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Ferromagnetism in the two-dimensional periodic Anderson model
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Using the constrained-path Monte Carlo method, we studied the magnetic properties of the two-dimensional
periodic Anderson model for electron fillings between 1/4 and 1/2. We also derived two effective low-energy
theories to assist in interpreting the numerical results. For 1/4 filling, we found that the system can be a Mott
or a charge-transfer insulator, depending on the relative values of the Coulomb interaction and the charge-
transfer gap between the two noninteracting bands. The insulator may be a paramagnet or antiferromagnet. We
concentrated on the effect of electron doping on these insulating phases. Upon doping we obtained a partially
saturated ferromagnetic phase for low concentrations of conduction electrons. If the system were a charge-
transfer insulator, we would find that the ferromagnetism is induced by the well-known Ruderman-Kittel-
Kasuya-Yosida interaction. However, we found a novel correlated hopping mechanism inducing the ferromag-
netism in the region where the nondoped system is a Mott insulator. Our regions of ferromagnetism spanned
a much smaller doping range than suggested by recent slave boson and dynamical mean-field theory calcula-
tions, but they were consistent with that obtained by density-matrix renormalization group calculations of the
one-dimensional periodic Anderson model.
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I. INTRODUCTION

Identifying the origin of itinerant ferromagnetism in me
als and specifying simple models exhibiting it are two of t
most intriguing and long-standing problems in condens
matter physics. Here we report the results of low-energy p
turbation theory calculations and supporting ze
temperature quantum Monte Carlo~QMC! simulations that
suggest the existence and mechanisms for ferromagn
~FM! ground states in the two-dimensional periodic And
son model.

From a historical point of view, the one-band, neare
neighbor hopping Hubbard model was one of the mod
proposed to describe itinerant ferromagnetism; however,
ferromagnetic phase has never been found at physical pa
eter values. The numerical calculations, for example, h
narrowed the extent of this phase to a small region aro
the Nagaoka point,1 that is, the strong-coupling limit for one
hole doped away from half filling. Paradoxically, in two
dimensions~2D!, this model exhibits antiferromagnetism
half filling and antiferromagnetic correlations around h
filling at weak and intermediate couplings.

Recently, Guerrero and Noack2 listed several possible ex
tensions of the Hubbard model that should enhance fe
magnetism:~i! the addition of frustrating hopping terms,3–5

~ii ! the inclusion of more than one orbital per unit cell, a
~iii ! the addition of more general nearest-neighb
interactions.3,6 In fact, a number of frustrated models wit
more general interactions, such as thet-t8 Hubbard model,
and multiband models, such as the periodic Anderson mo
~PAM!, have ferromagnetic ground states.2,6,7 In this paper,
we focus on the properties of the two-dimensional PAM.

The PAM is often used to describe the essential physic
many transition metals, rare-earth, and actinide meta
compounds including the so-called heavy-fermion system8

The model includes a band of ‘‘light’’ uncorrelated electro
0163-1829/2001/63~18!/184428~13!/$20.00 63 1844
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hybridized with a band of heavy, strongly correlated ele
trons. Despite intense efforts to determine its phases, on
few controlled analytical approximations and numerical c
culations exist forD>2. Instead, previous work often stud
ied the single-impurity Anderson model and focused on
competition between Kondo screening and the dir
Ruderman-Kittel-Kasuya-Yosida~RKKY ! coupling between
the localized spins.9,10 This competition is present when th
number of conduction electrons is at least similar to the nu
ber of singly occupied low-lyingf-orbital states. InD>2,
much less attention has been given to the region of the ph
diagram where the density of electrons in the conduct
band is small; however, it is for this case that ferroma
netism has been established in one-dimensio
systems.7,11–15

Using the density matrix renormalization~DMRG!
method in the one-dimension, Guerrero and Noack,7 for ex-
ample, found partially and completely saturated ferrom
netism in the PAM. They considered a parameter regi
where the energy of orbital statee f and the strength of the
Coulomb repulsionU were adjusted so each orbital had ju
one electron. The position of the orbital energy was bel
the lower band of the noninteracting problem, and one e
tron per orbital corresponds to a 1/4-filled noninteracti
problem. For a sufficiently large value ofU, the model ex-
hibited a ferromagnetic ground state. Beyond an interacti
dependent value of the doping and a doping-dependent v
of U, this state disappeared. The ferromagnetic phase w
peninsula in a phase diagram that was otherwise a se
paramagnetism except at 1/4 and 1/2 filling where the gro
state of the PAM was antiferromagnetic.

Ferromagnetism seems to be readily found by mean-fi
approximations in any dimensions.16–22 Using a slave-boson
mean-field theory~SBMFT! for the symmetric PAM, Mo¨ller
and Wölfe16 found results similar to those of Guerrero an
Noack. At 1/2 filling, they found a paramagnetic~PM! or
©2001 The American Physical Society28-1
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C. D. BATISTA, J. BONČA, AND J. E. GUBERNATIS PHYSICAL REVIEW B63 184428
antiferromagnetic~AF! phase depending on the value of t
Coulomb repulsionU. By lowering the density of electron
from 1/2 filling, they also found a smooth crossover from A
to FM order via a spiral phase. Just before 1/4 filling, th
got a first-order transition from FM to AF order. More re
cently, the SBMFT calcualtions of Doradzin´ski and
Spalek17,18 found wide regions of ferromagnetism in the i
termediate valence regime that surprisingly extended w
below 1/4 filling.

In the low temperature dynamical mean-field theo
~DMFT! calculations, Thavildar-Zadehet al.19 also found a
region of ferromagnetism and studied its temperature dep
dence. At very low temperatures, their ferromagnetic reg
extended over a wide range of electron fillings, and in ma
cases, embraced the electron filling of 3/8. They propose
specific Kondo-induced mechanism for ferromagnetism
3/8 filling that has the conduction electrons in a sp
polarized charge-density wave antialigned with the fer
magnetically aligned local moments on the valence orbit
More recently Meyeret al. and Nolting20–22 appended per-
turbation theory to DMFT and also predicted ferromagneti
over a broad range of electron filling extending below 1
filling.

Our previous23 and new QMC results qualitatively agre
with the DMRG work; however, the phases we find quan
tatively and qualitatively disagree with those derived fro
the mean-field approximations. Quantitatively, we find fer
magnetism in a narrower doping range than the one predi
by the DMFT and SBMFT calculations. For fillings betwee
3/8 and 1/2, QMC predicts a paramagnetic region, Wher
mean-field theory predicts ferromagnetic states in part of
region. In fact, at a filling of 3/8 where these calculatio
predict ferromagnetism, we find a novel ground state of
entirely different symmetry. Instead of ferromagnetis
QMC finds a resonating spin-density wave~RSDW! state;
that is, the ground state was a linear combination of t
degenerate spin-density waves characterized by the (p,0)
and (0,p) wave vectors.

