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Charge transport in manganites: Hopping conduction, the anomalous Hall effect,
and universal scaling
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The low-temperature Hall resistivityrxy of La2/3A1/3MnO3 single crystals~whereA stands for Ca, Pb, and
Ca, or Sr! can be separated into ordinary and anomalous contributions, giving rise to ordinary and anomalous
Hall effects, respectively. However, no such decomposition is possible near the Curie temperature which, in
these systems, is close to metal-to-insulator transition. Rather, for all of these compounds and to a good
approximation, therxy data at various temperatures and magnetic fields collapse~up to an overall scale!, on to
a single function of the reduced magnetizationm[M /M sat, the extremum of this function lying atm'0.4. A
mechanism for the anomalous Hall effect in the inelastic hopping regime, which reproduces these scaling
curves, is identified. This mechanism, which is an extension of Holstein’s model for the ordinary Hall effect in
the hopping regime, arises from the combined effects of the double-exchange-induced quantal phase in triads
of Mn ions and spin-orbit interactions. We identify processes that lead to the anomalous Hall effect for
localized carriers and, along the way, analyze issues of quantum interference in the presence of phonon-
assisted hopping. Our results suggest that, near the ferromagnet-to-paramagnet transition, it is appropriate to
describe transport in manganites in terms of carrier hopping between states that are localized due to the
combined effect of magnetic and nonmagnetic disorder. We attribute the qualitative variations in resistivity
characteristics across manganite compounds to the differing strengths of their carrier self-trapping, and con-
clude that both disorder-induced localization and self-trapping effects are important for transport.

DOI: 10.1103/PhysRevB.63.184426 PACS number~s!: 75.30.Vn, 72.20.My, 03.65.Ta
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I. INTRODUCTION AND OVERVIEW

Numerous recent studies have focused on the Hall ef
in the family of doped manganese oxides La12xAxMnO3 ~in
which A stands for Ca, Sr or Pb!, famous for its colossa
magnetoresistance1,2 ~CMR! and accompanying
ferromagnet-to-paramagnet~FP! and metal-insulator~MI !
transitions.3–12 Despite substantial variations in, e.g., t
ferromagnet-to-paramagnet transition temperatureTC and re-
sidual resistivity across this manganite family, measureme
of the Hall effect reveal unusual features in both their me
lic and insulating regimes. An example of the Hall effe
data is shown in Fig. 1. In the metallic state the Hall~i.e.,
transverse! resistivity rxy at lowest temperatures~curve at
10 K in Fig. 1! exhibit just the ordinary Hall effect~OHE!,
proportional to the external magnetic fieldB. At higher tem-
peratures in the metallic phase, the Hall resistivity can
separated into the sum of~i! a ~positive! ordinary Hall effect,
and ~ii ! a ~negative! anomalous Hall effect~AHE!, propor-
tional to the magnetizationM, as shown for the curve at 20
K on Fig. 1. The effective density of carrier holes, as d
duced from the slope of OH resistivity, is typically found
be several times larger than that set by the nominal dop
level.

This difference has been attributed to the effects of cha
compensation and Fermi-surface shape.9 The AHE is com-
monly observed in ferromagnets, but the sign and the m
nitude of the AHE in manganites stand in contradiction
conventional theories based on skew-scattering13–16 or side-
0163-1829/2001/63~18!/184426~27!/$20.00 63 1844
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jump processes.15,17–19Most striking is the rapid increase i
the prominence of the AHE that occurs at temperatureT
close toTC . In this range of temperatures,rxy can no longer
be simply separated into ordinary and anomalous parts
can be seen from the curve at 300 K in Fig. 1. For tempe
tures well aboveTC , rxy again becomes linear inB, although
its sign is now negative.4–7,9,10,12The corresponding Hall co
efficientRH ([rxy /B) decreases exponentially with increa
ing temperature in this regime, and a previous study ide
fied a clear crossover from nonpolaronic to polaronic cha
transport at around 1.4TC .12

The purpose of the present paper is to address the issu
charge-carrier motion in manganites, both experimenta
and theoretically, focusing on the vicinity of the FP and M
transitions, from the vantage point afforded by the Hall
fect. Our experimental results have led us to focus on
anomalous contribution to the Hall effect, and to develop
microscopic theoretical picture of the charge-carrier mot
that gives rise to this contribution in manganites. The pict
that emerges is one in which the essential character
charge-carrier motion is inelastic hopping between states
calized due to magnetic and other sources of disorder.

In order to explain the Hall effect in the manganites in t
vicinity of TC , it is necessary to understand how the natu
of the charge-carrier states are influenced by the magn
order of the system. In this regard, the double-exchange
teraction~DEI!, which makes charge-carrier motion of M
outer-shell carriers sensitive to magnetic alignment of c
3/2 spins of Mn ions~Hund rules lead to alignment of spin
in three inner orbitals resulting in core spin 3/2!, has long
©2001 The American Physical Society26-1



es
-

n
th

c-

e
he

o
nc

th
of
re
n
o
.
be

e
cr
un

a

pi
op

the

the

out
ded

gh-
-

lly-

the

for
ion:
he

ed
iled

in
sure-
nd

s of

ve
ivity

lts
n
ng
the
rrier
on-

nant
is

zed
lic
As
ay

ice

igh
ef-
us

v-
ed

for
29.
of

re-

on
on
is

r a

ot
at
A

Y. LYANDA-GELLER et al. PHYSICAL REVIEW B 63 184426
been known to play a key role in transport in manganit
having been introduced by Zener20 and elaborated by Ander
son and Hasegawa21 and De Gennes.22 Therefore, our ap-
proach to exploration of the anomalous Hall effect in ma
ganites is based on the picture of hopping conduction in
presence of double-exchange interaction.

A picture of the ordinary Hall effect in hopping condu
tors was developed long ago by Holstein,23 in which the
critical ingredient is the Aharonov-Bohm quantal phase24 ac-
quired as charge-carriers hop in the presence of magn
field around closed sequences of localized states. The t
retical work reported here amounts to the generalization
Holstein’s ideas suited to DE systems. The primary disti
tions from Holstein’s ideas are as follows:~i! Localization is
now, to a great extent, caused by magnetic disorder in
orientation of core spins~and the attendant randomization
hopping amplitudes!; the effects of magnetic disorder a
facilitated by static disorder, and accompanied by polaro
effects. ~ii ! The relevant quantum-mechanical phases n
arise via the quantal version of the Pancharatnam phase25,26

~iii ! In order for a net Hall effect to result, account must
taken of Dzyaloshinskii-Moriya spin-orbit coupling.27 The
AHE mechanism that we propose arises in hopping regim
systems with localized states, and is the only possible mi
scopic mechanism of AHE in such systems. A brief acco
of this work was published in Refs. 10 and 11.

From the perspective of symmetry, it is well known th
spin-orbit interactions lead to AHE.13–19 The appreciation
that a spin-generated geometric phase, in addition to s
orbit interactions, is an essential ingredient for the devel

FIG. 1. Hall resistivity of manganites versus magnetic field fo
selection of temperatures. At 10 K the Hall effect isordinary; the
slope extrapolates to the origin. At 200 K the Hall effect has b
ordinaryandanomalouscomponents; the slope does not extrapol
to the origin, the offset signaling the anomalous Hall effect.
300 K it is not simple to separate the Hall resistivity intoordinary
andanomalouscomponents.
18442
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ment of a theory of the AHE in DE systems dates back to
1998 manuscript of Kim, Majumdar, Millis, and Shraiman.28

From the perspective of the microscopic mechanism of
AHE, both Ref. 28 and the paper of Yeet al.29 that super-
ceded it, invoke a field-theoretic scheme for integrating
the charge-carrier motion and, therefore, were inten
mostly for metallic regimes~i.e., regimes in which charge
transport occurs viadelocalizedstates!. Ye et al. have also
addressed the polaron hopping regime by using hi
temperature expansion.30 By contrast, the present work con
siders the microscopic picture of nonmetallic regimes~i.e.,
regimes in which charge transport occurs via inelastica
assisted hopping betweenlocalized states!. Elsewhere, we
shall address the issue of the microscopic mechanism of
AHE in the metallic regime.31

The microscopic mechanism of AHE that we propose
systems with localized states leads to remarkable predict
the Hall resistivityrxy depends on the temperature and t
magnetic field solely through the magnetizationM, i.e., rxy
5rxy„M (H,T)…. This universal scaling has been observ
experimentally in manganites. Here, we provide a deta
discussion of our theoretical picture of hopping transport
manganites. Further, the present paper reports on mea
ments made on additional compounds having lower a
higher transition temperatures and provides an analysi
these data in terms of our theoretical picture.10,11The univer-
sal scaling relation betweenrxy andM reported for is shown
to hold for the manganese oxides La2/3Ca1/3MnO3 ~LCMO!,
La2/3Sr1/3MnO3 ~LSMO!, and La2/3Ca1/9Pb2/9MnO3 ~LPMO!.
Although data on the Hall effect in these compounds ha
universal features, the temperature dependence of resist
in LSMO is different from that in LCMO and LPMO. This
behavior is due to different size of dopant ions which resu
in different static disorder, different carrier localizatio
length, and, accordingly, different strength of self-trappi
due to lattice effects. We believe that the accuracy of
results concerning the AHE based on inelastic charge-ca
hopping between states localized due to magnetic and n
magnetic sources of disorder suggests that the domi
mechanism for charge transport in the transition regime
indeed inelastic charge-carrier hopping between locali
states, which differs qualitatively from the picture of metal
conduction perturbed by double-exchange interactions.
for polaronic effects, depending on the compound, they m
set in soon as localization length is of the order of latt
constant. These effects~or their absence! are crucial for the
character of the temperature behavior in the range of h
temperatures above the FP and MI transitions. Polaronic
fects do not affect the universal scaling of the anomalo
Hall resistivity. At the same time, scaling of the AH resisti
ity of the type observed in the CMR regime is not contain
in conventional models of the AHE in the metals~i.e., those
based on skew-scattering and side-jump mechanisms!. Nei-
ther is this scaling contained in a Berry phase mechanism
the AHE in the metallic phase, discussed in Refs. 28 and
We regard this as further evidence against the viability
any metallic-based picture of transport in the transition
gime.

How does the present work relate to earlier work
charge transport in the CMR regime? Attempting to build
the early key insight that DE plays a central role, Mill
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et al.32 considered transport in DE systems within the fram
work of the coherent potential approximation~CPA!. Mak-
ing the CPA in the present context amounts to replacing
charge and magnetic system by an effective one, involv
only the charge subsystem, in which the conduction b
width depends on the magnetization but there is no o
effect of the magnetic sector. Thus, any resistivity obtain
via such a scheme is simply whatever the resistivity of
charge sector was, reduced by an extent that depends o
magnetic order via a renormalization of the bandwidth. T
picture enforced by this approach is that the fundame
mechanism for charge transport is metallic in nature. Na
rally, the CPA approach32 is unable to yield a colossal mag
netoresistance, although it can provide factors on the orde
unity. What it explicitly omits is any resistivity mechanism
arising from localization due to magnetic disorder, as no
by Varma.33 Rather than appeal to such a localization p
cess, Millis et al.34 proposed that the magnetizatio
dependent reduction of the bandwidth invites lattice effe
Specifically, the~now magnetically! heavy charge carrier
would be more susceptible to self-trapping by a large Ja
Teller lattice distortion, which would cause a metal-insula
transition via polaronic collapse of the conduction ban
width.

Accepting, for the moment, the notion that charge tra
port in the transition regime is indeed accomplished by
tice polarons, let us ask what the consequences would b
the resistivity. According to theory of polaronic transpo
developed in series of papers in 1960s by Holstein alon35

with Friedman36 and with Emin,37 polaronic-type conduction
manifests itself via a specific temperature-dependence o
longitudinal and Hall resistivities, being activated in chara
ter with a definite relationship between the activation co
stants for these resistivities. Following the proposal
polaronic-type conduction by Milliset al., experimental tests
of these temperature dependences were performed. In
results4 in LPMO over the range of temperatures high abo
the MI and FP transitions seemed in accordance with
polaronic picture. However, recent extensive measurem
at lower temperatures, in transition regime,12 demonstrate
that, at least in this regime, the temperature dependenc
the longitudinal and Hall resistivities cannot be explained
terms of polaronic picture alone. Furthermore, even at h
temperatures, polaron-based picture is not compatible w
experimental data for LSMO samples.

With the pictures of charge transport in the CMR regim
based on either the magnetization-dependent reduction o
bandwidth or on polarons alone invalidated, what remain
the possibility of constructing a valid picture based on no
polaronic localization of charge carriers. Strong eviden
supporting such a picture comes from a simple estimate
the scattering time~i.e., the scattering-induced conductio
band broadening!, which indicates that, in the transition re
gime, the band broadening exceeds the band width~i.e., the
mean free path is shorter than the Fermi wavelength! so that
the resistivity exceeds the Mott-Ioffe-Regel limit and, hen
the conduction cannot be metallic. Therefore, one need
search for insulating transport mechanisms and, specific
the origins of carrier localization that are distinct from p
18442
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laronic effects.~We note that in compounds in which th
Jahn-Teller distortion is not symmetry-allowed, this is esp
cially important.! Such localization can result from bot
magnetic disorder~i.e., due to lack of core-spin alignmen!
and non-magnetic disorder~i.e., static potential disorder due
e.g., to doping!.38

While the localizing influence of nonmagnetic disorder
charge transport has been thoroughly investigated,39,40 the
influence of magnetic disorder is less well known, and
shall discuss it in detail in Sec. III B. For now, we simp
mention that the magnetic disorder in core 3/2 spin orien
tion experienced by the outer-shell charge carriers arises
the DE interaction from fluctuations around the ferroma
netic state that build up as the FP transition is approac
from the low temperature side. Of course, these fluctuati
are dynamical, but they are slow, compared with charac
istic timescales for outer-shell charge-carrier motion. Th
for the purposes of analyzing the influence of the magn
sector on charge transport, it is appropriate to regard or
tations of the core spins on the Mn ions as quenched v
ables. The resulting magnetic disorder takes the form of r
domness in the off-diagonal hopping matrix elements for
charge carriers. By contrast, nonmagnetic disorder occ
due to randomness in the substitution of La by dopant i
~e.g., Sr, Pb, or Ca!, and gives rise to the more familia
diagonal~Anderson-type! disorder. Electronic states in sys
tems with off-diagonal disorder were first considered
Lifshitz,41 who showed that localized states arise in the ba
tail. The physical picture of carrier states in manganites m
encompass both magnetic and nonmagnetic disorder, p
bly facilitated by Coulomb effects, which~jointly or sever-
ally! can result in carrier localization.

