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The low-temperature Hall resistivity,, of LayA;MNnO; single crystalgwhereA stands for Ca, Pb, and
Ca, or Sy can be separated into ordinary and anomalous contributions, giving rise to ordinary and anomalous
Hall effects, respectively. However, no such decomposition is possible near the Curie temperature which, in
these systems, is close to metal-to-insulator transition. Rather, for all of these compounds and to a good
approximation, the,, data at various temperatures and magnetic fields coll@gsto an overall scajgon to
a single function of the reduced magnetizatior M/M ¢, the extremum of this function lying an~0.4. A
mechanism for the anomalous Hall effect in the inelastic hopping regime, which reproduces these scaling
curves, is identified. This mechanism, which is an extension of Holstein’s model for the ordinary Hall effect in
the hopping regime, arises from the combined effects of the double-exchange-induced quantal phase in triads
of Mn ions and spin-orbit interactions. We identify processes that lead to the anomalous Hall effect for
localized carriers and, along the way, analyze issues of quantum interference in the presence of phonon-
assisted hopping. Our results suggest that, near the ferromagnet-to-paramagnet transition, it is appropriate to
describe transport in manganites in terms of carrier hopping between states that are localized due to the
combined effect of magnetic and nonmagnetic disorder. We attribute the qualitative variations in resistivity
characteristics across manganite compounds to the differing strengths of their carrier self-trapping, and con-
clude that both disorder-induced localization and self-trapping effects are important for transport.
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I. INTRODUCTION AND OVERVIEW jump processe®:*’"°Most striking is the rapid increase in
the prominence of the AHE that occurs at temperatires
Numerous recent studies have focused on the Hall effeatlose toT¢ . In this range of temperatures,, can no longer
in the family of doped manganese oxides LgA,MnO; (in  be simply separated into ordinary and anomalous parts, as
which A stands for Ca, Sr or Bpbfamous for its colossal can be seen from the curve at 300 K in Fig. 1. For tempera-
magnetoresistanté (CMR) and accompanying tures well above ¢, p,, again becomes linear B, although
ferromagnet-to-paramagnéEP) and metal-insulator(MI)  itS Sign is now negativé:"*****The corresponding Hall co-
transitions’™'? Despite substantial variations in, e.g., the €fficientRy (=p,,/B) decreases exponentially with increas-
ferromagnet-to-paramagnet transition temperafigand re-  INd temperature in this regime, and a previous study identi-

sidual resistivity across this manganite family, measurementiéd & clear crossover froer nonpolaronic to polaronic charge
transport at around 1.%:.

of the Hall effect reveal unusual features in both their metal- ™ fth N is t0 add the i f
lic and insulating regimes. An example of the Hall effect € purpose of th€ present paper 1S {0 address e ISsue o
charge-carrier motion in manganites, both experimentally

?rztrlaS\I/Serssr;aor\(eVQislgv?g. L ;? r:v?/er:teizmc ;:Z:Srggusgb;t and theoretically, focusing on the vicinity of the FP and Ml
Y Pxy P transitions, from the vantage point afforded by the Hall ef-

10 Kiin Fig. 1) exhibit just the ordinary Hall effedtOHE), fect. Our experimental results have led us to focus on the

proportional to the external magnetic fied At higher tem- - 55041605 contribution to the Hall effect, and to develop a

peratures in the metallic phase, the Hall resistivity can b&nicroscopic theoretical picture of the charge-carrier motion
separated into the sum @ a (positive) ordinary Hall effect,  nat gives rise to this contribution in manganites. The picture

and (i) a (negativeé anomalous Hall effectAHE), propor-  that emerges is one in which the essential character of
tional to the magnetizatioht, as shown for the curve at 200 charge-carrier motion is inelastic hopping between states lo-
K on Fig. 1. The effective density of carrier holes, as de-calized due to magnetic and other sources of disorder.
duced from the slope of OH resistivity, is typically found to  In order to explain the Hall effect in the manganites in the
be several times larger than that set by the nominal dopingicinity of T, it is necessary to understand how the nature
level. of the charge-carrier states are influenced by the magnetic
This difference has been attributed to the effects of chargerder of the system. In this regard, the double-exchange in-
compensation and Fermi-surface shadéhe AHE is com- teraction(DEI), which makes charge-carrier motion of Mn
monly observed in ferromagnets, but the sign and the magsuter-shell carriers sensitive to magnetic alignment of core
nitude of the AHE in manganites stand in contradiction to3/2 spins of Mn iongHund rules lead to alignment of spins
conventional theories based on skew-scattéfif§or side- in three inner orbitals resulting in core spin B/Bas long
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ment of a theory of the AHE in DE systems dates back to the
1998 manuscript of Kim, Majumdar, Millis, and Shraim@h.
From the perspective of the microscopic mechanism of the
AHE, both Ref. 28 and the paper of Yt al?° that super-
ceded it, invoke a field-theoretic scheme for integrating out
the charge-carrier motion and, therefore, were intended
mostly for metallic regimedi.e., regimes in which charge
transport occurs viaelocalizedstate$. Ye et al. have also
addressed the polaron hopping regime by using high-
temperature expansioA By contrast, the present work con-
siders the microscopic picture of nonmetallic reginties.,
regimes in which charge transport occurs via inelastically-
assisted hopping betwedacalized state$. Elsewhere, we
shall address the issue of the microscopic mechanism of the
AHE in the metallic regimé?

The microscopic mechanism of AHE that we propose for
systems with localized states leads to remarkable prediction:
the Hall resistivityp,, depends on the temperature and the
magnetic field solely through the magnetizatign i.e., p,,
=pxy(M(H,T)). This universal scaling has been observed
experimentally in manganites. Here, we provide a detailed
discussion of our theoretical picture of hopping transport in
manganites. Further, the present paper reports on measure-
ments made on additional compounds having lower and
higher transition temperatures and provides an analysis of
these data in terms of our theoretical picttfté The univer-
sal scaling relation betwegr, andM reported for is shown

p,, (n2cm)

B (T)

FIG. 1. Hall resistivity of manganites versus magnetic field for a
selection of temperatures. At 10 K the Hall effecbiglinary; the
slope extrapolates to the origin. At 200 K the Hall effect has both
ordinary andanomalousomponents; the slope does not extrapolate
to the origin, the offset signaling the anomalous Hall effect. At

300 K itis not simple to separate the Hall resistivity iri@inary
and anomalouscomponents.

been known to play a key role in transport in manganites
having been introduced by Zed®and elaborated by Ander-
son and Hasegawhand De Genne¥ Therefore, our ap-

proach to exploration of the anomalous Hall effect in man-

to hold for the manganese oxides,j&a;;sMnO3; (LCMO),
Lay/sSrsMn0O; (LSMO), and Lg,sCa;,gPbgMNnO5 (LPMO).
Although data on the Hall effect in these compounds have
universal features, the temperature dependence of resistivity
in LSMO is different from that in LCMO and LPMO. This
behavior is due to different size of dopant ions which results
in different static disorder, different carrier localization
length, and, accordingly, different strength of self-trapping

ganites is based on the picture of hopping conduction in thgue to lattice effects. We believe that the accuracy of the

presence of double-exchange interaction.

A picture of the ordinary Hall effect in hopping conduc-
tors was developed long ago by Holstéhin which the
critical ingredient is the Aharonov-Bohm quantal ptise-

results concerning the AHE based on inelastic charge-carrier
hopping between states localized due to magnetic and non-
magnetic sources of disorder suggests that the dominant
mechanism for charge transport in the transition regime is

quired as charge-carriers hop in the presence of magnetindeed inelastic charge-carrier hopping between localized
field around closed sequences of localized states. The thestates, which differs qualitatively from the picture of metallic
retical work reported here amounts to the generalization o€onduction perturbed by double-exchange interactions. As
Holstein’s ideas suited to DE systems. The primary distincfor polaronic effects, depending on the compound, they may
tions from Holstein’s ideas are as follow$) Localization is  set in soon as localization length is of the order of lattice
now, to a great extent, caused by magnetic disorder in theonstant. These effectsr their absendgeare crucial for the
orientation of core spinénd the attendant randomization of character of the temperature behavior in the range of high
hopping amplitudes the effects of magnetic disorder are temperatures above the FP and MI transitions. Polaronic ef-
facilitated by static disorder, and accompanied by polaronidects do not affect the universal scaling of the anomalous
effects. (i) The relevant quantum-mechanical phases nowHall resistivity. At the same time, scaling of the AH resistiv-
arise via the quantal version of the Pancharatnam phigSe. ity of the type observed in the CMR regime is not contained
(iii ) In order for a net Hall effect to result, account must bein conventional models of the AHE in the metéi., those
taken of Dzyaloshinskii-Moriya spin-orbit couplif§.The  based on skew-scattering and side-jump mechanisies-
AHE mechanism that we propose arises in hopping regime ither is this scaling contained in a Berry phase mechanism for
systems with localized states, and is the only possible microthe AHE in the metallic phase, discussed in Refs. 28 and 29.
scopic mechanism of AHE in such systems. A brief accounwe regard this as further evidence against the viability of
of this work was published in Refs. 10 and 11. any metallic-based picture of transport in the transition re-
From the perspective of symmetry, it is well known that gime.

spin-orbit interactions lead to AHE° The appreciation How does the present work relate to earlier work on
that a spin-generated geometric phase, in addition to spireharge transport in the CMR regime? Attempting to build on
orbit interactions, is an essential ingredient for the developthe early key insight that DE plays a central role, Millis
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et al*2 considered transport in DE systems within the framedaronic effects.(We note that in compounds in which the
work of the coherent potential approximati6BPA). Mak-  Jahn-Teller distortion is not symmetry-allowed, this is espe-
ing the CPA in the present context amounts to replacing theially important) Such localization can result from both
charge and magnetic system by an effective one, involvingnagnetic disordefi.e., due to lack of core-spin alignment
only the charge subsystem, in which the conduction ban@nd non-magnetic disordére., static potential disorder due,
width depends on the magnetization but there is no othee.qg., to doping>®
effect of the magnetic sector. Thus, any resistivity obtained While the localizing influence of nonmagnetic disorder on
via such a scheme is simply whatever the resistivity of thecharge transport has been thoroughly investigétédithe
charge sector was, reduced by an extent that depends on timfluence of magnetic disorder is less well known, and we
magnetic order via a renormalization of the bandwidth. Theshall discuss it in detail in Sec. Ill B. For now, we simply
picture enforced by this approach is that the fundamentamention that the magnetic disorder in core 3/2 spin orienta-
mechanism for charge transport is metallic in nature. Natution experienced by the outer-shell charge carriers arises via
rally, the CPA approacf is unable to yield a colossal mag- the DE interaction from fluctuations around the ferromag-
netoresistance, although it can provide factors on the order afetic state that build up as the FP transition is approached
unity. What it explicitly omits is any resistivity mechanism from the low temperature side. Of course, these fluctuations
arising from localization due to magnetic disorder, as notedaire dynamical, but they are slow, compared with character-
by Varma®® Rather than appeal to such a localization pro-istic timescales for outer-shell charge-carrier motion. Thus,
cess, Millis etal® proposed that the magnetization- for the purposes of analyzing the influence of the magnetic
dependent reduction of the bandwidth invites lattice effectssector on charge transport, it is appropriate to regard orien-
Specifically, the(now magnetically heavy charge carriers tations of the core spins on the Mn ions as quenched vari-
would be more susceptible to self-trapping by a large Jahnables. The resulting magnetic disorder takes the form of ran-
Teller lattice distortion, which would cause a metal-insulatordomness in the off-diagonal hopping matrix elements for the
transition via polaronic collapse of the conduction band-charge carriers. By contrast, nonmagnetic disorder occurs
width. due to randomness in the substitution of La by dopant ions
Accepting, for the moment, the notion that charge trans{e.g., Sr, Pb, or Oa and gives rise to the more familiar
port in the transition regime is indeed accomplished by lat-diagonal(Anderson-typg disorder. Electronic states in sys-
tice polarons, let us ask what the consequences would be feems with off-diagonal disorder were first considered by
the resistivity. According to theory of polaronic transport, Lifshitz,** who showed that localized states arise in the band
developed in series of papers in 1960s by Holstein afone, tail. The physical picture of carrier states in manganites must
with Friedmari® and with Emin®’ polaronic-type conduction encompass both magnetic and nonmagnetic disorder, possi-
manifests itself via a specific temperature-dependence of thigly facilitated by Coulomb effects, whicfjointly or sever-
longitudinal and Hall resistivities, being activated in charac-ally) can result in carrier localization.
ter with a definite relationship between the activation con- If carriers are localized then they can still participate in
stants for these resistivities. Following the proposal oftransport, but it is by hopping from one localized state to
polaronic-type conduction by Milliet al, experimental tests another, assisted by one or more inelastic agésush as
of these temperature dependences were performed. Initiphonons. In this case, the longitudinal resistivity is deter-
result in LPMO over the range of temperatures high abovemined by the rate of inelastic hopping between occupied and
the MI and FP transitions seemed in accordance with thenoccupied state¥:*> When carrier localization has oc-
polaronic picture. However, recent extensive measurementaurred, and the localization length is of order of lattice con-
at lower temperatures, in transition regiffedemonstrate stant, electronic interaction with lattice and self-trapping ef-
that, at least in this regime, the temperature dependence @écts can become essential, so that at high temperature
the longitudinal and Hall resistivities cannot be explained inresistivity is determined by small polarons. However, transi-
terms of polaronic picture alone. Furthermore, even at highional regime is greatly affected by carrier localization of
temperatures, polaron-based picture is not compatible withonpolaronic origin. We naotice that in general one should
experimental data for LSMO samples. distinguish between Jahn-Teller polarons and Holstein
With the pictures of charge transport in the CMR regimebreathing mode polarons: the presence of the former depends
based on either the magnetization-dependent reduction of then symmetry of the system, the latter arise independent of
bandwidth or on polarons alone invalidated, what remains ishe underlying symmetry. In manganites, both types of po-
the possibility of constructing a valid picture based on non-arons are capable of facilitating carrier localization by mag-
polaronic localization of charge carriers. Strong evidencenetic and nonmagnetic disorder; when carriers are localized
supporting such a picture comes from a simple estimate ofn lattice constant scale, Holstein polarons govern the tem-
the scattering timedi.e., the scattering-induced conduction- perature dependence of resistivity deep in the insulating
band broadening which indicates that, in the transition re- phase.
gime, the band broadening exceeds the band widih the In the present paper, we shall not consider metallic man-
mean free path is shorter than the Fermi wavelengphthat  ganites, and restrict our consideration to the inelastic hop-
the resistivity exceeds the Mott-loffe-Regel limit and, hence ping transport regime. The discussion of the Hall effect in
the conduction cannot be metallic. Therefore, one needs tmetallic ferromagnets will be presented elsewhér@he
search for insulating transport mechanisms and, specificallygresent paper is organized as follows. In Sec. Il we describe
the origins of carrier localization that are distinct from po- the experimental setup and in Sec. Il B we present experi-
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mental data on the longitudinal resistivity, magnetization and