We remark that the quantitative differences between
DMRG and QMC calculations and the DMFT and SBMF
calculations most likely result from the expected breakdo
of mean-field theory in one and two dimensions. Proba
the RSDW state was not found because it was not sought
the other hand, trying to understand the mechanism for
romagnetism is more fundamental. It points to the lon
standing difficulty of building an understanding of the PA
upon the better understood single-impurity Anderson mo
~SIAM! or the analogous problem of building an understa
ing of the Kondo lattice model upon the better understo
single-Kondo impurity problem. Nozie´res addressed thi
later problem and proposed a reconciliation in terms of w
he calls ‘‘the exhaustion picture.’’24,25

We note that the electron filling near 1/4, place the wo
of Guerrero and Noack7 in the exhaustion regime. When th
Coulomb repulsionU associated with the double occupan
of an orbital is large~strong coupling!, it is often argued that
around 1/4 filling the PAM behaves like a 1/2-filled on
band Hubbard model. In two-dimensions this Hubba
model has an antiferromagnetic ground state generated
18442
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superexchange interactionJsx;V2t4/U5 ~for the symmetric
case! where V is the strength of the hybridization in th
PAM. It has also been established that the Kondo latt
model and the Hubbard model for strong coupling are i
morphic with particles in one becoming holes in the othe27

The relevance of the Hubbard model gains additional sup
from Noziéres’s long-standing argument that the dynam
of the screening clouds are described by an effective H
bard model.

Because of these mappings, it seems consistent to sug
the strong-coupling physics found by Guerrero and Noa
would map onto the domain of a one-dimensional 1/2-fill
Hubbard model. The venerable theorem of Lieb and Matti26

however, excludes the possibility of the Hubbard mod
~with nearest-neighbor hopping! from showing ferromag-
netism in one dimension. Their proof relied on the obvio
ability to order the electrons along the chain. The two-ba
nature of the PAM, however, prevents this ordering by
lowing processes not possible in the Hubbard model. A si
lar situation would occur for the two-legged Hubbard mod
if it in fact shows ferromagnetism. We will argue that in th
two-dimensional PAM these same processes are respon
for the ferromagnetism. They are RKKY and Nagaoka-li
and are excluded in Nozie´res’s24,25 picture and Thavildar-
Zadehet al.’s19 interpretation of it. It is important to remark
that ferromagnetism in the PAM is obtained for a large
gion of parameters that include realistic values.

We will base our arguments on the predictions of effe
tive Hamiltonians generated from the PAM by the perturb
tion theory and the results of our QMC simulations. For t
PAM parameters studied, these effective Hamiltonians s
gest a paramagnetic or antiferromagnetic state at 1/4 fillin
ferromagnetic region between 1/4 and 3/8 filling, a RSDW
3/8 filling, a paramagnetic region between 3/8 and 1/2 fillin
and an antiferromagnetic state at 1/2 filling. We see all th
features in the QMC simulations.

In the Sec. II we will define the PAM and sketch ou
derivation of the effective Hamiltonians. In Sec. III we wi
summarize our numerical method, noting finite-size limi
tions. Our results will be presented in Sec. IV. In Sec. V, t
concluding section, we will give a detailed contrast betwe
our picture and select other works.

II. MODELS

The PAM is described by the Hamiltonian

H52t (
^ i , j &,s

~dis
† dj s1dj s

† dis!1V(
i ,s

~dis
† f is1 f is

† dis!

1e f(
i ,s

nis
f 1

U

2
(
i ,s

nis
f ni s̄

f , ~1!

wheredis
† and f is

† create an electron with spins in d and f
orbitals at sitei in a square lattice, andnis

f 5 f is
† f is is the

number operator for thef electrons of spins at sitei. Else-
where, we will use a similar notation to denote quantities l
nis

d 5dis
† dis , the number operator ofd electrons. The lattice

hasN sites and the hopping amplitudet betweend orbitals is
8-2
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FERROMAGNETISM IN THE TWO-DIMENSIONAL . . . PHYSICAL REVIEW B 63 184428
only to nearest-neighbor~n.n.! sites. The hopping amplitud
V hybridizes different orbitals on the same site. We us
periodic boundary conditions.

From Eq. ~1! we defineH0, the resulting Hamiltonian
whenU50. H0 has two spin-independent dispersive ban

Es
6~k!5

1

2
@ek1e f6A~ek2e f !

214V2#, ~2!

separated by a gap

D5Es
1~0,0!2Es

2~p,p!

524t1
1

2
@A~4t1e f !

214V21A~4t2e f !
214V2#.

~3!

For a square lattice, the energyek522t(coskx1cosky).
This band structure forH0 is illustrated in Fig. 1. We note if
e f becomes very negative~dropping way below the bottom
of the lower band!, D approachesue f u.

We also note that the widths of the upper and lower ba
are

W65Es
6~p,p!2Es

6~0,0!

54t6
1

2
@A~4t2e f !

214V22A~4t1e f !
214V2#.

~4!

As e f becomes very negative,W2 approaches zero andW1

approachesW58t, the band width whenU5V50.
The operators that create quasiparticles in the lower

upper bands are of the form

aks
† 5uk f ks

† 1vkdks
† ,

bks
† 52vk f ks

† 1ukdks
† , ~5!

with

uk5
E1~k!2e f

A@E1~k!2e f #
21V2

,

vk5
2V

A@E1~k!2e f #
21V2

. ~6!

The symmetric PAM, which has the electron fillingr
51/2 andU52e f /2, has particle-hole symmetry. This sym
metry is sufficient to prevent the fermion sign problem th
plagues QMC simulations. Such simulations, performed
Vekić et al.,28 suggest the existence of a charge and spin
for small values ofU with the spin gap disappearing whenU
is increased to someUc;2. AboveUc , the system exhibits
long-range antiferromagnetic order.

In a previous work we presented QMC results for t
asymmetric model. QMC simulations for the asymmet
model experience a sign problem that is the reason why
used the constrained-path Monte Carlo method.29 For fixed
values ofe f , we variedU and hole doped away from ha
18442
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filling down to a filling of 3/8. For a large enough value ofU
we also found antiferromagnetism at 1/2 filling. This sta
was rapidly suppressed upon doping. At 3/8 filling we saw
sharp peak appear in the spin-spin correlation at the w
numbersk5(0,p) and (0,p). We interpreted this peak as
consequence of a state resonating between two degen
spin-density waves characterized by reciprocal wave vec
(0,p) and (0,p).

In the present paper, we explore the doping range fr
1/4 to 3/8 filling, arguing for a region of ferromagnetism
Part of our arguments will be based on the properties
effective Hamiltonians for two different regions of param

FIG. 1. Band structure of the noninteracting (U50) two-
dimensional periodic Anderson model. In units oft, V520.5. In
~a! e f50.2, and~b! e f50.5. Ilustrated is the flatness of the lowe
band for case~b!.
8-3
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C. D. BATISTA, J. BONČA, AND J. E. GUBERNATIS PHYSICAL REVIEW B63 184428
eters used in the simulations. These Hamiltonians will
derived in Sec. IV. We now summarize the the constrain
path Monte Carlo method.

