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Phase diagram of a random-anisotropy mixed-spin Ising model
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We investigate the phase diagram of a mixed spin-1
2 –spin-1 Ising system in the presence of quenched

disordered anisotropy. We carry out a mean-field and a standard self-consistent Bethe-Peierls calculation.
Depending on the amount of disorder, there appear additional transition lines and multicritical points. Also, we
report some connections with a percolation problem and an exact result in one dimension.
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I. INTRODUCTION

Apart from their relevance to the description of ferrima
netic materials, mixed-spin models are interesting from
purely theoretical point of view, being among the simple
models to exhibit tricritical behavior. So they are especia
convenient for studying the effects of inhomogeneities on
phase diagrams and the multicritical behavior of magn
systems. From a few exact1,2 and several approximate3–6 cal-
culations, we now have a good picture of the phase diagr
of mixed spin-12 –spin-1 Ising models in the presence of
crystal field. Our aim in this work is to use this model Ham
tonian to investigate the effects of disorder on the location
the transition lines and the tricritical point.

The mixed-spin Ising model is described as a tw
sublattice system, with spin variabless561 andS50,61,
on the sites of sublatticesA andB, respectively. Restricting
the interactions to nearest-neighbor~belonging to different
sublattices! and single-ion terms, the most general sp
Hamiltonian in even spin space is written as

H52J (
^ i PA, j PB&

s iSj1D (
j PB

Sj
2 , ~1!

where the first sum is over nearest-neighbor pairs, the sec
sum is over the sites of sublatticeB, and the parameterJ is
assumed to be positive~ferromagnetic exchange!. For D
.0, the crystal field favors theSj50 states; the competition
between anisotropy and ferromagnetic exchange terms l
to the appearance of a tricritical point. It should be poin
out that one needs three parameters to describe the
space of the better known spin-1 Blume-Emery-Griffit
~BEG! model. In the present case of a mixed-spin Ising s
tem, from the point of view of the calculations, the reducti
of the analysis to a two-parameter space is a particul
attractive feature.

There are exact calculations for the thermodynamic fu
tions associated with the model Hamiltonian given by Eq.~1!
on a simple chain and on some three-coordinated t
dimensional structures. On a honeycomb lattice, the prob
can be mapped onto a spin-1

2 Ising model on a triangula
lattice, which does not display a tricritical point.1 This
mixed-spin model can also be exactly solved on a Be
lattice2 ~the deep interior of Cayley tree!, leading to the same
results of a recent cluster-variational calculation.6 The results
on a Bethe lattice with coordinationq indicate the absence o
0163-1829/2001/63~18!/184415~7!/$20.00 63 1844
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a tricritical point forq,5, as confirmed by Migdal-Kadanof
renormalization-group calculations.4 In the infinite-
coordination limit of the Bethe lattice, one regains the we
known results for the tricritical point displayed by the Curi
Weiss ~mean-field! version of the model. An earlie
approximate effective-field calculation7 predicted a tricritical
point for q>4, but this result has been recent
challenged.8,9

In order to analyze the effects of disorder, we consider
Hamiltonian

H52J (
^ i PA, j PB&

s iSj1 (
j PB

D jSj
2 , ~2!

where $D j% is a set of independent, identically distribute
random variables associated with the binary probability d
tribution

`~D j !5pd~D j !1~12p!d~D j2D !. ~3!

With this choice of disorder, and forD.qJ, the ground state
can be mapped onto a percolation problem in which the
lution affects the sites belonging to only one of the subl
tices ~corresponding to spinS51). This association is eas
to see if we note that a uniform crystal fieldD.qJ leads to
Sj50 for all j, which breaks the connectivity between th
spin-1/2 variables. The presence of a randomly located
tribution of D50 crystal fields recovers that connectivi
and, for sufficiently high values ofp, leads to the formation
of a percolating cluster. In the rather artificial case of a
nealed disorder, on the honeycomb lattice, there is also
exact solution10 for the thermodynamic properties of th
mixed-spin model described by Eqs.~2! and ~3!. It is inter-
esting to remark that this solution in the annealed case re
duces the critical concentration of the percolation probl
associated with the ground state of the model with quenc
~frozen! disorder, which is equivalent to the usual perco
tion problem on the triangular lattice. For the physica
more relevant case of quenched disorder, there are app
mate calculations using an effective-field theory w
correlations,11 which point to the~expected! weakening of
the tricritical behavior due to the presence of disorder.