If carriers are localized then they can still participate
transport, but it is by hopping from one localized state
another, assisted by one or more inelastic agents~such as
phonons!. In this case, the longitudinal resistivity is dete
mined by the rate of inelastic hopping between occupied
unoccupied states.39,42 When carrier localization has oc
curred, and the localization length is of order of lattice co
stant, electronic interaction with lattice and self-trapping
fects can become essential, so that at high tempera
resistivity is determined by small polarons. However, tran
tional regime is greatly affected by carrier localization
nonpolaronic origin. We notice that in general one sho
distinguish between Jahn-Teller polarons and Holst
breathing mode polarons: the presence of the former dep
on symmetry of the system, the latter arise independen
the underlying symmetry. In manganites, both types of
larons are capable of facilitating carrier localization by ma
netic and nonmagnetic disorder; when carriers are locali
on lattice constant scale, Holstein polarons govern the t
perature dependence of resistivity deep in the insula
phase.

In the present paper, we shall not consider metallic m
ganites, and restrict our consideration to the inelastic h
ping transport regime. The discussion of the Hall effect
metallic ferromagnets will be presented elsewhere.31 The
present paper is organized as follows. In Sec. II we desc
the experimental setup and in Sec. II B we present exp
6-3
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Y. LYANDA-GELLER et al. PHYSICAL REVIEW B 63 184426
mental data on the longitudinal resistivity, magnetization a
Hall resistivity in three different manganite compounds ha
ing distinct transition temperatures. Section III is organiz
into several subsections, in which we describe models
disorder in manganites, issues related to the localization
carriers and the hopping transport mechanism, as well as
quantal Pancharatnam phase, spin-orbit Dzyaloshin
Moriya interactions, and the universal scaling of the H
resistivity. In Sec. IV we discuss the correspondence
tween our theoretical and experimental results.

II. EXPERIMENTS ON TRANSPORT AND MAGNETIC
PROPERTIES OF MANGANITES

A. Experimental method

In the experimental part of this study, single crystals
various manganites were used in order to avoid extrinsic
fects from grain boundaries or strains. In single crystals,
multaneous measurements of transport and magnetic pro
ties permits us to find a precise dependence of trans
coefficients on the sample magnetization. We have meas
the longitudinal and Hall resistivities and the magnetizat
of three different crystals with various transition tempe
tures. La0.7Ca0.3MnO3 ~LCMO! and La0.7Sr0.3MnO3 ~LSMO!
single crystals were prepared by the floating-zone meth
La0.67(Ca,Pb)0.33MnO3 ~LPMO! single crystals were grown
from 50/50 PbF2 /PbO flux. More details on the samp
growth and basic properties can be found elsewhere.43,44 All
specimens used in the measurements were cut along cry
line axes into bar shapes from larger pre-oriented cryst
Contact pads for Hall resistivity measurements were m
by sputtering'1500 Å of gold through a mask. Gold wire
of 50 mm diameter are then attached using slowly dryi
silver paints. Typical contact resistances after annealing w
about 1V at room temperature. We adopted a low-frequen
~39 Hz! ac method for the measurements. The transve
voltage signal was first nulled at zero field at each tempe
ture below 400 K by a potentiometer, and the change in
transverse voltage was recorded asH was swept from17 T
to 27 T and back for averaging. Following the transpo
measurements, sample magnetizations were measured b
T SQUID magnetometer on the same samples.

B. Experimental results

Figure 2 shows the temperature dependences of mag
zation measured at 1 T and 7 T. All three samples show
ferromagnetic-to-paramagnetic phase transitions. The C
temperaturesTC were determined by scaling analysis on hi
field M (H) curves near the transition, and the results
shown in Table I. AsTC decreases, the transition becom
sharper, resulting in anomalous critical exponents.45

The temperature dependences of the longitudinal resis
ities rxx for the same set of samples under zero magn
field and under 7 T are shown in Fig. 3. LCMO and LPMO
show metal-insulator transitions nearTC , whereas LSMO
shows an inflection atTC , butrxx continues to increase with
increasing temperature aboveTC . The metal-insulator tran
sition temperaturesTMI , determined by the maximum in th
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rate of change in the temperature dependence of the lon
dinal resistivity drxx /dT under zero magnetic field, wer
slightly higher than correspondingTC’s ~Table I!. Also
shown in Table I arerxx minima ~occurring at the lowest
temperatures! and magnetoresistivity~MR! maxima@defined
by „rxx(0 T)2rxx(7 T)…/rxx(7 T)]. The observed de-
crease inTC correlates with the overall increases of resist
ity and MR, which can be clearly seen in Fig. 3.

Despite differences inTC , TMI and temperature depen
dence of longitudinal resistivity across the three compoun
the Hall resistivity of compounds with doping that corr
sponds to maximalTC show similar temperature and fiel
dependences, as shown in Figs. 4, 5, and 6. At low temp
tures,rxy is positive and linear in magnetic field, the sig
indicating holelike charge carriers, and negligible anomalo
Hall contribution. As the temperature is increased, the hi
field slope is roughly the same. However, the increasi
negative, contribution torxy shifts it downward. Quantita-
tively, rxy can be expressed as a sum of an ordinary con
bution parametrized byR0(T) and an anomalous contribu
tion parametrized byRS(T) ~Ref. 46!:

rxy~B,T!5R0~T!B1m0RS~T!M ~H,T!, ~2.1!

where B5m0@H1(12N)M #, H is the external magnetic
field, andN'1 is the demagnetization factor. As has com
monly been observed in manganite crystals and thin film
the effective charge-carrier densityneff[1/eR0 is scattered
between 1.0 and 2.4 holes/Mn~see Table I!, which is much
larger than the nominal doping level~of 0.3–0.33 holes/Mn!,
presumably due to the effects of the anisotropy of the Fe
surface.9 We refer to our previous publications for the di
cussion on the low temperature OHE.9

On further increase of the temperature throughTC , rxy
becomes much larger, strongly curving with magnetic fie
and the positive, high-magnetic-field contribution, linear
the field, which would arise from the ordinary Hall effect
a metallic phase due to the Lorentz force acting on char
carriers, disappears. Owing to its lowTC , for the LCMO
sample we were able to explore temperatures far aboveTC ,

FIG. 2. Temperature dependences of normalized magnetiza
M /M sat under 1 T~solid lines! and under 7 T~dotted lines! mag-
netic fields.
6-4
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TABLE I. Characteristics of single crystal samples used in this study.

Composition TC TMI min rxx max MR ne f f(10 K!

LCMO La0.7Ca0.3MnO3 216.2 K 222.5 K 140mV cm 2600% 1.6 holes/Mn
LPMO La0.67(Ca,Pb)0.33MnO3 285.1 K 287.5 K 91mV cm 326% 2.4 holes/Mn
LSMO La0.7Sr0.3MnO3 359.1 K 362.0 K 55mV cm 64% 1.0 holes/Mn
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whererxy shows a negative Hall coefficient, despite the do
ing of the material being by holes. In this range of tempe
tures the Hall coefficientRH5rxy(B)/B exhibits activated
behavior, with a characteristic energyEH' 2

3 Es , whereEs

is the activation energy for ordinary conductivitysxx . Simi-
lar experimental results have been obtained in Refs. 4
12. In these works, investigations of manganite carr
transport deep in the insulating phase have shown that
sign and temperature dependence of the high-tempera
~i.e., above 1.4TC) Hall coefficient RH ([rxy /B) can be
explained in terms of the adiabatic hopping of small p
larons.

Initially,4 high-temperature transport picture due polar
hopping to was believed to support the proposal by Mi
et al.32 that the Jahn-Teller distortion which, according
symmetry considerations can occur in the MnO6 octahedra
of LaMnO3, is responsible for the insulating behavior
doped La12xAxMnO3 systems. Hall resistivity measuremen
should be capable of providing key evidence for or aga
the polaronic picture of charge transport. According to
theory of this picture, the adiabatic hopping of sm
polarons37 leads to an activation energyEH characterizing
RH that is 2/3 of the activation energyEr characterizing
rxx ,37 as is observed at high temperatures.4,12 However, re-
cent Hall resistivity measurements, extending into the tra
tion region12 show that the activation energy chang
abruptly at a crossover temperature 1.4TC , from the po-
laronic value of 2

3 Es to a much larger value, 1.7Es . This
clearly marks the breakdown of the small polaron picture
charge transport, as shown in Fig. 4~inset!. In fact, the ef-
fective activation energy of the conductivity begins to d
crease from a value ofEs at roughly the same crossove

FIG. 3. Temperature dependences of longitudinal resistivityrxx

under zero magnetic field~solid lines! and under 7 T~dotted lines!.
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temperature, making even greater the discrepancy betw
the experimental data and the small-polaron hopping pict
Even more dramatically, the product of the Hall mobilitymH
and the temperature, viz.,mHT52sxxRHT which, accord-
ing to the small polaron picture, should decrease monoto
cally with decreasing temperature, in fact is found to exhi
a minimum at the same crossover temperature.~We shall
later show that, nearTC , rxy is determined solely by the
sample magnetization in all three compounds.! Thus, experi-
ments in transition region lead to the conclusion that, wh
small polarons are an essential part of the physics of tra
port in manganites at high temperatures, they cannot pro
a complete picture of the metal-to-insulator transition.

More generally, as discussed by Varma,33 there exist
double-exchange systems, such as TmSexTe12x , in which
transport phenomena observed in manganese oxides are
observed but Jahn-Teller distortions, leading to small
larons, are not symmetry-allowed. At the same time, if t
carrier localization length becomes of order of lattice co
stant, lattice effects in the form of Holstein breathing mo
polarons arise naturally. This allows to explain why the hig
temperature regime in some of manganese compounds
hibits longitudinal and Hall resistivities characterized
thermally-activated behavior which is qualitatively an
quantitatively consistent with that caused by polaronic tra
port mechanism. Before turning to the theoretical picture
transport in manganites and, specifically, of AHE for loc
ized carriers, we pause to examine whether the theore
model of the AHE proposed by Yeet al.29 which is based on

FIG. 4. Main panel: Hall resistivityrxy of LCMO as a function
of magnetic field at the indicated temperatures. Inset: Activa
behavior of the high temperature Hall coefficientRH .
6-5
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a metallic view of charge transport, is consistent with o
experimental data. In that model, following an earlier mo
by Kim et al.,28 it is assumed that tight-binding charge ca
riers propagate coherently through a smoothly varying m
netization texture which has the effect of introducing a Be
phase gauge potential.47–51A central prediction of the mode
due to Yeet al. is that a peak should occur inRS(T) above
TC , along with a singularity in the slope atTC , i.e.,
dRS /dT;u12T/TCu2a1c, wherea is the specific heat ex
ponent. To test this prediction, we measured the low m
netic field (,0.5 T) magnetization and Hall resistivity o
our most metallic sample, LSMO nearTC ~see Fig. 7!. From
the behavior ofrxy andM in the zero-field limit, we deter-
mined RS[(drxy /dM). In contrast to the prior report by
Matl et al.6, in this ‘‘metal-to-metal’’ transition system we
do not findRS to be proportional torxx . As seen on Fig. 7,
rxx flattens at the temperature at which the resistive tra
tion is complete~i.e., TC* 5368 K). This allows us to con-
clude that neither a constantRS /rxx nor a peak inRS is a
common feature in manganites. We note that close toTC* , it
is possible to expressRS(T) as a power law, (12T/TC* )0.82

FIG. 5. Hall resistivityrxy of LPMO as a function of magnetic
field at the indicated temperatures.

FIG. 6. Hall resistivityrxy of LSMO as a function of magnetic
field at the indicated temperatures.
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1A ~see Fig. 7, inset!. However aboveTC* 5368 K, which
is significantly higher than bothTC andTMI ~see Table I!, RS
is constant, and the fit does not correspond to the inflec
point predicted in Ref. 29.

III. THEORY OF HOPPING MAGNETOTRANSPORT IN
MANGANITES

The aim of the present section is to develop a picture
the Hall effect in manganites, to test this picture throu
comparison with experimental data and, hence, to build
completely as possible a general picture of the charge tr
port in manganites in the ferromagnet-to-paramagnet tra
tion regime. Among the results we shall obtain, perhaps
most striking is the universal scaling of the magnetizatio
dependent Hall resistivity, which we explain should hold
the regime where charge transport proceeds primarily
hopping between localized states. Such universal scaling
been observed experimentally.

A. Disorder and interactions in manganites

Manganites are extremely complicated materials, an
bewildering variety of behaviors occurs in them, as the d
ing level, temperature or magnetic field is varied. Here,
focus on those manganites that exhibit a transition from
ferromagnetic metal to a paramagnetic insulator, contro
by temperature, as occurs in manganite compounds, do
with Ca or Sr or~Pb and Ca! substituting for La, at doping
levels of around 1/3. This doping, of course, results in s
eral sources of static disorder:~i! the dopant ions subsitut
randomly for La; and~ii ! the lattice distortion around the tw
ionizations of Mn~viz. Mn31 and Mn41) is distinct~i.e., the
breathing-mode effect!. This disorder leads to local varia
tions in the amplitudes for the hopping processes that c
charges between magnetic ions. Furthermore,~iii ! any clus-
tering of dopants in the randomly doped lattice would lead
fluctuations in the carrier density. These sources prod
nonmagneticdisorder.

Along with the motion of charge carriers there is also t
motion of core spins. In the present context, we believe t
it is profitable to treat theses core spins classically, and

FIG. 7. Main panel: The anomalous Hall coefficientRS ~sym-
bols! compared with the longitudinal resistivityrxx ~solid line!.
Inset: The critical behavior ofRS .
6-6
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regard the carrier dynamics as being much faster than
spin dynamics, so that the carrier motion can be pictured
taking place within a frozen core-spin configuration that
randomized owing to thermal fluctuations~i.e., we adopt a
quasi-static approach!. We term such random magnetic co
figurations ‘‘magnetic disorder.’’ We note that spin-spin co
relation times have been obtained experimentally from m
spin relaxation and neutron spin echo data;52 these experi-
ments show that, indeed, spin dynamics is slow.

Strong thermal fluctuations render typical instantane
configurations of the spins rather inhomogeneous. Am
these fluctuations, there are the ‘‘hedgehog’’ excitatio
which, owing to their topological stability, are long-lived
and become more numerous as the ferromagne
paramagnet transition is approached.53 Due to the resulting
magnetic inhomogeneity, the carrier-hopping matrix e
ments are reduced.

As we shall discuss in the following subsection, the pr
ence of nonmagnetic and magnetic disorder both suppor
notion that the carrier states are localized at temperat
near to the~zero-magnetic-field! FP transition, as well as a
higher temperatures. Such localization of carriers can exp
the resistive transition which, in turn, leads to the disappe
ance of double-exchange-induced ferromagnetic s
correlations, at least on spatial scales larger than the lo
ization length. We note that in a series of papers54 Furukawa
has considered the issues of carrier states and transpo
manganites by using a dynamical generalization of the
herent potential approximation, arriving at the conclus
that the transport properties of manganites can be expla
in terms of the scattering of metallic carriers by magne
randomness. We, however, believe that the fact that~in the
range of temperatures marking the transition regime! the re-
sistivity exceeds the Mott-Ioffe-Regel limit renders any a
proach founded on the scattering of delocalized carrier st
to be inconsistent.