III. NUMERICAL METHOD

The constrained path Monte Carlo~CPMC! method is ex-
tensively described and benchmarked elsewhere.29 Here we
only discuss its basic strategy and approximation. In
CPMC method, the ground-state wave functionuc0& is pro-
jected from a known initial wave functionucT&, by a branch-
ing random walk in an over-complete space of Slater de
minants uf&. In such a space, we can writeuc0&
5(fx(f)uf&. The random walk produces an ensemble
uf&, called random walkers, which representuc0& in the
sense that their distribution is a Monte Carlo sampling
x(f), that is, a sampling of the ground-state wave functi

More specifically, starting with some trial stateucT&, we
project out the ground state by iterating

uc8&5e2Dt(H2ET)uc&, ~7!

where ET is some guess of the ground-state energy. P
posely, Dt is a small parameter so forH5T1V we can
write

e2DtH'e2DtT/2e2DtVe2DtT/2, ~8!

whereT andV are the kinetic and potential energies.
For the study at hand, the initial stateucT& is the direct

product of two spin Slater determinants, i.e.,

ucT&5)
s

ufT
s&. ~9!

Because the kinetic energy is a quadratic form in the crea
and destruction operators for each spin, the action of its
ponential on the trial state is simply to transform one dir
product of Slater determinants into another. While the pot
tial energy is not a quadratic form in the creation and
struction operators, its exponential is replaced by the sum
exponentials of such forms via the discrete Hubba
Stratonovich transformation

e2DtUni ,sni ,2s5
1

2 (
x561

e2xDtJ(ni ,s2ni ,2s)e1/2DtU(ni ,s1ni ,2s),

providedU>0 and coshDtJ5e2DtU/2. Accordingly we re-
express the iteration step as

)
s

ufs8 &5E dxW P~xW !)
s

Bs~xW !ufs&, ~10!

where xW5(x1 ,x2 , . . . ,xN) is the set of Hubbard-
Stratonovich fields~one for each lattice site!, N is the number

of lattice sites,P(xW )5( 1
2 )N is the probability distribution for

these fields, andBs(xW ) is an operator function of these field
formed from the product of the exponentials of the kine
and potential energies.

The Monte Carlo method is used to perform the multi
mensional integration over the Hubbard-Stratonovich fie
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It does so by generating a set of random walkers initializ
by replicatingucT& many times. Each walker is then prop
gated independently by sampling axW from P(xW ) and propa-
gating it with B(xW ). After the propagation has ‘‘equili-
brated,’’ the sum over the walkers provides an estimate
the ground-state wave functionuc0&.

In practice, we performed an importance-sampled rand
walk by using the transformed iterative equation

)
s

ufs8 &5Z 21E dxW P̃~xW !)
s

Bs~xW !U)
s

fsL . ~11!

In this equation

P̃~xW !5ZP~xW !

)
s

^fT
suBs~xW !ufs&

)
s

^fT
sufs&

. ~12!

Thus, importance sampling changes the probability distri
tion of the Hubbard-Stratonovich fields, biasing it towar
the generation of states with large overlap with the init
state. The factorZ is the normalization constant for the ne
distribution. It is associated with the weight assigned to e
walker and the weight is used in a branching process to c
trol the variance of the results. We will not discuss this p
cess here.

We used two different estimators for the expectation v
ues of some observableO. One is the mixed estimator

^O&mixed5
^cTuOuc0&

^cTuc0&
, ~13!

and the other is the back-propagated estimator

^O&bp5
^cTue2 lDtHOuc0&

^cTue2 lDtHuc0&
, ~14!

whereuc0& is the QMC estimate of the ground state andl is
typically in the range of 20 to 40. For observables that co
mute with the Hamiltonian, the mixed estimator is a ve
accurate one and converges to the exact answer asuc0& con-
verges to exact ground state. For observables that do
commute with the Hamiltonian, like correlation function
the back-propagated estimator has been found to give
accurate estimates of ground-state properties. Significant
ferences between the predictions of these two estimators
ten exist.

To completely specify the ground-state wave function
a system of interacting electrons, only determinants sati
ing ^c0ufs&.0 are needed becauseuc0& resides in either of
two degenerate halves of the Slater determinant space, s
rated by a nodal surfaceN that is defined bŷ c0ufs&50.
The degeneracy is a consequence of bothuc0& and 2uc0&
satisfying Schro¨dinger’s equation. The sign problem occu
because walkers can crossN as their orbitals evolve continu
ously in the random walk. Asymptotically, they populate t
two halves equally, leading to an ensemble that has z
overlap withuc0&. If N were known, we would simply con
8-4
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FERROMAGNETISM IN THE TWO-DIMENSIONAL . . . PHYSICAL REVIEW B 63 184428
strain the random walk to one half of the space and obtain
exact solution of Schro¨dinger’s equation. In the constrained
path QMC method, withouta priori knowledge ofN, we use
a trial wave functionucT& and requirê cTufs&.0. This is
what is called the constrained-path approximation.

The quality of the calculation clearly depends on the tr
wave functionucT&. Since the constraint only involves th
overall sign of its overlap with any determinantuf&, it seems
reasonable to expect the results to show some insensitivi
ucT&. Through extensive benchmarking on the Hubba
model, it has been found that simple choices of this funct
can give very good results.29

Besides as a starting point and as a condition constrai
a random walker, we also useucT& as an importance func
tion. To reduce variance, we use^cTufs& to bias the random
walk into those parts of Slater determinant space that ha
large overlap with the trial state. For all three uses ofucT&, it
clearly is advantageous to haveucT& approximateuc0& as
closely as possible. Only in the constraining of the path d
ucT&Þuc0& generate an approximation.

We constructeducT&5)sufT
s& from the eigenstates of th

noninteracting problem. Because thez component of the tota
spin-angular momentumSz and the total spin-angular mo
mentumS are good quantum numbers, we could choose
equal numbers of up and down electrons to produce
states and, hence, ground states withS5Sz5

1
2 (N↑2N↓).

Whenever possible, we would simulate closed shells of
and down electrons, as such cases usually provided en
estimates with the least statistical error, but because
wanted to study the ground-state energy as a function oS,
we frequently had to settle for just the up or down sh
being closed. In some cases, the desired value ofScould not
be generated from either shell being closed. Also, we wo
select the noninteracting states soucT& would be translation-
ally invariant, even if these states used did not all come fr
the Fermi sea. The use of unrestricted Hartree-Fock eig
states to generateufT

s& instead of the noninteracting eigen
states generally produced no significant improvement in
results.

IV. RESULTS

A. Effective Hamiltonian: Wannier orbital approach

Our first effective Hamiltonian explicitly targets cas
where the lower band of the non-interacting model is v
flat. Such cases exist for2e f*W/2.V.0. In this regime
of parameters and around 1/4 filling, single-electron oc
pancy of the f states can occur because of the depth of
orbital state as opposed to the double occupancy penalt
the Coulomb repulsion. We will begin by building Wanni
orbital operators30 for each band from the quasiparticle o
erators defined in Eq.~5!

a j s
† 5(

l
~ajl f ls

† 1bjl dls
† !,

b j s
† 5(

l
~2bjl f ls

† 1ajl dls
† ! ~15!
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ai j 5
1

N (
k

eik•Ri j uk ,

bi j 5
1

N (
k

eik•Ri j vk , ~16!

whereRi j 5r i2r j .
Rewriting H0 in the Wannier basis, we find that

H05 (
i , j ,s

~t i j
a a is

† a j s1t i j
b b is

† b j s!, ~17!

with

t i j
a 52t (

^ l ,n&
bil bjn1e f(

l
ail ajl 1V(

l
~bil ajl 1bjl ail !,

t i j
b 52t (

^ l ,n&
ail ajn1e f(

l
bil bjl 2V(

l
~bil ajl 1bjl ail !.

