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Critical behavior of the Ising model on fractal structures in dimensions between one and two:
Finite-size scaling effects
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The magnetic critical behavior of Ising spins located at the sites of deterministic Sierpinski carpets is studied
within the framework of a ferromagnetic Ising model. A finite-size scaling analysis is performed from Monte
Carlo simulations. We investigate four different fractal dimensions between 1.9746 and 1.7227, up to the sixth
and eighth iteration step of the fractal structure in one case. It turns out that the finite-size scaling behavior of
most thermodynamical quantities is affected by scaling corrections increasing as the fractal dimension de-
creases, tending towards the lower critical dimension of the Ising model. These corrections are related to the
topology of the fractal structure and to the scale invariance. Nevertheless the maxima of the susceptibility
follow power laws in a very reliable way, which allows us to calculate the ratio of the exponénts
Moreover, the fixed point of the fourth order cumulantTat exhibited by Binder on translation invariant
lattices is replaced by a decreasing sequence of intersection points converging towards the critical temperature.
The convergence towards the thermodynamical limit as the size of the networks increases is slowed down as
the fractal dimension decreases. At last, the evolution of the discrepancies between Monte Carlo simulations
and e expansions with the fractal dimension is set out.
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[. INTRODUCTION fractal lattices than on two-dimensional quasiperiodic dies,

which are another case of lattices without translation invari-

The problem of criticality on self-similar structures ap- ance. A similar result was obtained in an analytic way by

peared since the early works of Gefenal1=° The classical Liu'® in the particular case of the Sierpinski gasket. Never-

€ expansions yield critical exponents associated with seconteless, this result cannot be directly related to the problem

order phase transitions in noninteger dimensions. The firs¢€ are dealing with, since no phase transition in the thermo-
question in dealing with this problem is to study the link dynamical limit occur in the case of the gaskén other
between these theoretical expansions and physical systetd9rds, an infinitely narrow transition occurs right&0.)

such as fractal materiafsMoreover, we know that transla- AS & matter of fact, a full understanding of second order

tion invariance is a necessary hypothesis to proceed witﬁ.hase transitions in fractals needs the investigation of dimen-

dimensional perturbatiohSince this invariance is broken in sions higher than 2. Very recently, Hsiad al.™ studied

noninteger dimensions, the second and main question is tﬁgree fractal dimensions between 2 and 3. They showed that

following: how can the scale invariance of the underlyin staling corrections vanish much more quickly than in the
ng: YN b resent case, and were able to give evidence that the hyper-
self-similar structure affect a second order phase transition

: scaling relation is satisfied when the space dimension is re-
Following the early works of Gefen, many authors have deal g P

) _ laced by the Hausdorff one. Indeed, second order phase
with these problen;i 7by several methods: real space renofzansitions at nonzero temperature occur at the both integer
malization group;®>>’ e expansiong, high-temperature

: . 71132 bounds, while we study here dimensions between the lower
expansiong, Monte Carlo simulationt®’ %12 They led to critical dimension of the Ising model and two.

controversial results, discussed in Sec. C of the former article |n this paper, we investigate four different fractal dimen-

of Monceauet al® For instance, the question whether the sions in order to show how the scaling corrections can be
Hausdorff dimension is the relevant one which can be assaelated to the convergence speed of the thermal averages
ciated with universality in the case of fractal dimensions betowards the infinite limit as the size of the lattice increases.
tween one and two was still opened. The most recent pape&/e give evidence that this speed decreases as the fractal
on the subject appeared nearly at the same time, using powlimension is lowered. Static critical exponents will be calcu-
erful Monte Carlo simulation methods. Monceasall®  lated when the lattice sizes we can simulate enable us to
used merely the Wolff algorithm together with the histogramreach properly the region where corrections vanish; other-
method, whereas Carmoea al** used Wolff and Metropo- wise, bounds will be given. This article is divided into three
lis algorithms together with the spectral density method. Inparts: the model, the numerical methods, and the scaling
this way, the two groups were able to study the critical betheory are briefly recalled in Sec. Il. Numerical results asso-
havior much more thoroughly. They noticed that the compu<iated with the four fractal dimensions we studied are set out
tation of critical exponents, using the finite size scalingin Sec. lll. Section IV is devoted to a synthetic discussion in
analysis comes up against a main difficulty: scaling correcthe light of our recent simulations and the results of Carmona
tions appear to be very strong. Indeed, they are stronger ogt al.
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100Az(b,c,.k) B. The numerical methods and the standard finite

12 \ size scaling analysis

10 The Monte Carlo simulations have been carried out using
\\ the Wolff algorithm?® The use of the single histogram

8 \\ e method?2to process the data obtained from a Monte Carlo

6 ~8C@2) simulation at a given temperatufg allowed us to calculate

\\ ~-Seed) the thermodynamical averages over a rangearoundT,.