As discussed above in Sec. I, localization effects rela
to Jahn-Teller distortions and small-polaron formation c
not explain certain central experimental data in the transi
regime, including the temperature dependence of both
resistivity and the Hall effect. Therefore, one is forced
consider alternative mechanisms that can lead to the br
down of metallic conductivity and can also serve as an ori
of various universal transport properties that have been
served in double-exchange systems, including, e.g., thos
which Jahn-Teller distortions are symmetry-forbidden. F
these reasons, we now give a discussion of the physic
disorder-induced carrier localization in manganites.

B. Disorder-induced carrier localization in manganites

To see why it is useful to regard charge transport as
ing place in a frozen random background of core-spin ori
tations, let us imagine the spin configuration to be tru
static. In the transition regime, a typical spin configuration
rather inhomogeneous and, hence, we expect carriers t
localized. Support for this notion comes from the close sim
larity between transport in manganites and systems of
domly located identical impurities~i.e., off-diagonal disor-
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der!. For the latter, localization has been established via
work of Lifshitz.41 Although spin-induced randomness
manganites@arising from the random double-exchange fa
tors of cos(u/2), whereu is the angle between core spins o
Mn ions, see, e.g., Sec. III E# is weaker than the randomnes
considered in Ref. 41, we expect the two systems to exh
qualitatively similar localization behavior. Furthermore, t
condition for localization in the Lifshitz model~viz. that the
characteristic spatial scale of the outer-shell wave functi
in isolated Mn ions be much smaller than distance betw
sites! is well obeyed in manganites. Therefore, provided t
there is appreciable randomness in the core-spin orientati
transport properties should be determined by the sh
distance physics of clusters of ions and by magnetic corr
tions between such clusters. Moreover, nonmagnetic diso
and possible states bound to the subsitutingA-site ions are
capable of amplifying the trend towards localization.33,38 In
Fig. 8 we present a one-dimensional caricature of disorde
manganites, in which diagonal and off-diagonal disorder
exist. Shenget al. included both magnetic and nonmagne
disorder and applied one-parameter scaling theory55 and
finite-size scaling ideas56 in order to investigate carrier local
ization in manganites numerically. Shenget al. found that, in
the presence of magnetic disorder, an Anderson me
insulator transition accompanies the ferromagnet-
paramagnet transition. They also observed an interesting
relation betweenTC and the residual resistivity, which i
determined by nonmagnetic disorder, viz., the larger the
sidual resistivity, the smaller theTC ; this agrees well with
the original double-exchange picture, in which carrier m
tion promotes ferromagnetism whereas disorder resists e
tronic motion and, therefore, does not promote ferrom
netism.

To what extent can one regard charge transport as ta
place in a frozen spin configuration? Equivalently, what a
the characteristic time scales for magnetic and charge
namics? For charge dynamics the time scale is\/t, wheret is
a characteristic magnitude of the hopping matrix eleme
i.e., the shortest relevant time scale. For magnetic dynam
the issue is more complicated. However, the shortest t
scale is presumably\/kBT, which, in the regime of interes

FIG. 8. Schematic one-dimensional picture of disorder in m
ganites. ~a! Anderson model with on-site disorder;~b! Lifshitz
model with random ionic locations~leading to random transfer in
tegrals!; ~c! model of disorder in manganites, showing on-site d
order and magnetic disorder~leading to random transfer integrals!.
6-7
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to us, is greater than\/t. Furthermore, as discussed by La
and Dasgupta,53 in three-dimensional magnetic systems t
ferromagnet-to-paramagnet transition involves very lo
lived topological excitations~i.e., magnetic hedgehogs!57

which, as we shall see, are particularly significant for
AHE. Hence, we see that, to a first approximation, one
regard charge transport as taking place in a frozen spin
figuration. Corrections to charge dynamics, due to magn
dynamics~as well as feedback into the magnetic dynam
sector! can, if necessary, be treated by going beyond
Born-Oppenheimer approximation.

C. Percolation-hopping scenario of transport phenomena
in manganites

As discussed in the previous subsection, carrier state
manganites are effectively localized throughout the transi
regime. ~By effectively localized we mean localized on t
mescales short compared with that required for the rec
figuration of the magnetic degrees of freedom.! Therefore, in
this regime transport of carriers occurs via inelastic hopp
~i.e., hopping that is assisted by some inelastic agent suc
a phonon!. In the following Sec. III C 1, we describe a pic
ture of hopping transport applied to the setting of mang
ites. Following this, in Sec. III C 2, we use this picture
discuss a scenario for transport phenomena in LCMO
LPMO, which are materials in which polaronic effects a
believed to be important. Then, in Sec. III C 3, we descr
the scenario of hopping transport suitable for application
LSMO, a material in which signatures of polaronic effec
are absent. By contrasting LCMO and LPMO with LSM
we draw some general conclusions concerning the
played by polarons in various manganite compounds.

1. Hopping transport picture in manganites

Hopping transport models based on percolation the
have been successfully applied to transport in systems
states localized by static disorder.39,42 A peculiarity of man-
ganite systems is that the wavefunctions of states localize
the vicinity of Mn ions depend on the orientations of the M
core spins on these ions. Inelastic agents~e.g., phonons! lead
to hopping between these localized states, the amplitude
such hopping being characterized by matrix elements of
carrier phonon interaction. Therefore, hopping probabilit
and rates are determined by the orientations of the core s
In the double-exchange picture@discussed in more detail in
Sec.~III E !#, the rateWi j of carrier-hopping between ionsi
and j, whose core spins~which we treat classically! form an
angleu, is proportional to cos2(u/2).

As in the standard percolative approach to transpor
impurity systems ~i.e., the Miller-Abrahams resistive
network approach42,39,58!, one connects every nearby pair
Mn ions by a bond, and assigns a resistivity to each of th
bonds. The charge currentJi j between ionsi and j is then
given by

Ji j 5e~Wi j 2Wi j !. ~3.1!

In the presence of an applied electric fieldE and for a closed
external circuit the system out of equilibrium and the cha
18442
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current is nonzero. If the electric field is sufficiently sma
@i.e., eE•(Rj2Ri)!kT#, one can expand the charge carri
energies and site occupation numbers to linear order in
electric field. Hence, one can obtain~see e.g., Ref. 39! an
expression for the electric current in Ohmic form:

Ji j 5Ri j
21~Ui2U j !, ~3.2a!

Ri j 5
kT

e2Wi j
0

, ~3.2b!

whereUi2U j is the potential difference between sitesi and
j in the presence of the electric field, andWi j

0 is the (E50)
transition rate. Therefore, the resistanceRi j of the bond be-
tween ionsi andj ~cf. Fig. 9! is proportional to 1/Wi j , where
we have, for the sake of brevity, omitted the superscrip
~which indicates zero electric fields quantities!. The resis-
tances of the bonds constitute a resistive network on wh
carriers move by taking the least resistive paths, i.e.,
transport is percolative in character. The conductivity of t
sample is entirely determined by a set of hopping resistivi
Ri j .

2. Scenario of transport properties in manganites

In the hopping regime, the following scenario for tran
port properties of manganites can be envisioned.

~i! In the paramagnetic insulating state, i.e., in region I
Fig. 10, the percolative inelastic motion of strongly localiz
carriers is suppressed by magnetic randomness, via the
interaction. Although there may exist small clusters of ma
netic ions with spins aligned in some direction, neighbori
spins~or the spins of neighboring aligned small clusters! are
weakly correlated, and are therefore predominantly hav
large angle between them. Thus, the resistance of the co
sponding resistive bonds is generally large. Hence, the c
ters are isolated from each other~i.e., no percolative path
exists for which core spins on neighboring Mn ions are a
proximately aligned!, so that outer-shell carriers cannot ho
along any path of bonds without encountering a large re
tance. Furthermore, if the localization length is on the or

FIG. 9. Schematic picture of the conducting network. Zig-z
line connecting sitesi and j represents the resistivity of the bon
between these sites.
6-8



ic
m
h

nt
ea
in
s
n
a

ur
ffi
of
c
v

be
ve

or
rg

tin

tiv

nu
til
so

n
s
h
a

al

is-
la-
hs
gn-

ized
opu-

n
ny
the

ore-
of
and

e of
an-
e

nts
lf-
in

-
ct

rted

t in

his
it

ion
the
ncy
al-

e
em-
due
uld
the
re-

d
he
re-
Sr

ig-
in
nger
f

lize
oes

b
o-
ee
of
rd

n
.

CHARGE TRANSPORT IN MANGANITES: HOPPING . . . PHYSICAL REVIEW B63 184426
of the lattice constant then carrier interactions with the latt
and carrier self-trapping via small-polaron formation beco
important. ~Below, we shall discuss the situation in whic
the localization length is larger than the lattice consta!
Carrier self-trapping, when it occurs, does so on very w
~i.e. very resistive! bonds in the resistive network. Deep
the insulating regime, all paths of bonds encounter region
which carriers are self-trapped. Under these conditio
transport occurs via the rather infrequent hopping of sm
polarons, which leads to the thermally-activated temperat
dependence of the longitudinal resistivity and Hall coe
cient. In the LCMO and LPCMO compounds, the role
polarons in transport accounts for the magnitude of the a
vation energy associated with the resistivity, which is abo
100 meV, and is significantly larger than~any fraction of!
the hopping amplitudet.

~ii ! With decreasing temperature, the inelastic hopping
comes less frequent, so that the resistivity grows. Howe
at these temperatures, percolative paths appear that do
encounter regions with self-trapped carriers. Also, the c
spins become more aligned with one another, and fairly la
clusters exist~that do not feature large resistances connec
pairs of Mn ions having anti-aligned spins!. This regime oc-
curs in the range II of temperatures in Fig. 10.

~iii ! With continued decrease in temperature, the resis
ity reaches a maximum~region III in Fig. 10! when the core
spin orientations become sufficiently correlated that a te
ous but infinite conducting network emerges. Due to the s
strong magnetic disorder, as well as any nonmagnetic di
der, the carrier states are still localized~and lie in the band
tail!. The localization length is on the order of one to two M
sublattice units.~It is important to note that clusters of spin
of size two sublattice units contain some 20 to 30 spins. T
alignment of these spins can be obtained by applying m

FIG. 10. Transport regimes in manganites exemplified
LCMO. I: High-temperature regime, in which transport is via p
larons. II: Crossover to inelastic hopping of charge carriers betw
localized states. III: Maximal resistivity. In this regime the loss
inelastic agents is compensated by the growth of magnetic o
and, hence, the emergence of a conducting network~see text for
details!. IV: Rapid growth of the conducting network. V: Saturatio
of the conducting network. VI: Crossover to the metallic regime
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netic fields of order only a few tesla, leading to coloss
magnetoresistance.!

~iv! With yet further reduction in temperature, the res
tivity decreases abruptly, in line with the standard perco
tion picture,39,42 as more and more inelastic hopping-pat
become available to carriers, owing to the increased ali
ment of core spins~region IV in Fig. 10!. The small polarons
disappear and, in addition, some of what used to be local
states become delocalized, so that some carriers now p
late the states lying on the mobile~i.e., metallic conduction!
side of the mobility threshold.~v! The abrupt decrease i
resistivity with temperature slows down as soon as a
newly available hopping paths are effectively shunted by
existing conducting network~region V in Fig. 10!.

~vi! Further decrease in temperature leads to further c
spin alignment and, ultimately, to a significant density
carriers populating states in the conducting part of the b
and, hence, to the occurrence of the metallic state~region VI
in Fig. 10!.

3. Scenario of transport properties of manganites: Absence
and presence of polarons

As described in Sec. II B, the temperature dependenc
the resistivity does not have a universal form across all m
ganite compounds. In particular, in LCMO and LPMO, th
high-temperaturerxx is thermally activated, but in LSMO it
is not. It is our opinion that the scenario described in poi
~i!–~vi! in the previous paragraph, which involves se
trapping effects due to polaron formation, takes place
LCMO and LPMO but not in LSMO. This opinion is sup
ported not only by our transport data but also by dire
neutron-scattering evidence for the coexistence of disto
and undistorted Mn-O octahedra in the vicinity ofTC ,59–61

as well as by the occurrence of a substantial isotope effec
the resistivity,TC and thermal expansion.62

By contrast, LSMO shows no evidence of polarons in t
suite of experiments. Therefore we propose that in LSMO
is only magnetic and static disorder that drive the transit
between low- and high-resistance states. According to
scenario described in the previous paragraph, any tende
for the formation of polarons is suppressed when the loc
ization length at the resistive transition~i.e., the inflection
point in LSMO! turns out to be larger than a few lattic
constants. Because of this, with further increase in the t
perature the localization length still has room to decrease
to the suppression of ferromagnetic correlations. This wo
lead to an increase of the resistivity at temperatures in
immediate vicinity above the resistive transition. Such a
sistivity increase has been observed in LSMO.

The significance of polarons in LCMO and LPMO, an
their apparent insignificance in LSMO, is consistent with t
tendency for polaronic self-trapping to be enhanced for
ducedA-site ionic radius, as is the case in the sequence
→Pb→Ca encountered in our experimental data. The s
nificance of polarons in LCMO and LPMO can also expla
why the magnetoresistance of these compounds is stro
than that of LSMO: In LCMO and LPMO, the application o
a magnetic field not only results in the tendency to deloca
charge carriers by reducing the magnetic disorder, as it d
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in LSMO, but also such magnetic fields destabilize the
laronic regions, leading to a more abrupt reconnection of
network. Furthermore, the presence of polaronic and n
polaronic spatial regions in LCMO and LPMO enhances d
connection between different parts of the resistive netwo
and, due to the DE origin of ferromagnetism in these s
tems, reduces the transition temperature. This ‘‘boot-stra
collapsing of magnetic order explains why the bare doub
exchange energy that determined the spin-wave dispersio
low temperatures is the same for all manganites,63 even
thoughTC

LCMO5220 K, TC
LPMO5285 K, andTC

LSMO5360 K.
We propose that the different sizes of the A-site ions whi
in particular, leads to differing-strengths in the static disor
and differing tendencies for self-trapping, is responsible
this trend in the transition temperatures. We also note
the existence of polaronic and nonpolaronic spatial regi
in LCMO and LPMO explains the success of the effect
medium approaches in predicting the thermoelectric po
from the resistivity,64,65the observation of both diffusive an
continuum electronic signals in Raman scattering,66 and the
presence of significant telegraph noise in the resistivity
these compounds67. These features are not characteristic
LSMO.

