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Critical behavior of the Ising model on fractal structures in dimensions between one and two:
Finite-size scaling effects
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The magnetic critical behavior of Ising spins located at the sites of deterministic Sierpinski carpets is studied
within the framework of a ferromagnetic Ising model. A finite-size scaling analysis is performed from Monte
Carlo simulations. We investigate four different fractal dimensions between 1.9746 and 1.7227, up to the sixth
and eighth iteration step of the fractal structure in one case. It turns out that the finite-size scaling behavior of
most thermodynamical quantities is affected by scaling corrections increasing as the fractal dimension de-
creases, tending towards the lower critical dimension of the Ising model. These corrections are related to the
topology of the fractal structure and to the scale invariance. Nevertheless the maxima of the susceptibility
follow power laws in a very reliable way, which allows us to calculate the ratio of the exponentsg/n.
Moreover, the fixed point of the fourth order cumulant atTc exhibited by Binder on translation invariant
lattices is replaced by a decreasing sequence of intersection points converging towards the critical temperature.
The convergence towards the thermodynamical limit as the size of the networks increases is slowed down as
the fractal dimension decreases. At last, the evolution of the discrepancies between Monte Carlo simulations
ande expansions with the fractal dimension is set out.
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I. INTRODUCTION

The problem of criticality on self-similar structures a
peared since the early works of Gefenet al.1–5 The classical
e expansions yield critical exponents associated with sec
order phase transitions in noninteger dimensions. The
question in dealing with this problem is to study the lin
between these theoretical expansions and physical sys
such as fractal materials.6 Moreover, we know that transla
tion invariance is a necessary hypothesis to proceed
dimensional perturbation.1 Since this invariance is broken i
noninteger dimensions, the second and main question is
following: how can the scale invariance of the underlyi
self-similar structure affect a second order phase transit
Following the early works of Gefen, many authors have de
with these problems by several methods: real space re
malization group,1,3,5,7 e expansions,8 high-temperature
expansions,9 Monte Carlo simulations.10,7,11,12 They led to
controversial results, discussed in Sec. C of the former ar
of Monceauet al.13 For instance, the question whether t
Hausdorff dimension is the relevant one which can be as
ciated with universality in the case of fractal dimensions
tween one and two was still opened. The most recent pa
on the subject appeared nearly at the same time, using p
erful Monte Carlo simulation methods. Monceauet al.13

used merely the Wolff algorithm together with the histogra
method, whereas Carmonaet al.14 used Wolff and Metropo-
lis algorithms together with the spectral density method.
this way, the two groups were able to study the critical b
havior much more thoroughly. They noticed that the com
tation of critical exponents, using the finite size scali
analysis comes up against a main difficulty: scaling corr
tions appear to be very strong. Indeed, they are stronge
0163-1829/2001/63~18!/184420~10!/$20.00 63 1844
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fractal lattices than on two-dimensional quasiperiodic one17

which are another case of lattices without translation inva
ance. A similar result was obtained in an analytic way
Liu15 in the particular case of the Sierpinski gasket. Nev
theless, this result cannot be directly related to the prob
we are dealing with, since no phase transition in the therm
dynamical limit occur in the case of the gasket.~In other
words, an infinitely narrow transition occurs right atT50.!
As a matter of fact, a full understanding of second ord
phase transitions in fractals needs the investigation of dim
sions higher than 2. Very recently, Hsiaoet al.16 studied
three fractal dimensions between 2 and 3. They showed
scaling corrections vanish much more quickly than in t
present case, and were able to give evidence that the hy
scaling relation is satisfied when the space dimension is
placed by the Hausdorff one. Indeed, second order ph
transitions at nonzero temperature occur at the both inte
bounds, while we study here dimensions between the lo
critical dimension of the Ising model and two.