4 \ Given a fractal structure SB(c,k), we callL =bX the linear

» size of the lattice, andN=(b?—c?)¥ the number of spins.
\\ k (E)t and(M)+ are the canonical thermodynamical averages

0 . ) . ; ; : . : : . of the total energy and the absolute value of the magnetiza-

tion at temperaturd. m(L,T)=(1/N) (M)t is the associ-
FIG. 1. The behavior of the relative deviation of the mean num-ated magnetization per spin. The specific heék,T) and
ber of first neighbord z(b,c,k) versus the segmentation step the zero field magnetic susceptibility(L,T) per spin are
thus given by
Il. THE METHODS

A. The fractal structure and the magnetic model 1 (E2>T—<E)$
The fractal structures we deal with are deterministic Sier- CLD=N"=2
pinski carpet$® They are constructed in the following way: keT
a square is segmented irid subsquares, anef subsquares
are deleted in the center of the initial square. This segmen- 1 (M= (M)2
tation process is iterated on the remaining subsquéres Y(L T)=—< < >T. (5)
times. We shall call S@c) the mathematical fractal, ob- ’ N kgT

tained in the limit wherek tends towards infinity, and

SC(b,c,k) the structure associated with a finite number of o ) _ _

segmentation steps. The fractal dimension reddsIn(b? .Thezgszt?ndar.d finite size scaling analysis, developed by
—)/In(b). The mean number of first neighbors per site Fisher;><" provides apowerful tool to determine thg critical
(z(b,c,k)) is a convenient measure of the mean local topo|_exponents from.the behawpr of the thermodynammal aver-
ogy of a given network S@c,k): transfer-matrix methods 29€s as a function of the size of the sys?_ém.ccordmg to
enable us to calculatz(b,c,k)) analytically’® In the case the standard scaling hypothesis, and provided that the size of

of periodic boundary conditions, they yield the system is large enough, we can write, right at the critical
’ point C(L,Tc)~L*”, x(L,Te)~L”", and m(L,T¢)

: 4

(b2—c2—b—c) Ac ( b \X ~L~#” where v is the correlation length exponent. The
(z(b,c,k))= ER SR \ T - computation of the critical exponents, 8, v, can be de-
b*—c°—b b*—c®~blb*—c duced from the size dependence of the thermodynamical av-

) erages, provided thdic and v are known with a sufficient
accuracy. In a general way, scaling corrections are appre-

The relative deviatiomz(b,c,k) from the infinite limit ciable wherL is not large enough, and they can be described

thus reads by an additional exponeré. The above power laws must be
(z(b,c,k))—(z(b,c,)) replaced by relations under the following fofffior instance,
Az(b,c,k)= —"— —, (2) in the case of the susceptibility y(L,Tc)~L”"(1
(z(b.c,)) +A L"), A, is the amplitude of the corrections related

The behavior oA z(b,c,k) versuskis given in Fig. 1, for the 10 x.

four Sierpinski carpets studied in the present paper. They It is worth noticing that this standard analysis has to be
have an infinite ramification order which means that oneslightly modified if « is strictly negative. In that case, the
must cut an infinite number of bonds to isolate any boundedlivergence of the specific heat at the critical point in the
part of the fractal. Thus, these fractals are entirely connectedhermodynamic limit is replaced by a hump. For finite-sized
which implies the existence of a second order ferromagnetigystems, we should writ€(L,T)=C..(t)+L*"C(tL*"),
Ising transition at finite non zero temperatdréhe spins; ~ Where t=(T—T¢)/T¢ is the rescaled deviation from the
are located at the sites of the deterministic Sierpinski carpegritical temperature, and is a scaling function witC(0)

and the Hamiltonian reads negative.
Furthermore, finite size effects replace the divergences at
the critical point by finite peaks, shifted away frohg . Ef-
H:_Jz SiS; - () fective critical temperatures can thus be defined, for each

t size and each physical quantity concerned, as the positions of
s; assume the values1 and the summation runs on all these maximav can be calculated, without knowing. by
interacting first neighbor pairs. The exchange coupling contooking at the size dependance of the peaks in the logarith-
stantJ is assumed to be positive. mic derivatives ofM"(Bg=1/kgT):
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dIn({(M"+) (EM™)+ 10° ¢

én(L, )=

=(E)r— . F max Irnax
07,88 < >T <Mn>-|- (6) @Enaxz +(I)1 +q)3

max max
L Y,

Assuming that the logarithmic derivatives ™" fulfill
the scaling hypothesis, the values of the maximajrscale 1000
asLY”: ¢™(L)=LY". The exponent/v) can be calculated
without knowingT¢ from the scaling behavior of the maxi-
mum of the susceptibilityy™(L)=L”". The relations be-
tween the critical and the effective temperatufEs(L),
Tg”(L) have the same form. For instance, in the case of the
susceptibility, we can write