In Secs. III F–III I and IV, we shall look at the scenar
that we have just outlined from the vantage point afforded
the Hall effect. As, in our opinion, the dominant transpo
mechanism in the transition regime occurs via inelastic h
ping between localized states, regardless of whether s
trapping via the formation of small polarons occurs, in S
III D we shall first review the basic physical picture unde
lying the ordinary Hall effect in the inelastic hopping regim
in systems having potential~but not magnetic! disorder. The
main issues of this discussion are interference of hopp
amplitudes in the inelastic hopping regime and elucidation
contribution to the Hall effect in this regime by using pro
erties of the hopping probability with respect to time-rever
symmetry Secs. III D 2–III D 4.~We obtain expressions fo
hopping amplitudes which differ from those of Holstein
Ref. 23, but this difference is not significant.! Readers famil-
iar with these issues and Holstein theory of the Hall eff
can proceed to subsections following this discussion,
which we shall provide an extended discussion of our pict
of the microscopic mechanism of the anomalous Hall eff
in the hopping regime in manganites, which we have
cently proposed.10,11

D. Holstein theory of the Hall effect in the hopping regime

Nearly forty years ago, Holstein23 observed that to captur
the ordinary Hall effect in hopping conductors requires
analysis ofat least triadsof sites~i.e., atoms, ions, impuri-
ties, etc.!, and of the attendant Aharonov-Bohm~AB! mag-
netic fluxes through the polygons whose vertices are th
sites. What Holstein showed was that the probability of
hopping of a charge carrier that is initially located on one
three sitesi to one or the other of the remaining sitesj ~which
are initially assumed to be unoccupied!, Wi j contains a con-
tribution dWi j

H that is linear in the applied magnetic field
This dependence arises from interference between the am
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tude for a direct~inelastic! transition between the initial and
final sites and the amplitude for an indirect~inelastic! tran-
sition, involving the intermediate occupation of the third s
k. Furthermore, when one applies a magnetic field creatin
nonzero magnetic flux through the triangle, thus introduc
an Aharonov-Bohm phase for paths that wind around
triangle, the necessity thatWi j andWji be equal is lost, even
if E'(Ri2Rj ). The Hall current, flowing through the bon
between sitesi and j in a triad of sites, in the presence o
such electric field, and in magnetic field perpendicular to
plane containing sitesi, j and k, as sketched in Fig. 11, is
given by @cf. Eq. ~3.1!#

Ji j
H5e~dWi j

H2dWji
H!. ~3.3!

Such current would cause an increasing imbalance of po
lations of sitesi and j. However, the balance is restored b
cause charge imbalance establishes a chemical potentia
ferenceDm i j between sitesj andi which manifests itself as a
Hall voltage. Below in Secs. III F–III I we shall generaliz
this idea to charge carrier motion in the presence of c
spins having inhomogeneous orientations.

1. Ordinary Hall effect: Direct and indirect hopping

Let us now address the issue of the Hall effect at an
ementary level. To do this we consider a system of localiz
carriers, their wave functionŝr uC j& ( j 51,2, . . . )being the
exact wave functions of the discrete spectrum of the e
tronic HamiltonianHel in the presence of ionic potentials
potential disorder and magnetic field.~In order to be specific,
we assume, in the present subsection, that the carriers
electrons.!

Now consider the rates of hopping between these ex
electronic states caused by the electron-phonon interac
Wj→k . The necessity of the electron-phonon interaction~or
interactions with some other inelastic agent! for inducing
electron hopping will be discussed below in the present s
section. Within the context of hopping rates it is valuable
introduce the notion ofdirect andindirect hopping rates. The
direct hopping rateWj→k

dir is, to leading order in the electron
phonon interaction, determined by the single direct transit

FIG. 11. A triad of sites is the minimal element of the condu
ing network that leads to a Hall electromotive force. Owing to t
flux F the carrier currentJH flows perpendicular to the electric fiel
E. The shaded site is occupied; the unshaded sites are unoccu
6-10
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amplitude, i.e., the electron-phonon interaction matrix e
ment

U jk5^C j uHel-phuCk&, ~3.4!

whereHel-ph is the Hamiltonian of electron-phonon intera
tion. In Fermi’s golden rule approximationWj→k

dir reads

Wj→k
dir 5

2p

\
uU jku2d~Ej2Ek2\v!, ~3.5!

where$Ei% are the exact energy eigenvalues ofHel , andv is
a phonon frequency. There are additive corrections to
direct transition amplitude, which are associated with p
cesses involving phonon-induced scatterings that do
change the electronic state. In addition to the direct transi
amplitude, there are amplitudes for indirect transitions fr
site j to sitek, which are defined to be those amplitudes th
involve at least one intermediate eigenstateuC i& ~but now i
is restricted to be neitherj nor k). Among these, there is
subset of amplitudes involving exactly one intermedi
eigenstate. Such amplitudes have the following character
property: The indirect amplitude that proceeds via a third
i necessarily involves two electron-phonon interaction ma
elementsUi j and Uki . Direct and indirect transition ampli
tudes can interfere, and, as we shall describe below, lea
the Hall effect.

2. Hopping transport: Compatibility of inelastic processes
and quantum interference

Despite the apparent simplicity of the foregoing analy
of a triad of sites, the task of obtaining the linear depende
of the Hall resistivity on the magnetic field via Holstein
approach is a much more subtle matter. Furthermore,
issue of establishing quantal interference effects in this
ting of inelastic hopping processes is equally subtle, so
shall now revisit this subject.

Why is it that we need to consider inelastic proces
when considering the Hall effect? As for the longitudin
hopping conductivity of localized carriers, it is due to ele
tronic quantum transitions between localized carrier eig
states, assisted by phonons~or some other inelastic agent!.
The participation of some inelastic agent in hopping cond
tion is required for the following reasons. First, owing
carrier localization, the conductivity of the carrier system
the absence of phonons is that of an Anderson insulator,
zero. Phonons cause transitions between localized ca
states and, hence, allow conduction. Second, phonon-ass
carrier transitions meet the need to have carrier transit
between occupied states~which lie below the Fermi level!
and unoccupied states~which lie above the Fermi level!
whilst satisfying the demand that energy be conserved~Fig.
12!. This energy-conservation requirement also holds for
Hall effect. Now, as inelastic processes are being invo
one should ask the question: How can interference betw
distinct hopping paths, necessary for the sensitivity of
hopping rate to any quantal phase, arise?

We will answer this question both in the context of lo
gitudinal conductivity and the Hall effect. In the next su
subsection we will consider the longitudinal conductivit
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After that, in further sections, we will discuss what inelas
processes contribute to the Hall effect, and interference
those processes.

3. Quantum interference in the presence of inelastic scattering
Longitudinal conductivity

In order to answer the question posed in the previo
section let us first formulate precisely what is meant by
herence and sensitivity to the quantal phase in the syste
hand. The Hamiltonian of the system reads

H5Hel1Hel-ph1Hph, ~3.6!

whereHph is the phonon Hamiltonian. The exact quantum
mechanical eigenstates ofHel , both localized and delocal
ized, are sensitive to applied magnetic field.~Here, we are, of
course, concerned with localized states.! In the presence of a
magnetic field, the exact eigenfunctions^r uC j& can no
longer be chosen to be real quantities, and are thus cha
terized by an absolute value and a phase. It is often con
nient to approximate the exact localized eigenstates in te
of the eigenstates$uf j&% of outer-shell electrons of isolate
ions ~wherei enumerates the ions!. We note that the$uf j&%
are not, in general, orthogonal, although they are typica
linearly independent and may, therefore, be taken as a b
In terms of this basis a Hamiltonian describing carrier m
tion in the presence of the corresponding isolated ions
cated at positions$Rj% as well as a disordered potential h
the form

Hel5(
j

uf j&e j^f j u1(
j Þk

uf j&Vjk^fku, ~3.7!

where$e j% are random energies andVjk are random transfe
matrix elements.

Having introduced the basis of localized ionic stat
$uf j&% and the Hamiltonian for the disordered system of io
Hel , we now examine in detail the effect on this system of
applied magnetic field. As shown by Holstein,23 in the pres-
ence of a magnetic field the ionic basis states$uf j&% become
the modified collection$uf j&B%, being solutions of the Schro¨-
dinger equation

F 1

2m*
S p1

eA

c D 2

2U~r2Rj !G ^r uf j&B5e^r uf j&B ,

~3.8!

whereU(r2Rj ) is the potential of the ion located at positio
Rj , m* is the effective mass, andA is the magnetic vector
potential. The wave function̂r uf j&BuB50 has the property
that it is a function ofr2Rj , and we would like to recover

FIG. 12. Schematic depiction of phonon-assisted inelastic h
ping. Direct hopping~left! and indirect coherent hopping via a
intermediate site~right! are shown.
6-11
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something like this property in the presence of the magn
field. To do this we introduce a gauge transformation

^r uf j&5^r uk j&e
2 ih j (r ), ~3.9a!

h j~r !5~e/\c!A~Rj !•r5~e/\c!~B3Rj !•r , ~3.9b!

where we have chosen the gauge potential to beA(r )5H
3r /2. It is straightforward to show that this transformatio
leads to an equation for^r uk j& in which the vector potentia
~magnetic field! term contains a coordinate in combinatio
(r2Rj ):

F 1

2m*
@p1eH3~r2Rj !/2c#22U~r2Rj !G ^r uf j&B

5e^r uf j&B . ~3.10!

Hence, the wave function̂r uk j& is seen to have the sough
property

^r uk j&B5^r2Rj uk j&. ~3.11!

It is convenient to employ the magnetic-field dependent io
states$uf i&B% in the perturbative construction of the eige
states of the system Hamiltonian~3.7!

Hel~B!5( uf j&Be j~B!^f j uB1(
j Þk

uf j&BVjk~B!^fkuB .

~3.12!

In what follows we shall omit the explicit dependence onB.
We now construct approximations to the exact eigenst

of Hel(B) in terms of linear combinations of ionic state
$uf i&B%. To do this we use renormalized~i.e., Brillouin-
Wigner! perturbation theory in powers ofVk j /(Ej2Ek) ~see,
e.g., Refs. 68 and 69!, thus obtaining

uC j&5uf j&1( k~Þ j !ufk&

3F Vk j

Ej2Ek
1 (

k~Þ j !
h~Þ j !

VkhVh j

~Ej2Ek!~Ej2Eh!
1•••G ,

~3.13!

where$Ej% are the exact energy eigenvalues. We now pa
to remark that in the theory of hopping conductivity in dop
semiconductors58,39,42,23 the parameterVk j /(Ej2Ek) is in-
deed small, due to sizable distance between donors~or ac-
ceptors!. In subsection devoted to application of hoppi
conductivity model to manganites we will see that this p
rameter can also be rendered as small, because of the d
dence of the effective hopping amplitude on the core-s
misalignment. It is worth mentioning, however, that the se
sitivity of uC j& to phases arising from transformation E
~3.9a! is a general property which does not rely on pertur
tion expansion~3.13!. It is also reasonable to assert that t
essential dependence of$uC& j% on the magnetic field enter
solely through such phase acquired by the local basis w
functions $^r uf j&% under the gauge transformation in E
~3.9a!, because, at reasonable experimental strengths o
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magnetic field much less than a quantum of flux tread
localized ionic wave function.

Having constructed the statesuC j&, i.e., approximations to
the exact localized states, we now use them to compute
square modulus of the matrix elementU jk of Eq. ~3.4!:

uU jku25u^C j uHel-phuCk&u2

5•••1(
iÞk

(
nÞk,nÞ i

^fkuHel-phf j uf j&^f j uHel-phufk&

3
VikVknVni

~Ei2Ek!
2~Ei2En!

1 (
mÞ j

(
lÞm,lÞ j

^f i uHel-phufm&

3^fmuHel-phuf i&
Vm jVjl Vlm

~Ej2Em!2~Ej2El !
1c.c.1•••,

~3.14!

which features in the transition rate, Eq.~3.5!.
Terms exhibited in Eq.~3.14! involve motion along paths

that surround loops of nonzero area, i.e., the matrix elem
of electron-phonon interaction and transfer amplitudes
taken between localized orbitals Eq.~3.8! of sites that form
such loops. Note, however, that not all such terms are
cluded in Eq.~3.14!, but only those in which matrix element
of electron-phonon interaction enter the corresponding
pressions in combination with their complex conjugated~i.e.,
time-reversed! counterparts. Furthermore, the remaining m
trix elements entering terms featured in Eq.~3.14!, i.e., the
overlap integralsVhk , involve motion along paths that sur
round loops of nonzero area.70 It is through such products o
three overlap integralsVhkVk jVjh that the transition rate ac
quires its sensitivity to fluxes through loops of nonzero ar
It is only such terms that lead to nonvanishing interferen
contribution to hopping probability which is sensitive
fluxes. Such sensitivity to phase results in the Aharon
Bohm magnetoresistance effects in hopping conductiv
~see, e.g., Ref. 71!.

Let us discuss the physical meaning of interference te
featured in Eq.~3.14!. Consider, for example, charge carri
hopping in a triad of sites. The relevant terms in Eq.~3.14!,
which involve loops, correspond toi 51, j 52, k52, n53
~in the first of featured terms!, andm51, l 53 ~in the second
of featured terms!. In terms of isolated orbitals the first term
features in Eq.~3.14! corresponds to interference of two pro
cesses of charge carrier tunneling from site 1 to site 2
direct one and an indirect one~via site 3!, with the following
charge carrier interaction with a phonon at site 2; the sec
term corresponds to carrier interaction with phonon at sit
with the following interference between direct and indire
tunneling paths from site 1 to site 2.~We note that the situ-
ation can, of course, be readily generalized to the case
changes in more than one phonon occupation number.!

We now notice that by contrast with terms that are fe
tured in Eq.~3.14!, terms that have been omitted there, lik
6-12
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duU jku25(
kÞ i

^f i uHel-phuf j&^f j uHel -phufk&
Vki

Ei2Ek
,

~3.15!

involve motion along paths that surround loops of nonz
area, but do not lead to nonvanishing interference contr
tion to hopping probability. The reason for absence of su
contributions is that they do not involve combinations
matrix elements of electron-phonon interaction with th
time-reversed counterparts. To see why such combinat
are important, consider the electron-phonon interact
Hamiltonian

Hel-ph5(
q

Hqeiq•r, ~3.16!

where q is the phonon wave vector. Evaluation of no
vanishing interference contribution, therefore, includes su
over all phonon wave vectors. Terms that exhibit two mat
elements of electron-phonon interaction that are not comp
conjugated to each other turn out to be oscillating functio
of q, and vanish upon evaluation of the sum overq. This
simple observation allows us to find all important interfe
ence terms in the hopping probability~3.14! without resort-
ing to explicit evaluation of̂ f i uHel-phuf j& as it was done,
e.g., in Ref. 23 in consideration of the Hall effect and in R
69 in consideration of the Aharonov-Bohn hopping mag
toresistance. We note that if the sum of two terms feature
Eq. ~3.14! is equal to zero, this consideration easily allows
to find the appropriate next terms of expansion of hopp
probability in powers ofVi j /(Ei2Ej ).

