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Monte Carlo simulations of spin glasses at low temperatures
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We report the results of Monte Carlo simulations on several spin-glass models at low temperatures. By using
the parallel tempering~exchange Monte Carlo! technique we are able to equilibrate down to low temperatures,
for moderate sizes, and hence the data should not be affected by critical fluctuations. Our results for short-range
models are consistent with a picture proposed earlier that there are large-scale excitations which cost only a
finite energy in the thermodynamic limit, and these excitations have a surface whose fractal dimension is less
than the space dimension. For the infinite range Viana-Bray model, our results obtained for a similar number
of spins, are consistent with standard replica symmetry breaking.
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I. INTRODUCTION

There has recently been a renewed interest in the natu
the spin-glass phase. Two principal theories have been in
tigated: the ‘‘droplet model’’ proposed by Fisher and Hus1

~see also Refs. 2 and 3!, and the replica symmetry breakin
~RSB! picture of Parisi.4–6 These scenarios and some othe
have also been considered by Newman and Stein.7 An im-
portant difference between these models concerns the n
ber of large-scale, low-energy excitations. RSB theory f
lows the exact solution of the infinite range Sherringto
Kirkpatrick ~SK! model in predicting that there ar
excitations which involve turning over a finite fraction of th
spins and which cost only afinite amount of energy in the
thermodynamic limit. In addition, the surface of these lar
finite-energy excitations is expected8 to be space filling
which means that the fractal dimension of their surface,ds ,
is equal to the space dimension,d. The droplet theory argue
that the lowest-energy excitation involving a given spin a
which has linear spatial extentL typically costs an energy
Lu, whereu is a ~positive! exponent. Hence, in the thermo
dynamic limit, excitations which flip a finite fraction of th
spins cost aninfinite amount of energy. The droplet theor
also predicts thatds,d.

Recently, Krzakala and Martin9 ~KM !, and two of us10

~PY!, have argued that a straightforward interpretation
their numerical results at zero temperature is intermed
between the droplet and RSB pictures in that there appe
be large-scale excitations whose energy does not incr
with size, but these have a surface withds,d. This interpre-
tation of the results of KM and PY has, however, been
cently challenged~though in opposite senses! by Marinari
and Parisi11 and by Middleton.12 There has also been rece
debate13–16as to whether the6J model has similar behavio
to that of a model with a continuous distribution. In the sc
nario of KM and PY it is necessary to introducetwo expo-
nents which describe the growth of the energy of an exc
tion of scaleL: ~i! u (.0) such thatLu is the typical change
in energy when the boundary conditions are changed,
example from periodic to antiperiodic, and~ii ! u8, which
characterizes the energy of clusters excited within the sys
for a fixedset of boundary conditions. In this paper we te
whether the picture proposed by KM and PY is compati
with finite-temperature Monte Carlo simulations.
0163-1829/2001/63~18!/184422~10!/$20.00 63 1844
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Several previous Monte Carlo simulations17–19,8 have
found evidence for finite-energy large-scale excitations
looking at the order parameter functionP(q). In the thermo-
dynamic limit this has delta functions at~plus or minus! the
Edwards-Anderson order parameter,qEA , corresponding to
ordering within a single valley, and, according to RS
theory, a tail with a finite weight extending down toq50. In
the droplet theory,P(q) is trivial, i.e., has only delta func-
tions at6qEA , though in a finite system there is a weight
the origin which vanishes with increasingL like1 L2u.

These earlier Monte Carlo studies have found that
weight of P(q) at the origin is independent of the system
size for temperatures down toT.0.7Tc in three
dimensions18 andT.0.6Tc in four dimensions.19 However,
these studies have been criticized20,21 as being too close to
the critical point, so that the results are affected by criti
fluctuations and very much larger sizes would be neede
these temperatures to see the asymptotic behavior of the
temperature spin-glass state.22 References 20 and 21 also a
gue, however, that clear evidence for droplet theory beha
could be seen even for quite small sizes atvery low tempera-
tures.

In this paper we check this prediction by performin
Monte Carlo simulations in the low-temperature regio
though with an admittedly modest range of sizes, using
‘‘parallel tempering’’ Monte Carlo method,23,24 also known
as exchange Monte Carlo. One difficulty with this approa
is to ensure equilibration since the technique proposed ea
by one of us and Bhatt25 for conventional Monte Carlo doe
not work for parallel tempering. Here we use an alternat
method, valid for the important case of a Gaussian distri
tion ~which we use here!, and which is closely related to th
approach of Ref. 26 for the SK model.