In the present work, we first analyze the temperatu
anisotropy (T3D) phase diagram of the Curie-Weiss ve
sion ~mean-field limit! of the spin Hamiltonian given by Eqs
~2! and ~3!. Depending on the concentrationp, there appear
novel transition lines and multicritical points. To include th
©2001 The American Physical Society15-1
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effects of thermal fluctuations, we then resort to a stand
self-consistent Bethe-Peierls approximation~which is analo-
gous, in the case of the corresponding uniform model,
performing an exact Bethe-lattice calculation!. In Sec. II, we
present the Curie-Weiss results. The Bethe-Peierls appr
mation is discussed in Sec. III. In the appendixes, we rep
an exact solution in one-dimension as well as some lo
temperature expansions to supplement the numerical re
from the Bethe-Peierls approximation.

II. CURIE-WEISS VERSION

The Curie-Weiss version of the mixed-spin Ising mode
given by the Hamiltonian

H52
2J

N (
i PA

s i (
j PB

Sj1 (
j PB

D jSj
2 , ~4!

where the sums are over all sites belonging to each one o
sublattices.

For a given disorder configuration$D j%, we calculate the
partition function by performing a partial trace over the s
of spin variables$Sj%. In the thermodynamic limit, we us
the saddle-point method and average over disorder to ob
the free energy functional

C~s!52
1

2b F ln22
1

2
~11s!ln~11s!

2
1

2
~12s!ln~12s!G

2
1

2bE `~DB!

3 ln@112e2bDB cosh~bJs!#dDB . ~5!

From the minimization ofC(s) with respect tos, we have
the A-sublattice magnetization,

s5tanhFbJE `~DB!
2 sinh~bJs!

ebDB12 cosh~bJs!
dDBG , ~6!

where the random variableDB satisfies the probability dis
tribution in Eq. ~3!. We can now calculate various expect
tion values. For example, we have

Q5E `~DB!^SB
2&dDB

5E `~DB!
2cosh~bJs!

ebDB12cosh~bJs!
dDB . ~7!

The critical line comes from the condition

]2C

]s2 U
s50

50⇒eD52
~K221!2 1

3 pK2

12 2
3 pK2

, ~8!

whereD5bD and K5bJ. The thermodynamic stability o
the critical line depends on the sign of the fourth derivat
18441
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of C(s) at s50. There is then the possibility of a tricritica
point, given by the additional condition

]4C

]s4 U
s50

50⇒K25
319p2A92186p1177p2

8p
. ~9!

The stability of the tricritical point is determined by

]6C

]s6 U
s50

>0⇒p<pm50.04485•••, ~10!

which means that the tricritical behavior is suppressed
disorder concentrations larger than approximately 4.5%.

In Fig. 1, we plot someD3T phase diagrams for a set o
typical values of the concentrationp. In the uniform case
(p50), there is just a tricritical pointPt . For 0,p<pm
50.04485•••, a tricritical point still exists~see Fig. 1, for
p50.04). However, at low temperatures and sufficien
large values ofD, there appears a low-density (Q→p as T
→0) ferromagnetic phase, which we call the ferro-II pha
at fixed values ofD, an increase of temperature induces
second-order transition from the ferro-II to the paramagne
phase. This transition is represented by a critical line t
meets the first-order line at a critical end pointPce . This
critical end point separates the first-order line into two d
tinct regions:~i! at higher temperatures, there are transitio
between the usual, high-density (Q→1 asT→0! ferromag-
netic phase~ferro-I! and the paramagnetic phase;~ii ! at lower
temperatures, the transitions are between the ferro-I
ferro-II phases, the first-order boundary ending at a fin
temperature critical pointPcs .