100 |

1 10 e
Te(L)=Te+Fl ™Y, () 10 100 1000

L
where Fy is a constant. The critical temperatufg can be
calculated from this relation, provided thatis known. FIG. 2. The maxima of the logarithmic derivativég™, from
An alternative method to determifig. , without knowing ~ k=2 tok=4, versus the sizg, for SC(5,1).
v has been introduced by Bind&The fourth order magne-

tization cumulant reads ceptibility or the Binder cumulant than in the case of the
logarithmic derivatives or the specific heat. As a result, we

(M%) were able to compute the maxima of the logarithmic deriva-

UL m=1- (M2 ®  tives ®* and the positions of the associated effective tem-

peraturesT(é’i(L) from k=2 to k=4 only. The values of

In translation invariant latticeg) (L, T) exhibits a fixed point  these maxima are plotted as a functionLdh Fig. 2. As for
at T=Tc: U(L,Tc)=U", whereU™ is an universal value, the next figures, the error bars associated with statistical un-
independent on the system size. certainties are smaller than the size of the dots, if they are not

It should be emphasized that in the case of fractals, thg|otted. No finite size scaling corrections can be brought out
values ofL. we investigate are not uniformly distributed since fom these data, since the law<"(L)~LY" are satisfied by
they define a geometrical series with a rdtidhe incremen- o5y of the four fits with reliability coefficientsR?
tation of a segmentation step has a very high computation. 1 50000 and lead to a mean value 1.083+ 0.002.
cost and strongly reduces the efficiency of the histogram The effective critical temperaturél'sqc’i(L) are plotted in
method by increasing very quickly. Since laws have to be _. ) P _ .
fitted from a low number of points, although they are distrip-F19- 3 as a func_thn OT' ' W.'th ’.’_1'983' Th? beh?""?r.
uted in a large range of sizes, one must remain very carefuﬁXpept_E’d fror2n finite size scaling IS satisfied W'.th reliability
For every fit, we performed a classical least squarg)  coefficientsR™0.99980 for each fit, and varying from
linear method and a nonlinear fit based upon a steepest de:081 0 1.085. The ordinates at the origin lie in a range
scent methodLevenberg-Marquardt algorithlA’ The latter ~Petween 2.0635 an 2.0665, yieldifig=2.0650+ 0.0015.
method gives a more important weight to the points calcu- As an alternative method to determine the critical tem-

lated whenL is large: small differences appear between theperature, we studied the behavior of the Binder cumulant as
two fits when studying the maxima of the susceptibility, a function of the temperature férvarying from 2 to 5; the

slightly enlarging some error bars. The reliability coefficient

R? of a fit is defined as the square of the Pearson correlation 23— L L, B . L '
coefficient related to the classical "chi square” metrfdd. T (L)~ LD —I (L)
205 [| =T (L) — T (L)
I1l. NUMERICAL RESULTS
In this section, we have revisited SC(3,1) by increasing 22
the segmentation step to & £ 6561). Moreover, we have i
investigated the cases SC(5,1), SC(4,2), and SC(5,3). 215
A. Fractal SC(5,1):d; ~1.9746 il
Four segmentation steps frokr=2 to k=5 have been ;
investigated in the case of SC(5,1). When processing the 205 L
data of several Monte Carlo runs at a given temperature, one 0 001 002 003 004 005 006
can notice that the reliability of the histogram method de- L(‘%)

pends not only upork, but also upon the thermodynamic
average considered. In a more general way, the precision is FIG. 3. The effective critical temperatur§§’ i(L) versusL ™",
always better when considering the magnetization, the suswith »=1.083, for SC(5,1).
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FIG. 4. The Binder cumulant versus the temperaturéfe® to

5, for SC(5,1). FIG. 5. The magnetization versis for SC(5,1), for several
values of the simulation temperature in the critical region.

results of our simulations are plotted in Fig. 4. The coordi-

nates of the intersection points between a segmentation stgRnavior ofd™(L). In order to ensure that the convergence
X . . n .

and the following are summarized in Table 1. As already;,\arqs the infinite limit is reached, we disregard the second

pointed out in our previous paper, the curves do not exac“%egmentation step; in this way, we eliminate systematic er-

intersect at a fixed point. This effect is much less important 5 |eading to slightly underestimations of the values of the
in the present case than for SC(3,1): the convergence Sxponents3/v and y/v.