Both in three and four dimensions, we find a tail inP(q)
which is independent of size~up to the sizes studied!, for
temperatures down toT.0.2Tc in three dimensions~3D!
andT.0.1Tc in 4D, in contrast to the prediction of Refs. 2
and 21. We also find that data for the ‘‘link overlap,’’ de
fined below, fits well a description withds,d, though the
extrapolation to the thermodynamic limit is quite large he
Thus our results are completely consistent with the ear
proposal of KM and PY.

We consider the short-range Ising spin glass in three
four dimensions, and, in addition, the Viana-Bray27 model.
©2001 The American Physical Society22-1
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KATZGRABER, PALASSINI, AND YOUNG PHYSICAL REVIEW B63 184422
The latter is infinite range but with a finite average coor
nation numberz, and is expected to show RSB behavior. A
these models have a finite transition temperature. In the
case, the exponentu obtained from the magnitude of th
change of the ground-state energy when the boundary
ditions are changed from periodic to antiperiodic is28 about
0.2, whereas in 4D it is much larger,29 about 0.7.

The Hamiltonian is given by

H52(
^ i , j &

Ji j SiSj , ~1!

where, for the short-range case, the sitesi lie on a simple
cubic lattice in dimensiond53 or 4 with N5Ld sites (L
<8 in 3D, L<5 in 4D!, Si561, and theJi j are nearest-
neighbor interactions chosen according to a Gaussian d
bution with zero-mean and standard deviation unity. Perio
boundary conditions are applied. For the Viana-Bray mo
each spin is connected withz56 other spins on averag
chosen randomly~but with the constraint that the total num
ber of bonds isexactly3N). We allowed the local coordina
tion to fluctuate which is different from the more familia
Viana-Bray model in which each site has exactly the sa
coordination number, but we expect the properties of the
models to be very similar. The width of the Gaussian dis
bution is again unity, and the range of sizes isN<700.

Our attention will focus primarily on two quantities: th
spin overlap,q, defined by

q5
1

N (
i 51

N

Si
(1)Si

(2) , ~2!

where ‘‘(1)’’ and ‘‘(2)’’ refer to two copies~replicas! of the
system with identical bonds, and the link overlap,ql , de-
fined by

ql5
1

Nb
(
^ i , j &

Si
(1)Sj

(1)Si
(2)Sj

(2) . ~3!

In the last equation,Nb is the number of bonds (Nz/2 for the
models considered here, wherez is the coordination num-
ber!, and the sum is over all pairs of spinsi and j which are
connected by bonds. The advantage of calculatingql as well
as q is that if two spin configurations differ by flipping
large cluster thenq differs from unity by an amount propor
tional to thevolumeof the cluster whileql differs from unity
by an amount proportional to thesurfaceof the cluster.

II. EQUILIBRATION

Simulations of spin glasses at low temperatures are n
possible, at least for modest sizes, using the parallel tem
ing Monte Carlo method.23,24In this technique, one simulate
several identical replicas of the system at different tempe
tures, and, in addition to the usual local moves, one perfo
global moves in which the temperatures of two replicas~with
adjacent temperatures! are exchanged. It turns out to b
straightforward to design an algorithm which satisfies
detailed balance condition, and it will also have a good
ceptance ratio if the temperatures are fairly close togethe
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this way, the temperature of a given replica wanders up
down in a random manner, and each time the tempera
goes low the system is likely to end up in a different vall
of the energy landscape. Thus different valleys are samp
in much less time than it would take for the system to flu
tuate between valleys if the temperature stayed fixed.

We choose a set of temperaturesTi , i 51,2, . . . ,NT , in
order that the acceptance ratio for the global moves is sa
factory, typically greater than about 0.3. Since, at each te
perature, we need two copies of the system to calculateq and
ql as shown in Eqs.~2! and ~3!, we actually run two sets o
NT replicas and perform the global moves independently
each of these two sets.