~18!

H0 is simply the sum of two hopping terms corresponding
the lower and the upper bands. By construction, no hyb
ization exists between these two bands. The cost for
simplification is nonzero hoppingst i j

a and t i j
b between any

pair of Wannier orbitalsi and j in the same band.
Next, we rewrite the interaction term

HU5
1

2
U(

j ,s
nj s

f nj s̄
f , ~19!

in the Wannier basis

HU5U (
j ,i ,i 8,l ,l 8

~ai j a i↑
† 1bi j b i↑

† !~ai 8 ja i 8↑1bi 8 jb i 8↑!

3~al j a l↓
† 1bl j b l↓

† !~al 8 ja l 8↓1bl 8 jb l 8↓!. ~20!

This expression appears more complex than the one in
original basis; however, from it we can more convenien
derive a low-energy effective Hamiltonian for electron fi
ings less than 1/2 filling.

To do this we first require thatD.U, i.e., the system is a
Mott insulator for 1/4 filling, so we can initially consider
H1 band

(0) that does not have processes involving the up
band

H1 band
(0) 5 (

i , j ,s
t i j

a a is
† a j s1U (

i ,i 8,l ,l 8
gii 8 l l 8a i↑

† a i 8↑a l↓
† a l 8↓ ,

~21!

with gii 8 l l 85( jai j ai 8 jal j al 8 j . To identify more easily the
physically different contributions, we rewrite theU term to
produce
8-5
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H1 band
(0) 5 (

i , j ,s
t i j

a a is
† a j s1Ũ(

i
ni↑

a ni↓
a 1 (

i ,l ,iÞ l
Jil

e

3S Si•Sl2
ni

anl
a

4 D 1U (
i ,l ,l 8,lÞ l 8

v i l l 8~ni↑
a a l↓

† a l 8↓

1ni↓
a a l↑

† a l 8↑!1U (
i ,i 8,l ,l 8

8 gii 8 l l 8a i↑
† a i 8↑a l↓

† a l 8↓ ,

~22!

with

Ũ5
U

N (
i , j

ai j
4 ,

Jil
e 52U(

j
ai j

2 al j
2 ,

v i l l 85(
j

ai j
2 ajl ajl 8 , ~23!

where(8 means that there are no repeated indices. We
that H1 band

(0) is an extended Hubbard model with long-ran
hoppings, a ferromagnetic exchange interaction, correla
hoppings, and a term that destroys a spin-antialigned pa
electrons in sitesi 8 and l 8 and creates an antialigned pair
i and l.

Again, for a large range of parameters, the lower band
the PAM is quite flat. If we regardue f u as very large, we can
Taylor series expand Eq.~6!, substitute the result into Eq
~16!, and obtain

ai j 'H d i j , for i 5 j

2tV2/ue f u3, for i and j n.n.

bi j 'H 2V/ue f u, for i 5 j

2tV/ue f u2, for i and j n.n.
~24!

Matrix elements fori and j beyond nearest neighbors~n.n.!
are smaller by higher powers ofV/ue f u. Thus, the Wannier
operatora j

† is predominatelyf j
† as the amplitudesai j andbi j

strongly decrease with the distance betweeni and j.
With these results, we see thatJil

e and v i l l 8 are propor-
tional to t2V4/ue f u6, while gii 8 l l 8 is proportional to
t3V6/ue f u9. This means that we can neglect the last term
H1 band

(0) ,

H1 band
(0) ' (

i , j ,s
t i j

a a is
† a j s1Ũ(

i
ni↑

a ni↓
a 2 (

i ,l ,iÞ l
Jil

e

3S Si•Sl2
ni

anl
a

4 D 1U (
i ,l ,l 8,lÞ l 8

v i l l 8~ni↑
a a l↓

† a l 8↓

1ni↓
a a l↑

† a l 8↑!. ~25!

In this one-band Hamiltonian the Coulomb repulsion is
longer just on site. Its spatial extension depends on the
tial extension of the Wannier orbitals. Because of the or
18442
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nal form of this interaction, it still only affects singlet state
but these states can now be nonlocal. We note that eve
U/t;1 this one-band model is in the strong-coupling r
gime:Ū;U andt i j

a 't(V2/ue f u2) if i andj are nearest neigh

bors soŪ/t i j
a @1. In the new basis, the narrow band appe

narrower, the heavy fermions appear heavier, but the in
action experiences little renormalization.

The nonlocality is the origin of the ferromagnetic Heise
berg term. In this term, providedU is not arbitrarily large,
the ferromagnetic exchange interactionJil

e;Ut2V4/ue f u6,
however, is smaller than the antiferromagnetic sup
exchange interaction, which is of order (t i l

a)2/Ũ
;t2V4/Uue f u4. We remark that the magnitude of the A
interaction is very small. For this reason, the lowest-or
terms involving the upper band are crucial to determining
magnetic phase of the system doped above 1/4 filling.

These lowest-order upper-band processes come f
terms in the Eq.~20! with oneb operator and can be writte
as

H1 band
(1) 5U (

i , j ,s
v̂ i j s~a i s̄

†
b j s̄1b j s̄

†
a i s̄!, ~26!

with

v̂ i j s5 (
l ,l 8,n

bjnainalnal 8na ls
† a l 8s . ~27!

Here the terms withlÞ l 8 can be neglected when the lowe
band is flat so we can rewrite Eq.~27! as

v̂ i j s;2nis
a V

ue f u
S d i , j1

t

ue f u
d u i 2 j u,1D . ~28!

Thus the lowest-order interband process are correlated
pings betweena i andb j orbitals and are proportional to th
spin polarization~opposite to the spin of the electron whic
hops! surrounding thej site: the hoping occurs out of region
of ferromagnetically aligned electron spins.

It is interesting to note that the origin of this ferroma
netic alignment is not an exchange mechanism but proce
involving charge transfer. To see this more clearly, we sh
in the Appendix that by using a Schrieffer-Wolff transform
tion we can reduce the multiband term to an effective o
band term

Ĥ1 band
(2) 5

1

2
@ T̂1 ,H1 band

(1) #

524
U2V2

Nue f u2
(

i , j ,k,s

nis
a nj s

a ~a i s̄
†

a j s̄1a j s̄
†

a i s̄!