Hall resistivity in three different manganite compounds hav- 1.0
ing distinct transition temperatures. Section Il is organized

into several subsections, in which we describe models of 0.8
disorder in manganites, issues related to the localization of
carriers and the hopping transport mechanism, as well as the_3 -6
guantal Pancharatham phase, spin-orbit Dzyaloshinski- §
Moriya interactions, and the universal scaling of the Hall = 04
resistivity. In Sec. IV we discuss the correspondence be-

tween our theoretical and experimental results. 0.2 7
0.0
IIl. EXPERIMENTS ON TRANSPORT AND MAGNETIC N T T T T T SR
PROPERTIES OF MANGANITES 100 150 200 250 300 350 400 450

A. Experimental method T(K)
In the experimental part of this study, single crystals of FIG. 2. Temperature dependences of normalized magnetization
various manganites were used in order to avoid extrinsic efM/Msaunder 1 T(solid lineg and under 7 Tdotted lineg mag-
fects from grain boundaries or strains. In single crystals, sif€tic fields.
multaneous measurements of transport and magnetic proper-
ties permits us to find a precise dependence of transpof@te of change in the temperature dependence of the longitu-
coefficients on the sample magnetization. We have measurédnal resistivity dp,,/dT under zero magnetic field, were
the longitudinal and Hall resistivities and the magnetizationslightly higher than correspondindc’s (Table ). Also
of three different crystals with various transition tempera-shown in Table | arep,, minima (occurring at the lowest
tures. Lg Cay sMnO; (LCMO) and La ;Sr, sMnO; (LSMO)  temperaturésand magnetoresistivitgMR) maximal[defined
single crystals were prepared by the floating-zone methody (pxx(0 T)=pyx7 T))py(7 T)]. The observed de-
Lag g4 Ca,Pb) :;MnO; (LPMO) single crystals were grown crease inf¢ correlates with the overall increases of resistiv-
from 50/50 Pbg/PbO flux. More details on the sample ity and MR, which can be clearly seen in Fig. 3.
growth and basic properties can be found elsewfi&teAll Despite differences i¢, Ty, and temperature depen-
specimens used in the measurements were cut along crystglence of longitudinal resistivity across the three compounds,
line axes into bar shapes from larger pre-oriented crystalghe Hall resistivity of compounds with doping that corre-
Contact pads for Hall resistivity measurements were mad&ponds to maximalc show similar temperature and field
by sputtering~1500 A of gold through a mask. Gold wires dependences, as shown in Figs. 4, 5, and 6. At low tempera-
of 50 um diameter are then attached using slowly dryingtures, pyy is positive and linear in magnetic field, the sign
silver paints. Typical contact resistances after annealing wer@dicating holelike charge carriers, and negligible anomalous
about 1Q) at room temperature. We adopted a |ow-frequenc>}‘|a” contribution. As the temperature is increased, the hlgh-
(39 Hz) ac method for the measurements. The transversBeld slope is roughly the same. However, the increasing,
voltage signal was first nulled at zero field at each temperaegative, contribution t,, shifts it downward. Quantita-
ture below 400 K by a potentiometer, and the change in th&Vely, px, can be expressed as a sum of an ordinary contri-
transverse voltage was recordedrhsvas swept from+7 T bution parametrized bRo(T) and an anomalous contribu-
to —7 T and back for averaging. Following the transporttion parametrized byRs(T) (Ref. 46:
measurements, sample magnetizations were measured by a 7
T SQUID magnetometer on the same samples. Pxy(B,T)=Ro(T)B+ uoRs(T)M(H,T), (2.1

where B= uo[H+(1-N)M], H is the external magnetic
field, andN~1 is the demagnetization factor. As has com-

Figure 2 shows the temperature dependences of magnetihonly been observed in manganite crystals and thin films,
zation measuredtal T and 7 T. All three samples show the effective charge-carrier densityz=1/eR, is scattered
ferromagnetic-to-paramagnetic phase transitions. The Curigetween 1.0 and 2.4 holes/Msee Table), which is much
temperature3 : were determined by scaling analysis on highlarger than the nominal doping levef 0.3—0.33 holes/Mn
field M(H) curves near the transition, and the results argpresumably due to the effects of the anisotropy of the Fermi
shown in Table I. AsT. decreases, the transition becomessurface’ We refer to our previous publications for the dis-
sharper, resulting in anomalous critical exponénts. cussion on the low temperature OHE.

The temperature dependences of the longitudinal resistiv- On further increase of the temperature throdgh, p,,
ities pyy for the same set of samples under zero magnetibecomes much larger, strongly curving with magnetic field,
field and unde7 T are shown in Fig. 3. LCMO and LPMO and the positive, high-magnetic-field contribution, linear in
show metal-insulator transitions ne@g, whereas LSMO the field, which would arise from the ordinary Hall effect in
shows an inflection af, butp,, continues to increase with a metallic phase due to the Lorentz force acting on charge-
increasing temperature aboV¥g . The metal-insulator tran- carriers, disappears. Owing to its low, for the LCMO
sition temperature¥),, , determined by the maximum in the sample we were able to explore temperatures far abgve

B. Experimental results

184426-4



CHARGE TRANSPORT IN MANGANITES: HOPPING . .. PHYSICAL REVIEW B3 184426

TABLE |. Characteristics of single crystal samples used in this study.

Composition Te Twmi min pyy max MR Ne1(10 K)
LCMO Lag .Cay ;MnO, 2162 K 2225K  14uQ cm 2600% 1.6 holes/Mn
LPMO  LaygACa,PbysMnO; 285.1K 2875K  91uQ cm 326% 2.4 holes/Mn
LSMO Lag -St aMnO; 359.1K 3620K 550 cm 64% 1.0 holes/Mn

wherep,, shows a negative Hall coefficient, despite the dop-temperature, making even greater the discrepancy between
ing of the material being by holes. In this range of temperathe experimental data and the small-polaron hopping picture.
tures the Hall coefficienR, = p,,(B)/B exhibits activated Even more dramatically, the product of the Hall mobility,
behavior, with a characteristic ener§y,~3E,, whereE,  and the temperature, VvizyyT=—oRyT which, accord-
is the activation energy for ordinary conductivity, . Simi-  ing to the small polaron picture, should decrease monotoni-
lar experimental results have been obtained in Refs. 4 ancally with decreasing temperature, in fact is found to exhibit
12. In these works, investigations of manganite carriera minimum at the same crossover temperat(vée shall
transport deep in the insulating phase have shown that tHater show that, neafc, p, is determined solely by the
sign and temperature dependence of the high-temperatusample magnetization in all three compoundus, experi-
(i.e., above 1.&:) Hall coefficientRy (=p4,/B) can be ments in transition region lead to the conclusion that, while
explained in terms of the adiabatic hopping of small po-small polarons are an essential part of the physics of trans-
larons. port in manganites at high temperatures, they cannot provide
Initially,* high-temperature transport picture due polarona complete picture of the metal-to-insulator transition.
hopping to was believed to support the proposal by Millis More generally, as discussed by Varfiathere exist
et al3 that the Jahn-Teller distortion which, according to double-exchange systems, such as Tgi8e ,, in which
symmetry considerations can occur in the Mn@rtahedra transport phenomena observed in manganese oxides are also
of LaMnQ;, is responsible for the insulating behavior of observed but Jahn-Teller distortions, leading to small po-
doped La_,A,MnO; systems. Hall resistivity measurements larons, are not symmetry-allowed. At the same time, if the
should be capable of providing key evidence for or againstarrier localization length becomes of order of lattice con-
the polaronic picture of charge transport. According to thestant, lattice effects in the form of Holstein breathing mode
theory of this picture, the adiabatic hopping of small polarons arise naturally. This allows to explain why the high-
polarons’ leads to an activation enerdy, characterizing temperature regime in some of manganese compounds ex-
Ry that is 2/3 of the activation energl, characterizing hibits longitudinal and Hall resistivities characterized by
Py, as is observed at high temperatutédHowever, re- thermally-activated behavior which is qualitatively and
cent Hall resistivity measurements, extending into the transiquantitatively consistent with that caused by polaronic trans-
tion regiort?> show that the activation energy changesport mechanism. Before turning to the theoretical picture of
abruptly at a crossover temperature T4 from the po- transport in manganites and, specifically, of AHE for local-
laronic value of3E, to a much larger value, 1E7,. This ized carriers, we pause to examine whether the theoretical
clearly marks the breakdown of the small polaron picture ofmodel of the AHE proposed by Yet al?® which is based on
charge transport, as shown in Fig(idse). In fact, the ef-

fective activation energy of the conductivity begins to de- ‘o [ T e 3
YT E P =

crease from a value of, at roughly the same crossover |t o 3 LCMO
i %E- 3(,.
o5 F q10 3

I M TP B P
25 3.0 35 4.0 45
1000/T (1/K) 10K

r,, (nacm)

p,, (@cm)

0 50 100 150 200 250 300 350 400 450 B (T)
T(K)

FIG. 4. Main panel: Hall resistivity,, of LCMO as a function
FIG. 3. Temperature dependences of longitudinal resistpgity =~ of magnetic field at the indicated temperatures. Inset: Activated
under zero magnetic fielgolid lineg and under 7 Tdotted lines. behavior of the high temperature Hall coefficidry .
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B (T) FIG. 7. Main panel: The anomalous Hall coefficigRg (sym-

bolg compared with the longitudinal resistivity,, (solid line).
FIG. 5. Hall resistivityp,, of LPMO as a function of magnetic Inset: The critical behavior dRg.
field at the indicated temperatures.

+A (see Fig. 7, inset However abovel ¢ =368 K, which
a metallic view of charge transport, is consistent with ouris significantly higher than both andT),, (see Table), Rg
experimental data. In that model, following an earlier modelis constant, and the fit does not correspond to the inflection
by Kim et al,? it is assumed that tight-binding charge car- point predicted in Ref. 29.
riers propagate coherently through a smoothly varying mag-
netization texture which has the effect of introducing a Berry |||. THEORY OF HOPPING MAGNETOTRANSPORT IN

phase gauge potenti&ll->* A central prediction of the model MANGANITES
due to Yeet al. is that a peak should occur Rg(T) above _ o _
Tc, along with a singularity in the slope afc, ie., The aim of the present section is to develop a picture of

dRs/dT~|1—T/Te| “+c, wherea is the specific heat ex- the Hal! effec'; in manganites, to test this picture thrqugh
ponent. To test this prediction, we measured the low mageomparison with experimental data and, hence, to build as
netic field (<0.5 T) magnetization and Hall resistivity of cOMPpletely as possible a general picture of the charge trans-
our most metallic sample, LSMO ne@g. (see Fig. 7. From port in r_nangamtes in the ferromagnet—to-paramagnet transi-
the behavior ofp,, andM in the zero-field limit, we deter- tion regime. Among the results we shall obtain, perhaps the
mined Rg=(dp,,/dM). In contrast to the prior report by most striking is the universal scaling of the magnetization-
Matl et al®, in this “metal-to-metal” transition system we dependent Hall resistivity, which we explain should hold in
do not findRs to be proportional tg,. As seen on Fig. 7, the regime where cha}rge transport proce_eds prlmar]Iy via
p, flattens at the temperature at which the resistive transifoPPing between localized states. Such universal scaling has

tion is complete(i.e., Te =368 K). This allows us to con- been observed experimentally.
clude that neither a constaR/p,, Nor a peak inRg is a
common feature in manganites. We note that closExoit
is possible to expresR¢(T) as a power law, (+ T/T§)%8 Manganites are extremely complicated materials, and a
bewildering variety of behaviors occurs in them, as the dop-
ing level, temperature or magnetic field is varied. Here, we
focus on those manganites that exhibit a transition from a
ferromagnetic metal to a paramagnetic insulator, controlled
by temperature, as occurs in manganite compounds, doped
with Ca or Sr or(Pb and Casubstituting for La, at doping
levels of around 1/3. This doping, of course, results in sev-
eral sources of static disorddi) the dopant ions subsitute
randomly for La; andii) the lattice distortion around the two
7 ionizations of Mn(viz. Mn®* and Mrf*) is distinct(i.e., the
- breathing-mode effegt This disorder leads to local varia-
tions in the amplitudes for the hopping processes that carry
charges between magnetic ions. Furtherm@ie, any clus-
tering of dopants in the randomly doped lattice would lead to
7 fluctuations in the carrier density. These sources produce
B (T) nonmagne?iwlisorder._ _ _
Along with the motion of charge carriers there is also the

FIG. 6. Hall resistivityp,, of LSMO as a function of magnetic motion of core spins. In the present context, we believe that

field at the indicated temperatures. it is profitable to treat theses core spins classically, and to

A. Disorder and interactions in manganites

p,, (nacm)
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regard the carrier dynamics as being much faster than the (@)
spin dynamics, so that the carrier motion can be pictured as
taking place within a frozen core-spin configuration that is
randomized owing to thermal fluctuatiofiise., we adopt a
quasi-static approaghWe term such random magnetic con- (b)
figurations “magnetic disorder.” We note that spin-spin cor- I | | | | | u I |
relation times have been obtained experimentally from muon
spin relaxation and neutron spin echo d¥téhese experi-
ments show that, indeed, spin dynamics is slow. (c)

Strong thermal fluctuations render typical instantaneous
configurations of the spins rather inhomogeneous. Among
these fluctuations, there are the “hedgehog” excitations

which, owing to their topological stability, are long-lived,  fiG, 8. schematic one-dimensional picture of disorder in man-
and become more numerous as the ferromagnet-tQyanites.(a) Anderson model with on-site disordefb) Lifshitz
paramagnet transition is approactiédue to the resulting model with random ionic locationdeading to random transfer in-
magnetic inhomogeneity, the carrier-hopping matrix ele+egralg; (c) model of disorder in manganites, showing on-site dis-
ments are reduced. order and magnetic disordéeading to random transfer integrals

