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Monte Carlo simulations of spin glasses at low temperatures
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We report the results of Monte Carlo simulations on several spin-glass models at low temperatures. By using
the parallel temperin¢exchange Monte Carldechnique we are able to equilibrate down to low temperatures,
for moderate sizes, and hence the data should not be affected by critical fluctuations. Our results for short-range
models are consistent with a picture proposed earlier that there are large-scale excitations which cost only a
finite energy in the thermodynamic limit, and these excitations have a surface whose fractal dimension is less
than the space dimension. For the infinite range Viana-Bray model, our results obtained for a similar number
of spins, are consistent with standard replica symmetry breaking.

DOI: 10.1103/PhysRevB.63.184422 PACS nuni®er75.50.Lk, 75.40.Mg, 05.56-q

. INTRODUCTION Several previous Monte Carlo simulatidfis®® have
found evidence for finite-energy large-scale excitations by
There has recently been a renewed interest in the nature &foking at the order parameter functi®{q). In the thermo-
the spin-glass phase. Two principal theories have been invegynamic limit this has delta functions gtlus or minug the
tigated: the “droplet model” proposed by Fisher and Hiise, Edwards-Anderson order parametgg,, corresponding to
(see also Refs. 2 and,3and the replica symmetry breaking ordering within a single valley, and, according to RSB
(RSB) picture of Parisf~® These scenarios and some otherstheory, a tail with a finite weight extending downde-=0. In
have also been considered by Newman and Stéin.im-  the droplet theoryP(q) is trivial, i.e., has only delta func-
portant difference between these models concerns the nurtiens at+qg,, though in a finite system there is a weight at
ber of large-scale, low-energy excitations. RSB theory fol-the origin which vanishes with increasitglike® L 7.
lows the exact solution of the infinite range Sherrington- These earlier Monte Carlo studies have found that the
Kirkpatrick (SK) model in predicting that there are weight of P(q) at the origin is independent of the systems
excitations which involve turning over a finite fraction of the size for temperatures down tol=0.7T, in three
spins and which cost only finite amount of energy in the dimension$® and T=0.6T_ in four dimensions? However,
thermodynamic limit. In addition, the surface of these largethese studies have been criticiZétf as being too close to
finite-energy excitations is expecfedo be space filing the critical point, so that the results are affected by critical
which means that the fractal dimension of their surfate, fluctuations and very much larger sizes would be needed at
is equal to the space dimensia@h,The droplet theory argues these temperatures to see the asymptotic behavior of the low-
that the lowest-energy excitation involving a given spin andtemperature spin-glass stafeReferences 20 and 21 also ar-
which has linear spatial extert typically costs an energy gue, however, that clear evidence for droplet theory behavior
L? where# is a(positive exponent. Hence, in the thermo- could be seen even for quite small sizesety low tempera-
dynamic limit, excitations which flip a finite fraction of the tures.
spins cost annfinite amount of energy. The droplet theory  In this paper we check this prediction by performing
also predicts thatlg<<d. Monte Carlo simulations in the low-temperature region,
Recently, Krzakala and MarfinKM), and two of uf’  though with an admittedly modest range of sizes, using the
(PY), have argued that a straightforward interpretation of‘parallel tempering” Monte Carlo methotf?* also known
their numerical results at zero temperature is intermediatas exchange Monte Carlo. One difficulty with this approach
between the droplet and RSB pictures in that there appear is to ensure equilibration since the technique proposed earlier
be large-scale excitations whose energy does not increasy one of us and Bhatt for conventional Monte Carlo does
with size, but these have a surface with<d. This interpre-  not work for parallel tempering. Here we use an alternative
tation of the results of KM and PY has, however, been reimethod, valid for the important case of a Gaussian distribu-
cently challengedthough in opposite sengeby Marinari  tion (which we use hepeand which is closely related to the
and Parisi* and by Middleton'? There has also been recent approach of Ref. 26 for the SK model.
debaté®'as to whether the- J model has similar behavior ~ Both in three and four dimensions, we find a tailfq)
to that of a model with a continuous distribution. In the sce-which is independent of siz@ip to the sizes studig¢dfor
nario of KM and PY it is necessary to introdut@o expo-  temperatures down td=0.2T; in three dimensiong3D)
nents which describe the growth of the energy of an excitaandT=0.1T in 4D, in contrast to the prediction of Refs. 20
tion of scaleL: (i) & (>0) such that.? is the typical change and 21. We also find that data for the “link overlap,” de-
in energy when the boundary conditions are changed, fofined below, fits well a description witd,<d, though the
example from periodic to antiperiodic, arld) 6’, which  extrapolation to the thermodynamic limit is quite large here.
characterizes the energy of clusters excited within the systefhus our results are completely consistent with the earlier
for a fixedset of boundary conditions. In this paper we testproposal of KM and PY.
whether the picture proposed by KM and PY is compatible We consider the short-range Ising spin glass in three and
with finite-temperature Monte Carlo simulations. four dimensions, and, in addition, the Viana-Bfaynodel.
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The latter is infinite range but with a finite average coordi-this way, the temperature of a given replica wanders up and
nation numbeg, and is expected to show RSB behavior. All down in a random manner, and each time the temperature
these models have a finite transition temperature. In the 3Qoes low the system is likely to end up in a different valley
case, the exponem obtained from the magnitude of the of the energy landscape. Thus different valleys are sampled
change of the ground-state energy when the boundary coir much less time than it would take for the system to fluc-
ditions are changed from periodic to antiperiodi®isbout  tuate between valleys if the temperature stayed fixed.