Ek
12 ẽ f2U

t̃ i j ~k!,

~29!

where
8-6
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t̃ i j ~k!55
1, for i 5 j

t

ue f u
sk , for i and j n.n.

t2

ue f u2
sk

2 , for i and j second and third n.n.,

~30!

with sk5coskx1cosky . The hopping between twoa orbitals
is only possible if Wannier orbitals are occupied with ele
trons having the same polarization. FromH1 band

(2) it is clear
that the itinerancy of the carriers trough the upper band
duces a ferromagnetic interaction between the localizef
states. In addition, to maximize the energy gain, the ad
carriers must occupyk;0 states. In this way, the magnitud
of the hoppingt i j (k) is maximized at the same time th
denominator E1(k)2 ẽ f2U is minimized ~tends to D
2U). The electrons can be added tok;0 states only if the
background is ferromagnetic and, of course, opposite to
spin of the added electron. These charge-transfer proce
enhancing ferromagnetism involve the states in the lo
part of the upper band.

This interband process is illustrated in Fig. 2~a!. The rep-
resentation emphasizes the collective nature of the me

FIG. 2. Conduction-electron compensation off-orbital moments.
~a! The mechanism for the effective one-band Hamiltonian.
electron at the bottom of the conduction band is partially comp
sating the collecive ferromagnetic state. This process more e
tively lowers conduction-electron kinetic energy than mechan
~b!. In the latter, the conpensation is a one-to-one on-site pro
and is present for an antiferromagnetic or paramagnetic alignm
of the f orbitals. A paramagnetic alignment is shown
18442
-

-

d

e
ses
r

a-

nism. The virtually hopping electron has reached ak50
band state. It is antialigned with thef orbitals that are ferro-
magnetically aligned among themselves. The moment of
band state partially compensates the fully saturated fe
magnetic alignment of these orbitals. This compensation
ture differs from ‘‘the exhaustion picture’’of Nozie´res24,25

evoked by Thavildar-Zadehet al.19 The compensation is on
collective-state-to-collective-state basis and not
collective-state-to-single-moment basis argued by Nozie´res.
This difference highlights the difficulty building the physic
of the periodic Anderson model from the physics of
single-impurity version.

The process in Fig. 2~b! contrasts that in Fig. 2~a!. The
process in Fig. 2~b! compensates on a site-to-site basis and
the one present for a paramagnetic or an antiferromagn
alignment of thef orbitals. The energy cost for virtual hop
ping is higher than that in Fig. 2~a!. This leads to larger
energy denominators in perturbation theory and in turn, le
to a smaller lowering of the ground-state energy.

B. Effective Hamiltonian: Canonical transformation

Here we will present an effective low-energy model va
in a different region of parameter space:U@W/2,2e f@V
.0. In this regime of parameters and around 1/4 fillin
single-electron occupancy of thef states occurs mainly be
cause of the double-occupancy penalty of the Coulomb
pulsion. As we will see, the interaction between the mome
in thesef states is dominated by the RKKY interaction.

To derive this effective Hamiltonian, we will make
fourth-order Schrieffer-Wolff transformation35 as in Ref. 34:

H̃5eŴ3eŴ1He2Ŵ1e2Ŵ3, ~31!

where the transformation operatorsW1 andW3 are of order
V and V3. With this transformation, we get a new Hami
tonian H̃ without terms of orderV and V3. By means of
another canonical transformation, we eliminate the term
orderV2. In this way we get the low-energy effective Hami
tonianHspin correct throughV4. The details of the derivation
are given in the Appendix.

The final expression for the effective Hamiltonian is
Heisenberg Hamiltonian

Hspin5(
i j

Ji j Si•Sj , ~32!

where

Ji j 5Ji j
(0)1Ji j

(1)1Ji j
(2)1Ji j

(3)1Ji j
(4) . ~33!

The RKKY contributionJi j
(0) is given by

Ji j
(0)5

V4

4N2 (
k,k8

e2 i (k2k8)•Ri j
2^nk

d&0~12^nk8
d &0!

ek2ek8

~gk1gk8!
2,

~34!

where

-
c-
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gk5
1

ek2e f2U
2

1

ek2e f
. ~35!

^nk
d&0 is defined in the Appendix.
Ji j

(1) is associated with virtual processes where onef elec-
tron at sitesi and j go through the conduction band, doub
occupy thed-sites j and i, and one of these two electron
comes back to an emptyf orbital. The expression forJi j

(1) is

Ji j
(1)5

V4

UN2 (
k,k8

e2 i (k2k8)•Ri j ~2dk1gk!~2dk81gk8!.

~36!

The other contributions toJi j are given by

Ji j
(2)5

V4

4N2 (
k,k8

e2 i (k2k8)•Ri j ~3dkdk8mkk81xkk8ykk8!,

~37!

Ji j
(3)5

V4

4N2 (
k,k8

e2 i (k2k8)•Ri j @gkgk8nkk8

14mkk8ykk827gk
2gk8~3gk1gk8!#, ~38!

Ji j
(4)5

V4

2N2 (
kk8

e2 i (k2k8)•Ri j gkgk8mkk8
2 , ~39!

where mkk8 , nkk8 , xkk8 , and ykk8 are defined in the Ap-
pendix. These four contributions toJi j are about one order o
magnitude smaller thanJi j

(0) .
We expressed the magnitude of the effective spin-s

interactionsJi j ~33! in terms ofk-space states because in t
absence of hybridization they are the eigenstates of the p
lem. From this point of view, the ferromagnetism for lo
density of carriers comes from the RKKY termJi j

(0) and the
small volume enclosed by the Fermi surface: When
Fermi volume is small, the transferredk-vector between dif-
ferent points on the surface is small, and the relevant ph
factors of Eq.~34! are positive for small distances betwe
sitesi and j. This positivity gives an effective ferromagnet
interaction between near neighbors, which is proportiona
the density of carriers and competes with the usual a
ferromagnetic super-exchange interaction included in
other components ofJi j . Because the ferromagnetic intera
tion increases with the concentration of carriers, we exp
the appearance of a ferromagnetic phase above some cr
concentrationrc . Due to the non-interacting case (U50)
being paramagnetic, we also expect a ferromagnetic ph
above some critical valueUc . To derive a simple expressio
for the phase boundaryUc[U(rc), we have to compare th
effective ferromagnetic interactionJi j

(0) with the the antifer-
romagnetic super-exchange interaction, which is prop
tional to V4t2/U5 for the symmetric PAM. From Eq.~34! it
is clear that, for the dilute case,Ji j

(0) is proportional to the
concentration of carriersrc and V4/tU2. Consequently, the
phase boundary of the ferromagnetic region is given by

rcV
4/tU2;V4t2/U5, ~40!
18442
in

b-

e

se

o
i-
e

ct
cal

se

r-

which implies that

rc;t3/Uc
3 . ~41!

This expression qualitatively agrees with the numerical
sults of Ref. 2.