As we shall discuss in the following subsection, the pres-
ence of nonmagnetic and magnetic disorder both support thgap For the latter, localization has been established via the
notion that the carrier states are localized at temperaturg§ork of Lifshitz 4t Although spin-induced randomness in
near to the(zero-magnetic-fieldFP transition, as well as at manganitegarising from the random double-exchange fac-
higher temperatures. Such localization of carriers can explaigy g of cosfl2), whered is the angle between core spins on
the resistive transition which, .in turn, leads to the disappearMn ions, see, e.g., Sec. Il[JEs weaker than the randomness
ance of double-exchange-induced ferromagnetic  spingonsidered in Ref. 41, we expect the two systems to exhibit
correlations, at least on spatial scales larger than the localyalitatively similar localization behavior. Furthermore, the
ization length. We note that in a series of papeRairukawa  condition for localization in the Lifshitz modéliz. that the
has considered the issues of carrier states and transport djaracteristic spatial scale of the outer-shell wave functions
manganites by using a dynamical generalization of the cop, jsplated Mn ions be much smaller than distance between
herent potential approximation, arriving at the conclusiongjieq is well obeyed in manganites. Therefore, provided that
that the transport properties of manganites can be explaingflere js appreciable randomness in the core-spin orientations,
in terms of the scattering of m_etalllc carriers by magneticyansport properties should be determined by the short-
randomness. We, however, believe that the fact timathe  gistance physics of clusters of ions and by magnetic correla-
range of temperatures marking the transition regithe re-  jons between such clusters. Moreover, nonmagnetic disorder
sistivity exceeds the Mott-loffe-Regel limit renders any ap-5ng possible states bound to the subsituiasjte ions are
proach founded on the scattering of delocalized carrier stateSpable of amplifying the trend towards localizatBre In
to be inconsistent. _ o Fig. 8 we present a one-dimensional caricature of disorder in

As dlscussed_aboye in Sec. |, localization effect; relate%anganites, in which diagonal and off-diagonal disorder co-
to Jahn-Teller distortions and small-polaron formation can-yist. Shenget al. included both magnetic and nonmagnetic
not.expla.in cer_tain central experimental data in the transitioRyisorder and applied one-parameter scaling tH8oand
regime, including the temperature dependence of both thgyite_size scaling ide48in order to investigate carrier local-
resistivity and the Hall effect. Therefore, one is forced t0j;ation in manganites numerically. Sheegal. found that, in
consider alternative mechanisms that can lead to the brealse presence of magnetic disorder, an Anderson metal-
down of metallic conductivity and can also serve as an originnsylator  transition accompanies the ferromagnet-to-
of various universal transport properties that have been obsaramagnet transition. They also observed an interesting cor-
served in double-exchange systems, including, €.g., those Ration betweerT. and the residual resistivity, which is
which Jahn-Teller d|stort|qns are symmetry-forbldden.. Forgetermined by nonmagnetic disorder, viz., the larger the re-
these reasons, we now give a discussion of the physics Qfqq| resistivity, the smaller th& ; this agrees well with
disorder-induced carrier localization in manganites. the original double-exchange picture, in which carrier mo-
tion promotes ferromagnetism whereas disorder resists elec-
tronic motion and, therefore, does not promote ferromag-
netism.

To see why it is useful to regard charge transport as tak- To what extent can one regard charge transport as taking
ing place in a frozen random background of core-spin orienplace in a frozen spin configuration? Equivalently, what are
tations, let us imagine the spin configuration to be trulythe characteristic time scales for magnetic and charge dy-
static. In the transition regime, a typical spin configuration isnamics? For charge dynamics the time scafe/ts wheret is
rather inhomogeneous and, hence, we expect carriers to lsecharacteristic magnitude of the hopping matrix element,
localized. Support for this notion comes from the close simi-i.e., the shortest relevant time scale. For magnetic dynamics,
larity between transport in manganites and systems of rarthe issue is more complicated. However, the shortest time
domly located identical impuritie§i.e., off-diagonal disor- scale is presumablf/kgT, which, in the regime of interest

B. Disorder-induced carrier localization in manganites
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to us, is greater thafi/t. Furthermore, as discussed by Lau
and Dasgupta® in three-dimensional magnetic systems the
ferromagnet-to-paramagnet transition involves very long-

lived topological excitations(i.e., magnetic hedgehog %
which, as we shall see, are particularly significant for the

AHE. Hence, we see that, to a first approximation, one can k
regard charge transport as taking place in a frozen spin con-
figuration. Corrections to charge dynamics, due to magnetic
dynamics(as well as feedback into the magnetic dynamics

sectoj can, if necessary, be treated by going beyond the R jk
Born-Oppenheimer approximation.

C. Percolation-hopping scenario of transport phenomena [ ]
in manganites

As discussed in the previous subsection, carrier states in FIG. 9. Schematic picture of the conducting network. Zig-zag
manganites are effectively localized throughout the transitiofine connecting site$ andj represents the resistivity of the bond
regime. (By effectively localized we mean localized on ti- between these sites.
mescales short compared with that required for the recon- ) o ) o
figuration of the magnetic degrees of freedpifherefore, in qurrent is nonzero. If the electric field is sufficiently smgll
this regime transport of carriers occurs via inelastic hopping!-€-» €E- (Rj—Rj)<kT], one can expand the charge carrier
(i.e., hopping that is assisted by some inelastic agent such ggerg]es'and site occupation numbers to linear order in the
a phonop. In the following Sec. Il C 1, we describe a pic- €lectric field. Hence, one can obtaisee e.g., Ref. 39an
ture of hopping transport applied to the setting of mangan&XPression for the electric current in Ohmic form:
ites. Following this, in Sec. Ill C 2, we use this picture to

discuss a scenario for transport phenomena in LCMO and Jij =Ry l(Ui_Uj)a (3.2a
LPMO, which are materials in which polaronic effects are

believed to be important. Then, in Sec. lll C 3, we describe kT

the scenario of hopping transport suitable for application to Rij :eZWO ' (3.2

LSMO, a material in which signatures of polaronic effects 1j

are absent. By contrasting LCMO and LPMO with LSMO whereU;— U is the potential difference between sifeand

we draw some ge_neral _ conclusions_ concerning the rol? in the presence of the electric field, awﬂ is the E=0)

played by polarons in various manganite compounds. transition rate. Therefore, the resistarRg of the bond be-

tween iond andj (cf. Fig. 9 is proportional to W;; , where

we have, for the sake of brevity, omitted the superscript 0
Hopping transport models based on percolation theorywhich indicates zero electric fields quantilie¥he resis-

have been successfully applied to transport in systems wittances of the bonds constitute a resistive network on which

states localized by static disord€*? A peculiarity of man-  carriers move by taking the least resistive paths, i.e., the

ganite systems is that the wavefunctions of states localized itransport is percolative in character. The conductivity of the

the vicinity of Mn ions depend on the orientations of the Mn sample is entirely determined by a set of hopping resistivities

core spins on these ions. Inelastic agestg., phononslead  R;; .

to hopping between these localized states, the amplitude for

such hopping being characterized by matrix elements of the 2. Scenario of transport properties in manganites

carrier phonon interaction. Therefore, hopping probabilities

and rates are determined by the orientations of the core spin

In the double-exchange pictufdiscussed in more detail in

Sec.(lll E)], the rateW;; of carrier-hopping between ioris

1. Hopping transport picture in manganites

In the hopping regime, the following scenario for trans-
SOrt properties of manganites can be envisioned.
(i) In the paramagnetic insulating state, i.e., in region | on
: ; . X Fig. 10, the percolative inelastic motion of strongly localized
andj, Wh_ose core .Sp'neNh'Ch we treat classicallyform an cagrriers is sﬂppressed by magnetic randomnegs),/ via the DE
anglea_, is proportional to co?$0/2). . interaction. Although there may exist small clusters of mag-
. As.m the Sta”d"’?rd percolaﬂye approach to ”ar?sl‘?o” Thetic ions with spins aligned in some direction, neighboring
Impurity - systems 3%? the Miller-Abrahams resistive- spins(or the spins of neighboring aligned small clusjerse
netvyork approactt 2, one connects every hearby pair of weakly correlated, and are therefore predominantly have a
Mn ions by a bond, and assigns a resystlw.ty to ga_ch of th(:“sf?slrge angle between them. Thus, the resistance of the corre-
bpnds. The charge curredj; between iond andj is then sponding resistive bonds is generally large. Hence, the clus-
given by ters are isolated from each oth@re., no percolative path
Jii=e(W—W,)). (3.1) exist's for Whiqh core spins on neighboring .Mn ions are ap-
! we proximately alignej] so that outer-shell carriers cannot hop
In the presence of an applied electric fi@dnd for a closed along any path of bonds without encountering a large resis-
external circuit the system out of equilibrium and the charggance. Furthermore, if the localization length is on the order
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netic fields of order only a few tesla, leading to colossal
magnetoresistange.

(iv) With yet further reduction in temperature, the resis-
tivity decreases abruptly, in line with the standard percola-
] tion picture®®42 as more and more inelastic hopping-paths
! 3 become available to carriers, owing to the increased align-
] ment of core spingregion 1V in Fig. 1Q. The small polarons
disappear and, in addition, some of what used to be localized
states become delocalized, so that some carriers how popu-
late the states lying on the mobi(ee., metallic conduction
side of the mobility threshold(v) The abrupt decrease in

resistivity with temperature slows down as soon as any
o a0 100 10 200 25"0 200 3;0 ne_vvly available hopping paths are effectiyely shunted by the
existing conducting networkregion V in Fig. 10.
T (K) (vi) Further decrease in temperature leads to further core-
spin alignment and, ultimately, to a significant density of

LCMO. I: High-temperature regime, in which transport is via po- carriers populating states in the conductlng part O.f the band
larons. II: Crossover to inelastic hopping of charge carriers betweef'?nd{ hence, to the occurrence of the metallic stagion VI
localized states. ll: Maximal resistivity. In this regime the loss of " Fig- 10.
inelastic agents is compensated by the growth of magnetic order
and, hence, the emergence of a conducting netwseke text for
detailg. 1V: Rapid growth of the conducting network. V: Saturation
of the conducting network. VI: Crossover to the metallic regime. As described in Sec. Il B, the temperature dependence of
the resistivity does not have a universal form across all man-

of the lattice constant then carrier interactions with the latticedanite compounds. In particular, in LCMO and LPMO, the
and carrier self-trapping via small-polaron formation becomeligh-temperature,, is thermally activated, but in LSMO it
important. (Below, we shall discuss the situation in which 1S Not. It is our opinion that the scenario described in points
the localization length is larger than the lattice constant.()—(Vi) in the previous paragraph, which involves self-
Carrier self-trapping, when it occurs, does so on very wealk'@pping effects due to po_laron formatl_on, t.al_<es .place n
(i.e. very resistivg bonds in the resistive network. Deep in LCMO and LPMO but not in LSMO. This opinion is sup-

. . . . .Rorted not only by our transport data but also by direct
the insulating regime, all paths of bonds encounter regions i d . X :
neutron-scattering evidence for the coexistence of distorted

which carriers are self-trapped. Under these conditions nd undistorted Mn-O octahedra in the vicinity B 56!

transport oceurs via the rather mfrequen.t hopping of smal s well as by the occurrence of a substantial isotope effect in
polarons, which leads to the thermally-activated temperatureq resistivity, T and thermal expansidi

dgpendence of the longitudinal resistivity and Hall coeffi- By contrast, LSMO shows no evidence of polarons in this
cient. In the LCMO and LPCMO compounds, the role of 5 jite of experiments. Therefore we propose that in LSMO it
polarons in transport accounts for the magnitude of the actis only magnetic and static disorder that drive the transition
vation energy associated with the resistivity, which is aboveyetween low- and high-resistance states. According to the
100 meV, and is significantly larger thdany fraction of  scenario described in the previous paragraph, any tendency
the hopping amplitude for the formation of polarons is suppressed when the local-

(i) With decreasing temperature, the inelastic hopping beization length at the resistive transitigne., the inflection
comes less frequent, so that the resistivity grows. Howevelpoint in LSMO) turns out to be larger than a few lattice
at these temperatures, percolative paths appear that do nminstants. Because of this, with further increase in the tem-
encounter regions with self-trapped carriers. Also, the corgerature the localization length still has room to decrease due
spins become more aligned with one another, and fairly largéo the suppression of ferromagnetic correlations. This would
clusters existthat do not feature large resistances connectindead to an increase of the resistivity at temperatures in the
pairs of Mn ions having anti-aligned spjnghis regime oc- immediate vicinity above the resistive transition. Such a re-
curs in the range Il of temperatures in Fig. 10. sistivity increase has been observed in LSMO.

(iii ) With continued decrease in temperature, the resistiv- The significance of polarons in LCMO and LPMO, and
ity reaches a maximurfregion Il in Fig. 10 when the core their apparent insignificance in LSMO, is consistent with the
spin orientations become sufficiently correlated that a tenutendency for polaronic self-trapping to be enhanced for re-
ous but infinite conducting network emerges. Due to the still-ducedA-site ionic radius, as is the case in the sequence Sr
strong magnetic disorder, as well as any nonmagnetic disor-» Pb— Ca encountered in our experimental data. The sig-
der, the carrier states are still localiz&thd lie in the band nificance of polarons in LCMO and LPMO can also explain
tail). The localization length is on the order of one to two Mn why the magnetoresistance of these compounds is stronger
sublattice units(It is important to note that clusters of spins than that of LSMO: In LCMO and LPMO, the application of
of size two sublattice units contain some 20 to 30 spins. Tha& magnetic field not only results in the tendency to delocalize
alignment of these spins can be obtained by applying mageharge carriers by reducing the magnetic disorder, as it does

—B=0T
B =7 T F
IT

p, (@cm)

FIG. 10. Transport regimes in manganites exemplified by

3. Scenario of transport properties of manganites: Absence
and presence of polarons
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in LSMO, but also such magnetic fields destabilize the po- #2
laronic regions, leading to a more abrupt reconnection of the

network. Furthermore, the presence of polaronic and non-
polaronic spatial regions in LCMO and LPMO enhances dis-
connection between different parts of the resistive network,

and, due to the DE origin of ferromagnetism in these sys-

tems, reduces the transition temperature. This “boot-strap”
collapsing of magnetic order explains why the bare double-
exchange energy that determined the spin-wave dispersion at

low temperatures is the same for all mangarfifesyen
thoughTEMO=220 K, T-"MO=285 K, andT=SM°=360 K. #1
We propose that the different sizes of the A-site ions which, ‘
in particular, leads to differing-strengths in the static disorder

and differing tendencies for self-trapping, is responsible for FIG. 11. A triad of sites is the minimal element of the conduct-

this trend in the transition temperatures. We also note thghg network that leads to a Hall electromotive force. Owing to the

the existence of polaronic and nonpolaronic spatial regiongiyy ¢ the carrier curreni,, flows perpendicular to the electric field
in LCMO and LPMO explains the success of the effectiveg, The shaded site is occupied; the unshaded sites are unoccupied.