We are now in a position to discuss what is meant
phase coherence and sensitivity to quantal phases in
present setting of hopping conduction. In the absence of
elastic agents, products of, e.g., three overlap integ
VhkVk jVjh ~where sitesh, k and j form a nondegenerate tri
angle, with nonzero flux threading this triangle in the pre
ence of magnetic field!, and carrier energiesEj ~see the
remark70! are sensitive to the Aharonov-Bohm quantal pha
As we can see from Eq.~3.14!, interference of two ampli-
tudes of quantal transition between statesh andk occurs~and
these amplitudes are coherent! even if these transitions ar
due to inelastic agents. For such interference to occur, ine
tic agents which determine one of the amplitudes of the tr
sition must be the same as inelastic agents which determ
another amplitude of the transition~i.e., phonon frequencie
and wave vectors are equal!, so that the square modulus o
matrix element of, e.g., the electron-phonon interaction,
ters the probability. As we have mentioned above, the p
ence of square modulus of the electron-phonon interac
matrix element in the probability corresponds to phonon f
tors in the two interfering amplitudes~e.g., in the amplitude
of a direct process and in the complex conjugate of the
plitude of an indirect process! being related to each other b
the time reversal.

Let us now discuss what is meant by the phase brea
or decoherence in the context of the hopping conductiv
regime. The eigenstates$uC& j% and their energiesEj are de-
termined byHel-ph, i.e., in the absence of phonons. Wh
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phonons interact with charge carriers, one can consider t
as a reservoir which leads to randomization of carrier sta
The time scale of such randomization is given by the inve
rate of carrier transitions between different eigenstates
Hel-ph caused by electron-phonon interaction~3.5!. It is this
randomization that is meant by phase breaking~or decoher-
ence!. However, the carrier transition rate~3.5! between dif-
ferent states itself, which measures the rate of decohere
~being determined by eigenfunctions of these states! carries
information about quantal phases that arise in the contex
Eqs. ~3.13! and ~3.14!. Furthermore, the electric curren
arises during the act of hopping, i.e., when randomizat
has not yet occurred. Therefore, the answer to the ques
posed in the second paragraph of the present subsection,
cerning interference in the presence of inelastically-assis
hopping is as follows: The~steady-state! hopping current is
generated during the process of inelastic scattering, wh
decoherence arises only after this scattering has occu
thus, decoherence effects do not preclude sensitivity of h
ping conduction to quantal phases. Moreover, the questio
interference of consequent hopping events is meaningles
the context of hopping conductivity, because only amp
tudes of hopping between the same initial and the same
states can interfere. Thus, there is a significant differe
between interference effects in hopping conductivity and
diffusive mesoscopic transport. In diffusive transport, t
whole diffusive trajectory, with all consequent scatteri
events, determines the current via the diffusivity, and el
tronic coherence during consequent scattering events is
portant for interference effects. In hopping transport, inc
herence of consequent hopping events does not contra
interference of quantum-mechanical amplitudes that de
mine a single charge carrier hop and the hopping curr
itself.

4. Quantum interference in the presence of inelastic scattering
processes leading to the Hall effect

For localized carriers, the interference processes that
to the Hall conductivity are even more peculiar than tho
leading to the sensitivity of the longitudinal conductivity
the Aharonov-Bohm phase. In particular, the occurrence
the Hall effect requires phonon-assisted hoppings betw
exact initial and final carrier states, via an exact intermed
state.@It is not sufficient to include as intermediate states
virtual ionic orbitals that enter via Eq.~3.13!.# The reason for
this difference between the hopping Hall conductance
the sensitivity to magnetic flux of the hopping magnetoco
ductance arises because of the necessity to extract a de
dence of the Hall conductance that islinear in ~or, more
generally, an odd power of! the magnetic field .

Let us now explore the collection of processes that c
tribute to the Hall conductance. These processes, first id
tified by Holstein, can be determined by making use of
odd ~i.e., dissipative! character of transition rates under th
time-reversal operation:t→2t. As discussed in Secs. III C
and III D, the hopping current is determined, via the cond
tivities of the resistive network, by the rate of transitio
between sites. The Hall current, as with any current, is o
under time reversal. So, too, is the transition rate.~To appre-
6-13
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ciate this, consider an elementary relaxation process
some quantityQ, which evolves according to the rate equ
tion

dQ

dt
[2

Q

t
. ~3.17!

From the consistency of equation one immediately sees
it is formally appropriate to designate the relaxation ratet as
being odd under the time reversal.! Now consider the transi
tion probability per unit time between the exact single-carr
statesi and f, viz. Wf i which, according to Fermi’s golden
rule, is given by

Wf i5
2p

\
uAf i u2d~Ei2Ef !, ~3.18!

where Af i is the sum of the transition amplitudes for a
coherent~i.e., interfering! processes connectingi and f, and
thed function imposes energy conservation between the
tial and final states, the energiesEi and Ef of these states
being full energies.~That is, they include not only carrier bu
also phonon energies.! The d-function, which has the com
plex representation

d~E!5Im
1

p
lim

s→10

i

E2 is
, ~3.19!

is an odd quantity with regard to time-reversal, in the se
that under the transformationt→2t, sign of imaginary part
s in the denominator changes and, thus, so does the sig
the d function. By contrast, the quantityuAf i u2 is even~i.e.,
nondissipative! under time reversal. We note, in passing, th
the precision of the energy conservation is not what is es
tial ~from the point of view of time-reversal properties!. For
example, the imaginary part of a Lorentzian function,

Im
1

p

i

E2 iG
5

1

p

G

E21G2
, ~3.20!

reveals that this function, too, inherits the oddness of the
G.

En route to exploring the processes that contribute to
Hall conductance, let us now consider a simple case in wh
Af i has just two contributions:

Af i5Af i
dir1Af i

ind , ~3.21!

whereAf i
dir is the amplitude for the direct path andAf i

ind is the
amplitude for an indirect path~i.e., a path via an intermediat
state!. These two amplitudes can be written in the form

Af i
dir5Af i

0,dir expif1 , ~3.22a!

Af i
ind5Af i

0,indexpif2 , ~3.22b!

f5f12f2 , ~3.22c!

whereAf i
0,dir andAf i

0,dir are the zero-magnetic-field amplitude
andf1 andf2 are phases arising in the presence of magn
field for direct and indirect paths, correspondingly, andf is
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the difference of phases between direct and indirect pa
induced by magnetic field, i.e., the Aharonov-Bohm pha
~We neglect changes magnetic-field-induced changes in
magnitudes ofAf i

0,dir andAf i
0,dir .! For the transition probability

we then have

uAf i u25uAf i
0,diru21uAf i

0,indu21ReAf i
0,dir* Af i

0,indcosf

1Im Af i
0,dir* Af i

0,indsinf. ~3.23!

We now observe that the term containing sinf is the only
contribution to the probabilityuAf i u2 that is odd with respec
to the transformationf→2f ~i.e., with respect to magnetic
field reversal!, this oddness being a necessary property of
Hall conductance. Thus, in a computation of the Hall co
ductance, only the imaginary part of the quantity correspo
ing to Af i

0,dir* Af i
0,ind contributes and, therefore, one has to co

sider those indirect processes for which the zero-magne
field amplitude has a component out-of-phase with the ze
magnetic-field amplitude of the direct process.~Said another
way, one must consider contributions toAf i

0,dir* Af i
0,ind that are

odd with respect to time reversal.! Such contributions do no
appear if, as in the case of the longitudinal hopping cond
tivity in Sec. III D 3, one considers one-phonon processe72

They do, however, appear if one considers, e.g., two-pho
processes described by combinations of amplitudes obe
the following property:Af i

0,dir contains an even~odd! number
of complex energy denominators whenAf i

0,ind contains an odd
~even! number. Then these denominators give rise to an
ditional energy-conservingd function,73 a quantity that is
odd respect to time reversal@cf. Eq. ~3.19!#, and yields con-
tributions to the probability that behave suitably under tim
reversal.

FIG. 13. Pairs of interfering amplitudes that result in the H
effect. Rows~a! and ~b! each show the interference of two-stag
processes. Rows~c! to ~f! each show the interference of a one-sta
and a three-stage process. Right column: indirect hopping
cesses; left column: direct hopping processes. Lines with arr
correspond to carrier propagators; their intersections with w
lines correspond to matrix elements of carrier-phonon interactio
6-14



th
th

ns
b

s

f

rom

is
r
ese
to

car-
ed

CHARGE TRANSPORT IN MANGANITES: HOPPING . . . PHYSICAL REVIEW B63 184426
Having ascertained the structure of the amplitudes
give rise to the Hall effect, we now select and examine
dominant contributing processes~i.e., those involving the
smallest possible number of electron-phonon interactio!.
These involve two-phonon transitions and, as shown
Holstein,23 their elements~i.e., direct and indirect processe!
can be visualized as follows.

~i! Both transitions are two-stage processes~i.e., involve
two transitions between exact carrier states!. For example,
the indirect and indirect transitions respectively being

~ i ,N1 ,N2!→~ j ,N18 ,N2!→~k,N18 ,N28!, ~3.24a!

~ i ,N1 ,N1!→~ i ,N18 ,N2!→~k,N18 ,N28!, ~3.24b!

whereN1 , N18 , N2 and N28 are the occupation numbers o
phonon modes 1 and 2,N, andN8 differ by unity, i, j, andk
label initial, intermediate and final sites~as well as carrier
states localized on these sites!.
he
qs

e

li

n-

-
s

b
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~ii ! The direct transition is a one-stage process, e.g.,

~ i ,N1!→~k,N18!, ~3.25a!

and the indirect transition is a three-stage process, e.g.,

~ i ,N1 ,N2!→~ i ,N18 ,N2!→~ j ,N18 ,N28!→~k,N18 ,N2!.

~3.25b!

~The whole set of processes includes those which result f
alterations of the sequences of various subprocesses.! One
can observe, that phonon modes whose population
changed in processes~i! or ~ii !, interact with charge carrie
on both direct and indirect path, and, as we shall see, th
paths can interfere.74 Complete set of processes that lead
the Hall effect is shown on Fig. 13.

In terms of phonon-assisted transitions between exact
rier eigenstatesuC i&, the two-stage processes are describ
by the amplitudes
irect
Ak,N1 ,N2 ; j ,N
18 ,N

28
dir,2

5
^Ck ,N1uHel-phuCk ,N18&^Ck ,N2uHel-phuC i ,N28&2^Ck ,N2uHel-phuC i ,N28&^C i ,N1uHel-phuC i ,N18&

Ej2Ek

1
^Ck ,N2uHel-phuCk ,N28&^Ck ,N1uHel-phuC i ,N18&2^Ck ,N1uHel-phuC i ,N18&^C i ,N2uHel-phuC i ,N28&

Ei2Ej
,

~3.26a!

Ak,N1 ,N2 ; j ,N
18 ,N

28
ind,2

5
^Ck ,N1uHel-phuC j ,N18&^C j ,N2uHel-phuC i ,N28&

Ei2Ej1~N182N1!\v11 i\g
1

^Ck ,N2uHel-phuC j ,N28&^C j ,N1uHel-phuC i ,N18&

Ei2Ej1~N282N2!\v21 i\g
,

~3.26b!

whereAk,N1 ,N2 ; j ,N
18 ,N

28
dir,2

and Ak,N1 ,N2 ; j ,N
18 ,N

28
ind,2

are, respectively, the amplitudes of the two-stage-direct and two-stage-ind

processes. The interfering amplitudes for the one-stage processAdir,1 and~an example of! a three-stage processAind,3 are given
in terms of the exact carrier eigenstatesuC i&:

Adir,15^Ck ,N1uHel-phuC i ,N18&, ~3.27a!

Aind,35
^Ck ,N2uHel-phuC j ,N28&^C j ,N28uHel-phuC j ,N2&^C j ,N1uHel-phuC i ,N18&

~Ei2Ej !„Ei2Ej1~N182N1!\v11 i\g…
. ~3.27b!
we
p-

-

nter-
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wo
y
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e
ro-
Let us briefly discuss the energy conservation~i.e.
d-function! structure and time-reversal properties of t
probabilities associated with the amplitudes given in E
~3.26a!, ~3.26b!, ~3.27a!, and~3.27b!. The explicitd function
in the formula~3.18! for Wf i constrains the energies of th
initial and final states. One furtherd function arises when we
insert explicit expressions for the interfering pairs of amp
tudes, Eqs.~3.26a!, ~3.26b! and Eqs.~3.27a!, ~3.27b!, into
Eq. ~3.18!. This secondd function characterizes energy co
servation between initial and intermediate~or intermediate
and final states!. As we mentioned earlier, time reversal sym
metry can also be satisfied if we use, e.g., imaginary part
Lorentzian functions instead ofd functions, thus taking into
account approximate energy conservation in transitions
.

-

of

e-

tween broadened states of the system. Here, for brevity,
use the termd function when discussing time-reversal pro
erties of transition rates.

Let us follow how thesed functions~and, hence, the req
uisite odd character under time reversal! emerge. For two-
stage processes, a direct transition has to contain one i
mediate state, which has to be virtual state, and, there
Eq. ~3.26a! contains real energy denominators. Thus, in t
stage processes, ad function additional to one giving energ
conservation between initial and final state, is to arise fr
indirect transition amplitudes. Such ad function indeed
arises~in each of the contributing terms! from complex de-
nominators of Eq.~3.26b!, upon summation over all possibl
phonon modes. In interference involving three-stage p
6-15
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cesses, the analytical expression for three-stage ampli
Eq. ~3.27b! is characterized by two energy denominato
Upon summation over all possible phonon modes, one
these denominators leads to ad function. Another energy
denominator in Eq.~3.27b! corresponds to a virtual trans
tion. As follows from Eq. ~3.23!, in the presence of the
Aharonov-Bohm phasef picked up by carriers moving
around three sites, interference contributions toWi f deter-
mined by Eqs.~3.26a! and ~3.26b! and by Eqs.~3.27a! and
~3.27b! all contain twod functions, and, as required by time
reversal symmetry properties, are proportional to sinf.

In order to see the physical meaning of interference
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tween amplitudes of direct and indirect two-stage proces
or interference between amplitudes of one- and three-s
processes, it is instructive to write down the amplitud
~3.26a!, ~3.26b!, ~3.27a!, and ~3.27b! in terms of the ionic
orbitals uf i& and the transfer integralsVi j , by using Eq.
~3.13!. ~The energy denominators are corrected compare
those that can be found in the original Holstein paper23!. This
will also allow us to formulate conditions necessary for c
herence of two-phonon processes, relevant for the Hall
fect.

In terms of uf i& and Vi j , the two-stage processes a
described by the amplitudes
Ak,N1 ,N2 ; j ,N
18 ,N

28
dir,2

5
^fk ,N1uHel-phufk ,N18&^f i ,N2uHel-phuf i ,N28&Vki2^fk ,N2uHel-phufk ,N28&^f i ,N1uHel-phuf i ,N18&Vki

~Ej2Ek!~Ei2Ek!

1
^fk ,N2uHel-phufk ,N28&^f i ,N1uHel-phuf i ,N18&Vik2^fk ,N1uHel-phufk ,N18&^f i ,N2uHel-phuf i ,N28&Vik

~Ei2Ej !~Ek2Ei !

~3.28a!