faster and the relative variation of temperature separating the As a conclusion we haves/»=0.1108(4) andy/v

tW? Ial,St po!nr:'s ish about 10, yielding TC:Zh'O?,BO' Thiﬁ =1.7505). The Rushbrooke and Josephson scaling law
value lies within the error bars provided by the first met od.deﬁ: ylv+2(Blv) is satisfied with an effective dimension

We thus performed several Monte Carlo runs betwéen 4 1 9716-0.0058. The relative difference betweelp;

=2.0650 andTC=.§.%6go, ri]n ordlerltol explore :]he range of ong the Hausdorff fractal dimensiah=1.9746 is smaller
temperature provided by the calculation™f. The magne- ., 0 295 No straight evidence for a discrepancy between

tization and the susceptibility are plotted as a functioh 0f  ,a56 gimensions can be brought out from these results: As

Figs. 5 and 6. Their finite size behavior is very sensitive 0,054y showed in the case of fractal dimensions between
the value of the temperature wheris large, since the tran-

s va _ two and threé® the hyperscaling relation is satisfied with
sition is narrowed down als increases. The cumulant cross- P 9

ing method yields the most precise value of the critical tem- eﬁThif 'eX onente deduced from the Rushbrooke scalin
perature; the lawm~L ~#/” andy~L """ are satisfied in the law?3 azzp_ 28— leads to the negative value= —0.14 9
best way by two fitgrespectively three and four pointior +0.018. As already noticed in Sec. I, the specific héat ex-
the same temperatufig-= 2.0660, both with reliability coef- '

ficients R?=1.00000. They yield with four sizes frorh

=25 to L=3125, B/v=0.110§4), and y/v=1.7435); 10° g
with three sizes fronb. =125 toL=3125, 8/»=0.110§4), % i
and y/v=1.75(5). These fits are very stable, in agreement
within their error bars, and cover several orders of magni- 10" ¢
tude. They are consistent with the estimation3 gffrom the ’

behavior ofT‘é’i(L) and thus the estimation aof from the

1000 -

TABLE |. Temperatures of the cumulant crossing points be-

tween a step and the next one. The error bars are of one integer 0 100 - ——T=2.0662 | 3
the last digit. 5 — e T=2.0661 | 1
8 —o— T=2.0659
dy 1.9746 1.8927 1.7925 1.7227 10 —=—T=2.0651 | 5
g ——T=2.0649 | 1
(k=2<k=3) 2.06660 0.8931 i
(k=3«—k=4) 2.06604 1.0917 0.8372 1 ! R L
(k=4<k=5) 2.06602 1.48570 1.0649 0.8075 10 100 1000 L 10000
(k=5<k=6) 1.48154 1.0490
(k=6<k=7) 1.48012 FIG. 6. The susceptibility versuk, for SC(5,1), for several

values of the simulation temperature in the critical region.
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£ E m
max [ | —— SC(3,1)
X [ | ——sCia,2) ]
- | ——sC5.3) ] 0.8 t
10* ]
L 0.7 +
1000 |- ]
—— T=1.4780
—o— T=1.4705
I 0.6 1 [——T=1.48012
100 + -
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L 10 100 1000 g 10*

FIG. 7. The maxima of the susceptibilify"*{L) versusL, for

FIG. 8. The magnetization versus for SC(3,1), for several
SC(3,1), SC(4,2), and SC(5.3). g s (3.1)

values of the simulation temperature in the critical region.

hibits a humplike behavio€(L,T)=C.(t)+L¥"C(tLY").

We cannot extractd/v) in a reliable way from a fit involv-
ing that relation. Nevertheless, assuming that —0.140
and »=1.083 we find from a three points fit th&(L,T¢

=2.0660)=4.1-4.1L " %1?° with a good reliability R?

=0.99983.

The behaviors ofy(L) andm(L) with T as a parameter
are plotted in Figs. 8 and 9 for the five valueskdfetween 4
and 8. As the temperature decreases from 1.4820, the points
tend to line up along straight lines for the two averages si-
multaneously. Moreover, a close look at Table | shows
clearly that the convergence of cumulant crossing points to-
wards the infinite limit value of the temperature is much

B. Fractal SC(3,1):d; =~1.8927 slower than in the case of SC(5,1). These observations lead

This case has been extensively studied in MoncealP think that the values of the critical temperatures an-
etal’® and Carmont al* Additional simulations enabled Nounced in Monceaat al.” (1.482+0.0015) and Carmona
us to calculate the cumulant crossing point between the sixtt 8-~ (1.4812£0.0002) are slightly overestimated. It al-
and the seventh iteration steps and to study the behaviar of '€ady appears from the comparison between SC(5,1) and
andy in the range of the estimated critical temperature at the>C(3,1) that a contribution to scaling corrections arises from
eighth iteration step. Moreover, we studied the behavior ofh€ slow convergence of the transition towards the thermo-
the maxima of the susceptibility™(L) as an alternative dynamical limit withL in the latter case. This convergence
method to determiney(v). speed can.be related tq the behavpr of the mean number of