To believe results of simulations carried out at low te
peratures it is essential to have a sound criterion for equ
bration. The technique pioneered by Ref. 25 does not w
with parallel tempering Monte Carlo because the tempera
does not stay constant. However, another method can
used for a Gaussian distribution of exchange interactio
which is a common and convenient choice. It depends on
identity first noted a long time ago by Bray and Moore30 for
the SK model. Here we give the corresponding result for
short-range case. We start with the expression for the a
age energy per site,

U52
1

N (
^ i , j &

@ Ji j ^SiSj&T
#av , ~4!

where^•••&T denotes the Monte Carlo average for a giv
set of bonds, and@•••#av denotes an average over th
~Gaussian! bondsJi j . One can perform an integration b
parts over theJi j to relateU to the average link overlap
defined in Eq.~3!, i.e.,

^ql&[
1

Nb
(
^ i , j &

@^SiSj&T

2#av512
TuUu

~z/2!J2 , ~5!

where the bracketŝ•••& indicate both a Monte Carlo aver
age and and an average over disorder,J2 is the variance of
the interactions~set equal to unity in this paper!, the sum is
over sitesi and j connected by bonds~each pair counted
once!, and the factor ofz/2 arises because there arez/2 times
as many bonds as sites. A very similar approach has b
used to test equilibration of the parallel tempering meth
for the SK model,26 except that in that case the square of t
spin-glass order parameter appears rather thanql .

We start the simulation by randomly choosing the spins
the 2NT replicas to be uncorrelated with each other. Th
means that the two sides of Eq.~5! should approach the
equilibrium value fromoppositedirections for the following
reason. The data for̂ql& will be too small if the system is
not equilibrated because the random start means that
spins are initially further away from each other in config
ration space than they will be in equilibrium, whereas in
tially the energy will not be as negative as in equilibrium
the right-hand side of Eq.~5! will initially be too high. Hence
we expect that if the two sides of Eq.~5! agree then the
system is in equilibrium.
2-2
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MONTE CARLO SIMULATIONS OF SPIN GLASSES AT . . . PHYSICAL REVIEW B 63 184422
For illustration purposes we show in Fig. 1 how th
works for three-dimensions withL58 and T50.5 ~to be
compared with31 Tc.0.95). The data for̂ ql& increases as
the length of the simulation increases while that determi
from the energy decreases~by a lesser amount!. Once the
two agree they do not appear to change at longer tim
indicating that they have reached equilibrium, as expec
Furthermore, the data for different moments of the spin ov
lap q as well as the link overlapql appear to saturate whenql
has equilibrated so it does not appear that there are lo
relaxation times forq than forql . We also checked that th
whole distributionP(q) does not change with time once th
two estimates for̂ ql& agree. By presenting results for a
intermediate temperature, rather than the lowest tempera
in Fig. 1, we show that the results do not change for tim
longer than that needed forql and 122TuUu/z to agree. The
length of the simulation was chosen so that, atlowest tem-
perature, the data forql and 122TuUu/z just converged.

III. RESULTS

A. Three dimensions

In Table I, we showNsamp, the number of samples
Nsweep, the total number of sweeps performed by each se

FIG. 1. The solid squares are results for the average link o
lap, defined by Eq.~3!, as a function of the number of Monte Car
sweeps,Nsweep, that each of the 2NT replicas performs. Averaging
was performed over the last half of the sweeps indicated. The
angles are obtained from the energy in the way indicated,
should agree with the results forql if the system is in equilibrium,
as shown in Eq.~5!. The two sets of data approach each other fr
opposite directions and then do not appear to change at a la
number of sweeps, indicating that they have equilibrated. We
show data for higher moments ofq and ql . They appear to be
independent of the number of sweeps once theql data has equili-
brated. The data for the different moments has been shifted upw
by the following amounts for better viewing:^q2& by 0.11,^q4& by
0.48, ^ql

2& by 0.17, and^ql
4& by 0.375. These results are ford

53,T50.5, andL58, and the data is averaged over 3891 samp
18442
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spins~replicas!, andNT , the number of temperature value
used in the 3D simulations. For each size, the largest t
perature is 2.0 and the lowest temperature is 0.1. Howe
for L58, the data for the two lowest temperatures,T
50.10 and 0.15, are not fully equilibrated so data at th
temperatures has been ignored and the lowest temper
used in the analysis is 0.20. This is to be compared wit31

Tc'0.95. The set of temperatures is determined by requir
that the acceptance ratio for global moves is satisfactory
the largest size,L58, and for simplicity the same tempera
tures are also used for the smaller sizes. ForL53,4,5, and 6,
the acceptance ratio for global moves is greater than ab
0.6 in average and is always greater than 0.3 for each pa
temperatures. ForL58 the average acceptance ratio is 0.4
and the lowest value is 0.12.