0.2, whereas in 4D it is much largé&tabout 0.7. We choose a set of temperaturgs i=1,2,... N+, in
The Hamiltonian is given by order that the acceptance ratio for the global moves is satis-
factory, typically greater than about 0.3. Since, at each tem-
= — E 3:SS 1) perature, we need two copies of the system to calcgjaied
&Y ' g, as shown in Eqs(2) and(3), we actually run two sets of

L _ N+ replicas and perform the global moves independently in
where, for the short-range case, the sitd® on a simple  o5ch of these two sets
. L N . R .

cubic lattice in d!mensmrd—:i or 4 with N=L" sites ( To believe results of simulations carried out at low tem-
=8 in 3D, L =5 in 4D), §==*1, and theJ;; are nearest- neraryres it is essential to have a sound criterion for equili-
neighbor interactions chosen according to a Gaussian distrfation. The technique pioneered by Ref. 25 does not work
bution with zero-mean and standard deviation unity. PeriodiGyith parallel tempering Monte Carlo because the temperature
boundary conditions are applied. For the Viana-Bray modeljses not stay constant. However, another method can be
each spin is connected with=6 other spins on average yseq for a Gaussian distribution of exchange interactions,
chosen randomlybut with the constraint that the total num- \ynich is a common and convenient choice. It depends on an
ber of bonds i$xact!y3N). We allowed the local coordir)g- identity first noted a long time ago by Bray and MoSror

tion to fluctuate which is different from the more familiar {he Sk model. Here we give the corresponding result for the

Viana-Bray model in which each site has exactly the samgnqrt-range case. We start with the expression for the aver-
coordination number, but we expect the properties of the tw%ge energy per site

models to be very similar. The width of the Gaussian distri-
bution is again unity, and the range of sizedNis: 700. 1

Our attention will focus primarily on two quantities: the U=-—— 2 [Ji(SS) Jav s (4
spin overlapg, defined by N &) T

1 (De2) where(- - - )1 denotes the Monte Carlo average for a given
q:NiZ‘l SIS, (2)  set of bonds, and---],, denotes an average over the
(Gaussian bonds J;; . One can perform an integration by
where “(1)” and “(2)" refer to two copiegreplicag of the ~ parts over theJ;; to relateU to the average link overlap
system with identical bonds, and the link overlap, de- defined in Eq.(3), i.e.,
fined by
TV

1
a3, SOSISPsR. ® (W=R, & (89t Ggp O
1)