medium approaches in predicting the thermoelectric power

from the resistivity’*°°the observation of both diffusive and tude for a directinelastio transition between the initial and
continuum electronic signals in Raman scatteffignd the final sites and the amplitude for an indird@telastio tran-
presence of significant telegraph noise in the resistivity insition, involving the intermediate occupation of the third site
these compoun$ These features are not characteristic fory Furthermore, when one applies a magnetic field creating a
LSMO. nonzero magnetic flux through the triangle, thus introducing
In Secs. Il F=IIl'l and IV, we shall look at the scenario an Aharonov-Bohm phase for paths that wind around the
that we have just outlined from the vantage point afforded bytriangle, the necessity thil;; andWj; be equal is lost, even
the Hall effect. As, in our Opinion, the dominant transportif E—I-(Rl_R]) The Hall current, f|0W|ng through the bond
mechanism in the transition regime occurs via inelastic hoppetween sites andj in a triad of sites, in the presence of
ping between localized states, regardless of whether selych electric field, and in magnetic field perpendicular to the

trapping via the formation of small polarons occurs, in SecCplane containing site§ j andk, as sketched in Fig. 11, is
I'D we shall first review the basic physical picture under- given by[cf. Eq. (3.1)]
lying the ordinary Hall effect in the inelastic hopping regime
in systems having potenti@but not magneticdisorder. The Jij=e(sWj] - sW})). (3.3
main issues of this discussion are interference of hoppin . o
amplitudes in the inelastic hopping regime and elucidation O%U_Ch current would cause an increasing imbalance of popu-
contribution to the Hall effect in this regime by using prop- lations of S|tes_ andj. However,_the balance is restored_be-_
erties of the hopping probability with respect to time-reversalc@use charge imbalance establishes a chemical potential dif-
symmetry Secs. I1l D 2—11l D 4(We obtain expressions for ferenceA u;; between_ sitefandi which manifests itself asa
hopping amplitudes which differ from those of Holstein in Hall voltage. Below in Secs. lll F-IIl | we shall generalize
Ref. 23, but this difference is not significanReaders famil-  this idea to charge carrier motion in the presence of core
iar with these issues and Holstein theory of the Hall effectSPins having inhomogeneous orientations.
can proceed to subsections following this discussion, in ) ) o )
which we shall provide an extended discussion of our picture 1 Ordinary Hall effect: Direct and indirect hopping
of the microscopic mechanism of the anomalous Hall effect Let us now address the issue of the Hall effect at an el-
in the hopping regime in manganites, which we have reementary level. To do this we consider a system of localized
cently proposed®!! carriers, their wave function@|¥;) (j=1,2, .. .)being the
exact wave functions of the discrete spectrum of the elec-
tronic HamiltonianH, in the presence of ionic potentials,
potential disorder and magnetic fielth order to be specific,
Nearly forty years ago, Holsteifiobserved that to capture we assume, in the present subsection, that the carriers are
the ordinary Hall effect in hopping conductors requires theelectrons.
analysis ofat least triadsof sites(i.e., atoms, ions, impuri- Now consider the rates of hopping between these exact
ties, etc), and of the attendant Aharonov-BohiAB) mag-  electronic states caused by the electron-phonon interaction
netic fluxes through the polygons whose vertices are thes@/;_ . The necessity of the electron-phonon interaciion
sites. What Holstein showed was that the probability of thenteractions with some other inelastic agefdr inducing
hopping of a charge carrier that is initially located on one ofelectron hopping will be discussed below in the present sub-
three sites to one or the other of the remaining sifgsvhich ~ section. Within the context of hopping rates it is valuable to
are initially assumed to be unoccupjetv;; contains a con- introduce the notion odiirectandindirect hopping rates. The
tribution 5Wh‘ that is linear in the applied magnetic field. direct hopping rat j[,k is, to leading order in the electron-
This dependence arises from interference between the ampfshonon interaction, determined by the single direct transition

#3

D. Holstein theory of the Hall effect in the hopping regime
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amplitude, i.e., the electron-phonon interaction matrix ele-

ment -~
Eq [‘ [ =
Ujk:<\l,j|He|-ph|lPk>v (34) —— ——

whereH,,,, is the Hamiltonian of electron-phonon interac-

tion. In Fermi's golden rule <";lppr0xim<";ltidN?£k reads FIG. 12. Schematic depiction of phonon-assisted inelastic hop-
ping. Direct hopping(left) and indirect coherent hopping via an
intermediate sitdright) are shown.

ir 27 2
j—»k=7|ujk| 5(Ej—Ek—ﬁw), (35)
After that, in further sections, we will discuss what inelastic

where{E;} are the exact energy eigenvalues®f, andw is  processes contribute to the Hall effect, and interference of
a phonon frequency. There are additive corrections to thgnpse processes.

direct transition amplitude, which are associated with pro-

cesses involving phonon-induced scatterings that do noB. Quantum interference in the presence of inelastic scattering.
change the electronic state. In addition to the direct transition Longitudinal conductivity

amplitude, there are amplitudes for indirect transitions from | der t th " din th .
site to sitek, which are defined to be those amplitudes that N order to answer e question posed in the previous

involve at least one intermediate eigenstakg) (but nowi section let us first formulate precisely what is meant by co-
is restricted to be neithdrnor k). Among these, there is a herence and sensitivity to the quantal phase in the system at

subset of amplitudes involving exactly one intermediatehand' The Hamiltonian of the system reads

eigenstate. Such amplitudes have the following characteristic H=Hei+Heppnt Hpn, (3.6)
property: The indirect amplitude that proceeds via a third site . o

i necessarily involves two electron-phonon interaction matrixvhereHp, is the phonon Hamiltonian. The exact quantum-
elementsU;; and Uy, . Direct and indirect transition ampli- mechanical eigenstates bf,, both localized and delocal-

tudes can interfere, and, as we shall describe below, lead #g€d. are sensitive to applied magnetic figidere, we are, of
the Hall effect. course, concerned with localized staés.the presence of a
magnetic field, the exact eigenfunctiods|¥;) can no
2. Hopping transport: Compatibility of inelastic processes longer be chosen to be real quantities, and are thus charac-
and quantum interference terized by an absolute value and a phase. It is often conve-
. L . . nient to approximate the exact localized eigenstates in terms
Despite the apparent simplicity of the foregoing analysis

of a triad of sites, the task of obtaining the linear dependenc8f the eigenstated ¢))} of outer-shell electrons of isolated

of the Hall resistivity on the magnetic field via Holstein’s lons (wherei enumerates the iopsWe note that the|;)}

approach is a much more subtle matter. Furthermore, th?re not, in general, orthogonal, although they are typically

issue of establishing quantal interference effects in this se nearly independent and may, therefore, be taken as a basis.

ting of inelastic hoppina brocesses is equally subtle. so w n terms of this basis a Hamiltonian describing carrier mo-
9 IC hopping p qually ' Sion in the presence of the corresponding isolated ions lo-
shall now revisit this subject.

Why is it that we need to consider inelastic processe cated at position$R;} as well as a disordered potential has

when considering the Hall effect? As for the IongitudinaI%he form

hopping conductivity of localized carriers, it is due to elec-

tronic quantum transitions between localized carrier eigen- Ho=>, |(bj>ej<q5j|+2 | $)Vik( il 3.7
states, assisted by phonot® some other inelastic agent ! 17k

The participation of some inelastic agent in hopping conducwhere{e;} are random energies aiMj, are random transfer
tion is required for the following reasons. First, owing to matrix elements.

carrier localization, the conductivity of the carrier system in  Having introduced the basis of localized ionic states
the absence of phonons is that of an Anderson insulator, i.ef} ¢,)} and the Hamiltonian for the disordered system of ions
zero. Phonons cause transitions between localized carri¢{,, we now examine in detail the effect on this system of an
states and, hence, allow conduction. Second, phonon-assistggplied magnetic field. As shown by Holstéhin the pres-
carrier transitions meet the need to have carrier transitiongnce of a magnetic field the ionic basis stdﬂ@%)} become

between occupied statéwhich lie below the Fermi level  the modified collectior| ¢;)g}, being solutions of the Schro
and unoccupied state@vhich lie above the Fermi level dinger equation

whilst satisfying the demand that energy be conser¥ag.

12). This energy-conservation requirement also holds for the

Hall effect. Now, as inelastic processes are being invoked <r|¢j>B:€<r|¢>j>B,

one should ask the question: How can interference between 3.9

distinct hopping paths, necessary for the sensitivity of the :

hopping rate to any quantal phase, arise? whereU (r —R;) is the potential of the ion located at position
We will answer this question both in the context of lon- R;, m* is the effective mass, an#l is the magnetic vector

gitudinal conductivity and the Hall effect. In the next sub- potential. The wave functiomr|¢j)B|B=o has the property

subsection we will consider the longitudinal conductivity. that it is a function ofr —R;, and we would like to recover

1
2m*

eA\?
pt—| ~Ur=R))
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something like this property in the presence of the magnetienagnetic field much less than a quantum of flux treads a

field. To do this we introduce a gauge transformation
<r|¢j>:<r|Kj>eii77j(r), (393
7j(r)=(elhc)A(R;)-r=(elhc)(BXR;)-r, (3.9H

where we have chosen the gauge potential toAke) =H
Xrl2. It is straightforward to show that this transformation
leads to an equation fdr|«;) in which the vector potential
(magnetic fieldl term contains a coordinate in combination
(r — Rj)

1
ﬁ["” eH X (r—R))/2c]*~U(r—R)) [{r|$;)s

=e(r))s- (3.10
Hence, the wave functiofr|«;) is seen to have the sought
property

<r|Kj>B:<r_Rj|KJ'>. (31];'

localized ionic wave function.

Having constructed the statgE;), i.e., approximations to
the exact localized states, we now use them to compute the
square modulus of the matrix eleméuyf, of Eq. (3.4):

[Ujkl2=1(¥;[Hepn Wi)|?

S

ik n#k,n#

i (bl Her-pn®il #){ &i[Herpr P10

y VixVinVi
(Ei—E04E—E,)

+2, 2 ,<¢i|HeI—pr‘J¢m>
m#j l#m,l#]
X nlHurpleh) Lo
me Y EnAE—E)
(3.19

It is convenient to employ the magnetic-field dependent ionic

states{| ¢;)g} in the perturbative construction of the eigen-
states of the system Hamiltoni&8.7)

HelB)=2 |#))a€/(B)(i]s+ 2, 14)sVik(B)(dils-
(3.12

In what follows we shall omit the explicit dependence®n

We now construct approximations to the exact eigenstate

of Hg(B) in terms of linear combinations of ionic states
{|#i)g}. To do this we use renormalized.e., Brillouin-
Wigner perturbation theory in powers &;/(E;—Ey) (see,
e.g., Refs. 68 and 69thus obtaining

(W) =d)+ 2 k(#)) i)

Vi VinVhi
Kj T khVhj oo,
Ei—Ex «7) (Ej—EW(Ej—Ep)
h(#])

(3.13

X

which features in the transition rate, E8.5).

Terms exhibited in Eq(3.14) involve motion along paths
that surround loops of nonzero area, i.e., the matrix elements
of electron-phonon interaction and transfer amplitudes are
taken between localized orbitals E@®.8) of sites that form
such loops. Note, however, that not all such terms are in-
cluded in Eq(3.14), but only those in which matrix elements
of electron-phonon interaction enter the corresponding ex-
ressions in combination with their complex conjuga(iesl,
time-reverseflcounterparts. Furthermore, the remaining ma-
trix elements entering terms featured in £§.14), i.e., the
overlap integrals/y, involve motion along paths that sur-
round loops of nonzero arédlt is through such products of
three overlap integral¥, V,;V;, that the transition rate ac-
quires its sensitivity to fluxes through loops of nonzero area.
It is only such terms that lead to nonvanishing interference
contribution to hopping probability which is sensitive to
fluxes. Such sensitivity to phase results in the Aharonov-
Bohm magnetoresistance effects in hopping conductivity
(see, e.g., Ref. 31

Let us discuss the physical meaning of interference terms

where{E;} are the exact energy eigenvalues. We now pauséeatured in Eq(3.14). Consider, for example, charge carrier
to remark that in the theory of hopping conductivity in dopedhopping in a triad of sites. The relevant terms in E3j14),

semiconductor8**4>%the parameteV,;/(E;—E,) is in-
deed small, due to sizable distance between dofmrsc-
ceptors. In subsection devoted to application of hopping

conductivity model to manganites we will see that this pa-

which involve loops, correspond ic=1, j=2, k=2, n=3
(in the first of featured termsandm=1, | =3 (in the second
of featured terms In terms of isolated orbitals the first term
features in Eq(3.14) corresponds to interference of two pro-

rameter can also be rendered as small, because of the depersses of charge carrier tunneling from site 1 to site 2, a
dence of the effective hopping amplitude on the core-spirdirect one and an indirect orfeia site 3, with the following
misalignment. It is worth mentioning, however, that the sencharge carrier interaction with a phonon at site 2; the second
sitivity of |¥;) to phases arising from transformation Eq. term corresponds to carrier interaction with phonon at site 1
(3.93 is a general property which does not rely on perturba-with the following interference between direct and indirect
tion expansion(3.13. It is also reasonable to assert that thetunneling paths from site 1 to site @Ve note that the situ-
essential dependence ff¥);} on the magnetic field enters ation can, of course, be readily generalized to the case of
solely through such phase acquired by the local basis wavehanges in more than one phonon occupation number.
functions {(r|¢;)} under the gauge transformation in Eq. ~We now notice that by contrast with terms that are fea-
(3.93, because, at reasonable experimental strengths of thared in Eq.(3.14), terms that have been omitted there, like
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Vii phonons interact with charge carriers, one can consider them
AUkI2=2 (dilHerpd &) &/ He —ph|¢k>ﬁ1 as a reservoir which leads to randomization of carrier states.
K ' "(3 15 The time scale of such randomization is given by the inverse
' rate of carrier transitions between different eigenstates of
involve motion along paths that surround loops of nonzerde.pn Caused by electron-phonon interactib). It is this
area, but do not lead to nonvanishing interference contriburandomization that is meant by phase breakiogdecoher-
tion to hopping probability. The reason for absence of suctence. However, the carrier transition ra8.5 between dif-
contributions is that they do not involve combinations of ferent states itself, which measures the rate of decoherence
matrix elements of electron-phonon interaction with their(being determined by eigenfunctions of these sjatasries
time-reversed counterparts. To see why such combinatiorigformation about quantal phases that arise in the context of
are important, consider the electron-phonon interactiorEgs. (3.13 and (3.14). Furthermore, the electric current
Hamiltonian arises during the act of hopping, i.e., when randomization
has not yet occurred. Therefore, the answer to the question,
A posed in the second paragraph of the present subsection, con-
Hel-ph:E Hqe'", (3.16 cerning interference in the presence of inelastically-assisted
a hopping is as follows: Thésteady-statehopping current is