In Table II we compare the average total energy^E&
5NU at T50.20 with the average ground-state energy o
tained by finding the ground state of each sample with
hybrid genetic algorithm, as discussed elsewhere.32 The two
energies are very close together, indicating that at this t
perature our data are unlikely to be affected by the criti
point.

Figures 2 and 3 show~symmetrized! data for P(q) at
temperatures 0.20 and 0.50. There is clearly a peak for la
q and a tail down toq50. At both temperatures one sees th
the tail in the distribution is essentially independent of si
A more precise determination of the size dependence
P(0) is shown in Fig. 4 where, to improve statistics, w
average over the~discrete! q values with uqu,q+ , with q+

50.20. In general, we expect thatP(0);L2u8, where we
allow u8 to be different fromu, the latter being obtained
from boundary condition changes. In the droplet pictu1

u85u. The dashed line in Fig. 4 has slope20.20 corre-

TABLE I. Parameters of the simulations in three dimensio
Nsamp is the number of samples~i.e., sets of bonds!, Nsweep is the
total number of sweeps simulated for each of the 2NT replicas for a
single sample, andNT is the number of temperatures used in t
parallel tempering method.

L Nsamp Nsweep NT

3 15 000 104 18
4 16 000 104 18
5 7590 105 18
6 4539 33105 18
8 3891 106 18

TABLE II. Average energŷ E& at T50.2 and average ground
state energŷE0& for several sizes in three dimensions.N0 is the
number of samples used to compute the average^E0& using a hy-
brid genetic algorithm.

L ^E& ^E0& N0

4 2106.4960.05 2106.6060.03 50 000
6 2364.0660.17 2364.9460.06 39 246
8 2867.0460.27 2868.2060.15 13 302
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o
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KATZGRABER, PALASSINI, AND YOUNG PHYSICAL REVIEW B63 184422
sponding to the estimated value28 of 2u, so in the droplet
picture the data is expected to follow a track parallel to t
line. The actual size dependence is clearly much weaker
this, and consistent with a constantP(0), which implies that
the energy to create a large excitation does not increase
size, and thereforeu8.0.

More precisely, a two-parameter fit of the data in Fig
with the form aL2u8, gives u850.0160.05 for T50.20,
u850.0260.02 for T50.34, andu8520.0160.02 for T

FIG. 2. Data for the overlap distributionP(q) in 3D at T
50.20. Note that the vertical scale is logarithmic to better ma
visible both the peak at largeq and the tail down toq50. In this
and other similar figures in the paper, we only displaysomeof the
data points as symbols, for clarity, but the lines connectall the data
points. This accounts for the curvature in some of the lines in
tween neighboring symbols. In this paper all distributions are n
malized so that the area shown under the curve is unity.

FIG. 3. Same as for Fig. 2 but atT50.50.
18442
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50.50. Different values ofq+ give similar results for the fits.
We also tried a one-parameter fit in whichu8 is fixed. As-
sumingu850 the goodness-of-fit parameterQ is 0.34, 0.77,
and 0.57 forT50.20, 0.34, and 0.50, respectively, where
assumingu850.20 the goodness-of-fit parameters are ve
low, 1.431024, 2.831026, and 7.6310215, respectively.
Hence, just considering statistical errors for the sizes stud
the data is compatible withu850 and not withu850.20.

References 20 and 21 studiedP(0) by the Migdal-
Kadanoff approximation, which is known to yield the dropl
picture asymptotically. They find that, although the behav
of P(0) at higher temperatures is masked by critical po
effects, data at low temperatures, such as those consid
here,shouldshow the droplet behavior. That we find qui
different results indicates that the Migdal-Kadanoff appro
mation is not applicable to such small sizes. However,
data still do not rule out the possibility that the dropl
theory, or some other theory, might be correct at larger siz

In Fig. 5 we show the data forP(0) versusT. We see an
approximately linear decrease of the data asT→0. Note
though, that there are some nonlinearities as shown in
figure’s inset.