In this paper, we investigate four different fractal dime
sions in order to show how the scaling corrections can
related to the convergence speed of the thermal aver
towards the infinite limit as the size of the lattice increas
We give evidence that this speed decreases as the fr
dimension is lowered. Static critical exponents will be calc
lated when the lattice sizes we can simulate enable u
reach properly the region where corrections vanish; oth
wise, bounds will be given. This article is divided into thre
parts: the model, the numerical methods, and the sca
theory are briefly recalled in Sec. II. Numerical results as
ciated with the four fractal dimensions we studied are set
in Sec. III. Section IV is devoted to a synthetic discussion
the light of our recent simulations and the results of Carmo
et al.
©2001 The American Physical Society20-1
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II. THE METHODS

A. The fractal structure and the magnetic model

The fractal structures we deal with are deterministic S
pinski carpets.18 They are constructed in the following way
a square is segmented intob2 subsquares, andc2 subsquares
are deleted in the center of the initial square. This segm
tation process is iterated on the remaining subsquarek
times. We shall call SC(b,c) the mathematical fractal, ob
tained in the limit wherek tends towards infinity, and
SC(b,c,k) the structure associated with a finite number
segmentation steps. The fractal dimension readsdf5 ln(b2

2c2)/ln(b). The mean number of first neighbors per s
^z(b,c,k)& is a convenient measure of the mean local top
ogy of a given network SC(b,c,k); transfer-matrix methods
enable us to calculatêz(b,c,k)& analytically.19 In the case
of periodic boundary conditions, they yield

^z~b,c,k!&5
4~b22c22b2c!

b22c22b
1

4c

b22c22b
S b

b22c2D k

.

~1!

The relative deviationDz(b,c,k) from the infinite limit
thus reads

Dz~b,c,k!5
^z~b,c,k!&2^z~b,c,`!&

^z~b,c,`!&
. ~2!

The behavior ofDz(b,c,k) versusk is given in Fig. 1, for the
four Sierpinski carpets studied in the present paper. T
have an infinite ramification order which means that o
must cut an infinite number of bonds to isolate any boun
part of the fractal. Thus, these fractals are entirely connec
which implies the existence of a second order ferromagn
Ising transition at finite non zero temperature.5 The spins1

2

are located at the sites of the deterministic Sierpinski car
and the Hamiltonian reads

H52J(
^ i , j &

sisj . ~3!

si assume the values61 and the summation runs on a
interacting first neighbor pairs. The exchange coupling c
stantJ is assumed to be positive.

FIG. 1. The behavior of the relative deviation of the mean nu
ber of first neighborsDz(b,c,k) versus the segmentation stepk.
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B. The numerical methods and the standard finite
size scaling analysis

The Monte Carlo simulations have been carried out us
the Wolff algorithm.20 The use of the single histogram
method21,22 to process the data obtained from a Monte Ca
simulation at a given temperatureT0 allowed us to calculate
the thermodynamical averages over a rangeDT aroundT0.
Given a fractal structure SC(b,c,k), we callL5bk the linear
size of the lattice, andN5(b22c2)k the number of spins.
^E&T and^M &T are the canonical thermodynamical averag
of the total energy and the absolute value of the magnet
tion at temperatureT. m(L,T)5(1/N) ^M &T is the associ-
ated magnetization per spin. The specific heatC(L,T) and
the zero field magnetic susceptibilityx(L,T) per spin are
thus given by

C~L,T!5
1

N

^E2&T2^E&T
2

kBT2
, ~4!

x~L,T!5
1

N

^M2&T2^M &T
2

kBT
. ~5!

The standard finite size scaling analysis, developed
Fisher,23,24 provides a powerful tool to determine the critic
exponents from the behavior of the thermodynamical av
ages as a function of the size of the system.25 According to
the standard scaling hypothesis, and provided that the siz
the system is large enough, we can write, right at the crit
point C(L,TC);La/n, x(L,TC);Lg/n, and m(L,TC)
;L2b/n, where n is the correlation length exponent. Th
computation of the critical exponentsa, b, g, can be de-
duced from the size dependence of the thermodynamical
erages, provided thatTC and n are known with a sufficient
accuracy. In a general way, scaling corrections are ap
ciable whenL is not large enough, and they can be describ
by an additional exponentv. The above power laws must b
replaced by relations under the following form~for instance,
in the case of the susceptibility!: x(L,TC);Lg/n(1
1AxL2v). Ax is the amplitude of the corrections relate
to x.

It is worth noticing that this standard analysis has to
slightly modified if a is strictly negative. In that case, th
divergence of the specific heat at the critical point in t
thermodynamic limit is replaced by a hump. For finite-siz
systems, we should writeC(L,T)5C`(t)1La/nC(tL1/n),
where t5(T2TC)/TC is the rescaled deviation from th
critical temperature, andC is a scaling function withC(0)
negative.