In the last equatiori\,, is the number of bonds\z/2 for the where the bracketé - -) indicate both a Monte Carlo aver-
models considered here, whezes the coordination num- 2age and and an average over disordéris the variance of
ben, and the sum is over all pairs of spinandj which are  the interactiongset equal to unity in this paperthe sum is
connected by bonds. The advantage of calculagjings well ~ OVver sitesi andj connected by bondgeach pair counted
asq is that if two spin configurations differ by flipping a once, and the factor o£/2 arises because there af2 times
large cluster the differs from unity by an amount propor- @s many bonds as sites. A very similar approach has been
tional to thevolumeof the cluster whileg, differs from unity ~ used to test equilibration of the parallel tempering method

by an amount proportiona| to theurfaceof the cluster. for the SK modeF,B except that in that case the square of the
spin-glass order parameter appears rather than
Il. EQUILIBRATION We start the simulation by randomly choosing the spins in

the 2Nt replicas to be uncorrelated with each other. This

Simulations of spin glasses at low temperatures are nowneans that the two sides of E¢(5) should approach the
possible, at least for modest sizes, using the parallel tempeequilibrium value fromoppositedirections for the following
ing Monte Carlo method®?*In this technique, one simulates reason. The data fa;) will be too small if the system is
several identical replicas of the system at different temperanot equilibrated because the random start means that the
tures, and, in addition to the usual local moves, one performspins are initially further away from each other in configu-
global moves in which the temperatures of two repligaish ration space than they will be in equilibrium, whereas ini-
adjacent temperaturesare exchanged. It turns out to be tially the energy will not be as negative as in equilibrium so
straightforward to design an algorithm which satisfies thethe right-hand side of E@5) will initially be too high. Hence
detailed balance condition, and it will also have a good acwe expect that if the two sides of E¢b) agree then the
ceptance ratio if the temperatures are fairly close together. Isystem is in equilibrium.
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| | | TABLE |. Parameters of the simulations in three dimensions.
3 . Nsampis the number of sample@.e., sets of bonds Ngyeepis the
— 4 total number of sweeps simulated for each of tig 2eplicas for a
L i single sample, and; is the number of temperatures used in the
parallel tempering method.
0.7 - —
B b L Nsamp Nsweep NT
- i 3 15000 16 18
I i 4 16 000 10 18
i T 5 7590 16 18
0.65 4+ 1-2T[U|/z — 6 4539 3x10° 18
= <q” 1 8 3891 16 18
* <q¥>
e <gi> 7
o <g®> T . .
o <qt spins(replicag, andNy, the number of temperature values,
q*> T . . . .
| | used in the 3D simulations. For each size, the largest tem-
0.6 104 105 108 perature is 2.0 and the lowest temperature is 0.1. However,

N for L=8, the data for the two lowest temperaturés,
sweep =0.10 and 0.15, are not fully equilibrated so data at these
FIG. 1. The solid squares are results for the average link overtemperatures has been ignored and the lowest temperature
lap, defined by Eq(3), as a function of the number of Monte Carlo used in the analysis is 0.20. This is to be compared *hith
sweepsNgyeep that each of the By replicas performs. Averaging T ~0.95. The set of temperatures is determined by requiring
was performed over the last half of the sweeps indicated. The trithat the acceptance ratio for global moves is satisfactory for
angles are obtained from the energy in the way indicated, anghe |argest sizel. =8, and for simplicity the same tempera-
should agree with the results fay if the system is in equilibrium,  {,res are also used for the smaller sizes.IFe13,4,5, and 6,
as shown in Eq(5). The two sets of data approach each other from,e acceptance ratio for global moves is greater than about
opposite directions and then do not appear to change at a larggy g i qyerage and is always greater than 0.3 for each pair of
number of sweeps, indicating that they have equilibrated. We als?emperatures. Fdr=8 the average acceptance ratio is 0.41
show data for higher moments of and q,. They appear to be and the lowest value is 0.12. '

independent of the number of sweeps oncedghdata has equili-
brated. The data for the different moments has been shifted upwards In Table Il we compare the average total enes)