Figures 6 and 7 show the distribution of the link overl
ql at T50.20. We see that there is a large peak atql close to
unity ~with structure coming from the allowed discrete va
ues of ql) and a much weaker peak~note the logarithmic
vertical scale! for smaller ql which grows slowly with in-
creasingL and moves to larger values ofql . We will refer to
this feature again below when we discuss the Viana-B
model.

The variance ofP(ql) is shown in Fig. 8 for several low
temperatures. The data is consistent with a power-law
crease to zero, i.e.,

Var~ql !;L2m l, ~6!

e

-
r-

FIG. 4. Log-log plot ofP(0), thespin overlap atq50, against
L in 3D. The data is independent of size within the error bars. T
dashed line has slope20.20, which is the estimated value of2u.
Asymptotically, the data should be parallel to this line according
the droplet theory.
2-4
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MONTE CARLO SIMULATIONS OF SPIN GLASSES AT . . . PHYSICAL REVIEW B 63 184422
where the powerm l seems to vary somewhat withT. This
variation is probably due to corrections to scaling com
from the shift with T of the complicated peak structure
largeq seen in Fig. 6.

The asymptotic value ofm l is related to the exponentsu8
and ds that have been mentioned earlier.33 To see this, as-
sume that the nonzero variance is largely due to the exc
tion of a single large cluster of size of orderL. Its energy is
of orderLu8, and the probability that thermal fluctuations c
create it is of orderT/Lu8, assuming a constant density
states for these excitations. One minus the link overlap
tween the two states is of orderL2(d2ds) because there is
only a contribution to 12ql from the surface of the cluster
Hence there is a probabilityTL2u8 of getting adql of order
L2(d2ds), so the variance goes likeTL2m l where

FIG. 5. Data forP(0) as a function of temperature in 3D fo
different values ofL. The inset showsP(0)/T vs T.

FIG. 6. The distribution of the link overlap in 3D atT50.20 for
different sizes. Note the logarithmic vertical scale.
18442
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m l5u812~d2ds!. ~7!

An extrapolation of our results form l to T50 gives
0.7660.03. Assumingu850 this implies

d2ds50.3860.02, ~8!

which is consistent with theT50 result of PY, namelyd
2ds50.4260.02.

We have also looked at more general fits of the form

Var~ql !5a1
b

Lc , ~9!

FIG. 7. Same as for Fig. 6 but atT50.50.

FIG. 8. Log-log plot of the variance ofql as a function of size in
3D at several temperatures. The data forT50.50 andT50.70
are multiplied by 1.2 and 1.7, respectively, for better viewin
The data forT50.70 is somewhat curved, and so it does not
well a power law.
2-5
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KATZGRABER, PALASSINI, AND YOUNG PHYSICAL REVIEW B63 184422
to see to what extent the data can rule out a nonzero valu
a. This is of interest because a nonzero value fora is re-
quired by standard replica symmetry breaking theory.
carried out fits of the form

ln@Var~ql !2a#5 ln b2c ln L, ~10!

in which a is fixed, and lnb andc are the fit parameters. Th
x2 of the fit is then determined as a function ofa and the
results are shown in Fig. 9.

One sees that the minimum ofx2 is for a50 and the
range of a in which x2 has increased by less than uni
relative to thea50 value isa,5.331024 for T50.50 and
a,1.331023 for T50.34. The width of the distribution o
ql is Aa which has values 0.023 and 0.036, respective
Thus while, our data cannot rule out a nonzero value for
width of the distribution ofql in the thermodynamic limit, it
does suggest that this value, if nonzero, must be very sm
We note, however, that a rather small value ofa is not un-
reasonable in RSB. For example, ifP(ql) consists of two
delta functions at a distance of 0.1, whose weights are
and 0.9, respectively, then the value ofa is 0.0009.

B. Four dimensions

In four dimensions we present results down to a tempe
ture of 0.20, compared with34 Tc'1.80. Parameters of th

TABLE III. Parameters of the simulations in four dimension
(* ) Quantities involving the link overlapql have been calculated
with half the number of samples.

L Nsamp
(* ) Nsweep NT

3 60 000 63103 12
4 30 000 63104 12
5 12 190 33105 23

FIG. 9. Thex2 of the fit in Eq.~10! ~in which a is fixed and lnb
andc are fit parameters! for different values ofa. The results are for
the 3D model.
18442
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simulations are shown in Table III. For each size, the larg
temperature is 2.80 and the lowest is 0.20. The accepta
ratio for global moves is always greater than about 0.5
L53, about 0.2 forL54 and about 0.3 forL55. In Table
IV we compare the average energy atT50.2 with the aver-
age ground state energy obtained with the hybrid gen
algorithm of Ref. 32. As in 3D, the data indicate that t
system is very close to the ground state.