Furthermore, finite size effects replace the divergence
the critical point by finite peaks, shifted away fromTC . Ef-
fective critical temperatures can thus be defined, for e
size and each physical quantity concerned, as the position
these maxima.n can be calculated, without knowingTC by
looking at the size dependance of the peaks in the loga
mic derivatives ofMn(bB51/kBT):

-

0-2
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CRITICAL BEHAVIOR OF THE ISING MODEL ON . . . PHYSICAL REVIEW B63 184420
fn~L,t !5
] ln~^Mn&T!

]bB
5^E&T2

^EMn&T

^Mn&T

. ~6!

Assuming that the logarithmic derivatives ofMn fulfill
the scaling hypothesis, the values of the maxima infn scale
asL1/n: fn

max(L)}L1/n. The exponent (g/n) can be calculated
without knowingTC from the scaling behavior of the max
mum of the susceptibility:xmax(L)}Lg/n. The relations be-
tween the critical and the effective temperaturesTC

K(L),
TC

fn(L) have the same form. For instance, in the case of
susceptibility, we can write

TC
K~L !5TC1FKL21/n, ~7!

whereFK is a constant. The critical temperatureTC can be
calculated from this relation, provided thatn is known.

An alternative method to determineTC , without knowing
n has been introduced by Binder.26 The fourth order magne
tization cumulant reads

U~L,T!512
^M4&T

3^M2&T
2

. ~8!

In translation invariant lattices,U(L,T) exhibits a fixed point
at T5TC : U(L,TC)5U* , whereU* is an universal value
independent on the system size.

It should be emphasized that in the case of fractals,
values ofL we investigate are not uniformly distributed sin
they define a geometrical series with a ratiob; the incremen-
tation of a segmentation step has a very high computa
cost and strongly reduces the efficiency of the histogr
method by increasingL very quickly. Since laws have to b
fitted from a low number of points, although they are distr
uted in a large range of sizes, one must remain very care
For every fit, we performed a classical least square~LS!
linear method and a nonlinear fit based upon a steepes
scent method@Levenberg-Marquardt algorithm#.27 The latter
method gives a more important weight to the points cal
lated whenL is large; small differences appear between
two fits when studying the maxima of the susceptibili
slightly enlarging some error bars. The reliability coefficie
R2 of a fit is defined as the square of the Pearson correla
coefficient related to the classical ’’chi square’’ method.27

III. NUMERICAL RESULTS

In this section, we have revisited SC(3,1) by increas
the segmentation step to 8 (L56561). Moreover, we have
investigated the cases SC(5,1), SC(4,2), and SC(5,3).

A. Fractal SC„5,1…:df É1.9746

Four segmentation steps fromk52 to k55 have been
investigated in the case of SC(5,1). When processing
data of several Monte Carlo runs at a given temperature,
can notice that the reliability of the histogram method d
pends not only uponk, but also upon the thermodynam
average considered. In a more general way, the precisio
always better when considering the magnetization, the
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ceptibility or the Binder cumulant than in the case of t
logarithmic derivatives or the specific heat. As a result,
were able to compute the maxima of the logarithmic deri
tives Fn

max and the positions of the associated effective te
peraturesTC

F i(L) from k52 to k54 only. The values of
these maxima are plotted as a function ofL in Fig. 2. As for
the next figures, the error bars associated with statistical
certainties are smaller than the size of the dots, if they are
plotted. No finite size scaling corrections can be brought
from these data, since the lawsFn

max(L);L1/n are satisfied by
each of the four fits with reliability coefficientsR2

51.00000 and lead to a mean valuen51.08360.002.
The effective critical temperaturesTC

F i(L) are plotted in
Fig. 3 as a function ofL21/n, with n51.083. The behavior
expected from finite size scaling is satisfied with reliabil
coefficientsR2.0.99980 for each fit, andn varying from
1.081 to 1.085. The ordinates at the origin lie in a ran
between 2.0635 an 2.0665, yieldingTC52.065060.0015.

As an alternative method to determine the critical te
perature, we studied the behavior of the Binder cumulan
a function of the temperature fork varying from 2 to 5; the

FIG. 2. The maxima of the logarithmic derivativesFn
max, from

k52 to k54, versus the sizeL, for SC(5,1).