by the following amounts for better viewingg?) by 0.11,(q*) by ZNU at T=_0'2_0 with the average ground-state energy ob-
0.48, (g?) by 0.17, and(q’) by 0.375. These results are far talne_d by f|n_d|ng th_e ground_state of each sample with a
=3T=0.5, andL=8, and the data is averaged over 3891 sampleshYbrid genetic algorithm, as discussed ellsewﬁéfﬁhe two
energies are very close together, indicating that at this tem-
For illustration purposes we show in Fig. 1 how this perature our data are unlikely to be affected by the critical
works for three-dimensions with=8 and T=0.5 (to be  POINt. _
compared with! T,=0.95). The data fo(q,) increases as _ Figures 2 and 3 showsymmetrized data for P(q) at
the length of the simulation increases while that determined@mperatures 0.20 and 0.50. There is clearly a peak for large
from the energy decreaséby a lesser amountOnce the d and_a_tall dow_n t@=0. At both temperatures one sees t_hat
two agree they do not appear to change at longer timedhe tail in the_dlstnbunon_ is _essentlally m_dependent of size.
indicating that they have reached equilibrium, as expected® MoOre precise determination of the size dependence of
Furthermore, the data for different moments of the spin overP(0) is shown in Fig. 4 where, to improve statistics, we
lap g as well as the link overlap, appear to saturate whep ~ average over thédiscretg q values W'th|Q|<,q°’ with q.
has equilibrated so it does not appear that there are longet0.20. In general, we expect th&(0)~L "%, where we
relaxation times foi than forg, . We also checked that the allow ¢ to be different fromé, the latter being obtained
whole distributionP(q) does not change with time once the from boundary condition changes. In the droplet picture
two estimates forq,) agree. By presenting results for an 6’ = 6. The dashed line in Fig. 4 has slope0.20 corre-
intermediate temperature, rather than the lowest temperature,
in Fig. 1, we show that the results do not change for times TABLE Il. Average energy E) at T=0.2 and average ground-
longerthan that needed fay; and 1- 2T|U|/z to agree. The state energyEo) for several sizes in three dimensiomd; is the
length of the simulation was chosen so thatjaatesttem- ~ number of samples used to compute the ave(&gg using a hy-

perature, the data fay, and 1-2T|U|/z just converged brid genetic algorithm.
L E E N
lll. RESULTS (E) (Eo) 0
A. Three dimensions 4 —106.49-0.05 —106.60:0.03 50000
. 6 —364.06£0.17 —364.94+0.06 39246
In Table I, we showNg,y,, the number of samples, g —867.04-0.27 —868.20-0.15 13302

Nsweep the total number of sweeps performed by each set of
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FIG. 2. Data for the overlap distributioR(q) in 3D at T
=0.20. Note that the vertical scale is logarithmic to better mak
visible both the peak at largg and the tail down ta@=0. In this
and other similar figures in the paper, we only dispsayneof the
data points as symbols, for clarity, but the lines conrdicthe data
points. This accounts for the curvature in some of the lines in be
tween neighboring symbols. In this paper all distributions are nor
malized so that the area shown under the curve is unity.

sponding to the estimated vaffeof — 6, so in the droplet
picture the data is expected to follow a track parallel to thi
line. The actual size dependence is clearly much weaker th
this, and consistent with a constdm0), which implies that

the energy to create a large excitation does not increase wit

size, and therefor@’=0.

More precisely, a two-parameter fit of the data in Fig. 4
with the formaL™ %, gives ¢’ =0.01=0.05 for T=0.20,
0'=0.02+0.02 for T=0.34, and§'=—0.01+0.02 for T

10 I I

oo U]k~ W

FIG. 3. Same as for Fig. 2 but @t=0.50.

e
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FIG. 4. Log-log plot ofP(0), thespin overlap atj=0, against
L in 3D. The data is independent of size within the error bars. The
dashed line has slope 0.20, which is the estimated value of6.
Asymptotically, the data should be parallel to this line according to
the droplet theory.