This ferromagnetic phase must disappear above some
per critical concentration of carriers where the volume e
closed by the Fermi surface is no longer small. For this c
centration we do not expect an ordered phase unless ne
is present. In the presence of nesting,E2(k)5E2(k1Q)
5EFermi, the Fermi surface may be unstable towards
development of a spin-density wave. This instability is ma
fested in Eq.~34! from the divergence of theQ Fourier com-
ponent of Ji j

(0) . For a commensurate state,Q is a high-
symmetry point of the Brillouin zone and equals one half
a reciprocal lattice vector. For a square lattice, two su
points exist: (0,p) for r51/4 and (p,p) for r51/2. In the
absence of nesting, no well-definedQ vector connects differ-
ent points of the Fermi surface, and preferred ordering
the spins is absent. For this reason, if we were to increasr
over the upper ferromagnetic phase boundary, we would
pect a paramagnetic phase for any concentration diffe
from 1/4 and 1/2. This picture is similar to the one alrea
obtained in 1D.7 The only difference between 1D and 2D
in 1D, nesting exists at the Fermi level for any concentrat
of carriers. This nesting explains why spiral critical order
2kF is obtained for any value ofr in 1D.7

C. Quantum Monte Carlo results

All our simulations were performed for lattices of 434
and 636 unit cells. The cost of performing these simulatio
is approximately the same as simulating an 838 and 12
312 one-band Hubbard model. As mentioned previously,
used ground states derived from the noninteracting prob
as ucT&. When we simulated the PAM withe f525, we
used the noninteracting states fore f522 because this
choice consistently produced a lower estimate of the grou
state energy with a smaller statistical error then we wo
obtain if we had used the noninteracting states fore f525.

While we will only report results for the energy per site
a function ofNe or S , all inferences about the spin symm
tries of the ground state were supported by calculations
the spin-spin correlation functionC(r i2r j )5^Si

zSj
z&

5^(ni↑
f 2ni↓

f )(nj↑
f 2nj↓

f )& and the spin-structure factorC̃(k)
5 (1/N) ( i j e

ik•(r i2r j )C(r i2r j ).
Most of our simulations were performed for electron fi

ings of 1/4 through 3/8. In our previous work,23 where we
studied the region from 3/8 to 1/2 and found the RSD
ground state at 3/8 filling for a 636 system. At 1/2 filling,
we found the expected AF ground forU*2 in agreement
with other QMC simulations. In between, we found a pa
magnetic~PM! ground state. For these previous studies,
hade f522. As part of the present paper, we repeated so
simulations over this 3/8 to 1/2 range withe f525 but did
not find any indications of a FM state. We note again that
predictions of DMFT and SBMFT are inconsistent wi
8-8
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FERROMAGNETISM IN THE TWO-DIMENSIONAL . . . PHYSICAL REVIEW B 63 184428
these PM and RSDW states. The effective Hamiltonians p
sented in this paper are expected to be inappropriate for
filling range. We will not discuss this range further.

In the present paper, we also did a series of rough si
lations at fillings less than 1/4 for various values ofU and
e f . We only found PM ground states. DMFT and SBMF
find FM ground states for identical parameter choices.

We note that we found a PM ground state for one elect
removed from 1/4 filling, even for large values ofU. As we
will discuss below, when one electron was added to 1/4
ing, we found a FM state fore f525. Clearly, the properties
of the PAM are asymmetric about 1/4 filling in contrast
generally accepted suggestions that it behaves as a
filled, nearest-neighbor-hopping Hubbard model that d
plays particle-hole symmetry.

Figures 3 and 4 show the main results of our simulatio
They plot the energy difference between a polarized an

FIG. 3. Energy difference between the partially polarized a
singlet ground-state energies as a function of electron filling. T
lattice has 636 unit cell and the model hasU54, V520.5, and
e f525.

FIG. 4. Energy difference between the partially polarized a
singlet ground-state energies as a function of electron filling. T
lattice has 434 unit cell and the model hasU54, V520.5, and
e f525.
18442
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n
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a

singlet ground state as a function of electron filling. Figure
is for the 434 lattice, and Fig. 4 is for the 636 lattice. In
both figures, t51, V50.5, U54, and e525. For the
noninteracting problem, these parameters are the ‘‘flat ba
case illustrated in Fig. 1~b!.

At 1/4 filling, the two energies are equal to within stati
tical error. Our effective one-band Hamiltonian has lo
range hopping. So, for a sufficiently large value ofU, we
expected an AF ground state as was observed in the
dimensional DMRG calculations. CalculatingJRKKY for the
effective Heisenberg model, we found that wheniÞ j , the
magnitude of the exchange interaction is about two order
magnitude smaller than the magnitude of our statistical er
Thus, we should not expect to see this state easily. If we u
an anti-ferromagnetic state forucT&, we would see a AF
ground state, but the energy of this biased result and the
from a PM ucT& were typically equal within statistical error
In other words, the fluctuations of the numerically comput
spin-spin correlation function are very large due to the v
small energy scale of the effective magnetic interactions

By doping 1/4 filling with one extra election, we foun
that the FM state has a lower energy. Adding one elect
more produced a PM state. This behavior with the doping
one and two electrons is reminiscent of Nagaoka ferrom
netism and its instability in theU5` nearest-neighbor-
hopping Hubbard model. While our model is not the sam
the proposed mechanism for ferromagnetism is very simi
An electron lowers its kinetic energy by moving through
ferromagnetic background. In our mechanism, the elect
lowers its kinetic energy by interband processes enabling
hopping between two occupiedf states antialigned with its
spin. The need for interband processes differentiates
mechanism from Nagaoka’s.

We believe the disappearance of the FM with the sec
electron is not analogous to the known instability of the N
gaoka state but rather is a finite-size effect. It is well doc
mented that the shell structure of a finite-sized noninterac
problem is reflected in the behavior of the filling dependen
of the energy in the interacting problem.31–33 At least to a
first approximation, the chemical potential is constant in
shell and is discontinuous between such shells. Accordin
our effective one-band model, if we were to add one elect
to the 1/4-filled case, it would most effectively lower i
kinetic energy by moving between oppositely alignedf states
by virtually hopping through ak50 conduction-~upper-!
band state. The Pauli principle blocks, or frustrates, this p
cess for a second electron of the same spin if finite-size
fects make thek5(6p/2,6p/2) states of the next shell en
ergetically inappropriate: The second electron would have
enter thek50 shell oppositely aligned with the first, and th
ferromagnetic background off states cannot accommoda
the two different alignments.

The influence of finite-size and interband process is a
seen in Fig. 4 where we show the energy ratioE/
uE(S50)u as the number of electrons increases from 18
26 electrons, from one closed conduction-band shellNe
518 through anotherNe524 and ending at an ope
conduction-electron shell. At first, the polarized ground st
becomes much lower than the PM state and then two bec
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approximately equal atNe524. This variation is highlighted
in Fig. 5, which shows the ground-state energy as a func
of S for different electron fillings. For 18 and 26 electron
the energy per site either does not vary within statistical e
or increase. For 20, 22, and 24 electrons, it has a clear m
mum but the minimum for 24 electrons is just barely belo
unity. We note that the minimum in energy and the ma
mum inS occurs for a half-filled conduction-electron shell.
is as if a Hund’s rule coupling is operative in a nonmultio
bital situation. In Fig. 4,Smax is the value ofS for which
E/uE(S50)u is a minimum. If this ratio had no clear mini
mum, then we usedSmax5

1
2 (Ne2Ns) whereNs is the num-

ber of lattice sites~the number off orbitals! and Ne is the
number of electrons.