FIG. 3. The effective critical temperaturesTc
F i(L) versusL21/n,

with n51.083, for SC(5,1).
0-3
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PASCAL MONCEAU AND MICHEL PERREAU PHYSICAL REVIEW B63 184420
results of our simulations are plotted in Fig. 4. The coor
nates of the intersection points between a segmentation
and the following are summarized in Table I. As alrea
pointed out in our previous paper, the curves do not exa
intersect at a fixed point. This effect is much less import
in the present case than for SC(3,1): the convergenc
faster and the relative variation of temperature separating
two last points is about 1025, yielding TC52.0660. This
value lies within the error bars provided by the first metho
We thus performed several Monte Carlo runs betweenTC
52.0650 andTC52.0660, in order to explore the range
temperature provided by the calculation ofTC . The magne-
tization and the susceptibility are plotted as a function ofL in
Figs. 5 and 6. Their finite size behavior is very sensitive
the value of the temperature whenL is large, since the tran
sition is narrowed down asL increases. The cumulant cros
ing method yields the most precise value of the critical te
perature; the lawsm;L2b/n andx;Lg/n are satisfied in the
best way by two fits~respectively three and four points! for
the same temperatureTC52.0660, both with reliability coef-
ficients R251.00000. They yield with four sizes fromL
525 to L53125, b/n50.1106(4), and g/n51.743(5);
with three sizes fromL5125 toL53125, b/n50.1108(4),
andg/n51.750(5). These fits are very stable, in agreeme
within their error bars, and cover several orders of mag
tude. They are consistent with the estimations ofTC from the
behavior ofTC

F i(L) and thus the estimation ofn from the

FIG. 4. The Binder cumulant versus the temperature fork52 to
5, for SC(5,1).

TABLE I. Temperatures of the cumulant crossing points b
tween a step and the next one. The error bars are of one integ
the last digit.

df 1.9746 1.8927 1.7925 1.7227

(k52↔k53) 2.06660 0.8931
(k53↔k54) 2.06604 1.0917 0.8372
(k54↔k55) 2.06602 1.48570 1.0649 0.8075
(k55↔k56) 1.48154 1.0490
(k56↔k57) 1.48012
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behavior ofFn
max(L). In order to ensure that the convergen

towards the infinite limit is reached, we disregard the seco
segmentation step; in this way, we eliminate systematic
rors leading to slightly underestimations of the values of
exponentsb/n andg/n.

As a conclusion we haveb/n50.1108(4) andg/n
51.750(5). The Rushbrooke and Josephson scaling l
deff5g/n12(b/n) is satisfied with an effective dimensio
deff51.971660.0058. The relative difference betweendeff
and the Hausdorff fractal dimensiondf51.9746 is smaller
than 0.2%. No straight evidence for a discrepancy betw
these dimensions can be brought out from these results
already showed in the case of fractal dimensions betw
two and three,16 the hyperscaling relation is satisfied wit
deff5df .

The exponenta deduced from the Rushbrooke scalin
law23 a5222b2g leads to the negative valuea520.14
60.018. As already noticed in Sec. II, the specific heat

-
on

FIG. 5. The magnetization versusL, for SC(5,1), for several
values of the simulation temperature in the critical region.

FIG. 6. The susceptibility versusL, for SC(5,1), for several
values of the simulation temperature in the critical region.
0-4
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CRITICAL BEHAVIOR OF THE ISING MODEL ON . . . PHYSICAL REVIEW B63 184420
hibits a humplike behaviorC(L,T)5C`(t)1La/nC(tL1/n).
We cannot extract (a/n) in a reliable way from a fit involv-
ing that relation. Nevertheless, assuming thata520.140
and n51.083 we find from a three points fit thatC(L,TC

52.0660)54.124.1.L20.129 with a good reliability R2

50.99983.

B. Fractal SC„3,1…:df É1.8927

This case has been extensively studied in Monc
et al.13 and Carmonaet al.14 Additional simulations enabled
us to calculate the cumulant crossing point between the s
and the seventh iteration steps and to study the behaviorm
andx in the range of the estimated critical temperature at
eighth iteration step. Moreover, we studied the behavior
the maxima of the susceptibilityxmax(L) as an alternative
method to determine (g/n).

The maxima of the susceptibilityxmax(L) are plotted in
Fig. 7 as a function ofL; we check that the lawxmax(L)
;Lg/n is very well satisfied by the LS fits with a reliabilit
coefficient R251.00000. They yield with three sizes from
L581 to L5729, g/n51.735(3); with four sizes fromL
581 to L52187, g/n51.733(4); with five sizes: fromL
581 to L56561, g/n51.733(4); with three sizes: fromL
5729 to L56561, g/n51.732(4). A five points LM fit
yields g/n51.730(1).