For pm50.04485•••,p,3/5950.05084•••, the tricriti-
cal point is replaced by a critical end point and a simp
critical point, separated by a first-order transition line b
tween the ferromagnetic phases~see inset in Fig. 1, forp
50.05). Forp>3/59, the critical line is fully stable~see Fig.
1, for p50.08). However, forp&0.1, there still exists a
small finite-temperature region where there are~first-order!
transitions between the ferromagnetic phases.

FIG. 1. Phase diagrams of the Curie-Weiss version for typ
values of the disorder concentrationp.
5-2
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III. BETHE-PEIERLS APPROXIMATION

To give an estimate of the effects of thermal fluctuatio
which are not accounted for by the Curie-Weiss calculatio
we now resort to a standard self-consistent Bethe-Peierls
proximation. As the model is defined on a bipartite lattic
we have to consider two distinct clusters of coordinationq
~see Fig. 2!. In one of them, which we callA, the central site
is occupied by a spins5 1

2 , connected toq spins of theS
51 type. In the other cluster, calledB, there is a centralS
51 spin surrounded byq spin-12 variables. According to the
standard prescription of the Bethe-Peierls approximation,
assume that the boundary spins of clusterA are under the
action of an effective magnetic fieldh̃B and an effective
crystal fieldD̃, while the boundary spins of clusterB are in
an effective magnetic fieldh̃A . The crystal field acting on the
central site of a clusterB is a random variableDB . We also
consider external magnetic fieldshA and hB , acting on the
central sites of clustersA andB, respectively.

For the sake of simplicity, we assume that the same
fective crystal fieldD̃ acts on all boundary spins of clusterA
~and impose self-consistency between both thermal and
order averages associated with the two clusters!. In a more
refined approach, we might introduce different effecti
crystal fields to mimic the extended disorder of real mate
als. However, we expect that, in the absence of external m
netic fields, the assumption of a singleD̃ is reasonable, a
least in the paramagnetic phase, where there is no long-r
order; in particular, we expect that the paramagnetic ph
boundaries obtained by the two approaches are equiva
within the Bethe-Peierls approximation. We will see that t
is indeed supported by the calculations.

The partition functions associated with the two clust
are given by

ZA5egA@112e2D̃ cosh~ g̃B1K !#q

1e2gA@112e2D̃ cosh~ g̃B2K !#q ~11!

and

ZB5@2cosh~ g̃A!#q1e2DB$egB@2 cosh~ g̃A1K !#q

1e2gB@2 cosh~ g̃A2K !#q%, ~12!

FIG. 2. Clusters used in the Bethe-Peierls approximation
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whereg5bh, D5bD, andK5bJ. The effective fieldsg̃A ,
g̃B , andD̃ are determined by the consistency equations

s5@^s j&#av5
] ln ZA

]gA
5

1

qE `~DB!
] ln ZB

]g̃A

dDB , ~13!

S5@^Sj&#av5
1

q

] ln ZA

]g̃B

5E `~DB!
] ln ZB

]gB
dDB , ~14!

and

Q5@^Sj
2&#av52

1

q

] ln ZA

]D̃
52E `~DB!

] ln ZB

]DB
dDB ,

~15!

where^•••& and@•••#av indicate thermal and disorder ave
ages, respectively. We point out that the introduction of
effective crystal fieldD̃ is essential to achieve consisten
between the equations for the two clusters.