The maxima of the susceptibility™XL) are plotted in nearest nelghbors_per site(b,c,k)) with k for a given frac-
Fig. 7 as a function oL; we check that the law™(L) tal dlmenglon: F|g.. 1 shows that the convergence of
~L" is very well satisfied by the LS fits with a reliability (Z(b.€.K)) is slower in the case of SC(3,1) than SC(5,1).
coefficient R>=1.00000. They yield with three sizes from

L=81 to L=729, y/v=1.7353); with four sizes fromL 10°

=81 to L=2187, y/v=1.7334); with five sizes: fromL % A -

=81 to L=6561, y/v=1.7334); with three sizes: fronL [ | ——T=1.4815

=729 to L=6561, y/v=1.7334). A five points LM fit 10t | |—=—T=148012 i

yields y/v=1.73Q1). E | ——T=1.4795 E
The stability of these power law fits, with data covering [ |~ T=1.4780

several orders of magnitude is one of the most striking re-
sults of the simulations we carried out: Unlike Carmona and
co-workerst* it turns out that a scaling correction exponent
w, cannot be extracted from the behavior @JF*{L) in a — ]
reliable way. We are able to retain thay/¢)=1.7324). 100 | 9
The result we calculated in our first papeby fitting the i ]
susceptibility as a function of the size at the expected critical
temperature is slightly higher that the present one: we found 10 et L i C
(y/v)=1.7§1). The relative difference of about 2% be- 10 100 1000 L 10*
tween these values is induced by the uncertainty about the

critical temperature. We are now able to go back over these FIG. 9. The susceptibility versuk, for SC(3,1), for several
results. values of the simulation temperature in the critical region.

1000 J
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100

max |
|

e 0.6665
- O I ULT) =

0.666 |

k=5 ]

\

max
[ ¢2

0.6655 | p_s

0.665 [

0.6645 [

o664 L . .Y
10 P 1.02 1.04 1.06 1.08 1.1 1.12

10 100 1000 L 10000 FIG. 11. The variations of the Binder cumuldufL,T) versus
T, for SC(4,2).
FIG. 10. The values of the maxima of the logarithmic deriva-
tives @7 and &7 versus the sizd. from k=3 to k=5, for  rors, enlarging the error bar abogtv. By sweeping the

SC(4,2). interval around T=1.4795, we can estimate thas/v
=0.075-0.01. These results vyieldd.=y/v+2(B/v)
Strong difficulties arise from the uncertainty abdy in ~ =1.882+0.024. No significant deviation from the fractal di-

analyzing the critical behavior. When taking into accountmension in the hyperscaling relation can be brought out from
classical scaling corrections, we should look for a finite sizethese results. A lower bound fercan be calculated from the
behavior of the magnetizatiotfor instance following the  behavior of the logarithmic derivatives. The set of critical
usual classical expressiam~L #"(1+A,L~®), right at parameters or their associated bounds are reported in Tables
Tc. Since the value of the critical temperature is not accu{V and V.
rate enough, and the number of points small, we cannot fit

such an expression directly in a reliable way. Moreover, the

lack of translation invariance is also related to the scaling
corrections: we deal with fractal networks, where the local Four segmentations steps have been studied, kreid to
connectivity is not homogeneous, and where the holes sizk=6. The values of the maxima of the logarithmic deriva-
distribution covers several orders of magnitude. As a mattetives ®7'** and ®5* are plotted as a function of the site

of fact, for a fixed value ob, the study of SC(5,3) will show from k=3 to k=5 in Fig. 10. Since the location of these
that the fractal dimension has a strong influence on scalinghaxima fork=5 needed huge amount of Monte Carlo runs,
corrections. Thus they are not only caused by a classicale did not to calculate the less precise pe@k§* and® ;™.
finite size effect, but they have a topological origin too; thereThe values ofb ™ and @5 at the fifth iteration step have

is no strong evidence that they can be described properlgeen extracted from two independent histograms of 3 mil-
with a L™ term. Nevertheless, an estimation@fv can be  lions steps independently by each of us. It is worth noticing
provided in the following way: we retain as an estimate of

C. Fractal SC(4,2):d; =1.7925

the critical temperature the one which yields a valueyb# 1 .

as close as possible of the result provided by the scaling oy,

x™(L); we find T=1.4795, where a four points fit yields o T=1.050
x(L)~L "1 with a reliability coefficientR?>=0.99980. We o T=1.058

perform then a four points fit om(L) at T=1.4795 as a
function of L =#'*: it yields B/v=0.0743 withR?>=0.99950.
The uncertainty about the critical temperature, and the
slowly vanishing scaling corrections lead to systematical er- 0.9 +

TABLE Il. Effective temperatures of the maxima of the thermo-
dynamic derivatives and the susceptibility for SC(4,2). The error
bars are of one integer on the last digit.

