electron. This is because one _ _ _

electron added to ax4 or 6x6 system corresponds to a ~ Wi=V X, (8+ %nip) (e nid] fi,—e 'k rifl dy,),

finite concentration. Besides, as it is explicitly shown in Figs. Vo (A7)

3 and 4, there are closed-shell effects that give a honmono-

tonic behavior for the energy difference between the ferrowith
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= ! ! A8
YK_ek_é'f_U ek_é'f, ( )
and
o= ! A9
o e (A9)
With this \7V1, the second-order term il becomes
(2) 1w (1)
H :E[WllH ]
:__ E l(k k) rl[t(l)+t(2)(nla+n]a’)]fja- io
i,j,o
-v2 > ek rimSd s, diryr s
i,kk' o0
(A10)

wheremy, = y+ vx, the components of the spin operator

S are
1
Sf=§(fﬁfm—fﬂfu).
S =t iy
=t fi (A11)

and the components sf,, are the Pauli matrices divided by
two. t{) andt{?) are defined as

2

Y .
> ; ek Ri25,

)=

V2
t= =5 2 e Ry (A12)

Finally, Hg i is obtained by means of a second canonical

transformation that eliminated(® from H

Hspin=¢€ SHe S, (A13)

By expanding the exponentials of E¢A13), we get an
elimination condition that defineS

H®+[SH]=0. (A14)
A Sthat satisfies this equation is
S=-Vv2 > elkk)n s dl S, 0 dyryr
ikk' o0 €€
+ 2 OO @)= ni) ] fig . (ALS)

i,j,o

Through fourth order inv
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Hgpin=H® i SIS, H‘2>]+ 7 (W [Wy, HE).

(Al6)
The second term in EqA16) reduces to
4
l[é ﬁ(Z)]—V 2 e i(k=K') Ry
ij.kk’
2(n)o(1—(ng)o)
X 2
ek_ek! kk/
[t(1)+t(2)]
T S-S, (A17)

where(nd)o=(3=,d! dy,)o and(- - -}, means the expecta-
tion value relative to non-interacting conductidrelectrons
(V=0). The first term of Eq(A17) gives the RKKY inter-
action.

The third term of Eq.(A16), H®)=1(W,,[W;,H®)),
can be expressed as

H®=— v > e KR35, S My

4N? i) kK’

+{ St S — AMiger + 203yt ¥ie) Wi N Vi Vi

+4Mg Vi = 7Y Vi + 208 yievio (3%t vier)

2% M 1S+ S, (A18)
with

Ny = O+ O
Xk = Ok + S — Ayt vir) + 2H(B vt vir),
Yik’ = Ok Yk T Okr Yk - (A19)

APPENDIX B

In this appendix, we show the derivation B4 by
means of a second-order canonical transformation. The start-
ing Hamiltonian is:

Hglolgand_’— H?Lllgand' (Bl)

whereH (%), ,is given by Eq.(25). From Eqs(26) and(28)
we can rewriteH{%)_ . in the following way:

H=

uv +
HE n® (o, =By
1band \/N|€f| i%r |(r(a|(r'8klf
t
T _
+ai,;ﬁk,,) 1+ E_fsk). (BZ)

The canonical transformation is given by the following
equation:

A=eliHe T, (B3)
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The terms of ordeH{Y), , are eliminated under the follow-
ing condition:

H( band+[TliH1 band] 0. (54)

Satisfying Eq.(B4) is

uv

sy
’ WNJef] o

niao(aiT;Bk;"' ait,ﬁkE)( t )
= 1+ —s. |,
E* (k) —e— €
(BS)

wheres, = cosk,+cosk, .
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A@ U2V2 2 Ny Ja’(a“’_alo-‘l'aj(ralo_)’: 0,
1band N|Ef|2I]k<T Ek—Ef—U ij
(B6)
where
1, for i=]
t . .
- sy, fori andj n.n.
t”(k): |€f|
t2
—| |25ﬁ, for i and j second and third n.n.
€f

(B7)

In this way, we get the second order part of the transHere we have considered that the lower band is dispersion-

formed HamiltoniarH:

less WithE ~ (k) ~¢; and ;= £ — 7.
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