0.50. Different values of}, give similar results for the fits.
We also tried a one-parameter fit in whigh is fixed. As-
sumingd’ =0 the goodness-of-fit paramet@ris 0.34, 0.77,
and 0.57 forT=0.20, 0.34, and 0.50, respectively, whereas
assumingd’ =0.20 the goodness-of-fit parameters are very

Sow, 1.4x107%4, 2.8x10°%, and 7.6<10°15, respectively.
aﬂence, just considering statistical errors for the sizes studied,

tﬁe data is compatible with’ =0 and not withg’ =0.20.

References 20 and 21 studide(0) by the Migdal-
Kadanoff approximation, which is known to yield the droplet
picture asymptotically. They find that, although the behavior
of P(0) at higher temperatures is masked by critical point
effects, data at low temperatures, such as those considered
here,shouldshow the droplet behavior. That we find quite
different results indicates that the Migdal-Kadanoff approxi-
mation is not applicable to such small sizes. However, our
data still do not rule out the possibility that the droplet
theory, or some other theory, might be correct at larger sizes.

In Fig. 5 we show the data fd?P(0) versusT. We see an
approximately linear decrease of the dataTas 0. Note
though, that there are some nonlinearities as shown in the
figure’s inset.

Figures 6 and 7 show the distribution of the link overlap
g, at T=0.20. We see that there is a large peal,atlose to
unity (with structure coming from the allowed discrete val-
ues ofq,) and a much weaker pedkote the logarithmic
vertical scalg for smallerq, which grows slowly with in-
creasing- and moves to larger values qf. We will refer to
this feature again below when we discuss the Viana-Bray
model.

The variance oP(q,) is shown in Fig. 8 for several low
temperatures. The data is consistent with a power-law de-
crease to zero, i.e.,

Var(qg,)~L 4, (6)
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T O
FIG. 5. Data forP(0) as a function of temperature in 3D for )
different values oL. The inset show#(0)/T vs T. FIG. 7. Same as for Fig. 6 but &= 0.50.
where the powe, seems to vary somewhat with This m=0"+2(d—dy). (7

variation is probably due to corrections to scaling coming _ _
from the shift with T of the complicated peak structure at An extrapolation of our results fog, to T=0 gives

largeq seen in Fig. 6. 0.76+:0.03. Assumingd’ =0 this implies

The asymptotic value gk, is related to the exponents
and dq that have been mentioned earfférTo see this, as- d—ds=0.38+0.02, ®)
sume that the nonzero variance is largely due to the eXCitaVvhich is consistent with th@=0 result of PY, namelyd
tion of a single large cluster of size of orderIts energy is —d,=0.42+0.02. '

of orderL?, and the probability that thermal fluctuations can  \we have also looked at more general fits of the form
create it is of ordefT/L?, assuming a constant density of

states for these excitations. One minus the link overlap be- v - b
tween the two states is of ordér (4-99 because there is ar(q)) =a+ <. ©
only a contribution to *q; from the surface of the cluster.
Hence there is a probabiliﬂ/'L“" of getting adq, of order I | T
L~ (4799 5o the variance goes likEL~# where 3D
— i i | 0.1 n
10 = o i
E —~0.05 —
C 4 &
r K 1
B [ ] > -
= .
& 1 B 4 | slope=—1.47
E E o T=0.34, slope=—1.24
i ] »  T=0.27, slope=—1.14
B 7 a4 T=0.20, slope=—1.04
- 0.01 | | l | | |
3 4 5 6 7 8
0.1 = L
0 0.2 0.4 0.6 0.8 1 FIG. 8. Log-log plot of the variance @, as a function of size in

q, ' ' 3D at several temperatures. The data To£0.50 andT=0.70

are multiplied by 1.2 and 1.7, respectively, for better viewing.
FIG. 6. The distribution of the link overlap in 3D &t=0.20 for The data forT=0.70 is somewhat curved, and so it does not fit

different sizes. Note the logarithmic vertical scale. well a power law.
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TABLE IV. Average energy E) at T=0.2 and average ground
state energyEg), for several sizes in four dimension¥, is the
number of samples used to compute the avef&gg using a hy-
brid genetic algorithm.