where q is the phonon wave vector. Evaluation of non- generated durin_g the process of.inelastic .scattering, whilst
vanishing interference contribution, therefore, includes sumgecoherence arises only after this scattering has occurred;
over all phonon wave vectors. Terms that exhibit two matrixthus, decoherence effects do not preclude sensitivity of hop-
elements of electron-phonon interaction that are not compleRing conduction to quantal phases. Moreover, the question of
conjugated to each other turn out to be oscillating functiondnterference of consequent hopping events is meaningless in
of g, and vanish upon evaluation of the sum ogerThis  the context of hopping conductivity, because only ampli-
simple observation allows us to find all important interfer- tudes of hopping between the same initial and the same final
ence terms in the hopp|ng probab|||@14) without resort- states Ca-n interfere. ThUS, there IS -a S|gn|f|Can-t -d|fferen-ce
ing to explicit evaluation Of<¢i|Hel_pA ;) as it was done, b_etwe_en mterferenc_e effects in hoppl_ng c_onductlvny and in
e.g., in Ref. 23 in consideration of the Hall effect and in Ref.diffusive mesoscopic transport. In diffusive transport, the
69 in consideration of the Aharonov-Bohn hopping magneWhole diffusive trajectory, with all consequent scattering
toresistance. We note that if the sum of two terms featured i§Vvents, determines the current via the diffusivity, and elec-
Eq.(3.14 is equal to zero, this consideration easily allows usfronic coherence during consequent scattering events is im-
to find the appropriate next terms of expansion of hoppingPortant for interference effect_s. In hopping transport, inco-
probability in powers of;; /(E;—E). herence of consequent hopping _events dpes not contradict
We are now in a position to discuss what is meant bylnt.erferen_ce of quantum-m.echamcal amplitudes .that deter-
phase coherence and sensitivity to quantal phases in tHgine a single charge carrier hop and the hopping current
present setting of hopping conduction. In the absence of inttself.
elastic agents, products of, e.g., three overlap integrals _ _ _ ) o
ViViVjn (where sitesh, k andj form a nondegenerate tri- 4. Quantum interference in the presence of inelastic scattering;
angle, with nonzero flux threading this triangle in the pres- processes leading to the Hall effect
ence of magnetic fie)d and carrier energieg; (see the For localized carriers, the interference processes that lead
remarK?) are sensitive to the Aharonov-Bohm quantal phaseto the Hall conductivity are even more peculiar than those
As we can see from Ed23.14), interference of two ampli- leading to the sensitivity of the longitudinal conductivity to
tudes of quantal transition between statesdk occurs(and  the Aharonov-Bohm phase. In particular, the occurrence of
these amplitudes are cohereeen if these transitions are the Hall effect requires phonon-assisted hoppings between
due to inelastic agents. For such interference to occur, inelagxact initial and final carrier states, via an exact intermediate
tic agents which determine one of the amplitudes of the transtate [It is not sufficient to include as intermediate states the
sition must be the same as inelastic agents which determingrtual ionic orbitals that enter via E¢3.13.] The reason for
another amplitude of the transitidne., phonon frequencies this difference between the hopping Hall conductance and
and wave vectors are eqlaso that the square modulus of the sensitivity to magnetic flux of the hopping magnetocon-
matrix element of, e.g., the electron-phonon interaction, enductance arises because of the necessity to extract a depen-
ters the probability. As we have mentioned above, the presdence of the Hall conductance thatlisear in (or, more
ence of square modulus of the electron-phonon interactiogenerally, an odd power pthe magnetic field .
matrix element in the probability corresponds to phonon fac- Let us now explore the collection of processes that con-
tors in the two interfering amplitudgg.g., in the amplitude tribute to the Hall conductance. These processes, first iden-
of a direct process and in the complex conjugate of the amtified by Holstein, can be determined by making use of the
plitude of an indirect procegbeing related to each other by odd (i.e., dissipative character of transition rates under the
the time reversal. time-reversal operatiort— —t. As discussed in Secs. Il C
Let us now discuss what is meant by the phase breakingnd Ill D, the hopping current is determined, via the conduc-
or decoherence in the context of the hopping conductivitytivities of the resistive network, by the rate of transitions
regime. The eigenstat¢g¥);} and their energieg; are de-  between sites. The Hall current, as with any current, is odd
termined byHgph, i.€., in the absence of phonons. Whenunder time reversal. So, too, is the transition réfe. appre-
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ciate this, consider an elementary relaxation process for O
some quantityQ, which evolves according to the rate equa- i § § § §
tion
o
FTiRE (3.17
[
From the consistency of equation one immediately sees that i X i j 1
it is formally appropriate to designate the relaxation rates ©
being odd under the time revergallow consider the transi- o @ o
tion probability per unit time between the exact single-carrier i k @ i j k k
statesi andf, viz. Ws; which, according to Fermi’s golden
rule, is given by @ o *
i k i i k
20 e)
Wfi=7|Afi|25(Ei—Ef), (3.18 @ @ @
i k ) i i k

where Ay; is the sum of the transition amplitudes for all
coherent(i.e., interfering processes connectirigandf, and FIG. 13. Pairs of interfering amplitudes that result in the Hall
the & function imposes energy conservation between the inieffect. Rows(a) and (b) each show the interference of two-stage
tial and final states, the energi& and E; of these states processes. Row®) to (f) each show the interference of a one-stage
being full energies(That is, they include not only carrier but and a three-stage process. Right column: indirect hopping pro-
also phonon energigsThe §-function, which has the com- cesses; left column: direct hopping processes. Lines with arrows
plex representation correspond to carrier propagators; their intersections with wavy
lines correspond to matrix elements of carrier-phonon interactions.

1
S(E)=Im— lim

7TS~>+O

E—is’ (3.19 the difference of phases between direct and indirect paths
. . . . _ induced by magnetic field, i.e., the Aharonov-Bohm phase.
is an odd quantity with regard to time-reversal, in the sens@we neglect changes magnetic-field-induced changes in the

that under the transformatida- —t, sign of imaginary part magnitudes oA%%" andA%%" ) For the transition probability
s in the denominator changes and, thus, so does the sign @fe then have

the 6 function. By contrast, the quant|l|ykf,|2 is even(i.e.,
nondissipativieunder time reversal. We note, in passing, that - 0 din 2 0.nd 2 Odite A0.ind
the precision of the energy conservation is not what is essen- Al “=[A 2+ | AR+ ReAT ™ AR cosg

tial (from the point .of view of time—reversgl properj[)e§or n |on dir 0'“dsm¢ (3.23
example, the imaginary part of a Lorentzian function,
1 i 1 T We now observe that the term containing &iis the only
Im——==— (3.20  contribution to the probabilityAs;|? that is odd with respect

— 2 2’
mE-Il 7 E24T to the transformatioy— — ¢ (i.e., with respect to magnetic-

reveals that this function, too, inherits the oddness of the ratfield reversal, this oddness being a necessary property of the
r. Hall conductance. Thus, in a computation of the Hall con-
En route to exploring the processes that contribute to thé’”CtanCOedlronlglﬁz‘e imaginary part of the quantity correspond-

. ;
Hall conductance, let us now consider a simple case in whicid to A" Ag™" contributes and, therefore, one has to con-

As; has just two contributions: sider those |nd|rect processes for which the zero-magnetic-
_ field amplitude has a component out-of-phase with the zero-
Agi=Ad"+ AN (3.2)  magnetic-field amplitude of the direct proce€3aid another

way, one must consider contributionsA&%™ A% that are
odd with respect to time reversaSuch contr|but|ons do not
appear if, as in the case of the longitudinal hopping conduc-
tivity in Sec. 11l D 3, one considers one-phonon procesées.

whereAd" is the amplitude for the direct path and® is the
amplltude for an indirect patfi.e., a path via an intermediate
statg. These two amplitudes can be written in the form

Adlr Od"ex i (3.223 They do, however, appear if one considers, e.g., two-phonon
PI¢1, ’ processes described by combinations of amplitudes obeying
0,dir H
And_ p0ind gyryi 6 322 the following propertyA¢;™ contains an evetodd number
fi fi Pl b2 ( b of complex energy denominators whAﬁ"”d contains an odd

b=di1— by, (3.229 (g\_/er) number. Then thgse denomin;gtors give rise to an ad-
ditional energy-conserving function,”” a quantity that is
whereA0 dir andAO dr are the zero-magnetic-field amplitudes, odd respect to time reversalf. Eq. (3.19], and yields con-
and¢, andqbz are phases arising in the presence of magnetitributions to the probability that behave suitably under time
field for direct and indirect paths, correspondingly, afiis  reversal.
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Having ascertained the structure of the amplitudes that (ii) The direct transition is a one-stage process, e.g.,
give rise to the Hall effect, we now select and examine the _ ,
dominant contributing processédse., those involving the (i,N1)—(k,Ny), (3.253

smallest possible number of electron-phonon interactions nd the indirect transition is a three-stage process. e
These involve two-phonon transitions and, as shown bf1 gep , .0,

Holstein?® their elementsi.e., direct and indirect processes : C N TN /
. . ! i,N{,N iI,N;,N ,N;,N k,N7,N5).
can be visualized as follows. (1:N2,N2) = (1,N3:N2) = (], N1, Nz) = (kN3 No)
(i) Both transitions are two-stage proces§es., involve (3.25b

two transitions between exact carrier statdsor example,

T T " ; . (The whole set of processes includes those which result from
the indirect and indirect transitions respectively being

alterations of the sequences of various subproces€ese
i Ny N i N'.N KN/ NL), 3.24 can obsgrve, that phonq_n modes w.hose populatlpn is
(1:N2,N2) = (1,N1.N2) = (k,N1, N2) ( 3 changed in processés or (ii), interact with charge carrier
: Y N 24 on both dl(ect and indirect path, and, as we shall see, these
(N3N =N N2 = (KN N), - (324 paths can interfer& Complete set of processes that lead to
whereN,, N7, N, and N; are the occupation numbers of the Hall effect is shown on Fig. 13.

phonon modes 1 and R, andN’ differ by unity, i, j, andk In terms of phonon-assisted transitions between exact car-
label initial, intermediate and final sitdas well as carrier rier eigenstatesV;), the two-stage processes are described
states localized on these sites by the amplitudes

dir,2 (Wi Ny Herpl Wi, ND(W i No [ Hey o Wi N2) = (Wi, No [ Hep ol Wi N2 (Wi N [H e o Wi N1 )
k'Nl'NZ;j’Ni‘Né_ E]_Ek

N (W1, NoHerpd Wi N1 Ny [Hr ol Wi N = (W N [Hppd Wi, NP N Hepd Wi ,N)
E—E, !
(3.263
ind 2 (Wi Ny [Hep W NP NoHep o Wi N3) +<‘1'k,N2|Hel-prJ‘I’j MNP, Ny Heppd Wi ,N7)
kiNy N2:jNp Ny E—E;+(Nj—Np)fiw; +ifiy E—E;+(Ny—Np)fiw, +ifiy

(3.26b

a2 nd2 N: are, respectively, the amplitudes of the two-stage-direct and two-stage-indirect
2

KNg Np;3jNg k,Ng No3iNg ‘ _
processes. The interfering amplitudes for the one-stage préc&ssnd(an example ofa three-stage procesd™™? are given
in terms of the exact carrier eigenstajds):

where A N/ and A
U2

Adir'1:<\Pk1N1|HeI—prJ\Pi aNDv (3.27a

(¥ ,No|Hepd Wi N (P NS Hepd Wi, No) (W N [He o Wi ,N7)
(El_EJ)(E|_EI+(N£_Nl)ﬁwl+|h’}/)

Alnd3= (3.27b

Let us briefly discuss the energy conservatighe. tween broadened states of the system. Here, for brevity, we
S-function) structure and time-reversal properties of theuse the terny function when discussing time-reversal prop-
probabilities associated with the amplitudes given in Eqgserties of transition rates.

(3.263, (3.26D, (3.273, and(3.27h. The explicits function Let us follow how theseS functions(and, hence, the reg-

in the formula(3.18 for Wy; constrains the energies of the uisite odd character under time revejsaierge. For two-
initial and final states. One furthérfunction arises when we stage processes, a direct transition has to contain one inter-
insert explicit expressions for the interfering pairs of ampli-mediate state, which has to be virtual state, and, therefore
tudes, Eqgs(3.263, (3.26h and Egs.(3.273, (3.27h, into  Eg. (3.263 contains real energy denominators. Thus, in two
Eq. (3.18. This second’ function characterizes energy con- stage processes,&function additional to one giving energy
servation between initial and intermediai@ intermediate  conservation between initial and final state, is to arise from
and final stategs As we mentioned earlier, time reversal sym- indirect transition amplitudes. Such & function indeed
metry can also be satisfied if we use, e.g., imaginary parts adrises(in each of the contributing term$rom complex de-
Lorentzian functions instead @f functions, thus taking into nominators of Eq(3.26bh, upon summation over all possible
account approximate energy conservation in transitions bgahonon modes. In interference involving three-stage pro-

184426-15



Y. LYANDA-GELLER et al. PHYSICAL REVIEW B 63 184426

cesses, the analytical expression for three-stage amplitudeeen amplitudes of direct and indirect two-stage processes
Eq. (3.27b is characterized by two energy denominators.or interference between amplitudes of one- and three-stage
Upon summation over all possible phonon modes, one oprocesses, it is instructive to write down the amplitudes
these denominators leads todafunction. Another energy (3.263, (3.26b, (3.273, and (3.27h in terms of the ionic
denominator in Eq(3.27h corresponds to a virtual transi- orbitals |¢;) and the transfer integral¥;; , by using Eq.
tion. As follows from Eq.(3.23, in the presence of the (3.13. (The energy denominators are corrected compared to
Aharonov-Bohm phasep picked up by carriers moving those that can be found in the original Holstein p&pefhis
around three sites, interference contributionsWg deter-  will also allow us to formulate conditions necessary for co-
mined by Eqs(3.263 and (3.26h and by Eqs(3.279 and  herence of two-phonon processes, relevant for the Hall ef-
(3.27D all contain twoé functions, and, as required by time- fect.
reversal symmetry properties, are proportional togsin In terms of [¢;) and V;;, the two-stage processes are
In order to see the physical meaning of interference bedescribed by the amplitudes

dir,2 (. Na|Heppr dic, N1 (i, NoHep ol i, N) Vi — (i, Nol Herprl b, No) (i Na[Herprl i N1 Vi
KNy Nt NJ NS T (Ej—EW(Ei—Ey)

N (i No|Herpd @i, N2 (i ,Ni|Heipn @i N1 Vik— (b ,Na|Heppr b, N1 i, No|Her o @i ,N2) Vi
(BEi—E)(Ex—E))

(3.28a
ind,2 :<¢k N1l Heipd dic,N1){(di . No|Heppd ¢i N2V Vi +<¢ka2|HeI-ph| &; N2){(bj ,Ni|Hepol & ,N7)
KNLN2 NN, (B — B+ (N~ Np)h g +i% y)(Ee—E)) (E —E;) E—E;+(Ny—Np)fiwp+ihy '

(3.28h

The interfering amplitudes for the one-stage proo&%s’ and an example of a three-stage proc&8%® which, in terms of
exact carrier states, are given by EG&2739 and(3.27b in terms of ionic orbitals read

(i Na|Herpd D, ND Vi (i Ny [Heppd i ,N1) Vi
E—E,

Adrl= : (3.293

. +<¢j No|Heipd @) N2 (b5 ,NoHeppd & N2){(bi ,N1|Heipd & N1V Vi
(Ej—EW(Ei—E)(Ei—E))(Ei—E;+(N1—Nphw,+ity) .