The stability of these power law fits, with data coverin
several orders of magnitude is one of the most striking
sults of the simulations we carried out: Unlike Carmona a
co-workers,14 it turns out that a scaling correction expone
v, cannot be extracted from the behavior ofxmax(L) in a
reliable way. We are able to retain that (g/n)51.732(4).
The result we calculated in our first paper13 by fitting the
susceptibility as a function of the size at the expected crit
temperature is slightly higher that the present one: we fo
(g/n)51.76(1). The relative difference of about 2% be
tween these values is induced by the uncertainty about
critical temperature. We are now able to go back over th
results.

FIG. 7. The maxima of the susceptibilityxmax(L) versusL, for
SC(3,1), SC(4,2), and SC(5,3).
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The behaviors ofx(L) and m(L) with T as a paramete
are plotted in Figs. 8 and 9 for the five values ofk between 4
and 8. As the temperature decreases from 1.4820, the p
tend to line up along straight lines for the two averages
multaneously. Moreover, a close look at Table I sho
clearly that the convergence of cumulant crossing points
wards the infinite limit value of the temperature is mu
slower than in the case of SC(5,1). These observations
to think that the values of the critical temperatures a
nounced in Monceauet al.13 (1.48260.0015) and Carmona
et al.14 (1.481260.0002) are slightly overestimated. It a
ready appears from the comparison between SC(5,1)
SC(3,1) that a contribution to scaling corrections arises fr
the slow convergence of the transition towards the therm
dynamical limit with L in the latter case. This convergenc
speed can be related to the behavior of the mean numbe
nearest neighbors per site^z(b,c,k)& with k for a given frac-
tal dimension: Fig. 1 shows that the convergence
^z(b,c,k)& is slower in the case of SC(3,1) than SC(5,1)

FIG. 8. The magnetization versusL, for SC(3,1), for several
values of the simulation temperature in the critical region.

FIG. 9. The susceptibility versusL, for SC(3,1), for several
values of the simulation temperature in the critical region.
0-5
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PASCAL MONCEAU AND MICHEL PERREAU PHYSICAL REVIEW B63 184420
Strong difficulties arise from the uncertainty aboutTC in
analyzing the critical behavior. When taking into accou
classical scaling corrections, we should look for a finite s
behavior of the magnetization~for instance! following the
usual classical expressionm;L2b/n(11AmL2v), right at
TC . Since the value of the critical temperature is not ac
rate enough, and the number of points small, we canno
such an expression directly in a reliable way. Moreover,
lack of translation invariance is also related to the scal
corrections: we deal with fractal networks, where the lo
connectivity is not homogeneous, and where the holes
distribution covers several orders of magnitude. As a ma
of fact, for a fixed value ofb, the study of SC(5,3) will show
that the fractal dimension has a strong influence on sca
corrections. Thus they are not only caused by a class
finite size effect, but they have a topological origin too; the
is no strong evidence that they can be described prop
with a L2v term. Nevertheless, an estimation ofb/n can be
provided in the following way: we retain as an estimate
the critical temperature the one which yields a value ofg/n
as close as possible of the result provided by the scalin
xmax(L); we find T51.4795, where a four points fit yield
x(L);L21.73 with a reliability coefficientR250.99980. We
perform then a four points fit ofm(L) at T51.4795 as a
function of L2b/n; it yields b/n50.0743 withR250.99950.
The uncertainty about the critical temperature, and
slowly vanishing scaling corrections lead to systematical

TABLE II. Effective temperatures of the maxima of the therm
dynamic derivatives and the susceptibility for SC(4,2). The er
bars are of one integer on the last digit.

L TC
x (L) TC

F1(L) TC
F2(L)

64 1.34798 1.38985 1.40392
256 1.23971 1.26057 1.27274
1024 1.17850 1.18430 1.18506
4096 1.13880

FIG. 10. The values of the maxima of the logarithmic deriv
tives F1

max and F2
max versus the sizeL from k53 to k55, for

SC(4,2).
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rors, enlarging the error bar aboutb/n. By sweeping the
interval around T51.4795, we can estimate thatb/n
50.07560.01. These results yielddeff5g/n12(b/n)
51.88260.024. No significant deviation from the fractal d
mension in the hyperscaling relation can be brought out fr
these results. A lower bound forn can be calculated from the
behavior of the logarithmic derivatives. The set of critic
parameters or their associated bounds are reported in Ta
IV and V.