4

(E) (Eo) No

—158.64-0.03 —158.82£0.04 45000
—510.42:0.07 —510.93£0.08 26681
—1253.410.20 —1254.33:0.20 8990

a b W —

1= I simulations are shown in Table lll. For each size, the largest
temperature is 2.80 and the lowest is 0.20. The acceptance
3D ratio for global moves is always greater than about 0.5 for
0 , | | L=3, about 0.2 fol.,.=4 and about 0.3 fot =5. In Table

0 0.002 0.004 IV we compare the average energyTat 0.2 with the aver-

a age ground state energy obtained with the hybrid genetic
algorithm of Ref. 32. As in 3D, the data indicate that the
system is very close to the ground state.

Figures 10 and 11 show data f&x(q) for temperatures
0.20 and 0.46. As in three-dimensions, the tail in the distri-
bution is essentially independent of size. We display the full

(q), rather than just the symmetric part as in 3D, in order
to show that it has a symmetric form as exped@dymmet-
&ic form was also obtained in 3D

The size dependence &f(0), averaged over the range

(10 |g|<q. with g,=0.2 is shown in Fig. 12. The dashed line has

slope —0.70 corresponding to the estimated value of
in which a is fixed, and lib andc are the fit parameters. The — 6. In the droplet picture, the behavior should follow this
X2 of the fit is then determined as a function @fand the  form asymptotically. Clearly it does not for this small range
results are shown in Fig. 9. of sizes. More precisely, performing a similar analysis as in

One sees that the minimum sz is for a=0 and the 3D we find#’=0.10+0.12, 0.08-0.09, and 0.1Z0.06 for
range ofa in which x? has increased by less than unity T=0.20, 0.32, and 0.46, respectively. For the same tempera-
relative to thea=0 value isa<5.3x 104 for T=0.50 and tures, the goodness-of-fit parameter is 0.67, 0.65, and 0.014,
a<1.3x10 3 for T=0.34. The width of the distribution of assumingé’=0, which is acceptable, while assumirg
q; is va which has values 0.023 and 0.036, respectively.

Thus while, our data cannot rule out a nonzero value for the 10 . I . I . .
width of the distribution ofg, in the thermodynamic limit, it

FIG. 9. They? of the fit in Eq.(10) (in which a is fixed and It
andc are fit parametejdor different values of. The results are for
the 3D model.

to see to what extent the data can rule out a nonzero value
a. This is of interest because a nonzero value das re-
quired by standard replica symmetry breaking theory. W
carried out fits of the form

In[Var(q;)—a]=Inb—clInL,

does suggest that this value, if nonzero, must be very small. 4D, T = 0.20
We note, however, that a rather small valueadf not un- \ L /
reasonable in RSB. For example, Rf(q,) consists of two ol 43 i®
delta functions at a distance of 0.1, whose weights are 0.1 1 3451
and 0.9, respectively, then the valueaofs 0.0009. R
=
B. Four dimensions A i
In four dimensions we present results down to a tempera- 0.1k -
ture of 0.20, compared with T.~1.80. Parameters of the E 3
TABLE Ill. Parameters of the simulations in four dimensions. B 7
) Quantities involving the link overlap, have been calculated i
with half the number of samples. 0.01 ' | ' | L | L
-1 -0.5 0 0.5 1
L Ng':u%p Nsweep NT q
3 60 000 6x 10° 12 FIG. 10. Data for the overlap distributioR(q) in 4D at T
4 30000 6< 10* 12 =0.20. The data is normalized so the area under the curve is unity.
5 12190 3X10° 23 HenceP(q) is half as big as it would be if we had just plotted the

region of positiveq as in Figs. 2 and 3.
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FIG. 13. Data forP(0) as a function of temperature in 4D for
L=3, 4, and 5. The inset show&0)/T vs T.