In order to analyze the critical behavior, it is convenie
to choose the magnetizations, the temperatureT, and the
external fieldshB and DB , as the independent thermody
namic variables. Thus, the external fieldhA is written as a
function of those variables, and the second-order transiti
in zero external field (hA5hB50) are given by

]gA

]s U
s50

50⇒Q05
1

~q21!2 tanh2 K
, ~16!

where the derivative is taken for fixed values of the rema
ing independent variables, and

Q0[Qus505E `~DB!
2 coshq K

eDB12 coshq K
dDB . ~17!

To calculate the derivative in Eq.~16!, we take the~implicit!
derivative of the consistency equations with respect tos,
imposing the conditions50 and eliminating the derivative
involving S, Q, and the effective fields. Also, fors50, we
haveS5g̃A5g̃B50, since those variables are odd functio
of s for hA5hB50. Thus, the consistency equation forQ
leads to

D̃us505 ln S 2
12Q0

Q0
coshK D , ~18!

and the final result is

]g̃A

]s
U

s50

5
11@2~q21!2q2#V01~q21!2V0

2

11~q22!V01~q21!2V0
2

, ~19!

where V05Q0tanh2 K. For q52, Eq. ~19! reproduces the
exact one-dimensional expression for theA-sublattice sus-
ceptibility ~see Appendix A!. In fact, for q52, it is not dif-
ficult to check that we regain all the exact one-dimensio
results.

It is easy to see that, in the uniform case, correspondin
`(DB)5d(DB2D), the critical line is given by
5-3
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D5 ln $2~coshK !q22@q~q22!cosh2 K2~q21!2#%,
~20!

in agreement with the results from the Bethe-lattice2 and the
cluster-variational6 calculations.

Using the binary distribution in Eq.~3!, we obtain

Q05p
2 coshq K

112 coshq K
1~12p!

2 coshq K

eD12 coshq K
. ~21!

Therefore, the critical line is given by

eD52
~12p!2f~K !

f~K !
coshq K, ~22!

where

f~K !5
1

~q21!2

cosh2 K

cosh2 K21
2p

2 coshq K

112 coshqK
. ~23!

In the T→0 (K→`) limit, we have

eD.
eqK

2q21

~q21!221

12p~q21!2
, ~24!

which has a real solution forD if

12p~q21!2.0⇒p,pcr5
1

~q21!2
. ~25!

This last result should be anticipated for a Bethe lattice
we can see from the following arguments. Consider a Cay
tree where the sites belonging to every other shell, say th
on odd-numbered shells, are occupied with probabilityp,
while the remaining sites are always occupied. Ifq is the
coordination of the tree, the average number of paths fr
the root~shell 0) to the first shell is given byp(q21), while
we havep(q21)2 paths from there to the second shell. A
cording to this reasoning, the average number of paths f
the root to the (2n)th shell is given bypn(q21)2n. In order
to have at least one path to the surface of the tree (n→`), it
is required thatp(q21)2>1, which is just the condition in
Eq. ~25!. This result, together with the reproduction of th
exact one-dimensional solution, would suggest that
present treatment also gives exact results on the Bethe la
even in the presence of disorder. However, as remarke
previous similar treatments,12,13 this works for the paramag
netic phase only, because only then it is correct to ass
that all boundary sites are under the action of the same~zero!
effective field. The existence of a percolating cluster, wh
we do not take into account in this treatment, prevents
approximation from still giving correct results for the o
dered phases.

We now consider Eq.~22!, in the infinite coordination
limit ( q→`, K→0, qK5K̃). We then have

eD52
~K̃221!2 1

3 pK̃2

12 2
3 pK̃2

, ~26!
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which agrees with Eq.~8! for the Curie-Weiss version of the
model.

The tricritical points are determined by Eq.~16! supple-
mented by the condition

]3gA

]s3 U
s50

50,

which is equivalent to

2q2210q16

~q21!5 tanh2 K
13qW0 tanh2 K5

~q22!~q23!

~q21!3
,

~27!

whereW0 is given by

W05E `~DB!S 2 coshq K

eDB12 coshq K
D 2

dDB . ~28!