L TX(L) TYL) T2(L)

64 1.34798 1.38985 1.40392 0.8 i i . I

256 1.23971 1.26057 1.27274 10 100 1000 L 10000
1024 1.17850 1.18430 1.18506

4096 1.13880 FIG. 12. The magnetization versus for SC(4,2), for several

values of the simulation temperature in the critical region.
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10 - . TABLE IIl. Effective temperatures of the maxima of the ther-
E modynamic derivatives and the susceptibility for SC(5,3). The error
x —e T=1.077 bars are of one integer on the last digit.
1000 | |7 T ] L TY(L) ToyL) TeA(L)
- | ——T=1.058 ]
e To1.050 25 1.39440 1.49802 1.53130
r 125 1.15764 1.20173 1.21550
100 = E 625 1.03632 1.06117 1.06378
i 1 3125 0.96110
10 & _:
: from larger scaling corrections than the suceptibility. The
value 3.37 extracted from the finite size behaviordgf®
1 L L L provides only a lower bound for the correlation length expo-
10 100 1000 g 10000 nentw.

FIG. 13. The susceptibility versus, for SC(4,2), for several
values of the simulation temperature in the critical region.

that scaling corrections appear to be very important even
the third iteration step. The value extracted from a fit of the
fourth and the fifth iteration steps yields=3.37(20). The

values of the effective critical temperaturé'@(L) and

The intersection points of the Binder cumulants between a
segmentation step and the following are summarized in
Table I, and the variations d (L, T) with T plotted in Fig.

11. It appears clearly that the convergence of the temperature

Ac(3,1).

is much slower than in the two previous cases SC(5,1) and

Figure 7 shows the behavior @"*{(L) as a function ot..
The relationy™(L)~L"" is satisfied by two LS fit¢respec-
tively, three and four poinjs both with a reliability coeffi-

TE(L) are summarized in Table Il. The agreement betweerient R>=1.00000. They yield with three sizes from= 64

these values and the results of Carmenhal. is good, within
a relative precision better than 0.1%.

We performed several fits of these temperatures as a fun¢-=4096, y/v=1.7134).
tion of L~ with » varying from 3.1 to 3.6. The ordinates at

to L=1024, y/v=1.7045); with four sizes fromL=64 to

L=4096, y/v=1.7085); with three sizes fromL =256 to

A three points LM fit yields 1.72. As in the case of

the origin extracted frorfrqc’l(L) andTg)z(L) (only the steps  SC(3,1), we notice once again the very robust character of

k=4 andk=5 can be taken in accoyndo not intersect at

the power laws fitted fromy™®{L); we are able to retain the

the same point, and lie in a range between 1.00 and 1.03. Offlue y/v=1.71(1). The relative difference between the

the other hand the behavior (L) expected from finite Vvalue obtained by Carmona and co-workéts672)] and
size Sca"ng is Obeyed with good re||ab|||'[y coefficients ours is smaller than 2.5%. The size of the error bars does not

(>0.9999) for three segmentation steps andarying from

3.1 to 3.50. The associated critical temperatures extracteyveen the results of the two groups. N _
from these last fits lie in a range between 1.07 and 1.05. As We have reached a stage where the critical region can be

a conclusion of these fits, the logarithmic derivatives suffeistudied. We performed several Monte Carlo runs in the range
of temperature between 1.050 and 1.077. The magnetization

and the susceptibility are plotted as a functionLah Figs.

enable to conclude that there is a significant discrepancy be-

U(L,m)
0.6665 |

] 0.6664 -
0.6663 |

0.6662 f

100 : —
o] 07
1
r max
. (I)2
o -* )
1
10

FIG. 14. The maxima o™ and 7 versusL from k=2 to

k=4, for SC(5,3).