=0.70 the goodness-of-fit parameters are tiny: 2.1

— 10 — 12 — 18 . . .
X101 2.1X10 *% and 4.¢10 *°. _ _ crease to zero shown in E¢6). The range of sizes is so
As in 3D we find different results from what is predicted sma||, and the values of, also so small, that we are not able
by Refs. 20 and 21 at such low temperatures on the basis @f ryle out a nonzero value far— in 4D. However, the
the Migdal-Kadanoff approximation. However, our data can-qgata isconsistentwith the asymptotic value being zero.
not rule out the possibility that some other behavior may  ap extrapolation of our effective values af, to T=0

occur at larger sizes. Note also, that our dataR¢0) de-  gives 0.35-0.06, which, assuming’ =0, gives
creases approximately linearly with temperaturd as0, as

shown in Fig. 13.

Figures 14 and 15 show the distribution of the link over-
lap g, at temperatures 0.20 and 0.46. As in 3D we see com-
plicated structure at largg and a subsidiary peak at smaller
g, which grows with increasing. This is just consistent with th&=0 results of PY who

The variance ofg, is shown in Fig. 16 at several low find d—ds=0.21+0.01. However, the quoted error bars are
temperatures. The data is consistent with the power-law ddrom statistical errors only, so the difference may be partly

due to systematic effects coming from the small range of

FIG. 11. Same as for Fig. 10 but @t=0.46.

d—ds=0.17+0.03. (12)

0.09 L\A\§l_ sizes studied.
0.08 — — - i i
3 007 7 - 4D, T = 0.20
B = L
< 0.06 B —3 L
= ~~._slope = —0.70 0 a3
¢ 0.05 |- -30%P¢ = 7E E o4
\% Tl . e5
< 004 31— =14 G
g T~ A 1 E =
AT = 0.20 - ]
0.03 - °T = 0.32 ~ B i
oT = 0.46 4D, q. = 0.2 L -
l l l
L C :
FIG. 12. Log-log plot ofP(0) againsL in 4D averaged over the 0 0.25 0.5 0.75 1
range|q|<0.20. The data is independent of size within the error q,

bars. The dashed line has slop®.70, which is the estimated value

of — . Asymptotically, the data should be parallel to this line ac-

cording to the droplet theory.

184422-7

FIG. 14. The distribution of the link overlap in 4D @t=0.20
for different sizes. Note the logarithmic vertical scale.
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| | | TABLE V. Parameters of the simulations for the Viana-Bray
10 = 4D, T = 0.46 \ model.
C L N Nsamp Nsweep NT
= A3
L o4 59 19022 16 21
| e5 99 5326 310 21
- 199 3116 16 21
o
E: 1 & 399 3320 16 21
E 700 801 Xx10° 21
B ceptance ratio is greater than 0.3 for most temperatures but
= there is one “bottleneck” where the acceptance ratio went
down to 0.08.
0.1 First of all, in Fig. 17 we show tha®(q) has a weight at
0 0.25 0.5 0.75 1 g=0 which appears to be independent of the system size, as
qQ expected.
A plot of P(q;) is shown in Figs. 18 and 19 for
FIG. 15. Same as for Fig. 14 but at temperature 0.46. =0.34 and 0.70. Note that the data =700, T=0.34

show a dip around|=0.5, due to imperfect equilibration of
the Monte Carlo runs for some samplgkis explains also
For the Viana-Bray modell . is given by the solution of the fluctuations of the data fé(q) in Fig. 17). As in the 3D
and 4D data discussed above we see a two-peak structure
1 develop as the size increases. This is also clearly visible in
dx= — (12)  the earlier work of Ciriaet al®® in 4D. For the Viana-Bray
z model, the position of the smaller peak shifts neither With
or T whereas for the 3D data, see Fig. 6, it clearly shifts to

is T.=1.8075 - -, which is roughly twice the transition tem- larger values ofy, with increasing size. In 4D, see Figs. 14

perature of the 3D short-range model considered here, whic nd 15, the range of sizes is sufficiently small that it is dif-
has the same coordination number ' icult to tell whether there is a shift in the position of the

) X . eak or not, but if it is present, it appears to be a smaller
Parameters of the simulations are shown in Table V. Ir{e)ffect than in 3D. It would be helpful to understand the phys-

each case, the largest temperature is 2.6 and the lowest tem- , . . :
perature is 0.1. FoN=700 the data is not equilibrated for ics behind the two peak structure. For the hierarchical lattice

; ; _ ; ; 44121
temperatures lower than 0.34, and is almost equilibrated c—ﬁsed in the Migdal-Kadanoff approximation, Boldt al.