Alnd3— (3.29h

First term in Eq.(3.293 does not contribute to interfer- phonon modeN;,®;) at initial site, tunneling to intermedi-
ence of one- and three-stage processes, because the matte sitej, emission(absorption and reabsorptiorfreemis-
element( ¢y ,N1|Hepl ¢k ,N7) does not correspond to any sion of a phonon modeN,,w,) at sitej, and tunneling to
time-reversed counterpart in EB.299. We are now in a the final site. In the cas@i) charge carrier tunnels to inter-
position to discuss the physical meaning of processes thamediate sitg, where emissiorabsorption and reabsorption
contribute to the Hall effect in terms of local orbitals. In the (reemissioh of a phonon modeN,,w,) occurs, and then
interference of two stage processes, both amplitudes, diretinnels to the final site. We therefore see that, in terms of
and indirect, correspond to interaction with a phonon moddocal orbitals, processes contributing to the Hall effect are
(N1,wq) at sitek (initial state| ¢y), tunneling to site (final  characterized by interference of amplitudes in which phonon
state| ¢;)) directly or via intermediate sitg and interacting modes changing their occupation numbers are represented by
with a phonon modeN,,w,) (at sitei) that is distinct from  time reversed counterparts Af" and A", respectively.
one participating in a process occurring at $itdn the in- Having described the inelastic processes leading to the
terference of one- and three-stage processes, the direct ortdall effect, we are now in the position to generalize condi-
stage proces@wvhich is, strictly speaking, can be called one- tions for occurrence of interference, and to formulate these
stage only in terms of exact carrier statean include two conditions for two-phonon processes. It follows from Egs.
possibilities:(i) Interaction with a phonon modéNg,w;) at  (3.26h, (3.263, (3.273, and (3.27h that electron-phonon
initial site and tunneling to the final sit€j) tunneling to the interaction results in coherence of transfer amplitudes in two
final site and interaction with a phonon modé;(w,) atthe cases{i) If direct transition and transition via an intermedi-
final site. Then the three stage process have to include thete state both occur as two-phonon proce$sesith two
following stages: In the casg) there is interaction with the phonon modes changing their occupation numbers in the
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course of both these transitions, then interference exists (a)\&{ 52{4 (b)
YED\
1 3

when the two phonons leading to the direct transition are the

same as two phonons leading to a transition via intermediate

site; (i) if the direct transition occurs as one-stage process

assisted by a phonon mode, this phonon mode changes its

occupation number, and the transition involving an interme- $ )

diate site occurs as a three stage process. Then, the condition

is that one of the phonon modes assisting three-stage process

is the same as that in the direct transition, while another FIG. 14.(a) Triad of Mn ions having distinct core spin orienta-

phonon mode which assists the indirect transition does ndions. (b) Sphere of possible core spin orientations, showing the

change its occupation number. specific prientations o_f the spins for this triad. The (_)rier_wtations form
Broadly speaking, both these cases lead to conditions thgf.e vertices of spherical triangle. The area of this triangle deter-

inelastic modes that change their state in the course of ele&ines the quantal Pancharatnam phase.

tronic hop are the same in the two interfering hopping am- ) .
plitudes. Only in this case an interference exists even be- HOWeVer, in the present paper we are concerned not with

tween amplitudes of inelastic processes. We note that thif!e ordinary Hall effect in a system with localized carriers

point has been also recently revisited by Entin—WohImarP”t the anomalous one. For the anomalous Hall effect, the
et al’® Aharonov-Bohm phase does not play a fundamental role, a

very weak magnetic field being applied solely for the pur-
pose of inducing a macroscopic magnetization of a ferro-
magnetic medium. Rather, for the AHE in system compris-
ing magnetically disordered core spins on Mn sites visited by

These interference contributions will result in the ordinaryhopping charge carriers, it is a certain typespin quantal
Hall effect, with the Hall conductivity in a triad of ionsgy ~ phasé’~*° that manifests itself. We now turn to the origin
given by and meaning of this spin quantal phase.

5. Ordinary Hall effect: Local conductivities. Remarks
on averaging over triads

oon=Gle€;}sin(B-Q/ ¢y), (3.30 E. The quantal Pancharatnam phase

To understand the nature of the spin quantal phases, let us
where ¢, is the (electromagneticflux quantum,Q is the  begin by examining the single-particle quantum mechanics
(oriented, real spagearea of the triad, andjej}f:l are the  of a carrier hole added to a triad of Mh ions. We regard
energies of the three single-particle eigenstates, which arhe spin-3/2 core spins of the Mn ions as large enough to be
invariant under reversal of the AB flux. The explicit expres-treated classically, so that one can assign a definite direction
sion forG can be found by substituting Eq8.283, (3.28D,  to each of them. Thus, a generic configuration of core spins
(3.299, and(3.29b into Egs.(3.18 and(3.3). (Note that in  is characterized by the triad of unit vectdns, ,n,,ns}, re-
generic caseG also depends on the populations of thesespectively located at the triad of sit¢R;,R,,R3}, as de-
states, which themselves may depend on particle-particlpicted in Fig. 14. Let us now consider the transfer of the hole
correlations). carrier between ions. In the double exchange model, such

In Ref. 23, Holstein mainly addressed the issue of the Haltransfer is described by the Hamiltonian
effect in hopping conductors in the presence of an ac electric
field. Compared to the dc Hall effect, the ac problem is sim-
plified because the principal contribution to the Hall conduc- HDEZQEJ | bp)eia, il + > |, )V a, by

tance comes from those spatially isolated configurations of j#k

sites for which the population relaxation timgis on the

order of the inverse frequency of the current(i.e., wt, +32, la, )N oy 5(B. b5, (3.3
a,B

~1). In this ac case, there is no need to addresshiuyhly
nontrivial) issue of how these sources of the Hall effea.,
configurations of sitgsare combined into a conducting net- Whereo is the Pauli spin operator describing the spin of the
work that is connected to the Hall contacts. For the dc Halhole carrierJ is the Hund Rules coupling energy which, for
effect, on the other hand, this issue of the structure of théIn®* ions, is on the order of several eV, and is much larger
conducting network must be faced, and it becomes necessafyan the orbital transfer integralg;,, and|a,¢;) is the

to understand which triads are the most effective in contribouter-shell atomic carrier state at sjtehe indexa labeling
uting to the Hall effect, how to average over triads, and whathe spin-projection on to theaxis (i.e., |@)|,- . are eigen-
quantity should be averagedf the quantity to be averaged states ofo,). In general, the Hamiltoniaf3.31) results in
should be the conductivityresistivity) then one should first spin polarization of electrons at arbitrary ratiobandVjy .
compute the local conductivitiegesistivitieg of triads and ~ However, two limiting cases are of interest. &&| V||, me-
then obtain the macroscopic conductivitigssistivities by  tallic ferromagnetism is usually treated perturbatively in
averaging} This issue of averaging over all triads and con-terms of an electron gas in metals, resulting in the RKKY
ducting network structure in disordered systems remaingteraction. In this case charge carriers with any spin projec-
controversiaf’>® tion are taken into account. The opposite casgV;,| is a

J
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purely double-exchange model. This is the case that is febrals Vﬁjf.f and electron-phonon interactiors;. Amongst
evant to manganites. By Hund's ruléappropriate forJ  these terms are ones containing matrix elements associated
>[Vj|), there is, at each site, effectively a single quantumyith paths around closed loops and incorporating the effects
state available to the hole. This stdte, ;) is the one in  of interference between distinct carrier paths. The simplest
which the carrier spin projection opposes the core spin direcaxample involves the producrﬁﬁvﬁgfvﬁﬁ, associated with
tion. The orbital|¢;) that characterizes this statedseof  he pathi — j —Kk—1i.

the orbitals of an isolated Mn ion, centered on the kitee In the presence of the constraints set by the core spin
choose to omit the remaining orbitals so as to simplify thegrientations, the transfer of carriers discussed in the previous
discussion. As for the other spin staes well as any other paragraph is subject to a striking quantal effect. To see this,

orbitals, we regard them as being inaccessible on energetigynsider the products of matrix elemewﬁvﬁﬁvﬁﬁ. Explic-
grounds. Postponing until later any effects of spin-orbit in-iy “sych products have the form o

teractions, we assume that the transfer of carfieemg, as it
is, affected by either the “kinetic energy,” by the second \seffyeffyelf_ 411 in n Heln: &
term in Eq.(3.31), or by the electron-phonon interactidmas Vi Vi = (i il Hoel N 40k &l Hoel ;. )

no effect on the spin of the carriers. The hopping amplitudes X(n; ,qb,-|HDE| N, i)

between ionic states are thus given &y, ¢|TIn;, ), ,

whereT corresponds either to the transfer operataf Eq. =(n|®(¢i|Hpel pi @[ ni)

(3.7) or to the electron phonon interactiéh,.,,. These hop- <l ® HAddenn:

ping amplitudes depend explicitly on the relative orientation (il @{didHoel 1)@ In;)(n|

of the core spinsp, andn;. In particular, by projecting the ®@(¢i|Hpel di)@|ni)

Hamiltonian(3.31) on to the physically relevant low-energy

subspace spanned by the stdtgs ¢;), we arrive at the the o< (i [y np){ny[n)) =Tr P PPy, (3.39

double-exchange Hamiltonian projected on to the low- _ . . .
. where the operatoB;=(1+ o n;)/2 are projectorsin spin
energy subspace] e, which takes the form P j= (1t o) pro) $in sp

spacé on to the spin states aligned with the local core spin
orientationsn; . From this last expression, in terms of pro-
Hoe= 2 [y, ) (e=)n;, &+ 2 |n, OIVi(ng, ¢, jectors, it is straightforward to establish that

j#k

(8328 TrPP;P;=(1+n;-ny+n, nz+nz-ny)+i[ny-(n;xXng)].

Vie=(n; ¢ Hpeln, i) (3.39
0. o 0. 0 Hence, we arrive at the quantal pha3e the phase of the
=V, | cos2 cos— + el %isin= sin—|, (3.325  complex quantity TP,P;P;, which is given b
jk ) . kFiFis g y

2 2 2 2
where V& are the effective transfer amplitudes;= y, 9: —1 N1+ (N X Ng)
jk - ' j tan . (3.39
—v; and, respectivelyp; and 6, are the azimuthal angles 2 1+n;-nptny-n3+ngz-ng

and y; and  are the polar angles of the semiclassical SPMn the context of the physical quantity from which the com-

directionsn; andn,. Provided we choose, e.qu|e, and : :
J k . 97 X utation of the quantal pha$e emerged, viz., the perturba-
nJle, (where{e,.e,,e;} are the Cartesian basis vecotsis 'Ei)ve evaluation qof the ﬁopping raté,;, Eq. (3.18, this

effective transfer amplitude reduces to the Andersonbhase modulates the interference between hopping processes
Hasegawa form

that progress from one sijgo another site, either directly
AH_\/. or indirectly, via a third site.

Vik = Vi cos6i2, (333 Formula Eq.(3.36 indicates that the pha€® has a geo-
whered is the angle betweem andn, . However, and thisis  metric interpretation as th@riented solid angle of the geo-
central to our discussion, the effective transfer amplitude isdesic triangle having vertices dn;,n;,n} on the unit
in general, a complex quantity characterized by its amplitudephere. It is the quantal analog of the classical optical phase
and phase. From Eq§3.32 and(3.33, it is indeed appar- discovered in the context of polarized light by
ent that if core spins are co-aligned, the effective hoppingPancharatnarf®®® In that setting, what Pancharatnam
amplitude is maximal, while if the core spins on two ions areshowed is that a under a sequence of changes of the polar-
opposite, hopping between such ions does not occur. ization state of light that return the light to its original polar-

We now follow the line of argument applied in Sec. ization state there arises a phase slkiif¢., a phase an-
11D 3, and construct the exact eigenstates of Hamiltoniarholonomy determined by the geometry of the sequence of
(3.323, via Eqg.(3.13 modified to account for spin. Hence, changes. If the sequence of polarization states is represented
we can build matrix elements of the electron-phonon interby a sequence of points on the Poincaphere(a certain
action between exact localized states, taking into account thearametrization of light polarizationthen( is given by the
effect of the core spin orientatior{®;}. We now note that area of the geodesic polygon on this sphere the vertices of
this expansion for the state gives rise, in the hopping probwhich are correspond to these polarization states.
ability |UJ-i|2 (and hence in the hopping ra®;;), to terms In the double-exchange electronic analog of Pancharat-
containing products of matrix elements such as transfer inteaam’s phase, the transporting of an outer-shell carrier to an
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ion with a differently oriented core spin via a spin- 2
independent process is characterized by a matrix element that 0/
can be interpreted as@nnection For processes visiting a 7 13
closed sequence of sites, this connection yields a quantal

phase(}, viz., the phase shift of the returning spin state in

terms of the sequence of sites visited. This quantal version of

Pancharatnam’s phase is given hglf the area of the geo-
desic polygon(on the unit sphere of core spin orientatibns £, 15, Two configuration§(a) and (b)] of core spins on a
the vertices of which are the core spin orientations of theriad of Mn ions, differing by the interchange of the spins on sites 2

sites visited. Although the phage emerged from consider- and 3. These distinct spin configurations give rise to opposite Pan-
ations of interference between processes involvitiggal of  charatnam phases.

sites, such phases are more general and would, in fact,

emerge for arbitrary processes. We remark that, in contrast tansition regime, owing to the fluctuations of the Pontryagin
Berry’s adiabatic phas¥,the phenomenon described here ischargé” of the triads of core spinéwhich we shall define
associated witlsuddenchanges in the carrier-spin state, andshortly) and, hence, elementary Pancharatnam fljxes.

need not be slow. In order to capture the AHE in double-exchange materials
such as manganites, we must consider not only the Pan-
F. The anomalous Hall effect in hopping regime charatnam phase but also some agent capable of lifting the

eflection invariance of the energigs;} and the distribution
: of core-spin configurations and, hence, capable of inducing
in a triad of magnetic sites. Like the OHE given by Eq. sensitivity to the sign of the Pancharatnam flux. Such an

(3.30, this AHE results from two-phonon processes, but is . . ) L . .
due to the Pancharatnam phase instead of the AB phate. agent is provided by spin-orbit interactions. We now discuss
the effect of these interactions on the motion of charge car-

this stage, we have not yet included the effects of the spin- triad.
orbit interaction). Mutatis mutandis we arrive at the AH rier in a tria
conductivityoay, given by

We now turn from the OHE in a spinless triad to the AHE r

G. Spin-orbit interactions in a triad

oan=Gls;} cose—lacose—e'zcosa—ﬂsing, (3.37) The most general form_ of spin-orbit interaction is given
2 2 2 2 by the spin-orbit Hamiltonian
where cogj=n;-ny, the factors cog{,/2) are Anderson- = ap-(eXVU) (3.39
SO l .