C. Fractal SC„4,2…:df É1.7925

Four segmentations steps have been studied, fromk53 to
k56. The values of the maxima of the logarithmic deriv
tives F1

max andF2
max are plotted as a function of the sizeL

from k53 to k55 in Fig. 10. Since the location of thes
maxima fork55 needed huge amount of Monte Carlo run
we did not to calculate the less precise peaksF3

max andF4
max.

The values ofF1
max andF2

max at the fifth iteration step have
been extracted from two independent histograms of 3 m
lions steps independently by each of us. It is worth notic

r

-

FIG. 11. The variations of the Binder cumulantU(L,T) versus
T, for SC(4,2).

FIG. 12. The magnetization versusL, for SC(4,2), for several
values of the simulation temperature in the critical region.
0-6
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CRITICAL BEHAVIOR OF THE ISING MODEL ON . . . PHYSICAL REVIEW B63 184420
that scaling corrections appear to be very important eve
the third iteration step. The value extracted from a fit of t
fourth and the fifth iteration steps yieldsn53.37(20). The
values of the effective critical temperaturesTC

F i(L) and
TC

x (L) are summarized in Table II. The agreement betwe
these values and the results of Carmonaet al. is good, within
a relative precision better than 0.1%.

We performed several fits of these temperatures as a f
tion of L21/n with n varying from 3.1 to 3.6. The ordinates a
the origin extracted fromTC

F1(L) andTC
F2(L) ~only the steps

k54 andk55 can be taken in account! do not intersect at
the same point, and lie in a range between 1.00 and 1.03
the other hand the behavior ofTC

x (L) expected from finite
size scaling is obeyed with good reliability coefficien
(.0.9999) for three segmentation steps andn varying from
3.1 to 3.50. The associated critical temperatures extra
from these last fits lie in a range between 1.07 and 1.05.
a conclusion of these fits, the logarithmic derivatives suf

FIG. 13. The susceptibility versusL, for SC(4,2), for several
values of the simulation temperature in the critical region.

FIG. 14. The maxima ofF1
max andF2

max versusL from k52 to
k54, for SC(5,3).
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from larger scaling corrections than the suceptibility. T
value 3.37 extracted from the finite size behavior ofF i

max

provides only a lower bound for the correlation length exp
nentn.

The intersection points of the Binder cumulants betwee
segmentation step and the following are summarized
Table I, and the variations ofU(L,T) with T plotted in Fig.
11. It appears clearly that the convergence of the tempera
is much slower than in the two previous cases SC(5,1)
SC(3,1).

Figure 7 shows the behavior ofxmax(L) as a function ofL.
The relationxmax(L);Lg/n is satisfied by two LS fits~respec-
tively, three and four points!, both with a reliability coeffi-
cient R251.00000. They yield with three sizes fromL564
to L51024, g/n51.702(5); with four sizes fromL564 to
L54096, g/n51.708(5); with three sizes fromL5256 to
L54096, g/n51.713(4).

A three points LM fit yields 1.72. As in the case o
SC(3,1), we notice once again the very robust characte
the power laws fitted fromxmax(L); we are able to retain the
value g/n51.71(1). The relative difference between th
value obtained by Carmona and co-workers@1.67~2!# and
ours is smaller than 2.5%. The size of the error bars does
enable to conclude that there is a significant discrepancy
tween the results of the two groups.

We have reached a stage where the critical region can
studied. We performed several Monte Carlo runs in the ra
of temperature between 1.050 and 1.077. The magnetiza
and the susceptibility are plotted as a function ofL in Figs.

TABLE III. Effective temperatures of the maxima of the the
modynamic derivatives and the susceptibility for SC(5,3). The e
bars are of one integer on the last digit.

L TC
x (L) TC

F1(L) TC
F2(L)

25 1.39440 1.49802 1.53130
125 1.15764 1.20173 1.21550
625 1.03632 1.06117 1.06378
3125 0.96110

FIG. 15. The variations of the Binder cumulantU(L,T) versus
T, for SC(5,3).
0-7
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TABLE IV. The critical temperatures and critical exponents on SC(3,1), SC(4,2), SC(5,1), and SC(5,3) following Monceauet al.,
Carmonaet al., and the present work (k is the highest value of the segmentation step taken in account!