Figures 10 and 11 show data forP(q) for temperatures
0.20 and 0.46. As in three-dimensions, the tail in the dis
bution is essentially independent of size. We display the
P(q), rather than just the symmetric part as in 3D, in ord
to show that it has a symmetric form as expected~a symmet-
ric form was also obtained in 3D!.

The size dependence ofP(0), averaged over the rang
uqu,q+ with q+50.2 is shown in Fig. 12. The dashed line h
slope 20.70 corresponding to the estimated value
2u. In the droplet picture, the behavior should follow th
form asymptotically. Clearly it does not for this small rang
of sizes. More precisely, performing a similar analysis as
3D we findu850.1060.12, 0.0860.09, and 0.1760.06 for
T50.20, 0.32, and 0.46, respectively. For the same temp
tures, the goodness-of-fit parameter is 0.67, 0.65, and 0.
assumingu850, which is acceptable, while assumingu8

TABLE IV. Average energŷ E& at T50.2 and average ground
state energŷ E0&, for several sizes in four dimensions.N0 is the
number of samples used to compute the average^E0& using a hy-
brid genetic algorithm.

L ^E& ^E0& N0

3 2158.6460.03 2158.8260.04 45000
4 2510.4260.07 2510.9360.08 26681
5 21253.4160.20 21254.3360.20 8990

FIG. 10. Data for the overlap distributionP(q) in 4D at T
50.20. The data is normalized so the area under the curve is u
HenceP(q) is half as big as it would be if we had just plotted th
region of positiveq as in Figs. 2 and 3.
2-6
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MONTE CARLO SIMULATIONS OF SPIN GLASSES AT . . . PHYSICAL REVIEW B 63 184422
50.70 the goodness-of-fit parameters are tiny:
310210, 2.1310212, and 4.2310218.

As in 3D we find different results from what is predicte
by Refs. 20 and 21 at such low temperatures on the bas
the Migdal-Kadanoff approximation. However, our data ca
not rule out the possibility that some other behavior m
occur at larger sizes. Note also, that our data forP(0) de-
creases approximately linearly with temperature asT→0, as
shown in Fig. 13.

Figures 14 and 15 show the distribution of the link ove
lap ql at temperatures 0.20 and 0.46. As in 3D we see co
plicated structure at largeql and a subsidiary peak at small
ql which grows with increasingL.

The variance ofql is shown in Fig. 16 at several low
temperatures. The data is consistent with the power-law

FIG. 11. Same as for Fig. 10 but atT50.46.

FIG. 12. Log-log plot ofP(0) againstL in 4D averaged over the
rangeuqu,0.20. The data is independent of size within the er
bars. The dashed line has slope20.70, which is the estimated valu
of 2u. Asymptotically, the data should be parallel to this line a
cording to the droplet theory.
18442
1

of
-
y

-
-

e-

crease to zero shown in Eq.~6!. The range of sizes is so
small, and the values ofm l also so small, that we are not ab
to rule out a nonzero value forL→` in 4D. However, the
data isconsistentwith the asymptotic value being zero.

An extrapolation of our effective values ofm l to T50
gives 0.3560.06, which, assumingu850, gives

d2ds50.1760.03. ~11!

This is just consistent with theT50 results of PY who
find d2ds50.2160.01. However, the quoted error bars a
from statistical errors only, so the difference may be par
due to systematic effects coming from the small range
sizes studied.

r

-

FIG. 13. Data forP(0) as a function of temperature in 4D fo
L53, 4, and 5. The inset showsP(0)/T vs T.

FIG. 14. The distribution of the link overlap in 4D atT50.20
for different sizes. Note the logarithmic vertical scale.
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C. Viana-Bray model

For the Viana-Bray model,Tc is given by the solution of

1

A2p
E

2`

`

e2x2/2tanh2S x

Tc
D dx5

1

z21
, ~12!

wherez (56 here! is the coordination number. The solutio
is Tc51.8075•••, which is roughly twice the transition tem
perature of the 3D short-range model considered here, w
has the same coordination number.