Ak,N1 ,N2 ; j ,N
18 ,N

28
ind,2

5
^fk ,N1uHel-phufk ,N18&^f i ,N2uHel-phuf i ,N28&VjkVi j

„Ei2Ej1~N182N1!\v11 i\g…~Ek2Ej !~Ei2Ej !
1

^fk ,N2uHel-phuf j ,N28&^f j ,N1uHel-phuf i ,N18&

Ei2Ej1~N282N2!\v21 i\g
.

~3.28b!

The interfering amplitudes for the one-stage processAdir,1 and an example of a three-stage processAind,3 which, in terms of
exact carrier states, are given by Eqs.~3.27a! and ~3.27b! in terms of ionic orbitals read

Adir,15
^fk ,N1uHel-phufk ,N18&Vki1^f i ,N1uHel-phuf i ,N18&Vki

Ei2Ek
, ~3.29a!

Aind,35•••1
^f j ,N2uHel-phuf j ,N28&^f j ,N28uHel-phuf j ,N2&^f i ,N1uHel-phuf i ,N18&Vk jVji

~Ej2Ek!~Ei2Ej !~Ei2Ej !„Ei2Ej1~N182N1!\v11 i\g…
. ~3.29b!
-

of
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the
di-
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s.

two
i-
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First term in Eq.~3.29a! does not contribute to interfer
ence of one- and three-stage processes, because the m
element^fk ,N1uHel-phufk ,N18& does not correspond to an
time-reversed counterpart in Eq.~3.29b!. We are now in a
position to discuss the physical meaning of processes
contribute to the Hall effect in terms of local orbitals. In th
interference of two stage processes, both amplitudes, d
and indirect, correspond to interaction with a phonon mo
(N1 ,v1) at sitek ~initial stateufk&, tunneling to sitei ~final
stateuf i&) directly or via intermediate sitej, and interacting
with a phonon mode (N2 ,v2) ~at sitei ) that is distinct from
one participating in a process occurring at sitek. In the in-
terference of one- and three-stage processes, the direct
stage process~which is, strictly speaking, can be called on
stage only in terms of exact carrier states! can include two
possibilities:~i! Interaction with a phonon mode (N1 ,v1) at
initial site and tunneling to the final site;~ii ! tunneling to the
final site and interaction with a phonon mode (N1 ,v1) at the
final site. Then the three stage process have to include
following stages: In the case~i! there is interaction with the
trix

at

ct
e

ne-

he

phonon mode (N1 ,v1) at initial site, tunneling to intermedi-
ate site j, emission~absorption! and reabsorption~reemis-
sion! of a phonon mode (N2 ,v2) at site j, and tunneling to
the final site. In the case~ii ! charge carrier tunnels to inter
mediate sitej, where emission~absorption! and reabsorption
~reemission! of a phonon mode (N2 ,v2) occurs, and then
tunnels to the final site. We therefore see that, in terms
local orbitals, processes contributing to the Hall effect a
characterized by interference of amplitudes in which phon
modes changing their occupation numbers are represente
time reversed counterparts inAdir andAind, respectively.

Having described the inelastic processes leading to
Hall effect, we are now in the position to generalize con
tions for occurrence of interference, and to formulate th
conditions for two-phonon processes. It follows from Eq
~3.26b!, ~3.26a!, ~3.27a!, and ~3.27b! that electron-phonon
interaction results in coherence of transfer amplitudes in
cases:~i! If direct transition and transition via an intermed
ate state both occur as two-phonon processes,72 with two
phonon modes changing their occupation numbers in
6-16
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course of both these transitions, then interference ex
when the two phonons leading to the direct transition are
same as two phonons leading to a transition via intermed
site; ~ii ! if the direct transition occurs as one-stage proc
assisted by a phonon mode, this phonon mode change
occupation number, and the transition involving an interm
diate site occurs as a three stage process. Then, the con
is that one of the phonon modes assisting three-stage pro
is the same as that in the direct transition, while anot
phonon mode which assists the indirect transition does
change its occupation number.

Broadly speaking, both these cases lead to conditions
inelastic modes that change their state in the course of e
tronic hop are the same in the two interfering hopping a
plitudes. Only in this case an interference exists even
tween amplitudes of inelastic processes. We note that
point has been also recently revisited by Entin-Wohlm
et al.76

5. Ordinary Hall effect: Local conductivities. Remarks
on averaging over triads

These interference contributions will result in the ordina
Hall effect, with the Hall conductivity in a triad of ionssOH
given by

sOH5G$e j%sin~B•Q/f0!, ~3.30!

where f0 is the ~electromagnetic! flux quantum,Q is the
~oriented, real space! area of the triad, and$e j% j 51

3 are the
energies of the three single-particle eigenstates, which
invariant under reversal of the AB flux. The explicit expre
sion forG can be found by substituting Eqs.~3.28a!, ~3.28b!,
~3.29a!, and~3.29b! into Eqs.~3.18! and ~3.3!. ~Note that in
generic caseG also depends on the populations of the
states, which themselves may depend on particle-par
correlations.!

In Ref. 23, Holstein mainly addressed the issue of the H
effect in hopping conductors in the presence of an ac elec
field. Compared to the dc Hall effect, the ac problem is s
plified because the principal contribution to the Hall condu
tance comes from those spatially isolated configurations
sites for which the population relaxation timet r is on the
order of the inverse frequencyv of the current~i.e., vt r
;1). In this ac case, there is no need to address the~highly
nontrivial! issue of how these sources of the Hall effect~i.e.,
configurations of sites! are combined into a conducting ne
work that is connected to the Hall contacts. For the dc H
effect, on the other hand, this issue of the structure of
conducting network must be faced, and it becomes neces
to understand which triads are the most effective in cont
uting to the Hall effect, how to average over triads, and w
quantity should be averaged.@If the quantity to be average
should be the conductivity~resistivity! then one should firs
compute the local conductivities~resistivities! of triads and
then obtain the macroscopic conductivities~resistivities! by
averaging.# This issue of averaging over all triads and co
ducting network structure in disordered systems rema
controversial.75,76
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However, in the present paper we are concerned not w
the ordinary Hall effect in a system with localized carrie
but the anomalous one. For the anomalous Hall effect,
Aharonov-Bohm phase does not play a fundamental rol
very weak magnetic field being applied solely for the pu
pose of inducing a macroscopic magnetization of a fer
magnetic medium. Rather, for the AHE in system compr
ing magnetically disordered core spins on Mn sites visited
hopping charge carriers, it is a certain type ofspin quantal
phase47–49 that manifests itself. We now turn to the origi
and meaning of this spin quantal phase.

E. The quantal Pancharatnam phase

To understand the nature of the spin quantal phases, le
begin by examining the single-particle quantum mechan
of a carrier hole added to a triad of Mn31 ions. We regard
the spin-3/2 core spins of the Mn ions as large enough to
treated classically, so that one can assign a definite direc
to each of them. Thus, a generic configuration of core sp
is characterized by the triad of unit vectors$n1 ,n2 ,n3%, re-
spectively located at the triad of sites$R1 ,R2 ,R3%, as de-
picted in Fig. 14. Let us now consider the transfer of the h
carrier between ions. In the double exchange model, s
transfer is described by the Hamiltonian

HDE5(
a, j

ua,f j&e j^a,f j u1(
a

j Þk

ua,f j&Vjk^a,fku

1J(
a,b

j

ua,f j&nj•sa,b^b,f j u, ~3.31!

wheres is the Pauli spin operator describing the spin of t
hole carrier,J is the Hund Rules coupling energy which, fo
Mn31 ions, is on the order of several eV, and is much larg
than the orbital transfer integralsVjk , and ua,f j& is the
outer-shell atomic carrier state at sitej, the indexa labeling
the spin-projection on to thez axis ~i.e., ua&ua56 are eigen-
states ofsz). In general, the Hamiltonian~3.31! results in
spin polarization of electrons at arbitrary ratio ofJ andVjk .
However, two limiting cases are of interest. AtJ!uVjku, me-
tallic ferromagnetism is usually treated perturbatively
terms of an electron gas in metals, resulting in the RKK
interaction. In this case charge carriers with any spin proj
tion are taken into account. The opposite caseJ@uVjku is a

FIG. 14. ~a! Triad of Mn ions having distinct core spin orienta
tions. ~b! Sphere of possible core spin orientations, showing
specific orientations of the spins for this triad. The orientations fo
the vertices of spherical triangle. The area of this triangle de
mines the quantal Pancharatnam phase.
6-17
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purely double-exchange model. This is the case that is
evant to manganites. By Hund’s rules~appropriate forJ
@uVjku), there is, at each site, effectively a single quant
state available to the hole. This stateunj ,f j& is the one in
which the carrier spin projection opposes the core spin di
tion. The orbitaluf j& that characterizes this state isone of
the orbitals of an isolated Mn ion, centered on the sitej; we
choose to omit the remaining orbitals so as to simplify
discussion. As for the other spin state~as well as any othe
orbitals!, we regard them as being inaccessible on energ
grounds. Postponing until later any effects of spin-orbit
teractions, we assume that the transfer of carriers@being, as it
is, affected by either the ‘‘kinetic energy,’’ by the secon
term in Eq.~3.31!, or by the electron-phonon interaction# has
no effect on the spin of the carriers. The hopping amplitu
between ionic states are thus given by^nk ,fkuTunj ,f j&,
whereT corresponds either to the transfer operatorV of Eq.
~3.7! or to the electron phonon interactionHel-ph. These hop-
ping amplitudes depend explicitly on the relative orientat
of the core spins,nk andnj . In particular, by projecting the
Hamiltonian~3.31! on to the physically relevant low-energ
subspace spanned by the statesunj ,f j&, we arrive at the the
double-exchange Hamiltonian projected on to the lo
energy subspace,HDE8 , which takes the form

HDE8 5( unj ,f j&~e j2J!^nj ,f j u1(
j Þk

unj ,f j&Vjk
eff^nk ,fku,

~3.32a!

Vjk
ef[^nj ,f j uHDEunk ,fk&

5VjkS cos
u j

2
cos

uk

2
1eigk jsin

u j

2
sin

uk

2 D , ~3.32b!

where Vjk
ef are the effective transfer amplitudes,gk j[gk

2g j and, respectively,u j and uk are the azimuthal angle
andg j andgk are the polar angles of the semiclassical s
directionsnj and nk . Provided we choose, e.g.,nj iez and
nkiex ~where$ex ,ey ,ez% are the Cartesian basis vectors! this
effective transfer amplitude reduces to the Anders
Hasegawa form

Vjk
AH5Vjk cosu/2, ~3.33!

whereu is the angle betweennj andnk . However, and this is
central to our discussion, the effective transfer amplitude
in general, a complex quantity characterized by its amplitu
and phase. From Eqs.~3.32b! and ~3.33!, it is indeed appar-
ent that if core spins are co-aligned, the effective hopp
amplitude is maximal, while if the core spins on two ions a
opposite, hopping between such ions does not occur.

We now follow the line of argument applied in Se
III D 3, and construct the exact eigenstates of Hamilton
~3.32a!, via Eq. ~3.13! modified to account for spin. Hence
we can build matrix elements of the electron-phonon int
action between exact localized states, taking into accoun
effect of the core spin orientations$nj%. We now note that
this expansion for the state gives rise, in the hopping pr
ability uU ji u2 ~and hence in the hopping rateWji ), to terms
containing products of matrix elements such as transfer i
18442
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eff and electron-phonon interactionsUk j . Amongst

these terms are ones containing matrix elements assoc
with paths around closed loops and incorporating the effe
of interference between distinct carrier paths. The simp
example involves the productVi j

effVk j
effVji

eff , associated with
the pathi→ j→k→ i .

In the presence of the constraints set by the core s
orientations, the transfer of carriers discussed in the prev
paragraph is subject to a striking quantal effect. To see t
consider the products of matrix elementsVik

effVk j
effVji

eff . Explic-
itly, such products have the form

Vik
effVk j

effVji
eff5^ni ,f i uHDEunk ,fk&^nk ,fkuHDEunj ,f j&

3^nj ,f j uHDEuni ,f i&

5^ni u ^ ^f i uHDE8 ufk& ^ unk&

3^nku ^ ^fkuHDE8 uf j& ^ unj&^nj u

^ ^f j uHDE8 uf i& ^ uni&

}^ni unk&^nkunj&^nj uni&5Tr PkPj Pi , ~3.34!

where the operatorsPj[(11s•nj )/2 are projectors~in spin
space! on to the spin states aligned with the local core s
orientationsnj . From this last expression, in terms of pr
jectors, it is straightforward to establish that

Tr PkPj Pi5~11n1•n21n2•n31n3•n1!1 i @n1•~n23n3!#.

~3.35!

Hence, we arrive at the quantal phaseV, the phase of the
complex quantity TrPkPj Pi , which is given by

V

2
5tan21

n1•~n23n3!

11n1•n21n2•n31n3•n1
. ~3.36!

In the context of the physical quantity from which the com
putation of the quantal phaseV emerged, viz., the perturba
tive evaluation of the hopping rateWk j , Eq. ~3.18!, this
phase modulates the interference between hopping proce
that progress from one sitej to another sitek, either directly
or indirectly, via a third site.

Formula Eq.~3.36! indicates that the phaseV has a geo-
metric interpretation as the~oriented! solid angle of the geo-
desic triangle having vertices at$ni ,nj ,nk% on the unit
sphere. It is the quantal analog of the classical optical ph
discovered in the context of polarized light b
Pancharatnam.25,26 In that setting, what Pancharatna
showed is that a under a sequence of changes of the p
ization state of light that return the light to its original pola
ization state there arises a phase shift~i.e., a phase an-
holonomy! determined by the geometry of the sequence
changes. If the sequence of polarization states is represe
by a sequence of points on the Poincare´ sphere~a certain
parametrization of light polarizations! thenV is given by the
area of the geodesic polygon on this sphere the vertice
which are correspond to these polarization states.

In the double-exchange electronic analog of Pancha
nam’s phase, the transporting of an outer-shell carrier to
6-18
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CHARGE TRANSPORT IN MANGANITES: HOPPING . . . PHYSICAL REVIEW B63 184426
ion with a differently oriented core spin via a spin
independent process is characterized by a matrix element
can be interpreted as aconnection. For processes visiting a
closed sequence of sites, this connection yields a qua
phaseV, viz., the phase shift of the returning spin state
terms of the sequence of sites visited. This quantal versio
Pancharatnam’s phase is given byhalf the area of the geo
desic polygon~on the unit sphere of core spin orientation!
the vertices of which are the core spin orientations of
sites visited. Although the phaseV emerged from consider
ations of interference between processes involving atriad of
sites, such phases are more general and would, in
emerge for arbitrary processes. We remark that, in contra
Berry’s adiabatic phase,51 the phenomenon described here
associated withsuddenchanges in the carrier-spin state, a
need not be slow.