The tricritical points are stable if

]5gA

]s5 s50.0.

To calculate this derivative, we again take implicit deriv
tives of the consistency equations~up to fifth order! with
respect tos, ats50, and eliminate all derivatives involving
S, Q, and the effective fields. Unlike the previous analys
we have not been able to obtain closed-form expressions
the stability condition of the tricritical point, but it is no
difficult to perform a number of numerical calculations.

For the uniform model, we haveW05Q0
2. Therefore, Eq.

~27! takes the form

tanhK5
1

q21
A5q23

q23
, ~29!

which is again identical to the result obtained from t
Bethe-lattice2 and cluster-variational6 calculations. Notice
that this equation has real solutions only ifq.4.561553•••.
Thus, the Bethe-Peierls approximation does not predict a
critical point for the square lattice (q54).

For the binary distribution in Eq.~3!, we have

W05Q0
2F11

p

12p S 12
1

Q0

2 coshq K

112 coshq K
D 2G . ~30!

In the infinite-coordination limit we can write

W05
1

K̃4 F11
p

12p S 12
2

3
K̃2D 2G , ~31!

which leads to the equation

K̃223F11
p

12p S 12
4

3
K̃21

4

9
K̃4D G2250, ~32!

at the tricritical point. Indeed, one of the solutions of th
equation corresponds to Eq.~9!, for the Curie-Weiss version
5-4
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of the model, while the other solution represents a therm
dynamically unstable situation.

In Table I, for various values of the coordination numb
q, and using the binary distribution given by Eq.~3!, we give
the corresponding values of the concentrationpm , at which
the tricritical point becomes unstable, and the critical per
lation concentrationpcr . We see that, forq<10, the tricriti-
cal behavior is suppressed forpm,pcr , while, for q>11,
that suppression occurs forpm.pcr . As shown in Table I,
pm increases withq, which indicates that disorder is mor
effective for small coordination numbers.

As the effects of binary disorder strongly depend on
coordination, we now discuss the phase diagrams for
typical cases. Forq53 and 4, there are no tricritical points
The D3T phase diagram displays just a fully stable critic
line. The main effect of disorder is to make the paramagn
phase unstable atT50, regardless of the value ofD, for p
larger than the critical percolation concentrationpcr . The
phase diagrams in Fig. 3, forq53, are in qualitative agree
ment with the exact results for the honeycomb lattice~which
is also three-coordinated! under annealed disorder.10 At T
50, there is even quantitative agreement with the value
the critical crystal field atpcr , given byDcr55J/3, although
of course this agreement does not extend to the value opcr

TABLE I. Values of the critical percolation concentrationpcr

and the concentrationpm at which the tricritical point become
unstable, as functions of the coordinationq in the Bethe-Peierls
approximation.

q pcr pm

5 6.2531022 7.416131024

6 431022 2.045431023

10 1.234631022 9.826531023

11 131022 1.166531022

20 2.770131023 2.300131022

100 1.020331024 3.970731022

` 0 4.485031022

FIG. 3. Phase diagrams for coordinationq53 according to the
Bethe-Peierls approximation.
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itself. Our results forq53 and q54 are also in qualita-
tive agreement with those obtained by a real-sp
renormalization-group approach for the two-dimensio
Blume-Emery-Griffiths model in a random crystal field.14

For 5<q<10, the concentrationpm above which the tri-
critical point becomes unstable is lower thanpcr . For p
,pm , disorder depresses the tricritical temperature, a
shortens the first-order transition line. Forpm,p,pcr , the
tricritical point is replaced by a critical end pointPce and a
simple critical pointPcs as in the Curie-Weiss version of th
model. However, the paramagnetic phase is stable atT50 if
D.qJ, and the first-order line reachesD5qJ at T50. As p
increases, first the critical end pointPce and then the simple
critical point Pcs reach theT50 axis, at values ofp which
can be determined by a low-temperature expansion of
consistency equations~see Appendix B!. In Fig. 4, we plot
the D3T phase diagram forq56 andp50.011. To deter-
mine the first-order lines shown in that figure, we nume
cally solve the consistency equations to obtain the conditi
hA(s1)5hA(s2)50 and