Author Fractal Fractal Tc
b

n

g

n
deff Boundary k

dimension conditions

This work SC(5,1) 1.9746 2.0660~15! 0.1108~4! 1.750~5! 1.9716~58! periodic 5
Monceauet al. ~Ref. 13! SC(3,1) 1.8927 1.482~15! 0.0815~30! 1.76~1! 1.923~16! periodic 7
Carmonaet al. ~Ref. 14! SC(3,1) 1.8927 1.481 0.080~1! 1.730~1! 1.890~2! periodic 7
Monceauet al. ~Ref. 13! SC(3,1) 1.8927 1.481 0.147~4! 1.625~20! 1.919~28! free 7
This work SC(3,1) 1.8927 1.4795~5! 0.075~10! 1.732~4! 1.882~24! periodic 8
Carmonaet al. ~Ref. 14! SC(4,2) 1.7925 1.077 0.069~10! 1.67~2! 1.81~3! periodic 6
This work SC(4,2) 1.7925 ,1.049 1.71~1! .1.70 periodic 6
This work SC(5,3) 1.7227 ,0.808 1.683~5! .1.678 periodic 5
at
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pp
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12 and 13. It appears than the critical temperature calcul
in Carmonaet al.14 (TC51.0776) is slightly overestimated
as the temperature decreases from 1.077 to 1.050 the p
tend to line up along straight lines for the two averages
multaneously. These behaviors are consistent with the u
bound value of the critical temperature extracted from
Binder cumulants:TC,1.0490. The arguments set out at t
end of the last section prevent us from fitting scaling corr
tions in a reliable way and thus from estimatingb/n in the
present case.

D. Fractal SC„5,3…:df É1.7227

As for SC(5,1), four segmentation steps, fromk52 to k
55, have been investigated in the case of SC(5,3). The c
parison between these two fractals is very interesting,
cause they share the same values ofb, thus the same series o
sizes, but they have different fractal dimensions. The val
of the maximaF1

max andF2
max are plotted as a function ofL

from k52 to k54 in Fig. 14. Unlike the case of SC(5,1
scaling corrections have an important effect at the sec
iteration step. As a result of this, it appears clearly that, in
case of a fractal network, these corrections are strongly
lated to the fractal dimension. A fit from the third and th
fourth iteration step, yieldsn54.06(20). From the effective
critical temperaturesTC

F i(L) andTC
x (L) reported in Table III,

we performed several fits as a function ofL21/n with n vary-
18442
ed

nts
i-
er
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e
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ing from 3.8 to 4.3. The ordinates at the origin extract
from TC

F1(L) andTC
F2(L) do not intersect at the same poin

and lie in a range between 0.73 and 0.79; the behavio
TC

x (L) expected from finite size scaling is obeyed with low
reliability coefficients than in the case of SC(4,2) for thr
segmentation steps andL varying from 125 to 3125; the
associated critical temperatures lie in a range between 0
and 0.788. These discrepancies in the estimations of the c
cal temperatures show that scaling corrections affectf1, and
f2 with different and large amplitudes. As for SC(4,2), th
value 4.06 extracted from the finite size behavior ofF i

max

provides only a lower bound forn.
The behavior of the Binder cumulant, plotted in Fig. 1

has to be compared with SC(5,1): The associated cros
points, reported in Table I, show clearly the effects of t
fractal dimension on finite size scaling. Besides strong s
ing corrections already mentioned above, one observe
slowing down of the convergence of the intersections po
of the Binder cumulant withk towards the infinite limit as
the fractal dimension decreases. It is striking that this slo
ing down is reflected in the variations ofDz(b,c,k) with k
plotted in Fig. 1, for the four values of the fractal dimensio
studied in this paper. As a result, we should be led to dis
gard the third iteration step from our fits, since it is obvious
still too far from the asymptotic limit. The two last crossin
points ofU(L,T) are 0.8080 and 0.8188. The relative diffe
TABLE V. The critical exponents on SC(3,1), SC(4,2), SC(5,1), and SC(5,3) following Monceauet al.,
Carmonaet al., and the present work~following!