F. The anomalous Hall effect in hopping regime

We now turn from the OHE in a spinless triad to the AH
in a triad of magnetic sites. Like the OHE given by E
~3.30!, this AHE results from two-phonon processes, but
due to the Pancharatnam phase instead of the AB phase~At
this stage, we have not yet included the effects of the s
orbit interaction.! Mutatis mutandis, we arrive at the AH
conductivitysAH , given by

sAH5G$« j% cos
u13

2
cos

u32

2
cos

u21

2
sin

V

2
, ~3.37!

where cosujk[nj•nk , the factors cos(ujk/2) are Anderson-
Hasegawa factors, and$« j% are the energies of the thre
on-site single-particle eigenstates that are consistent
Hund’s rules, these energies depending on$nj•nk%1< j ,k<3
and cos(V/2). Note thatG is even under the reversal of th
Pancharatnam fluxV→2V, andsAH is odd under it.

We have shown that, for a triad with given set of cor
spin orientations, an AHE arises from the quantal Pancha
nam flux. However, there is a significant difference betwe
this AHE and the OHE. In the former~nonmagnetic! case, a
uniform applied magnetic field leads to a net macrosco
OHE, even though contributions of triads may cancel o
another.75 In the latter case~with its magnetic sites, Pan
charatnam flux, but spin-orbit interactions not yet include!,
even the presence of a macroscopic magnetization of
core spins is insufficient to cause amacroscopicHall current.
The reason for this is that in obtaining the macroscopic
current from Eq.~3.37! we must average over the configur
tions of the core spins. In the absence of spin-orbit inter
tions, the distribution of these configurations, although fav
ing a preferreddirection ~i.e., the magnetization directio
m[M /M ), is invariant under a reflection of all core-sp
vectors in any plane containing the magnetization, a
therefore, there is no preferred Pancharatnam flux. For
ample, two spin configurations shown in Fig. 15 have
same magnetization but opposite signs of the Panchara
flux. This fact, coupled with the fact that$« j% are also invari-
ant under such reflections, guarantees that the macrosc
AH current will average to zero.@We do, however, expec
significant AH currentnoise in the ferromagnet-paramagn
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transition regime, owing to the fluctuations of the Pontryag
charge77 of the triads of core spins~which we shall define
shortly! and, hence, elementary Pancharatnam fluxes.#

In order to capture the AHE in double-exchange mater
such as manganites, we must consider not only the P
charatnam phase but also some agent capable of lifting
reflection invariance of the energies$« j% and the distribution
of core-spin configurations and, hence, capable of induc
sensitivity to the sign of the Pancharatnam flux. Such
agent is provided by spin-orbit interactions. We now discu
the effect of these interactions on the motion of charge c
rier in a triad.

G. Spin-orbit interactions in a triad

The most general form of spin-orbit interaction is give
by the spin-orbit Hamiltonian

Hso5ap•~s3“U !, ~3.38!

where the potentialU includes ionic and impurity potentials
a is the spin-orbit interaction constant,p is the electron mo-
mentum, ands are the Pauli operators. This spin-orbit inte
action results in an effective SU~2! gauge potentialAso
5am(s3“U),78 wherem is the relevant mass of the ca
rier. This gauge potential provides an additional source
quantal phase. For a given core-spin configuration, the s
orbit interaction favors one sense of carrier-circulati
around the triad over the other, and thus favors one sign
Pancharatnam phase over the other.

Let us consider the consequences for the energy spec
of the triad$« j% that arise due to spin-orbit interactions. Th
interaction generates a dependence of$« j% on the three vec-
tor productsNjk[nj3nk which, together with the magneti
zation directionm, yield a preferred value for the triad
Pontryagin chargeqP @[n1•(n23n3)# and, hence, a pre
ferred Pancharatnam flux.

It is straightforward to find corrections, due to the SOI,
hole eigenenergies if the on-site energies of the holes
nondegenerate. Then the sensitivity of$« j% to vector prod-
ucts Njk[nj3nk first enters at third order~in the transfer
matrix elements!,

d« j5 (
h,k(Þ j )

Tr Tjh Thk Tk j /~« j2«h!~« j2«k!, ~3.39!

whereTjk[PjVjkPk are the transfer amplitudes,Vjk are the
hopping matrix elements, and Tr denotes a trace in s

FIG. 15. Two configurations@~a! and ~b!# of core spins on a
triad of Mn ions, differing by the interchange of the spins on site
and 3. These distinct spin configurations give rise to opposite P
charatnam phases.
6-19
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Y. LYANDA-GELLER et al. PHYSICAL REVIEW B 63 184426
space.~For degenerate on-site hole energies one should
tain the splitting of these energies due to transfer in the
sence of SOI, and then include SOI at the final step, arriv
at the result to be given below.! The hopping matrix ele-
ments are sensitive to the SOI quantal phase, and ca
written in the formVjk5Vjk

orbL jk , whereL jk[(11 i s•gjk),
Vjk

orb is an orbital factor, andgjk (}aso) is an appropriate
vector that describes the average SOI for the transitioj
→k in a triad of sitesi, j, andk. Then, e.g., the first-order~in
a) shifts in the« ’s are given by

d« j}Tr T13T32T21

54 Re TrP1L13P3L32P2L21

52~N13•g131N32•g321N21•g21!2N•g,

~3.40!

whereN[N131N321N21, andg[g131g321g21. If the po-
tential U in the SOI is a superposition of sphericall
symmetric ionic potentials in a the triad of sites then t
vectorsgjk have a transparent geometrical meaning:

gjk5ajkQ, ~3.41!

Q5
1

2
~Rj2Rh!3~Rk2Rh!, ~3.42!

i.e., they are proportional to the areauQu of the triangle
whose vertices are the sitesRj , Rk andRh . Then the SOI-
generated shift in the carrier eigenenergies has
Dzyaloshinski-Moriya form.27

H. Elementary Hall conductivity in a triad

There are two contributions to the AHE which result fro
the SOI-generated shift in the carrier eigenenergies. The
contribution is due to the dependence of the probability
hopping around the triad on$« j% for a given spin configura-
tion. By incorporating the shifts~3.40!, together with the
Pancharatnam phase, we arrive at the elementary AH
ductivity

sAH
(1)5n1•~n23n3!(

j
d« j]G/]« j . ~3.43!

As discussed above, Eq.~3.43! has a nonzero macroscop
average, owing to the presence of a characteristic Pontry
charge constructible from theNjk , that feature in the energ
shifts, and the magnetization direction. A second con
quence of the SOI-generated carrier-energy shift~3.40! leads
to the second contribution,sAH

(2) . Due to the feedback of the
~fast! carrier freedoms, which provide an effective potent
for the ~slow! spin system, determined by Eq.~3.40!, the
equilibrium probabilities of spin configurations having o
posing Pancharatnam fluxes will no longer be equal.~For
this contribution, which is related not to]G/]« j but to G
itself, there is no need to account for SOI-induced carr
energy shifts in the current now being averaged over a n
symmetric spin-configuration distribution.! A contribution
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with this origin has also been considered in Ref. 29.sAH
(1) and

sAH
(2) are of the same order of magnitude.

I. Structure of the conducting network
and the AHE resistivity

We now consider the question of how the physics of
ementary triads of Mn ions relates to the macroscopic pr
erties of manganites. For hopping conductivity, the pathw
taken by the current depends sensitively on the details of
configuration of the core spins, owing to the sensitivity of t
hopping amplitudes to the core-spin alignments. In parti
lar, regions having local spin configurations that are align
roughly opposite to the macroscopic magnetization of
sample tend to be avoided by the current. This fact rend
rather subtle the procedure for averaging over equilibri
spin configurations, which must account for effects such
local spin correlations and excitations of various types~i.e.
spin wave and topological excitations!.

En route to computing the AH resistivity, let us try t
identify through which triads the AH current tends to flow
Carriers tend to pass through regions of lower resistan
However, currents through regions with aligned spins do
lead to an AHE because the relevant Pancharatnam
through such regions is small. Furthermore, in t
ferromagnet-to-paramagnet transition region, where the m
netization is only a small fraction of its saturation valu
even those spins within the network responsible for long
dinal conductivity have orientations that are typica
splayed, relative to one another. Nevertheless, if one wer
consider only the spins in this network, their average m
netization would be larger than that of the entire sample,
the typical solid angles formed by triads of such spins wo
be rather small. Thus, any AHE originating in such tria
would be not the dominant contribution. Moreover, close
the metal-insulator transition, hopping paths through
sample that encounter spins having rather common orie
tions do not exist.

In fact, there is experimental evidence for the existence
moderately sized clusters of aligned spins coming from n
tron scattering data61,79at temperatures near the ferromagn
to-paramagnet transition. These data indicates that cluste
spins do indeed exist in which spins are aligned over a len
scale of roughly 10 Å. Thus, it is reasonable to envision
magnetic configurations as comprising rather well orien
clusters of, say, twenty to thirty spins, with adjacent clust
having rather different spin orientations. Furthermore, th
retical estimates of the scale of magnetic fields relevant
colossal magnetoresistance are consistent with the exist
of such clusters.~Such clusters can be regarded as be
large magnetic polarons.80! As the characteristic Zeema
temperature associated with asingle spin-3/2 in a magnetic
field of 7 T is 20 K, whereas the characteristic temperat
associated with colossal magnetoresistance is roug
200 K, one is lead to the view that clusters of correlat
spins involve on the order of ten spins.

Now consider two adjacent clusters of roughly align
spins@e.g., clustersL andR in Fig. 16~a!#. Even the conduct-
ing paths connecting these clusters contain bonds betw
6-20
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ions having significantly misaligned spins. These spins
long to regions of magnetic inhomogeneity, e.g., inhabi
by hedgehog excitations@an example of ‘‘lattice hedgehog’
is shown in Fig. 16~b!# which defines the border of aligne
clusters as shown in Fig. 16~a!. As mentioned in the Intro-
duction, hedgehog excitations are long-lived topological s
excitations, the existence of which is known to be import
for ferromagnet-to-paramagnet transition,53,57 even in the
three dimensional case.

Within these regions of magnetic inhomogeneity there
triads of splayed spins. Let us now address the quest
What is the characteristic splay? To answer this quest
imagine dividing up the spins into those within clusters a
those within the border regions. Even though the magnet
tion per spin in a typical cluster is greater than the samp
average magnetization per spin, the clusters are misorie
relative to one another. Thus the contribution to the mag
tization per spin of the sample coming from the spins
clusters is not guaranteed to exceed the sample average
indeed, it seems reasonable to assume that it is, in fact, n
different from the sample average. If so, then the magnet
tion per spin of the spins in the border region would also
roughly the sample average. We shall make the hypoth
that this is indeed the case. Then the magnetization of typ
triads of ions in the border region can also roughly be ta
to be the average sample magnetization. We shall denot
b the characteristic angle that spins in a triad form with

FIG. 16. ~a! Two clusters of sites, denotedL and R, in a frag-
ment of the sublattice of Mn sites. Within a cluster the core s
orientations are roughly the same; but spins in distinct clusters h
significantly different orientations. Note that the boundary betwe
such clusters is liable to contain spin configurations that resem
the single hedgehog configuration shown in~b!. The heavy dotted
lines in ~a! indicate a triad of spins that contribute to a hedgeh
configuration. Sites in the upper part of the cell shown in~b! con-
tribute to the conducting network and, correspondingly, the mag
tization ~per site! in this upper part of the cell~shown as an open
headed arrow! is roughly that of the sample~see the discussion in
Sec. III I!.
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direction of the overall magnetization of the sampleM :
cosb;uM u/M s, whereM s is the saturation magnetization o
the sample.

Let us now imagine how charge carriers move betwe
clusters having quite different ion spin orientations. Su
motion is necessary for the existence charge-carrier prop
tion between electrical contacts. We have sketched a typ
instantaneous configuration of the spins in Fig. 16. As o
can see, the ‘‘upper’’ part of a inhomogeneous region form
on a cubic lattice of sites can serve as a path for hopp
between clusters. For reasons that we will now give, triads
sites within this~and similar! regions are effective contribu
tors to the AHE.

~i! The three spins in the triad have positive compone
along the direction of magnetization.~Recall that clusters
with magnetization pointing against the majority tend to
avoided by the current.! This allows participation by these
triad sites in the conducting network. If all three sites p
ticipate in the conducting network, the triad can be an eff
tive source of an electromagnetic force that leads to a H
effect. As we have discussed, the net magnetization of
triad is roughly that of the bulk, which makes it magnetica
compatible with its neighbors.

~ii ! Typical triads of spins, being located as they are b
tween several misoriented clusters are significantly splay
Therefore, the solid angle formed by their spins~i.e., the area
of the geodesic triangle formed by their orientations on
unit sphere, also known as the Pontryagin charge of the
configuration! is substantial and, in fact, close to the max
mum possible value given the constraint that the triad m
netization~per spin! be comparable to the sample magne
zation ~per spin!. Thus, we adopt as a caricature of the sp
configuration in regions contributing to the Hall effect a pi
ture of splayed triads of spins of known magnetization d
sity, residing within tetrads of spins on a lattice plaquet
such as those depicted by the lattice hedgehog configura
shown in Fig. 16. This scheme, in which we consider tetra
of a given magnetization and then select triads of sites i
tetrad, seems to us appropriate, given the cubic structur
the sublattice of Mn spins. However, alternative schem
~e.g., in which one considers triads themselves or other
semblies of splayed spins of a given magnetization rat
than tetrads, and chooses triads out of these assemblies! lead
to almost identical results~e.g., for the scaling of the Hal
resistivity, which we discuss in the present and followi
sections!. This insensitivity to details is all the more natura
given that we are dealing with an atomically disordered s
tem. We note that, because hedgehogs are topologic
stable, they provide a mechanism by which the spin confi
ration can sustain strongly splayed regions that persist
durations much longer than the characteristic time for cha
motion. Hence, in their presence, on can accurately treat
charge motion as taking place with a background of inhom
geneous but essentially static spins, which renders consis
the adiabatic treatment of the dynamics of the spins.

Thus, we arrive at the notion of anoptimal triad. An
optimal triad is a triad of spins residing in a tetrad of fo
spins around a plaquette of the cubic sublattice of Mn io
and having the following properties:~i! The tetrad has the
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magnetization density of the bulk; and~ii ! subject to this
constraint, the spins of the tetrad are maximally splayed~i.e.,
subtend the maximal solid angle and, in fact, are configu
symmetrically around a cone!. Note that if the lattice were
triangular then we would simply have adopted a definition
optimality in terms of maximally splayed triads~rather than
tetrads! of spins. As mentioned above, in disordered syste
~such as manganites!, the distinctions engendered by su
options are unlikely to have a strong impact on the phys
consequences of the picture.

The motion of charge carriers through optimal triads giv
rise to the AHE. We note that these optimal triads have pr
erties quite different from those of optimal triads contribu
ing to the OHE in doped, nonmagnetic semiconductors:75 in
the OHE setting, only two sites in an optimal OHE triad a
connected to the conducting network, whereas in the opti
AHE triads all three triad sites participate in the netwo
~Indeed, if alternatively, one of the sites isnot a part of the
conducting network, its spin must be roughly opposite tha
the spins on the other two sites; such a configuration wo
yield only a small Pancharatnam phase.!