100

L

1000

0.6661 L

0.6666 ————

T

0.8

T, for SC(5,3).
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TABLE IV. The critical temperatures and critical exponents on SC(3,1), SC(4,2), SC(5,1), and SC(5,3) following Meheéau
Carmoneet al, and the present workk(is the highest value of the segmentation step taken in account

Author Fractal Fractal T, B Y et Boundary  k
dimension 4 v conditions
This work SC(5,1) 1.9746 2.06615) 0.11084) 1.7505) 1.9718598) periodic 5
Monceauet al. (Ref. 13 SC(3,1) 1.8927 1.4825) 0.081530) 1.761) 1.92316) periodic 7
Carmoneet al. (Ref. 149 SC(3,1) 1.8927 1.481 0.08D 1.73Q1) 1.89Q42) periodic 7
Monceauet al. (Ref. 13 SC(3,1) 1.8927 1.481 0.144) 1.62520) 1.91929) free 7
This work SC(3,1) 1.8927 1.47¢0 0.07510) 1.7324) 1.88224) periodic 8
Carmoneet al. (Ref. 19 SC(4,2) 1.7925 1.077 0.0680) 1.672) 1.81(3) periodic 6
This work SC(4,2) 1.7925 <1.049 1.70) >1.70 periodic 6
This work SC(5,3) 1.7227 <0.808 1.68%) >1.678 periodic 5

12 and 13. It appears than the critical temperature calculateidg from 3.8 to 4.3. The ordinates at the origin extracted
in Carmonaet al!* (Tc=1.0776) is slightly overestimated: from To*(L) andTg2(L) do not intersect at the same point,
as the temperature decreases from 1.077 to 1.050 the poin{$,q jie in a range between 0.73 and 0.79; the behavior of

tend to line up along stralght lines for th_e two averages SI"I'X(L) expected from finite size scaling is obeyed with lower
multaneously. These behaviors are consistent with the upper~.' “.. - .
bound value of the critical temperature extracted from there"aIblllty c_oeff|C|ents than in 'ghe case of SC(4,2) fo.r three
Binder cumulantsT-<1.0490. The arguments set out at thesegm(.antatlon. ;teps arld varymg.frc.)m 125 to 3125; the
end of the last section prevent us from fitting scaling correc—"’lssoc'ated critical t'emperatures 'I|e in a re}nge.between 0'8_1,2
tions in a reliable way and thus from estimatigy in the and 0.788. These dlscrepanmes_ln the estlmatlons of the criti-
present case. cal temperatures show that scaling corrections affg¢tand

¢, with different and large amplitudes. As for SC(4,2), the
value 4.06 extracted from the finite size behaviordgf®
provides only a lower bound faor.

As for SC(5,1), four segmentation steps, frém 2 to k The behavior of the Binder cumulant, plotted in Fig. 15,
=5, have been investigated in the case of SC(5,3). The conhas to be compared with SC(5,1): The associated crossing
parison between these two fractals is very interesting, bepoints, reported in Table I, show clearly the effects of the
cause they share the same valueb, dhus the same series of factal dimension on finite size scaling. Besides strong scal-

sizes, but they have different fractal dimensions. The valueﬁlg corrections already mentioned above, one observes a

of the maximad ™ and ®7** are plotted as a function df  gjowing down of the convergence of the intersections points
from k=2 to k=4 in Fig. 14. Unlike the case of SC(5,1), of the Binder cumulant wittk towards the infinite limit as
scaling corrections have an important effect at the seconghe fractal dimension decreases. It is striking that this slow-
iteration step. As a result of this, it appears clearly that, in thss;ng down is reflected in the variations afz(b,c,k) with k
case of a fractal network, these corrections are strongly réotted in Fig. 1, for the four values of the fractal dimensions
lated to the fractal dimension. A fit from the third and the gy,died in this paper. As a result, we should be led to disre-
fourth iteration step,q;)l_lelds;=4.06(20). From the effective  gard the third iteration step from our fits, since it is obviously
critical temperature$ .'(L) andTg(L) reported in Table Ill,  siill too far from the asymptotic limit. The two last crossing
we performed several fits as a functionlof¥” with » vary-  points ofU(L,T) are 0.8080 and 0.8188. The relative differ-

D. Fractal SC(5,3):d; =1.7227

TABLE V. The critical exponents on SC(3,1), SC(4,2), SC(5,1), and SC(5,3) following Moretezu
Carmoneet al, and the present worKollowing)

Author Fractal v B y Boundary
conditions

This work SC(5,1) 1.083(3) 0.120(4) 1.90(1) periodic
Monceauet al. (Ref. 13 SC(3,1) 1.56610) 0.1276) 2.75425) periodic
Carmoneet al. (Ref. 19 SC(3,1) 1.701) 0.136@25) 2.94(2) periodic
Monceauet al. (Ref. 13 SC(3,1) 1.783) 0.25411) 2.81(8) free
This work SC(3,1) >1.565 >0.11 >2.70 periodic
Carmonaet al. (Ref. 14 SC(4,2) 3.2®) 0.223 5.39 periodic
This work SC(4,2) >3.37 >5.73 periodic
This work SC(5,3) >4.06 >6.81 periodic

184420-8
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ence is so large that we are obviously still too far from the T~

asymptotic critical temperature to calcul@év; we are able 7 T g
to retain 0.8080 as an upper bound for the critical tempera- [ —x—v from & expansions | ]
ture. 6 T —+—v from & expansions | |