Ne524 corresponds to 3/8 filling. Instead of being a po
sibly weak FM state, we argue that it is actually an unpol
ized RSDW state; however, while we do not clearly see t
state for the 434 lattice, we clearly saw it for the 636
lattice whenNe556.23 There is an important and subtle di
ference between the two lattices: Our performance gain
constructingucT& is based on using closed shell states of
noninteracting problem, and these states mix informatio
about both the valent and conduction bands. For these st
the Ne524 singlet for 434 is a half-filled shell, but the
Ne556 singlet for 636 is a closed shell. This differenc
makes it much more difficult to see the RSDW state for
434 lattice. We emphasize that the shell in Fig. 4 is diffe
ent. It is a remnant of a shell in theconductionband.

We remark that our effective Heisenberg model admit
RSDW state. In particular, within the effective Heisenbe
model, the ferromagnetic nature of the RKKY exchange
teraction depends on the volume enclosed by the Fermi
face being small. Increasing the number of electrons
creases the volume, lengthens thek vector for transfer acros
the Fermi surface, and decreases the strength of the inte
tion until the Fermi surface becomes unstable becaus
nesting. Direct calculation of the Fourier components ofJi j

(0)

shows that it diverges close to nesting. The spatial patter

FIG. 5. Ground-state energy as a function of the value of
total initial spinS for several different values of electron filling. Th
lattice has 434 unit cell and the model hasU54, V520.5, and
e f525.The number of electrons varies as 18, 20, 22, 24, and
18442
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this diverging Fourier component corresponds theJi j
(0) being

zero if sitesi and j are on different sublattices and behavin
antiferromagnetically if the sites are on the same sublatt
This is precisely the pattern observed in the spin-spin co
lation function reported in our previous work, but we do n
see it for the 434 lattice size. Finite sizes effects and th
limited range of system sizes we can afford to simulate h
prevented us from performing the scaling analysis need
establish the RSDW state as one of long-range order.

Both the ferromagnetism and conduction-band shell str
ture is evident for the 636 case shown in Fig. 3. Adding on
electron to the 1/4 filled case (Ne536) produces a FM state
Adding another closes thek5(0,0) shell that frustrates the
ferromagnetism. Adding more electrons to reachNe554
successively populates thek5(6p/3,6p/3) and (62p/3,
62p/3) conduction-band shells. At the middle of each sh
the energy difference is a maximum and the shell is h
filled.

V. CONCLUSION

Our numerical results indicate that several important f
tures of the phase diagram of the one-dimensional P
~Refs. 2,7! are preserved in two dimensions. In both dime
sions and for half filling, the Coulomb interaction induces
insulating gap, and the system can have AF order~AF insu-
lator!, or it can remain in a paramagnetic state~Kondo insu-
lator! if there is a strong enough hybridizationV between
both bands. In this latter case, there is also a spin gap a
ciated with the energy necessary to break a Kondo sing
The AF order originates in the Fermi surface nesting atQ
5(p,p).

When doped away from half filling, the system in tw
dimensions becomes paramagnetic. In one dimension, h
ever, critical incommensurate spin-spin correlations pea
at Q52kF develop. This can be understood with the effe
tive Heisenberg theory derived in Section IV B: The RKK
interaction Ji j

(0) has a divergent Fourier component atQ
52kF because there is nesting for any concentration of e
trons. This results in a Luttinger liquid with spin-spin corr
lations that are critical and peaked atQ52kF . The situation
is different in two dimensions where there is nesting only
fillings 1/2, 3/8, and close to 1/4~small Fermi surface!. Our
numerical evidence suggests that the system is paramag
between 3/8 and 1/2 filling. For 3/8 filling, where the nesti
appears atQ5(0,p) and (p,0), our CPMC results indicate
the presence of a RSDW phase. In this phase, the two in
penetrating sublattices are decoupled, and there is AF o
in each. This spatial ordering can be also understood by c
sidering the effective Heisenberg theory for the PAM: It
clear that in going from 1/2 to 1/4 filling, the neares
neighbor RKKY interaction changes its sign~AF close to 1/2
and FM close to 1/4). A cancellation then must occur
some intermediate concentration. We can easily see that
intermediate filling is 3/8 where there is nesting for two d
ferent wave vectors:Q5(0,p) and (p,0). These two trans-
ferred wave vectors give canceling contributions to t
nearest-neighbor RKKY interactions. For instance, the ne
est neigbhor in thex direction will feel an antiferromagnetic

e

6.
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interaction coming fromQ5(p,0) and a ferromagnetic on
of the same magnitude coming fromQ5(0,p). On the other
hand, the next-nearest neighbors have an overall phasep for
both wave vectors~constructive interference! and the effec-
tive interaction is therefore AF. This is the origin of th
RSDW state obtained for 3/8 filling.

By decreasing the filling below 3/8, the CPMC resu
indicate that the system becomes paramagnetic again d
to some critical filling beyond which nonsaturated ferroma
netism appears. Again, this behavior is related to the nes
of the Fermi surface. Below 3/8 filling there is no nesti
down to some small concentration of conduction electr
near 1/4 filling where the Fermi surface of the conduct
electrons can be very well-approximated by a small sph
and the wave vector 2kF connecting two different points is
very close to zero. Under these conditions, the RKKY int
actionJi j

(0) diverges with a negative value indicating the pre
ence of a ferromagnetic instabilty.

This mechanism is not the only one giving rise ferroma
netism in the PAM for small concentrations of carriers.
the Mott insulating regime (U,D) where the one band
effective model H1 band is a valid effective low-energy
theory, the ferromagnetism is related to the long-range h
ping processes involving charge virtually tranferring fro
the lower to the upper band. The relevance of these proce
is related to the flatness of the lower band and the disper
character of the upper one. Without considering proces
connecting the two different bands (H1 band5H1 band

(0) ), the
effective one-band Hamiltonian is an extended Hubb
model ~the hopping is not restricted to nearest neighbo!.
Due to the flatness of the lower band, the effective ra
Ũ/t i j

a is very large, and the model is in a Nagaoka-like
gion even for small values of the bare interactionU. The
relevant low-energy scale that determines the magnetic
dering comes from the comparison betweenrt i j

a ~energy per

link of the Nagaoka state! andt i j
a 2/Ũ ~energy per link of the

AF state!. As this difference is extremely small, any oth
term added to the Hamiltonian, which favors one of the t
competitive phases, will be relevant. As we have explain
in Section IV A, H1 band

(2) stabilizes the ferromagnetic phas
If the localized electrons are polarized in the same direct
the added carriers can gain energy from virtual proces
transferring charge betweenk;0 states of the lower and th
upper band.

It is also important to make some additional comme
about the finite-size effects in our numerical results. In
infinite system, it is necessary to have a finite critical co
centration of electrons in order to induce the ferromagn
phase. We argue that this must be the case because the
in kinetic energy of the added particles must overcompen
the loss of magnetic energy of the localized electrons~which
is proportional to the system size!. The numerical results
show that the system becomes ferromagnetic with the a
tion of only one conduction electron. This is because o
electron added to a 434 or 636 system corresponds to
finite concentration. Besides, as it is explicitly shown in Fig
3 and 4, there are closed-shell effects that give a nonmo
tonic behavior for the energy difference between the fer
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magnetic and the paramagnetic state as function of con
tration. It is clear that for small systems and closed-sh
conditions, the noninteracting~paramagnetic! solution will
be more stable under the introduction of correlations. T
small systems will generally have larger energy gaps
tween two shells.