E
s1

s2
hA~s!ds50, ~33!

which correspond to a Maxwell construction. Forq>11, we
havepm.pcr , so the behavior of the system is quite simil
to the predictions of the Curie-Weiss version of the mode

IV. CONCLUSIONS

We performed detailed calculations for the phase diagr
of a random-anisotropy mixed-spin Ising model both in t
mean-field limit ~Curie-Weiss version of the model!, in
which thermal fluctuations are neglected, and according
standard self-consistent Bethe-Peierls approximation~which
turns out to be exact in one dimension!. For a binary distri-
bution of crystal fields, we obtained closed-form expressio
for the critical lines and the location of the tricritical point
Depending on the concentrationp, the mean-field results fo
theD3T phase diagrams predict further first-order lines a

FIG. 4. Phase diagram for coordinationq56 and disorder con-
centrationp50.011 according to the Bethe-Peierls approximatio
5-5
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multicritical points~in addition to a ferromagnetic region, fo
all values of the crystal field, extending down to the lowe
temperatures!. The Bethe-Peierls approximation shows th
this additional ferromagnetic region is suppressed for c
centrations below a certain percolation threshold. Also,
Bethe-Peierls results point out to the absence of a tricrit
behavior for lattices with coordinationq<4. All results re-
ported in this paper are in agreement with general predict
for the effects of disorder on first-order transitions and m
ticritical points~for a recent review, see a paper by Cardy15!.

ACKNOWLEDGMENTS

We thank T. A. S. Haddad for useful discussions. T
work was partially financed by the Brazilian agenci
FAPESP and CNPq.

APPENDIX A: EXACT SOLUTION IN ONE DIMENSION

For an open chain withN11 sites (N even!, and in zero
external field, the Hamiltonian of the mixed-spin Ising mod
can be written as

H52J(
j 51

N/2

~s jSj1Sjs j 11!1(
j 51

N/2

D jSj
2 . ~A1!

Given a disorder configuration$D%5$D1 , . . . ,DN/2%, we
perform a partial trace over the spin variables$Sj% to write

Z$D%5(
$s%

(
$S}

e2bH

5(
$s%

)
j 51

N/2

$112e2D j cosh@K~s j1s j 11!#%,

~A2!

whereK5bJ andD j5bD j . Introducing a prefactorAj ,

Aj
25~112e2D j !@112e2D j cosh~2K !# ~A3!

and an effective interactionK̃ j , such that

e2K̃ j5
112e2D j cosh~2K !

112e2D j
, ~A4!

the partition function can be written as the factorized form

Z$D%5(
$s%

)
j 51

N/2

Aje
K̃ js js j 115)

j 51

N/2

2@112e2D j cosh2 K#.

~A5!

From Eq.~A5!, we obtain the thermal average

^Sj
2&$D%52

] ln Z

]D j
5

2e2D j cosh2 K

112e2D j cosh2 K
, ~A6!

which depends on the value of the crystal field on thej th site
only. Since we are considering a nearest-neighbor o
18441
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dimensional model in zero field, the thermal averages^Sj&
and ^s j& are zero. Performing the disorder average, we
tain the expectation value

Q5E ^Sj
2&)

i 51

N/2

`~Di !dDi5E `~D j !^Sj
2&$D% dDj .

~A7!

For a given disorder configuration, the magnetic susc
tibilities of the s andS sublattices are given by

xs$D%5
1

T
lim

N→`

2

N12 (
j 51

N/211

(
k51

N/211

^s jsk&$D% ~A8!

and

xs$D%5
1

T
lim

N→`

2

N (
j 51

N/2

(
k51

N/2

^SjSk&$D% . ~A9!