The question may arise why triads within tetrads~and not,
for instance, tetrads themselves! are considered to be th
dominant source of the AHE. By a contribution from a tetr
we mean one involving four overlap integrals. As these ov
lap integrals are small, owing to the localized character
the carrier wavefunctions and, thus, the contribution fr
tetrads is suppressed, relative to that from triads. We n
that distortions due to doping, particularly deviations of M
O-Mn bond angles from 180°, facilitates tunneling betwe
Mn ions via plaquette diagonals~see Fig. 16!. As was esti-
mated in Ref. 4, the amplitude of transfer along diagonal
0.5 of that between nearest neighbor Mn ions. Recent t
binding model parametrization of local density approxim
tion ~LDA ! studies81 show that hopping via diagonals is eve
more important, and its amplitude is 0.82 of transfer am
tude between nearest neighbor Mn ions.

Having discussed the structure of resistive network, le
now calculate the longitudinal and Hall resistivities of ma
ganites in the regime in which conductivity proceeds by h
ping ~i.e., at temperatures above, as well as somewhat be
the ferromagnet-to-paramagnet transition!. The longitudinal
hopping conductivity arising from phonon-assisted hops
tween sitesi and j is given by

sxx5~ne2d2/kBT!W0
i j cos2~u/2!, ~3.44!

@cf. Eqs.~3.1! and ~3.2b!#, whered is the distance betwee
sites. Here,W0

i j is the rate of phonon-assisted direct hop
and we have explicitly separated out the Anders
Hasegawa factor cos2(u/2). Correspondingly, the~anoma-
lous! Hall conductivity is given by@cf. Eq. ~ 3.3!#

sxy5~ne2d2/kBT!W1
i j , ~3.45!

whereW1
i j is the rate of hopping between the two sites, a

accounts for interference associated with both direct hopp
and hopping via an intermediate state on a third site. N
that the quantityW1 includes three Anderson-Hasegawa fa
tors @and so does the Hall conductivity given by Eq.~3.37!#.
18442
d

f

s

l

s
-

al
.

f
ld

r-
f

te
-
n

is
ht
-

-

s
-
-
w,

-

,
-

d
g

te
-

The task of computing the Hall resistivityrxy , which in the
limit of sxx@sxy under consideration has the form

rxy'2
sxy

sxx
2

, ~3.46!

then reduces to a determination of a ratio involving the dir
and indirect hopping ratesW0

i j andW1
i j ~as a function of the

magnetization texture!. As discussed in Secs. III D and III F
W1

i j involves two-phonon processes, whereasW0
i j involves

only single-phonon processes. Because of this, depend
on electron-phonon coupling constant, phonon occupa
numbers, and charge carrier occupation numbers, can
from the relevant ratio,W1

i j /(W0
i j )2, so that this ratio can be

written as

W1 /W0
25a\z/kBT, ~3.47!

wherea is a numerical factor describing the multiplicity o
the various carrier-phonon interference processes~see Ref.
23 and Sec. III D!, the number of intermediate sites, and t
difference between nearest- and next-nearest-neighbor
ping amplitudes. We shall refer to the parameterz, which
characterizes the difference between the forwardW1

i j ~back-
ward W1

j i ) transition rates, as an asymmetry parameter.
the OHE, this asymmetry parameter is given by

z}sin~B•Q/f0!, ~3.48!

whereQ is the vector area defined in Eq.~3.42!, as follows
from Eq. ~3.3!.

For the AHE, it follows from Eqs.~ 3.40! and ~3.43! that
the asymmetry parameter is given by

z.3@gjk•~nj3nk!#@n1•~n23n3!#/4, ~3.49!

where gjk are characteristic vectors arising in the hoppi
amplitude owing to the spin-orbit quantal phase;nj are unit
vectors of the core spins in the triad, andn1•(n23n3) is the
volume of a parallelepiped defined by core-spin vectors,
the Pontryagin chargeqP. The anomalous Hall resistivity
can be written in the simple form

rxy.2sxy /sxx
2 52

1

neS a\z

ed2

1

cos4~u/2!
D . ~3.50!

The evaluation of Eq.~3.50! reduces to a determination ofu,
along with the products (nj3nk) and n1•(n23n3), which
survive averaging over all possible triads. The dominant c
tribution to the average of these products arises from opti
spin configurations~see Fig. 17!.

Therefore, in line with properties~i! and~ii ! of these con-
figurations, consider a square lattice formed by the Mn io
in a plane perpendicular tom @as in, e.g., the top surface o
the cube in Fig. 16~b!#. To ascertain the geometry of optima
triads, consider the spins at four sites of a plaquette belo
ing to the conducting network. Being optimally configure
these spins lie at equal separations around a cone w
vertical angle 2b is given by 2 cos21@M(H,T)/Msat#. ~The
angle between the altitude of the cone and any generato
6-22
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the conical surface isb.! Let us now use this information to
fix the various geometrical quantities that determine the l
gitudinal and Hall conductivities, the former being asso
ated with pairs of sites and the latter with triads. We ass
that to compute the contributions to these conductivities
may consider sites in an optimal configuration, as these
characteristic of that regions of the sample that domina
contribute. For the Hall conductivity, the reasons for acce
ing this assertion were discussed in the present subsec
As for the longitudinal resistivity, the assertion is valid b
cause this quantity is dominated by the most resistive reg
of the conducting network, and these are expected to aris
the interface between clusters of aligned spins, i.e., in
gions that are hedgehog-like.

With this picture in mind, we now compute characteris
values for the geometrical quantities that feature in the l
gitudinal and Hall conductivities. Thus, we need the anglu
between adjacent spins, the Pontryagin chargeqP, and the
products (nj3nk), each of which is related to the vertica
angle 2b by elementary geometry:

2 cos2~u/2!511 cos2 b, ~3.51a!

qP52 cosb sin2b, ~3.51b!

m•~nj3nk!5 sin2b. ~3.51c!

We now have to account for the fact that, in the hopp
regime, the magnitude of the longitudinal~and anomalous
Hall! resistivities depend on the probability that pairs a
triads of ions are connected to the conducting network.
introduce a percolation factorP describing the connectivity
of the pair to the conducting network; for the AH conducti
ity the corresponding factor would beP2 because both pair
of ions in a triad must, as discussed above, belong to
conducting network. It is remarkable that, throughout
localization regime,rxy is nevertheless determined by cu
rents formed in individual pairs and triads, because the
tors of P cancel in the expression forrxy given by Eqs.
~3.46! and ~3.50!. Therefore, in so far asqP and the angles
between neighboring spins can be directly related tom
[M /M sat5 cosb, the Hall resistivityrxy depends onH and
T only throughm(H,T), and is given by

FIG. 17. ~a! Triad of Mn sites~1, 2 and 3! in the conducting
network. Charge-carrier motion around triads such as this lea
the AHE. We compute the longitudinal and AH conductivities
relating them to the configuration of the spins~which we suppose to
be optimal! and, hence, to the magnetization.
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rxy5rxy
0 m~12m2!2

~11m2!2
. ~3.52!

To determine the magnitude of the AHE, we first need
estimate the characteristic values ofugjku;g arising from the
spin-orbit interaction~SOI!. As discussed in Sec. III G, the
SOI term leads to a Dzyaloshinski-Moriya contribution
the eigenenergy of the carriers. A standard estimate82 gives
the characteristic values ofugu;g;Ze2/4mec

2d0, whered0
is the radius of an Mn cored state. While renormalization o
carrier parameters in crystals may tend to increaseugjku, crys-
talline symmetry requires admixtures of core orbitals, whi
in turn, are mixed with oxygenp orbitals, with outer-shell
wavefunctions in order to haveugjkuÞ0 . Such admixture is
effectively generated by the non-collinearity of the M
O-Mn bonds that allows carrier hopping around triads~in-
cluding jumps along plaquette diagonals!. An estimate based
on free electron parameters givesg;531024. ~We note that
band-structure calculation of the spin-orbit coupling co
stants is outside the scope of this paper.! The characteristic
strength of the Dzyaloshinski-Moriya terms is;gt0;0.02
meV, and the characteristic strength of the spin-orbit int
action is;et0;0.1 meV, wheree is the characteristic car
rier energy. Not only these strengths are much smaller t
the characteristic double exchange energy, but they are e
smaller than the magnitude of the direct antiferromagne
Heisenberg exchange term. However, for the anomalous
effect in the localized regime, the Dzyaloshinski-Moriy
terms are crucial, as we discussed in Sec. III F.

We now estimate the macroscopic longitudinal and H
resistivities in the regime in which the conducting network
fully connected, i.e., in the regime IV of Fig. 10. By takin
n55.631021 cm23, W0;2.531013 s21, and, from the
magnetization data atT5275 K ~Fig. 1!, cosb50.6, we ob-
tain rxx.1 mV cm which coincides with the value of th
experimentally observed resistivity for LPMO~see Fig. 3!.
The AHE contribution to the Hall resistivity, assuming
numerical factora of 2.5, is thenrxy'20.5 mV cm, in
agreement with the experimentally observed LPMO Hall
sistivity at the sameT ~Fig. 5!. The equivalent expression fo
the hopping Hall resistance in the Holstein mechanism
defined by the asymmetry parameterz. cos2(u/
2)cosb sin(B•Q/f0) and, atB51 T, is an order of magni-
tude smaller than the AHE. We expect the macroscopic h
ping AH and OH effects to have the same sign, opposite
that of the OHE in the metallic regime.

In the next section, Sec. IV, we shall compare the res
for the Hall resistivity with the experimental data. As w
shall see, the picture for the core spin configurations de
oped above, which include clusters of oriented spins a
hedgehog-configured spins, allows us to explain not only
AHE, but ferromagnet-to-paramagnet and metal-insula
transitions in manganites, and provide a quantitative exp
nation of the magnitude of characteristic magnetic field t
result in colossal magnetoresistance. The notion of an o
mal triad enables us to fit the experimental data for the A
to a functional dependence of the resistivity on magneti
tion given by Eq.~3.52!. The agreement of the hopping pic

to
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ture and experimental data in the transitional region is
markable.

As we have mentioned above, the structure of the c
ducting network leading to the ordinary Hall effect in diso
dered doped semiconductors and the averaging procedur
these systems are still controversial.76,75 In contrast to disor-
dered doped semiconductors, manganites turn out to be
tems in which the ability to tune average magnetization
lows one to tune optimal triads, whose solid angles~the
Pancharatnam phases! determine the AHE. The magnetiza
tion in manganites, therefore, serves as a scaling variable
has no analog in OHE in nonmagnetic disordered syste
and provides a check on our understanding of the conduc
network. We note that the presence or absence of small
larons in the system does not change the scaling of the A
resistivity, because, as follows from studies of polaro
transport in Refs. 35–37 and 76, Eq.~3.47! also holds for
small polaron hopping.

IV. HALL RESISTIVITY: COMPARISON OF THEORY
AND EXPERIMENT

The scaling of the Hall resistivity is shown in Figs. 18, 1
and 20, in which the data shown in Figs. 4, 5, and 6, resp
tively, are replotted as a function ofM /M sat. At and above
Tc the data fall on a smooth curve that reaches an extrem
at M /M sat.0.4 for LSMO and LPMO and atM /M sat
.0.35 for LCMO. BelowTc the data first change rapidl
with magnetization as domains are swept from the sam
before saturating and following the general trend. At t
lowest temperatures, the metallic OHE appears as a pos
contribution at constant magnetization. As for the magnitu
of the Hall resistivity, for LPMO the solid curve in Fig. 1
follows Eq. ~3.52! with rxy

0 524.7 mV cm is consistent
with the estimates ofrxx andrxy given above. Down to 285
K, which is the Curie temperature determined by scal
analysis, Eq.~3.50! describes the data for LPMO reasonab

FIG. 18. Hall resistivityrxy of LCMO versus reduced magnet
zationM /M sat for the data shown in Fig. 4. Note the scaling beha
ior, i.e., the extent to whichrxy can be regarded as depending onT
and B solely throughM /M sat. The solid line is a fit to Eq.~3.52!
with rxy

0 526.2 mV cm.
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well. In addition, the extremum found from this equation
located atM /M sat5 cosb'0.35, close to the experimenta
extremum.

In LCMO and LSMO, the agreement between theoreti
and experimental results is good as well. We note that be
Tc , the longitudinal resistivity is metallic and no longe
dominated by magnetic disorder. We have not expected
agreement between theory and experiment in this rang
temperatures, but in LCMO and LSMO scaling persists
temperatures belowTC , with notable exception of the rang
of low temperatures and magnetizations close to satura
value, where the ordinary Hall effect manifests itself. W
note in this regard that belowTC , local spin arrangement
still can still dominate the AHE via asymmetric scattering
side jumps. The numerator of Eq.~3.52!, m(12m2)2, which
is characteristic for the behavior ofsxy alone, has an extre

-
FIG. 19. Hall resistivityrxy of LPMO versus reduced magnet

zationM /M sat for the data shown in Fig. 5. Note the scaling beha
ior, i.e., the extent to whichrxy can be regarded as depending onT
and B solely throughM /M sat. The solid line is a fit to Eq.~3.52!
with rxy

0 524.7mV cm.

FIG. 20. Hall resistivityrxy of LSMO versus reduced magnet
zationM /M sat for the data shown in Fig. 5. Note the scaling beha
ior, i.e., the extent to whichrxy can be regarded as depending onT
and B solely throughM /M sat. The solid line is a fit to Eq.~3.52!
with rxy

0 523.4 mV cm.
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mum atm51/A5'0.45 as shown by the dashed line in F
19. The broader maximum in the data suggest a shift tow
a hopping model forrxx and rxy as the sample is warme
through the metal-insulator transition.

V. CONCLUSIONS

Our investigation of the Hall resistivity, the longitudin
resistivity, and the magnetization in single crystals of th
different manganite compounds suggests that near and s
what above the ferromagnet-to-paramagnet transition t
perature, transport properties are determined by charge
rier hopping between localized states. We find b
theoretically and experimentally that the Hall resistivity
solely determined by the sample magnetization (M ) near and
somewhat above the transition temperature. A microsco
model for the anomalous Hall effect based on the Holst
picture of the ordinary Hall effect in the hopping regime h
been proposed and explains the results quite well.
anomalous Hall effect arises due to interference between
rect hopping between two sites and hopping via a third s
A

S

s

,

B

J
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with the quantal phase provided by topologically nontrivia
configurations of Mn ion core spins in the presence of stron
Hund’s rule coupling. These force the hopping charge carri
to follow the local spin texture, with the average quanta
phase arising due to local Pancharatnam phases a
Dzyaloshinski-Moriya spin-orbit interactions. Below the
transition temperature, the AHE competes with the OHE a
long-range magnetic order and, presumably, an infinite pe
colating metallic cluster, develops.
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