Parameters of the simulations are shown in Table V.
each case, the largest temperature is 2.6 and the lowest
perature is 0.1. ForN5700 the data is not equilibrated fo
temperatures lower than 0.34, and is almost equilibrate
T50.34. Except forN5700 the acceptance ratio for glob
moves is always greater than about 0.3. ForN5700 the ac-

FIG. 15. Same as for Fig. 14 but at temperature 0.46.

FIG. 16. Log-log plot of the variance ofql as a function of size
in 4D at several temperatures. The data forT50.63 andT50.81
are multiplied by 1.15 and 1.7, respectively, for better viewing.
18442
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ceptance ratio is greater than 0.3 for most temperatures
there is one ‘‘bottleneck’’ where the acceptance ratio w
down to 0.08.

First of all, in Fig. 17 we show thatP(q) has a weight at
q50 which appears to be independent of the system size
expected.

A plot of P(ql) is shown in Figs. 18 and 19 forT
50.34 and 0.70. Note that the data forN5700, T50.34
show a dip aroundq.0.5, due to imperfect equilibration o
the Monte Carlo runs for some samples~this explains also
the fluctuations of the data forP(q) in Fig. 17!. As in the 3D
and 4D data discussed above we see a two-peak stru
develop as the size increases. This is also clearly visibl
the earlier work of Ciriaet al.35 in 4D. For the Viana-Bray
model, the position of the smaller peak shifts neither withL
or T whereas for the 3D data, see Fig. 6, it clearly shifts
larger values ofql with increasing size. In 4D, see Figs. 1
and 15, the range of sizes is sufficiently small that it is d
ficult to tell whether there is a shift in the position of th
peak or not, but if it is present, it appears to be a sma
effect than in 3D. It would be helpful to understand the phy
ics behind the two peak structure. For the hierarchical lat
used in the Migdal-Kadanoff approximation, Bokilet al.21

have given an explanation, but it is not clear to us how t
goes over to the models discussed here.

TABLE V. Parameters of the simulations for the Viana-Bra
model.

N Nsamp Nsweep NT

59 19 022 104 21
99 5326 33104 21
199 3116 105 21
399 3320 105 21
700 801 33105 21

FIG. 17. Data for the distribution of the overlap for the Vian
Bray model atT50.34. Note the logarithmic vertical scale.
2-8
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A plot of Var(ql) againstN is shown in Fig. 20 for dif-
ferent temperatures. In contrast to the data for 3D show
Fig. 8 ~which is for a similar number of spins!, the data is
clearly tending to a constant at largeN.

This is confirmed by thex2 analysis of the fits corre
sponding to Eq. ~10! shown in Fig. 21. Clearly the
asymptotic value ofa is large and finite. Compare this figur
with Fig. 9, which shows the corresponding results in 3
and wherea50 gives the best fit.

We conclude this section by pointing out that the siz
studied~which covers a similar range to that in 3D and 4!
are sufficient to determine the correct asymptotic behav
for the Viana-Bray model.

FIG. 18. Data for the distribution of the link overlap for th
Viana-Bray model atT50.34. Note the logarithmic vertical scale

FIG. 19. Same as for Fig. 18 but forT50.70.
18442
in

,

s

r

IV. CONCLUSIONS

To conclude, Monte Carlo simulations at low~but finite!
temperatures agree with earlierT50 studies of KM and PY
that there appear to be large-scale low-energy excitat
which cost a finite energy, and whose surface has fra
dimension less thand. However, since the sizes that w
study are quite small, there could be a crossover at la
sizes to different behavior, such as the droplet theory@with
u85u (.0)] or an RSB picture~whereu850, d2ds50).
We note, however, that our results for short range models
quite different from those of the mean-field-like Viana-Bra
model for samples with a similar number of spins, and, f
thermore, our results for the Viana-Bray model do pred
the correct asymptotic behavior for that model.

FIG. 20. A log-log plot of the variance ofql for the Viana-Bray
model at different temperatures. The data atT50.5 andT50.7 are
multiplied by 1.2 and 1.6, respectively, for better viewing.

FIG. 21. Thex2 of the fit in Eq.~10! for different values ofa for
the Viana-Bray model. Note that the minima of the differentx2 are
not monotonic inT since we have fewer data points forT50.20.
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