The two-spin correlation functions

^s jsk&$D%5
1

Z$D% (
$s%

(
$S%

s jske
2bH ~A10!

and

^SjSk&$D%5
1

Z$D% (
$s%

(
$S%

SjSke
2bH, ~A11!

can be calculated if we introduce the transformation

t j5s js j 11 with t05s1 . ~A12!

After some algebraic manipulations, forj ,k, we have

^s jsk&$D%5)
i 5 j

k21
2 sinh2 K

eD i12 cosh2 K
~A13!

and

^SjSk&$D%5S )
i 5 j ,k

sinh 2K

eD i12 cosh2 K
D

3 )
i 5 j 11

k21
2sinh2K

eD i12 cosh2K
, ~A14!

from which we obtain the expectation values

gs~ uk2 j u!5E ^s jsk&$D%)
i 51

N/2

`~Di !dDi

5~Qtanh2K ! uk2 j u ~A15!

and

gs~ uk2 j u!5E ^SjSk&$D%)
i 51

N/2

`~Di !dDi

5Q~Qtanh2K ! uk2 j u, ~A16!
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which depend on the distance between sitesj and k. The
expectation values of the susceptibilities are given by

@xs#av5
1

T F112(
r 51

`

gs~r !G5
1

T

11Q tanh2 K

12Q tanh2 K
~A17!

and

@xs#av5
1

T FQ12(
r 51

`

gs~r !G5
Q

T

11Q tanh2 K

12Q tanh2 K
,

~A18!

whereQ is determined by Eq.~A7!.

APPENDIX B: LOW-TEMPERATURE EXPANSION

For the binary distribution, in the low-temperature lim
(K5bJ@1), if we neglect terms of order exp(22K) and
higher, the consistency equations~13!–~15! for clusterA lead
to the expressions

gA5
1

2
ln

11s

12s
1

q

2
ln

12C1

12C2
, ~B1!

S5
11s

2
C12

12s

2
C2 ~B2!

and

Q5
11s

2
C11

12s

2
C2, ~B3!

where

C65
e6g̃B

eD̃2K1e6g̃B
. ~B4!

For clusterB, we have

s5p tanh~qg̃A!1~12p!
t~ g̃A!tanh~ g̃A!1d tanh~qg̃A!

t~ g̃A!1d
,

~B5!

S5p tanh~qg̃A!1~12p!
d

t~ g̃A!1d
tanh~ g̃A!, ~B6!
18441
Q5p1~12p!
d

t~ g̃A!1d
, ~B7!

where

d5exp~qK2D!, ~B8!

and

t~x!5
2q

~11tanhx!q1~12tanhx!q
. ~B9!

Solving Eqs.~B2! and~B3! for C6 in terms ofs, S, and
Q, and using Eqs.~B5!–~B7!, we can write Eq.~B1! in the
form

gA~s!5
12q

2
ln

11s

12s
1qg̃A~s!, ~B10!

where g̃A(s) is determined from the solution of Eq.~ B5!.
Notice that, according to Eqs.~B10! and ~B5!, gA(s) and
g̃A(s) depend on the temperature through the parameted
only. As T→0, this parameter goes to zero~if D.qJ), or
infinity ~if D,qJ), except in the vicinity of the pointP0
with coordinatesD5qJ, andT50, whered can assume any
value.

Since the equation of state~B10! becomes asymptotically
exact asT→0, it can be used to determine the values ofp at
which the critical end point and the simple critical poi
reach P0, and thus disappear. To do that calculation,
impose the conditions

gA~se!5
]gA

]s U
s5se

5
]2gA

]s2 U
s5se

50, ~B11!

from which we obtain the values ofse , de, andpe at which
the critical end point reachesP0, and the conditions

gA~ss!5
]gA

]s U
s5ss

5E
0

ss
gA~s!ds50, ~B12!

which give the corresponding valuesss , ds , andps for the
simple critical point.
.
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