- a ) ave given an explanation, but it is not clear to us how this
T—0.34. Except foN= 700 the acceptance ratio for global goes over to the models discussed here.
moves is always greater than about 0.3. Ret 700 the ac-

C. Viana-Bray model

X

)
e *antf| —
T

1

wherez (=6 here is the coordination number. The solution

10 | | | |
Viana—Bray, T=0.34

0.07 | -

N
| o 700
a 399
L0 199
s |
A B
D L
0.02 AT = 0.20 slope = —0.62
OT = 0.32 slope = —0.80
@T = 0.46 slope = —0.99
ZT = 0.63 slope = —1.23
T = 0.81 slope = —-1.52 0.1
l | |
3 4 5
L 0 0.2 0.4 0.6 0.8 1

FIG. 16. Log-log plot of the variance @ as a function of size
in 4D at several temperatures. The data Ter0.63 andT=0.81 FIG. 17. Data for the distribution of the overlap for the Viana-
are multiplied by 1.15 and 1.7, respectively, for better viewing.  Bray model afT =0.34. Note the logarithmic vertical scale.
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10 . L A
- | lViana—;Bray, T|=O.34 . 0.08 Viana—Bray =
- o 700 1 0.06 L -
i & 399 0.05 C J
* 199 — r .
99 \Oj 0.04 _— —_
s ' g ]
= C
: 0.02 -* T=050 -
L = T=0.34
& T=0.20 7
01 T e
- N

q FIG. 20. A log-log plot of the variance af; for the Viana-Bray
model at different temperatures. The datd at0.5 andT=0.7 are
FIG. 18. Data for the distribution of the link overlap for the multiplied by 1.2 and 1.6, respectively, for better viewing.
Viana-Bray model aff =0.34. Note the logarithmic vertical scale.

IV. CONCLUSIONS
A plot of Var(q,) againstN is shown in Fig. 20 for dif-

ferent temperatures. In contrast to the data for 3D shown il?emperatures agree with earli&=0 studies of KM and PY

Fig. 8 (Wh'c_h is for a similar number of spinsthe data is that there appear to be large-scale low-energy excitations

clearly tending to a constant at lare _ which cost a finite energy, and whose surface has fractal
This is confirmed by they® analysis of the fits corre- gimension less thaml. However, since the sizes that we

sponding to Eq.(10) shown in Fig. 21. Clearly the stydy are quite small, there could be a crossover at larger

asymptotic value o& is large and finite. Compare this figure sjzes to different behavior, such as the droplet théorigh

with Fig. 9, which shows the corresponding results in 3D,¢"=¢ (>0)] or an RSB picturgwhere 8’ =0, d—d,=0).

and wherea=0 gives the best fit. We note, however, that our results for short range models are
We conclude this section by pointing out that the sizesquite different from those of the mean-field-like Viana-Bray

studied(which covers a similar range to that in 3D and)4D model for samples with a similar number of spins, and, fur-

are sufficient to determine the correct asymptotic behaviorthermore, our results for the Viana-Bray model do predict

To conclude, Monte Carlo simulations at Iglut finite)

for the Viana-Bray model. the correct asymptotic behavior for that model.
3 T T T T I T T T T
I I I I Viana—Bray
| Viana—Bray, T=0.70 | L i
ol o 700 | T=0.50
s 399 A 7
e 199
. = 99 =T 1
\970 8 - + 59 7
D—c . | | 1 - 1
0.6 ] T=0.20
0.4 |- | T=0.34
B T O P R AT N N NN A NN SN NN S N S
0 0.01 0.02 0.03
0.2 ' ' ' a
0 0.2 0.4 0.6 0.8 1
q, FIG. 21. They? of the fit in Eq.(10) for different values of for
the Viana-Bray model. Note that the minima of the differghtare
FIG. 19. Same as for Fig. 18 but fdr=0.70. not monotonic inT since we have fewer data points for 0.20.
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