Author Fractal n b g Boundary
conditions

This work SC(5,1) 1.083(3) 0.120(4) 1.90(1) periodic
Monceauet al. ~Ref. 13! SC(3,1) 1.565~10! 0.127~6! 2.754~25! periodic
Carmonaet al. ~Ref. 14! SC(3,1) 1.70~1! 0.1360~25! 2.94~2! periodic
Monceauet al. ~Ref. 13! SC(3,1) 1.73~3! 0.254~11! 2.81~8! free
This work SC(3,1) .1.565 .0.11 .2.70 periodic
Carmonaet al. ~Ref. 14! SC(4,2) 3.23~8! 0.223 5.39 periodic
This work SC(4,2) .3.37 .5.73 periodic
This work SC(5,3) .4.06 .6.81 periodic
0-8
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ence is so large that we are obviously still too far from t
asymptotic critical temperature to calculateb/n; we are able
to retain 0.8080 as an upper bound for the critical tempe
ture.

Figure 7 shows the behavior of the maximum of the s
ceptibility xmax(L) as a function ofL. As in the previous
cases, the relationxmax(L);Lg/n is very well satisfied by a
three points LS fit ~with a reliability coefficient R2

51.000 00): with three sizes fromL5125 to L53125,
g/n51.678(5); with two sizes fromL5625 to L53125,
g/n51.683(5). A LM fit yields g/n51.683(1). We areable
to conclude thatg/n51.683(5).

IV. DISCUSSION

The results summarized in Table I show that the diff
ences between two successive intersections of the cum
crossing points, much larger than the precision of our
merical computations, are no more compatible with the
istence of a fixed point over a large range of finite sca
However, the values of these crossing points converge
wards a finite nontrivial value which can be considered
the critical temperature of the mathematical fractal, ask
→`. As a consequence, the estimations ofTC based upon
the successive positions of these intersection points are o
estimated. The block size calculations of Binder26 implicitly
assume the translation invariance of the structure, when m
ing the hypothesis that all finite size blocks are identical.
the case of fractal structures, the blocks are the succes
finite segmentation steps; it is obvious that they are far fr
being identical. Although they exhibit self-similarity, topo
logical properties change from a stepk to the following. This
can be easily seen by looking for instance at the evolution
Dz(b,c,k) with k plotted in Fig. 1. Discrepancies with th
standard finite size scaling analysis whenk is low can be
explained not only by a pure finite-size effect, but also b
topological contribution to scaling corrections. The compa
son between the results obtained for SC(5,1) and SC(
confirms the topological nature of these scaling correctio
the sizesL are in a geometrical series with the same ratiob,
and the deviation from expected power laws is much m
important in the latter case. We can expect from the res
obtained in the four cases we investigated that, for a gi
set of values ofb andc, the topological scaling correction
can be neglected, provided thatk is large enough. It clearly
occurs for SC(5,1) where the consistency of the finite s
scaling analysis is very good, provided thatL.25 ; it is
precisely in this latter case that we can observe a quic
convergence of̂z(b,c,k)& towards his limit ask→`.

Since the fixed point of the Binder cumulants is replac
by a sequence of intersection points, the critical tempera
is the limit of that sequence ask→`. This behavior is quite
similar to the one observed in the study of percolation
renormalization methods in random fractals.28 Binder him-
self noticed that the topology of the blocks has a stro
influence on their distribution function. He pointed out th
since the correlation length tends towards infinity at the cr
18442
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cal temperature, the effect of boundary conditions can ne
be completely neglected, even if the size of the blocks
comes very large. This is related to the observation o
different set of critical exponents between periodic bound
conditions and free edges in Monceauet al.13 summarized in
Tables IV and V.

A more precise study of the mean local connectivity
Random Sierpinski carpets has been carried out by Le´vy and
Perreau;19 transfer-matrix methods allowed them to show
an analytical way that fractal subdimensions appear bes
the Hausdorff dimension. These subdimensions, which
indeed scaling corrections and remain present in the de
ministic case, can be brought out from numerical simulatio
of the local connectivity,29 but are very difficult to detect
experimentally.30 We can assume that these fractal sub
mensions are related to the scaling corrections that Carm
et al. and we brought out from the magnetic behavior
Sierpinski carpets.

The critical exponents or their associated bounds are
ported in Tables IV and V; Fig. 16 shows the values of t
exponentsn andg provided bye expansions,8 and the values
~or the bounds! we provide in the present work. The discre
ancies between the values of the exponents provided be
expansions and Monte Carlo simulations increase as the
tal dimension decreases~below 2).
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FIG. 16. Comparison between the exponentsg andn provided
by e expansions and Monte Carlo; the arrows indicate that
associated points are lower bounds.
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