Figure 7 shows the behavior of the maximum of the sus-

S . . . r s Y from Monte Carlo
ceptibility x™{(L) as a function ofL. As in the previous 5 -

cases, the relatiop™{(L)~L”" is very well satisfied by a i T > v from Monte Carlo 1
three points LS fit (with a reliability coefficient R? 4 L h
=1.00000): with three sizes fronb=125 to L=3125, f T 1
ylv=1.6785); with two sizes fromL=625 to L=3125, 3L T 1

ylv=1.6835). A LM fit yields y/»=1.6831). We areable

to conclude thaty/ v=1.6835). . %

IV. DISCUSSION b W]

The results summarized in Table | show that the differ- |
ences between two successive intersections of the cumulal® ———— ' ' ‘ ' ‘ ‘
crossing points, much larger than the precision of our nu- 1 1.7 1.8 1.9 d 2
merical computations, are no more compatible with the ex-
istence of a fixed point over a large range of finite scales. FIG. 16. Comparison between the exponeptand v provided
However' the values of these Crossing points converge td]y € expansions and Monte Carlo; the arrows indicate that the
wards a finite nontrivial value which can be considered agssociated points are lower bounds.
the critical temperature of the mathematical fractal, kas
—o. As a consequence, the estimationsTef based upon
the successive positions of these intersection points are ov
estimated. The block size calculations of Birfdémplicitly

cal temperature, the effect of boundary conditions can never
eb? completely neglected, even if the size of the blocks be-
Comes very large. This is related to the observation of a

assume the translation invariance of the structure. when mad_ifferent set of critical exponents between periodic boundary
' onditions and free edges in Moncegtal 1* summarized in

e kS % e I fgbes V and v
' A more precise study of the mean local connectivity of

finite segmentation steps; it is obvious that they are far frorrh R . -
S ; o A andom Sierpinski carpets has been carried out vy lamd
being identical. Although they exhibit self-similarity, topo- b0, 19 tran%fer-matriF;( methods allowed them E)Wshow in
logical properties change ffom a ;ﬂem the following. Th'.s n analytical way that fractal subdimensions appear besides
can be easﬂy seen by Ioo_klng_ for mst_ance at th_e evo_luﬂon e Hausdorff dimension. These subdimensions, which are
Az(b,c,k) with k plotted in Fig. 1. Discrepancies with the indeed scaling corrections and remain present in the deter-

stand_ard finite size scaling ana_lysg whiens low can be ministic case, can be brought out from numerical simulations
explained not only by a pure finite-size effect, but also by a

. )P . ) “of the local connectivit?® but are very difficult to detect
topological contribution to scaling corrections. The compari-

. xperimentally’*® We can assume that these fractal subdi-
son _between the res_,ults obtained for SC(S’.l) and SC.(S’ ensions are related to the scaling corrections that Carmona
confirms the topological nature of these scaling corrections;

S ) .
. . ) , . .~ “et al. and we brought out from the magnetic behavior of

the sized. are in a geometrical series with the same rétio Sierpinski carpets g 9

and the deviation irom expected power laws is much more The critical exponents or their associated bounds are re-

important in the latter case. We can expect from the result orted in Tables IV and V; Fig. 16 shows the values of the

obtained in the four cases we investigated that, for a give xponentss andy provided bye expansiong,and the values

iga Ot:evﬁleugelsecct)(?dar;)?g\’/i:jh:dt?H%Otlso?all(r:g]e Secr?glﬂghcﬁ’{ r;cégcr)lr;/s (or the boundswe provide in the present work. The discrep-
occurs for SC(5,1) where the consistency of the finite sizg1es between the values of the exponents provided by

scaling analysis is very good, provided tHat-25 ; it is expansions and Monte Carlo simulations increase as the frac-
. . . ’ ’ . tal dimension decreasébkelow 2).

precisely in this latter case that we can observe a quicker
convergence ofz(b,c,k)) towards his limit ak—o.

Since the fixed point of the Binder cumulants is replaced
by a sequence of intersection points, the critical temperature A part of numerical simulations has been carried out in
is the limit of that sequence &s—oc. This behavior is quite the national center of computational resources IDRIS, sup-
similar to the one observed in the study of percolation byported by the CNR$Project No. 991186 We acknowledge
renormalization methods in random fract#lsBinder him-  the scientific committee and the staff of the center. We are
self noticed that the topology of the blocks has a stronglso grateful to the research computational cef&R) of
influence on their distribution function. He pointed out that,the UniversiteParis VII-Denis-Diderot, where the rest of the
since the correlation length tends towards infinity at the criti-simulations have been done.
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