Hasegawa factors, anfk;} are the energies of the three

on-site single-particle eigenstates that are consistent wittvhere the potentidl includes ionic and impurity potentials,
Hund’s rules, these energies depending{op n}i<j<k=3 «a is the spin-orbit interaction constamt,is the electron mo-
and cos()/2). Note thatG is even under the reversal of the mentum, andr are the Pauli operators. This spin-orbit inter-
Pancharatnam fluQ — —Q, and oy is odd under it. action results in an effective $P) gauge potentialAg,

We have shown that, for a triad with given set of core-=am(ox VU),”® wherem is the relevant mass of the car-
spin orientations, an AHE arises from the quantal Pancharatier. This gauge potential provides an additional source of
nam flux. However, there is a significant difference betweerguantal phase. For a given core-spin configuration, the spin-
this AHE and the OHE. In the forménonmagneticcase, a orbit interaction favors one sense of carrier-circulation
uniform applied magnetic field leads to a net macroscopi@round the triad over the other, and thus favors one sign of
OHE, even though contributions of triads may cancel onePancharatnam phase over the other.
another” In the latter casdwith its magnetic sites, Pan- Let us consider the consequences for the energy spectrum
charatnam flux, but spin-orbit interactions not yet included of the triad{e;} that arise due to spin-orbit interactions. This
even the presence of a macroscopic magnetization of thiateraction generates a dependencgsgf on the three vec-
core spins is insufficient to causereacroscopidiall current.  tor productsN;,=n;x n, which, together with the magneti-
The reason for this is that in obtaining the macroscopic AHzation directionm, yield a preferred value for the triad
current from Eq(3.37 we must average over the configura- Pontryagin chargeye [=n;-(n,Xng)] and, hence, a pre-
tions of the core spins. In the absence of spin-orbit interacferred Pancharatnam flux.
tions, the distribution of these configurations, although favor- |t is straightforward to find corrections, due to the SOI, of
ing a preferreddirection (i.e., the magnetization direction hole eigenenergies if the on-site energies of the holes are
m=M/M), is invariant under a reflection of all core-spin nondegenerate. Then the sensitivity{ef} to vector prod-
vectors in any plane containing the magnetization, anducts Nj=n;xn, first enters at third ordefin the transfer
therefore, there is no preferred Pancharatnam flux. For exnatrix elements
ample, two spin configurations shown in Fig. 15 have the
same magnetization but opposite signs of the Pancharatnam
flux. This fact, coupled with the fact thét;} are also invari-
ant under such reflections, guarantees that the macroscopic
AH current will average to zerdWe do, however, expect whereT;=P;V;P, are the transfer amplitudeg;, are the
significant AH currentoisein the ferromagnet-paramagnet hopping matrix elements, and Tr denotes a trace in spin

581': 2 TrTjh Thka]‘/(sj_sh)(Sj_sk)i (339)
hk(#j)
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space.(For degenerate on-site hole energies one should olyith this origin has also been considered in Ref. 24} and
tain the splitting of these energies due to transfer in the ab&gZH) are of the same order of magnitude.

sence of SOI, and then include SOI at the final step, arriving

at the result to be given belowThe hopping matrix ele-

ments are sensitive to the SOI quantal phase, and can be I. Structure of the conducting network

written in the formV;,= ﬁ{bij, whereL jy=(1+iogj), and the AHE resistivity

Vi is an orbital factor, andy, («asy) is an appropriate  We now consider the question of how the physics of el-
vector that describes the average SOI for the transition ementary triads of Mn ions relates to the macroscopic prop-
—kin atriad of siteg, j, andk. Then, e.g., the first-ordéin  erties of manganites. For hopping conductivity, the pathways

«a) shifts in thee’s are given by taken by the current depends sensitively on the details of the
configuration of the core spins, owing to the sensitivity of the
0gjcTrT13T 3T 21 hopping amplitudes to the core-spin alignments. In particu-

lar, regions having local spin configurations that are aligned
roughly opposite to the macroscopic magnetization of the
=2(Ny3 G135+ N3y Gao+ Nog- 0o1) —N- g, sample tend to be avoided by the current. This fact renders
rather subtle the procedure for averaging over equilibrium
(3.40 spin configurations, which must account for effects such as
whereN=Ny3+ Nay+ Ny, andg=gys+ g+ gyy. If the po-  local spin correlations and excitations of various ty|ies.
tential U in the SOl is a superposition of spherically- SPin wave and topological excitations
symmetric ionic potentials in a the triad of sites then the EN route to computing the AH resistivity, let us try to

=4 Re TrP;L3P3L 3,P5L o,

) Carriers tend to pass through regions of lower resistance.
gik=2a;Q, (3.41) However, currents through regions with aligned spins do not

lead to an AHE because the relevant Pancharathnam flux

1 through such regions is small. Furthermore, in the
Q= E(Rj —Rp) X(R—Ry), (3.42 ferromagnet-to-paramagnet transition region, where the mag-

netization is only a small fraction of its saturation value,

i.e., they are proportional to the aré@)| of the triangle €Vven those spins within the network responsible for longitu-

whose vertices are the sit&, Ry andRy,. Then the SOI- dinal conductivity have orientations that are typically

generated shift in the carrier eigenenergies has th&Played, relative to one another. Nevertheless, if one were to
Dzyaloshinski-Moriya fornf” consider only the spins in this network, their average mag-

netization would be larger than that of the entire sample, and
the typical solid angles formed by triads of such spins would
be rather small. Thus, any AHE originating in such triads

There are two contributions to the AHE which result from would be not the dominant contribution. Moreover, close to
the SOI-generated shift in the carrier eigenenergies. The firshe metal-insulator transition, hopping paths through the
contribution is due to the dependence of the probability ofsample that encounter spins having rather common orienta-
hopping around the triad ofx;} for a given spin configura- tions do not exist.

H. Elementary Hall conductivity in a triad

tion. By incorporating the shift$3.40, together with the In fact, there is experimental evidence for the existence of
Pancharatnam phase, we arrive at the elementary AH comoderately sized clusters of aligned spins coming from neu-
ductivity tron scattering daf& "°at temperatures near the ferromagnet-

to-paramagnet transition. These data indicates that clusters of
spins do indeed exist in which spins are aligned over a length
scale of roughly 10 A. Thus, it is reasonable to envision the
magnetic configurations as comprising rather well oriented
As discussed above, E¢3.43 has a nonzero macroscopic clusters of, say, twenty to thirty spins, with adjacent clusters
average, owing to the presence of a characteristic Pontryagimaving rather different spin orientations. Furthermore, theo-
charge constructible from th;,, that feature in the energy retical estimates of the scale of magnetic fields relevant for
shifts, and the magnetization direction. A second conseeolossal magnetoresistance are consistent with the existence
quence of the SOI-generated carrier-energy $Bi#t0 leads  of such clusters(Such clusters can be regarded as being
to the second contributiomﬁf@. Due to the feedback of the large magnetic polarorf8) As the characteristic Zeeman
(fasy carrier freedoms, which provide an effective potentialtemperature associated withsangle spin-3/2 in a magnetic

for the (slow) spin system, determined by E¢3.40, the field of 7 T is 20 K, whereas the characteristic temperature
equilibrium probabilities of spin configurations having op- associated with colossal magnetoresistance is roughly
posing Pancharatnam fluxes will no longer be eqUadr 200 K, one is lead to the view that clusters of correlated
this contribution, which is related not 1@G/de; but to G spins involve on the order of ten spins.

itself, there is no need to account for SOI-induced carrier- Now consider two adjacent clusters of roughly aligned
energy shifts in the current now being averaged over a norspins[e.g., clusterd andRin Fig. 16a)]. Even the conduct-
symmetric spin-configuration distributionA contribution  ing paths connecting these clusters contain bonds between

(rﬁ\lH)=n1~(n2><n3); 0gjdGlie; . (3.43
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cluster R direction of the overall magnetization of the sample
o / , cosB~|M|/Mg, whereMg is the saturation magnetization of
' I' the sample.
\:‘ i \. J Let us now imagine how charge carriers move between
/ R ErA N S (a) clusters having quite different ion spin orientations. Such
& ! 0 Rl g motion is necessary for the existence charge-carrier propaga-
: H : : tion between electrical contacts. We have sketched a typical
\’ \ """" ®-eee . "* instantaneous configuration of the spins in Fig. 16. As one
4 / _ can see, the “upper” part of a inhomogeneous region formed
~ on a cubic lattice of sites can serve as a path for hopping
cluster L M between clusters. For reasons that we will now give, triads of
\' sites within this(and similay regions are effective contribu-
S RS tors to the AHE.

/ hedgehog (i) The three spins in the triad have positive components
! along the direction of magnetizatiofiRecall that clusters
with magnetization pointing against the majority tend to be
5 ‘ avoided by the current.This allows participation by these
~* \ (b) triad sites in the conducting network. If all three sites par-
ticipate in the conducting network, the triad can be an effec-
ment of the sublattice of Mn sites. Within a cluster the core spintlve source of an electromagnetic force that leads to a Hall

orientations are roughly the same; but spins in distinct clusters havgffeq' As we have discussed, th‘? net magr?etlzatlon_of the
significantly different orientations. Note that the boundary betweentrlad IS roughl_y that of _the bulk, which makes it magnetically
such clusters is liable to contain spin configurations that resembl€@Mpatible with its neighbors.
the single hedgehog configuration shown(m. The heavy dotted (i) Typical triads of spins, being located as they are be-
lines in (a) indicate a triad of spins that contribute to a hedgehogtWeen several misoriented clusters are significantly splayed.
configuration. Sites in the upper part of the cell showrfincon-  Therefore, the solid angle formed by their spine., the area
tribute to the conducting network and, correspondingly, the magneof the geodesic triangle formed by their orientations on the
tization (per sité in this upper part of the cellshown as an open- unit sphere, also known as the Pontryagin charge of the spin
headed arrois roughly that of the samplésee the discussion in configuration is substantial and, in fact, close to the maxi-
Sec. ). mum possible value given the constraint that the triad mag-
netization(per spin) be comparable to the sample magneti-
zation (per spin. Thus, we adopt as a caricature of the spin
onfiguration in regions contributing to the Hall effect a pic-
ure of splayed triads of spins of known magnetization den-
: .2 . . . sity, residing within tetrads of spins on a lattice plaquette,
is shown in Fig. 16.))] Wh'Ch defines th? bord_er of aligned such as those depicted by the lattice hedgehog configuration
cIust_ers as shown in Elg._ﬂ@. As menngned in the !ntro- . shown in Fig. 16. This scheme, in which we consider tetrads
duction, hedgehog excitations are long-lived topological spinyt 5 given magnetization and then select triads of sites in a
excitations, the existence of which is Ifnow7n to be .|mportanttetrad’ seems to us appropriate, given the cubic structure of
for ferromagnet-to-paramagnet transitfit even in the  the suplattice of Mn spins. However, alternative schemes
three dimensional case. (e.g., in which one considers triads themselves or other as-
Within these regions of magnetic inhomogeneity there argemblies of splayed spins of a given magnetization rather
triads of splayed spins. Let us now address the questionhan tetrads, and chooses triads out of these assejrieties
What is the characteristic splay? To answer this questiono almost identical resultée.g., for the scaling of the Hall
imagine dividing up the spins into those within clusters andresistivity, which we discuss in the present and following
those within the border regions. Even though the magnetizasection$. This insensitivity to details is all the more natural,
tion per spin in a typical cluster is greater than the samplegiven that we are dealing with an atomically disordered sys-
average magnetization per spin, the clusters are misorientédm. We note that, because hedgehogs are topologically
relative to one another. Thus the contribution to the magnestable, they provide a mechanism by which the spin configu-
tization per spin of the sample coming from the spins inration can sustain strongly splayed regions that persist for
clusters is not guaranteed to exceed the sample average awldrations much longer than the characteristic time for charge
indeed, it seems reasonable to assume that it is, in fact, not $notion. Hence, in their presence, on can accurately treat the
different from the sample average. If so, then the magnetizacharge motion as taking place with a background of inhomo-
tion per spin of the spins in the border region would also begeneous but essentially static spins, which renders consistent
roughly the sample average. We shall make the hypothesibe adiabatic treatment of the dynamics of the spins.
that this is indeed the case. Then the magnetization of typical Thus, we arrive at the notion of aoptimal triad An
triads of ions in the border region can also roughly be takeroptimal triad is a triad of spins residing in a tetrad of four
to be the average sample magnetization. We shall denote Igpins around a plaquette of the cubic sublattice of Mn ions
B the characteristic angle that spins in a triad form with theand having the following propertiest) The tetrad has the

FIG. 16. (a) Two clusters of sites, denotddandR, in a frag-

ions having significantly misaligned spins. These spins be
long to regions of magnetic inhomogeneity, e.g., inhabite
by hedgehog excitatiorfsn example of “lattice hedgehog”
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magnetization density of the bulk; ar(d) subject to this The task of computing the Hall resistiviy,, , which in the
constraint, the spins of the tetrad are maximally splayed  limit of o,,> o, under consideration has the form
subtend the maximal solid angle and, in fact, are configured
symmetrically around a coheNote that if the lattice were
triangular then we would simply have adopted a definition of Pxy™~" "5 (3.46
optimality in terms of maximally splayed triadsather than

tetrad$ of spins. As mentioned above, in disordered systemshen reduces to a determination of a ratio involving the direct
(such as manganitgsthe distinctions engendered by such ang indirect hopping rate#/) andW/ (as a function of the
options are unlikely to have a strong impact on the physicapagnetization textujeAs discussed in Secs. 11l D and III F,

consequences of the picture. W/ involves two-phonon processes, wherail$ involves

~ The motion of charge carriers through optimal triads givesyp|y single-phonon processes. Because of this, dependence
rise to the AHE. We note that these optimal triads have propg, electron-phonon coupling constant, phonon occupation

erties quite different from those of optimal triads contribut- , \mbers. and charge carrier occupation numbers, cancels

ing to the OHE in doped, nqnmqgnetic s_emiconducff)ie: from the relevant ratioW/(W)?, so that this ratio can be
the OHE setting, only two sites in an optimal OHE triad are, ritten as

connected to the conducting network, whereas in the optimal

AHE triaQS all threp triad sites parti_cipa.te in the network. W1/W(2,=ah§/kBT, (3.47)