Due to size effects, we must assume that we are dea
with states of long-range order, and we cannot say m
about the order of the paramagnetic-ferromagnetic tra
tions. To establish long-range order and to determine
order of the transitions, it is necessary to scale the peak
the spin structure factor with the system size for a fix
filling. To do this properly requires larger systems than t
ones considered in this paper.
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APPENDIX A

To make the derivation ofHspin clearer, we begin by
rewriting Eq.~1! as

H5H (0)1H (1), ~A1!

with

H (0)5(
k,s

ekdks
† dks1e f(

i ,s
nis

f 1
U

2 (
i ,s

nis
f ni s̄

f , ~A2!

H (1)5V (
i ,k,s

~eik•r idks
† f is1e2 ik•r i f is

† dks!. ~A3!

The next step is the application toH of a Schrieffer-
Wolff-like transformation35 to eliminate terms of orderV and
V3 from the Hamiltonian. We do this by expanding the e
ponentials of Eq.~31! and imposing the conditions

H (1)1@Ŵ1 ,H (0)#50, ~A4!

1

3
$Ŵ1 ,@Ŵ1 ,H (1)#%1@Ŵ3 ,H (0)#50, ~A5!

that defineŴ1 andŴ3. With these conditions

H̃5H (0)1
1

2
@Ŵ1 ,H (1)#1

1

8
$Ŵ1 ,~Ŵ1 ,@Ŵ1 ,H (1)# !%1•••.

~A6!

The following expression forŴ1 satisfies Eq.~A4!

Ŵ15V (
i ,k,s

~dk1gkni s̄!~eik•r idks
† f is2e2 ik•r i f is

† dks!,

~A7!

with
8-11
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gk5
1

ek2e f2U
2

1

ek2e f
, ~A8!

and

dk5
1

ek2e f
. ~A9!

With this Ŵ1, the second-order term inH̃ becomes

H (2)5
1

2
@Ŵ1 ,H (1)#

52
V2

2 (
i , j ,s

ei (k2k8)•r i@ t i j
(1)1t i j

(2)~ni s̄1nj s̄!# f j s
† f is

2V2 (
i ,k,k8,s,s8

ei (k2k8)•r imkk8Si•dks
† sss8dk8s8 ,

~A10!

wheremkk85gk1gk8 , the components of the spin operat
Si are

Si
z5

1

2
~ f i↑

† f i↑2 f i↓
† f i↓!,

Si
15 f i↑

† f i↓ ,

Si
25 f i↓

† f i↑ , ~A11!

and the components ofsss8 are the Pauli matrices divided b
two. t i j

(1) and t i j
(2) are defined as

t i j
(1)5

V2

2 (
k

eik•Ri j 2dk

t i j
(2)5

V2

2 (
k

eik•Ri j gk . ~A12!

Finally, Hspin is obtained by means of a second canoni
transformation that eliminatesH (2) from H̃

Hspin5eŜH̃e2Ŝ. ~A13!

By expanding the exponentials of Eq.~A13!, we get an
elimination condition that definesS:

H (2)1@Ŝ,H̃#50. ~A14!

A S that satisfies this equation is

S52V2 (
i ,k,k8,s,s8

ei (k2k8)•r i
mkk8

ek2ek8

Si•dks
† sss8dk8s8

1 (
i , j ,s

ei (k2k8)•r i@ t i j
(1)1t i j

(2)#~ni s̄2nj s̄! f j s
† f is . ~A15!

Through fourth order inV
18442
l

Hspin5H (0)1
1

2
@Ŝ,H̃ (2)#1

1

4
~Ŵ1 ,@Ŵ1 ,H (2)# !.

~A16!

The second term in Eq.~A16! reduces to

1

2
@Ŝ,H̃ (2)#5

V4

4 (
i , j ,k,k8

e2 i (k2k8)•Ri j

3S 2^nk
d&0~12^nk8

d &0!

ek2ek8

mkk8
2

1
@ t i j

(1)1t i j
(2)#2

U D Si•Sj , ~A17!

where^nk
d&05^ 1

2 (sdks
† dks&0 and^•••&0 means the expecta

tion value relative to non-interacting conductiond electrons
(V50). The first term of Eq.~A17! gives the RKKY inter-
action.

The third term of Eq.~A16!, H (4)5 1
4 (Ŵ1 ,@Ŵ1 ,H (2)#),

can be expressed as

H (4)5
V2

4N2 (
i , j ,k,k8

e2 i (k2k8)•Ri j @3dkdk8mkk8

1$dk1dk824mkk812nk
d~3gk1gk8!%ykk8nkk8gkgk8

14mkk8ykk827gk
2gk812nk

dgkgk8~3gk1gk8!

12gkgk8mkk8#Si•Sj , ~A18!

with

nkk85dk1dk8 ,

xkk85dk1dk824~gk1gk8!12 f k~3gk1gk8!,

ykk85dkgk81dk8gk . ~A19!

APPENDIX B

In this appendix, we show the derivation ofH1 band
(2) by

means of a second-order canonical transformation. The s
ing Hamiltonian is:

H5H1 band
(0) 1H1 band

(1) , ~B1!

whereH1 band
(0) is given by Eq.~25!. From Eqs.~26! and~28!

we can rewriteH1 band
(1) in the following way:

H1 band
(1) 522

UV

ANue f u
(
i ,k,s

nis
a ~a i s̄

†
bks̄

1a i 8s̄
†

bks̄!S 11
t

e f
skD . ~B2!

The canonical transformation is given by the followin
equation:

H̃5eT̂1He2T̂1. ~B3!
8-12
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The terms of orderH1 band
(1) are eliminated under the follow

ing condition:

H1 band
(1) 1@ T̂1 ,H1 band

(0) #50. ~B4!

Satisfying Eq.~B4! is

T̂152
UV

ANue f u
(
i ,k,s

nis
a ~a i s̄

†
bks̄1a i s̄

†
bks̄!

E1~k!2 ẽ f2U
S 11

t

e f
skD ,

~B5!

wheresk5coskx1cosky .
In this way, we get the second order part of the tra

formed HamiltonianH̃:
-

. B

18442
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Ĥ1 band
(2) 524

U2V2

Nue f u2
(

i , j ,k,s

nis
a nj s

a ~a i s̄
†

a j s̄1a j s̄
†

a i s̄!

Ek
12 ẽ f2U

t̃ i j ~k!,

~B6!

where

t̃ i j ~k!55
1, for i 5 j

t

ue f u
sk , for i and j n.n.

t2

ue f u2
sk

2 , for i and j second and third n.n.

~B7!

Here we have considered that the lower band is dispers
less withE2(k);ẽ f and ē f5t i i

b2t i i
a .
ev.
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