(Indeed, if alternatively, one of the sitesnst a part of the

conducting network, its spin must be roughly opposite that ofvhere « is a numerical factor describing the multiplicity of

the spins on the other two sites; such a configuration wouldhe various carrier-phonon interference procegseg Ref.

yield only a small Pancharatnam phase. 23 and Sec. lll D, the number of intermediate sites, and the
The question may arise why triads within tetradad not,  difference between nearest- and next-nearest-neighbor hop-

for instance, tetrads themselyeare considered to be the ping amplitudes. We shall refer to the paramefemwhich

dominant source of the AHE. By a contribution from a tetradcharacterizes the difference between the forwatt (back-

we mean one involving four overlap integrals. As these overward W) transition rates, as an asymmetry parameter. For

lap integrals are small, owing to the localized character othe OHE, this asymmetry parameter is given by

the carrier wavefunctions and, thus, the contribution from

tetrads is suppressed, relative to that from triads. We note Zsin(B- Q/ ¢y), (3.48
that distortions due to doping, particularly deviations of Mn- . . :

O-Mn bond angles from 180°, facilitates tunneling between}’;’grir%% |(33tge vector area defined in E(g.49, as follows
Mn ions via plagquette diagonalsee Fig. 16 As was esti- ST

mated in Ref. 4, the amplitude of transfer along diagonals is For the AHE, it follows from Eqs.3.40 and (3.43 that

0.5 of that between nearest neighbor Mn ions. Recent tightthe asymmetry parameter is given by
=3[ gk (Nj XN 1[Ny-(NyXng)1/4, (3.49

binding model parametrization of local density approxima-

tion (LDA) studie§* show that hopping via diagonals is even

more important, and its amplitude is 0.82 of transfer ampli-where g;, are characteristic vectors arising in the hopping

tude between nearest neighbor Mn ions. amplitude owing to the spin-orbit quantal phasgare unit
Having discussed the structure of resistive network, let usectors of the core spins in the triad, amg (n,X n3) is the

now calculate the longitudinal and Hall resistivities of man-volume of a parallelepiped defined by core-spin vectors, i.e.,

ganites in the regime in which conductivity proceeds by hopthe Pontryagin chargegp. The anomalous Hall resistivity

ping (i.e., at temperatures above, as well as somewhat belowan be written in the simple form

the ferromagnet-to-paramagnet transitionhe longitudinal

hopping conductivity arising from phonon-assisted hops be- ) 1 [ ahl 1
tween sited andj is given by Pxy="Oxyl O%y=— nel o@ m . (3.50
o= (N€2d?/ kg T)WH cog(6/2), (3.44

The evaluation of Eq(3.50 reduces to a determination 6f

[cf. Egs.(3.1) and (3.2b)], whered is the distance between @long with the productsrxn,) and n,-(n,Xng), which
sites. Here W is the rate of phonon-assisted direct hops,SUrvive averaging over all possible triads. The dominant con-
and we have explicity separated out the AndersonJribution to the average of these products arises from optimal

Hasegawa factor c8@/2). Correspondingly, thdanoma- SPIn configurationgsee Fig. 17.

lous) Hall conductivity is given by[cf. Eq. ( 3.3] Therefore, in line with propertied) and(ii) of these con-
figurations, consider a square lattice formed by the Mn ions
axy=(ne2d2/kBT)W”, (3.45  inaplane perpendicular tm [as in, e.g., the top surface of

B the cube in Fig. 1@)]. To ascertain the geometry of optimal
whereW/ is the rate of hopping between the two sites, andtriads, consider the spins at four sites of a plaquette belong-
accounts for interference associated with both direct hoppinghg to the conducting network. Being optimally configured,
and hopping via an intermediate state on a third site. Not¢hese spins lie at equal separations around a cone whose
that the quantityV, includes three Anderson-Hasegawa fac-vertical angle 2 is given by 2 cosi{M(H,T)/MgJ. (The
tors[and so does the Hall conductivity given by E§.37)]. angle between the altitude of the cone and any generator in
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a m(1—m?)?
( ) Q (b) pxy:pg ( ) . (3.52
A Y (1+m?)?
o~ n
n, r 2 1%[3 To determine the magnitude of the AHE, we first need to
/N\N){l estimate the characteristic values gk|~g arising from the
U\ spin-orbit interaction(SOI). As discussed in Sec. Il G, the
SOl term leads to a Dzyaloshinski-Moriya contribution to
the eigenenergy of the carriers. A standard estifAafives
FIG. 17. (@) Triad of Mn sites(1, 2 and 3 in the conducting the characteristic values ¢f| ~g~Ze?*/4m.c?d,, whered,
network. Charge-carrier motion around triads such as this lead t{s the radius of an Mn cord state. While renormalization of
the AHE. We compute the longitudinal and AH conductivities by carrier parameters in crystals may tend to incrégﬁe crys-
relating them to the configuration of the spimghich we suppose to  talline symmetry requires admixtures of core orbitals, which,
be optimal and, hence, to the magnetization. in turn, are mixed with oxygem orbitals, with outer-shell
wavefunctions in order to hajgj| #0 . Such admixture is
the conical surface i.) Let us now use this information to effectively generated by the non-collinearity of the Mn-
fix the various geometrical quantities that determine the lon©-Mn bonds that allows carrier hopping around tridats
gitudinal and Hall conductivities, the former being associ-cluding jumps along plaquette diagonal&n estimate based
ated with pairs of sites and the latter with triads. We asserbn free electron parameters givggs 5x 10™ 4. (We note that
that to compute the contributions to these conductivities wehand-structure calculation of the spin-orbit coupling con-
may consider sites in an optimal configuration, as these argtants is outside the scope of this pap&he characteristic
characteristic of that regions of the sample that dominantltrength of the Dzyaloshinski-Moriya terms isgty~0.02
contribute. For the Hall conductivity, the reasons for acceptmeV, and the characteristic strength of the spin-orbit inter-
ing this assertion were discussed in the present subsectiofetion is~ ety~0.1 meV, wheree is the characteristic car-
As for the longitudinal resistivity, the assertion is valid be- rier energy. Not only these strengths are much smaller than
cause this quantity is dominated by the most resistive regionge characteristic double exchange energy, but they are even
of the conducting network, and these are expected to arise gialler than the magnitude of the direct antiferromagnetic
the interface between clusters of aligned spins, i.e., in reHeisenberg exchange term. However, for the anomalous Hall
gions that are hedgehog-like. effect in the localized regime, the Dzyaloshinski-Moriya
With this picture in mind, we now compute characteristicterms are crucial, as we discussed in Sec. Il F.
values for the geometrical quantities that feature in the lon- we now estimate the macroscopic longitudinal and Hall
gitudinal and Hall conductivities. Thus, we need the argjle resistivities in the regime in which the conducting network is
between adjacent spins, the Pontryagin chaygeand the  fully connected, i.e., in the regime IV of Fig. 10. By taking
products ;X ny), each of which is related to the vertical n=5.6x10?* cm 3, W,~2.5x10" s 1, and, from the

angle 28 by elementary geometry: magnetization data at=275 K (Fig. 1), cos=0.6, we ob-
tain p,,=1 mQ cm which coincides with the value of the

2 co2(6/2)=1+ co< B, (3.51a  experimentally observed resistivity for LPM@ee Fig. 3.
The AHE contribution to the Hall resistivity, assuming a

qp=2 cOSB SirB, (3.51bH numerical factora of 2.5, is thenp,,~—0.5 nQ cm, in

agreement with the experimentally observed LPMO Hall re-
) sistivity at the sam@& (Fig. 5. The equivalent expression for
m- (n;Xny) = sir’B. (3510 the hopping Hall resistance in the Holstein mechanism is
defined by the asymmetry parametet= cos(6/

We now have to account for the fact that, in the hopping2)cosgsin(B- Q/¢,) and, atB=1 T, is an order of magni-
regime, the magnitude of the longitudingind anomalous tude smaller than the AHE. We expect the macroscopic hop-
Hall) resistivities depend on the probability that pairs andping AH and OH effects to have the same sign, opposite to
triads of ions are connected to the conducting network. Wehat of the OHE in the metallic regime.
introduce a percolation factd® describing the connectivity In the next section, Sec. IV, we shall compare the results
of the pair to the conducting network; for the AH conductiv- for the Hall resistivity with the experimental data. As we
ity the corresponding factor would & because both pairs shall see, the picture for the core spin configurations devel-
of ions in a triad must, as discussed above, belong to theped above, which include clusters of oriented spins and
conducting network. It is remarkable that, throughout thehedgehog-configured spins, allows us to explain not only the
localization regimep,, is nevertheless determined by cur- AHE, but ferromagnet-to-paramagnet and metal-insulator
rents formed in individual pairs and triads, because the factransitions in manganites, and provide a quantitative expla-
tors of P cancel in the expression fqr,, given by Egs. nation of the magnitude of characteristic magnetic field that
(3.46 and (3.50. Therefore, in so far agp and the angles result in colossal magnetoresistance. The notion of an opti-
between neighboring spins can be directly relatedmo mal triad enables us to fit the experimental data for the AHE
=M/Mg,~ cosp, the Hall resistivityp,, depends oiH and  to a functional dependence of the resistivity on magnetiza-
T only throughm(H,T), and is given by tion given by Eq.(3.52. The agreement of the hopping pic-
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FIG. 18. Hall resistivityp,, of LCMO versus reduced magneti- FIG. 19. Hall resistivityp,, of LPMO versus reduced magneti-
zationM/M ¢ for the data shown in Fig. 4. Note the scaling behav- zationM/M g, for the data shown in Fig. 5. Note the scaling behav-
ior, i.e., the extent to which,, can be regarded as dependingTon ior, i.e., the extent to which,, can be regarded as dependingTon
and B solely throughM/M,. The solid line is a fit to Eq(3.52 andB solely throughM/Mg,. The solid line is a fit to Eq(3.52
with p9,=—6.2 nQ cm. with pd,=—4.7uQ cm.

ture and experimental data in the transitional region is rewell. In addition, the extremum found from this equation is
markable. located atM/M g~ cosB~0.35, close to the experimental
As we have mentioned above, the structure of the conéxtremum.
ducting network leading to the ordinary Hall effect in disor- In LCMO and LSMO, the agreement between theoretical
dered doped semiconductors and the averaging proceduresafd experimental results is good as well. We note that below
these systems are still controversial®In contrast to disor- Tc, the longitudinal resistivity is metallic and no longer
dered doped semiconductors, manganites turn out to be sydominated by magnetic disorder. We have not expected an
tems in which the ability to tune average magnetization al-agreement between theory and experiment in this range of
lows one to tune optimal triads, whose solid ang{ése temperatures, but in LCMO and LSMO scaling persists at
Pancharatnam phagedetermine the AHE. The magnetiza- temperatures beloWc, with notable exception of the range
tion in manganites, therefore, serves as a scaling variable thaf low temperatures and magnetizations close to saturation
has no anak)g in OHE in nonmagnetic disordered Systemy,ame, where the ordinary Hall effect manifests itself. We
and provides a check on our understanding of the conductiofote in this regard that belowc, local spin arrangements
network. We note that the presence or absence of small p@tl” can still dominate the AHE via asymmetric scattering or
larons in the system does not change the scaling of the AHEide jumps. The numerator of E@.52, m(1—m?)?, which
resistivity, because, as follows from studies of polaronicis characteristic for the behavior of,, alone, has an extre-
transport in Refs. 35-37 and 76, E®.47 also holds for

small polaron hopping. N N
LSMO
10

IV. HALL RESISTIVITY: COMPARISON OF THEORY 0.0
AND EXPERIMENT

-0.2 -

uQ cm)

The scaling of the Hall resistivity is shown in Figs. 18, 19,
and 20, in which the data shown in Figs. 4, 5, and 6, respec-—_
tively, are replotted as a function &/Mg,. At and above < 04t
T. the data fall on a smooth curve that reaches an extremum
at M/Mg,~0.4 for LSMO and LPMO and atM/M g4
=0.35 for LCMO. BelowT, the data first change rapidly
with magnetization as domains are swept from the sample
before saturating and following the general trend. At the
lowest temperatures, the metallic OHE appears as a positive
contribution at constant magnetization. As for the magnitude sat
of the Hall resistivity, for LPMO the solid curve in Fig. 19 FIG. 20. Hall resistivityp,, of LSMO versus reduced magneti-
follows Eq. (3.52 with pp,=—4.7 uQ cm is consistent zationM/M.,for the data shown in Fig. 5. Note the scaling behav-
with the estimates oby, andpy, given above. Down to 285 jor, i.e., the extent to whicp,, can be regarded as dependingTon
K, which is the Curie temperature determined by scalingandB solely throughM/Mg,. The solid line is a fit to Eq(3.52
analysis, Eq(3.50 describes the data for LPMO reasonably with pgyz —-3.4 uQ cm.
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mum atm= 1//5~0.45 as shown by the dashed line in Fig. with the quantal phase provided by topologically nontrivial
19. The broader maximum in the data suggest a shift towardonfigurations of Mn ion core spins in the presence of strong
a hopping model fop,, and p,, as the sample is warmed Hund's rule coupling. These force the hopping charge carrier

through the metal-insulator transition. to follow the local spin texture, with the average quantal
phase arising due to local Pancharatham phases and
V. CONCLUSIONS Dzyaloshinski-Moriya spin-orbit interactions. Below the

transition temperature, the AHE competes with the OHE as

Our investigation of the Hall resistivity, the longitudinal |ong-range magnetic order and, presumably, an infinite per-
resistivity, and the magnetization in single crystals of threezolating metallic cluster, develops.

different manganite compounds suggests that near and some-
what above the ferromagnet-to-paramagnet transition tem-
perature, transport properties are determined by charge car-
rier hopping between localized states. We find both We are grateful to I. L. Aleiner, D. P. Arovas, S. L. Coo-
theoretically and experimentally that the Hall resistivity is per, E. Dagotto, S. Fishman, J. Lynn, A. J. Millis, V. L.
solely determined by the sample magnetizatibh) (hear and  Pokrovsky, H. Roder, and P. B. Wiegmann for useful discus-
somewhat above the transition temperature. A microscopisions. This material is based upon work supported by the
model for the anomalous Hall effect based on the HolsteirJ.S. Department of Energy, Division of Materials Sciences
picture of the ordinary Hall effect in the hopping regime hasunder Grant No. DEFG02-96ER45439 through the Univer-
been proposed and explains the results quite well. Theity of lllinois Materials Research Laboratory. Additional
anomalous Hall effect arises due to interference between dsupport from NSF-DMR99-75187 is also gratefully
rect hopping between two sites and hopping via a third siteacknowledged.
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