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Phase diagram of a random-anisotropy mixed-spin Ising model
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We investigate the phase diagram of a mixed spispin-1 Ising system in the presence of quenched
disordered anisotropy. We carry out a mean-field and a standard self-consistent Bethe-Peierls calculation.
Depending on the amount of disorder, there appear additional transition lines and multicritical points. Also, we
report some connections with a percolation problem and an exact result in one dimension.
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[. INTRODUCTION a tricritical point forg<5, as confirmed by Migdal-Kadanoff
renormalization-group  calculatiofis. In  the infinite-
Apart from their relevance to the description of ferrimag- coordination limit of the Bethe lattice, one regains the well-
netic materials, mixed-spin models are interesting from &nown results for the tricritical point displayed by the Curie-
purely theoretical point of view, being among the simplestWeiss (mean-field version of the model. An earlier
models to exhibit tricritical behavior. So they are especiallyapproximate effective-field calculatibpredicted a tricritical
convenient for studying the effects of inhomogeneities on theoint for q=4, but this result has been recently
phase diagrams and the multicritical behavior of magneti¢hallenged®
systems. From a few exdctand several approximate cal- In order to analyze the effects of disorder, we consider the
culations, we now have a good picture of the phase diagramgamiltonian
of mixed sping—spin-1 Ising models in the presence of a
crystal field. Our aim in this work is to use this model Hamil- >
tonian to investigate the effects of disorder on the location of H= _‘]<i EAEJE B) ;S +J-§B DSy, )
the transition lines and the tricritical point. . ) ) ) o
The mixed-spin Ising model is described as a two-where{D;} is a set of independent, identically distributed
sublattice system, with spin variables= +1 andS=0,+1, random variables associated with the binary probability dis-
on the sites of sublattices and B, respectively. Restricting tribution
the interactions to nearest-neighb@elonging to different _
sublattices and single-ion terr%s, the r?wosgt general spin #(Dj)=pa(Dj)+(1~p)&(D;=D). ©)
Hamiltonian in even spin space is written as With this choice of disorder, and f@>qJ, the ground state
can be mapped onto a percolation problem in which the di-
> lution affects the sites belonging to only one of the sublat-
H= _J<i EAZJ.E B) oS+ DJ.;B S/ @) tices (corresponding to spi®=1). This association is easy
to see if we note that a uniform crystal fieltt>qJ leads to
where the first sum is over nearest-neighbor pairs, the secorj=0 for all j, which breaks the connectivity between the
sum is over the sites of sublatti®& and the parameteris  spin-1/2 variables. The presence of a randomly located dis-
assumed to be positiv6erromagnetic exchangeFor D tribution of D=0 crystal fields recovers that connectivity
>0, the crystal field favors th§;=0 states; the competition and, for sufficiently high values gf, leads to the formation
between anisotropy and ferromagnetic exchange terms lead$ a percolating cluster. In the rather artificial case of an-
to the appearance of a tricritical point. It should be pointednealed disorder, on the honeycomb lattice, there is also an
out that one needs three parameters to describe the evemact solutio® for the thermodynamic properties of the
space of the better known spin-1 Blume-Emery-Griffithsmixed-spin model described by Eq®) and(3). It is inter-
(BEG) model. In the present case of a mixed-spin Ising sysesting to remark that this solution in the annealed case repro-
tem, from the point of view of the calculations, the reductionduces the critical concentration of the percolation problem
of the analysis to a two-parameter space is a particularlgssociated with the ground state of the model with quenched
attractive feature. (frozen disorder, which is equivalent to the usual percola-
There are exact calculations for the thermodynamic function problem on the triangular lattice. For the physically
tions associated with the model Hamiltonian given by @§). more relevant case of quenched disorder, there are approxi-
on a simple chain and on some three-coordinated twomate calculations using an effective-field theory with
dimensional structures. On a honeycomb lattice, the problemorrelations:* which point to the(expectedl weakening of
can be mapped onto a spjnising model on a triangular the tricritical behavior due to the presence of disorder.
lattice, which does not display a tricritical poihtThis In the present work, we first analyze the temperature-
mixed-spin model can also be exactly solved on a Bethanisotropy TXD) phase diagram of the Curie-Weiss ver-
lattice? (the deep interior of Cayley trgdeading to the same sion(mean-field limi} of the spin Hamiltonian given by Egs.
results of a recent cluster-variational calculatiofhe results  (2) and(3). Depending on the concentratipn there appear
on a Bethe lattice with coordinatianindicate the absence of novel transition lines and multicritical points. To include the
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effects of thermal fluctuations, we then resort to a standarc k,T/J k,T/7
self-consistent Bethe-Peierls approximatiavhich is analo- 1592 04 06 08 19 02 04 06 08
gous, in the case of the corresponding uniform model, to P2 p=0 fetro-1 p=004
performing an exact Bethe-lattice calculatiom Sec. II, we R e R para 1"
present the Curie-Weiss results. The Bethe-Peierls approxi~ | il e - 4L
mation is discussed in Sec. llI. In the appendixes, we repor™os ™™ "m_l ' &
an exact solution in one-dimension as well as some low- 1%
temperature expansions to supplement the numerical resuli 0
from the Bethe-Peierls approximation. 2 — 2
s -ierro_utp 0.05 . P 1is
Il. CURIE-WEISS VERSION -~ P para > -
~ L -ty 0368 037 037 - ~
The Curie-Weiss version of the mixed-spin Ising model is | 1 e J
given by the Hamiltonian osf o Hos
2J 5 N TV u Y 1°
H= N i;A U'jgs SJ+j§E:B Disy @ Gl !

FIG. 1. Phase diagrams of the Curie-Weiss version for typical

where the sums are over all sites belonging to each one of thﬁilues of the disorder concentratipn

sublattices.
For a given disorder configuratidiD;}, we calculate the o () at »=0. There is then the possibility of a tricritical

partition function by performing a partial trace over the Setpoint given by the additional condition

of spin variables(S;}. In the thermodynamic limit, we use ’

the saddle-point method and average over disorder to obtain 4y , 3+9p—\9—186p+ 177p?
the free energy functional —_— = Ke= . (9
dot| 8p
1 1 o=0
V(o)=— 28 In2— 5(1+ o)In(1+0) The stability of the tricritical point is determined by
1 PV 0mp=py=0.04485 10
—E(l—a)ln(l—a) 905 U:O/ =pP=pm=0. (10
which means that the tricritical behavior is suppressed by
- ﬁ #(Dg) disorder concentrations larger than approximately 4.5%.
In Fig. 1, we plot somé® X T phase diagrams for a set of
XIn[1+ 2e APe cosi BJo)]dDg . (5)  typical values of the concentratign In the uniform case

(p=0), there is just a tricritical poinP;. For 0<p=p,,
=0.04485 - -, a tricritical point still exists(see Fig. 1, for
p=0.04). However, at low temperatures and sufficiently
2 sint{ BJ o) large values oD, there appears a low-densit{p asT
U:tam{ﬁJJ o(D dbD (6) —0) ferromagnetic phase, which we call the ferro-Il phase;

From the minimization ofV’ (o) with respect too, we have
the A-sublattice magnetization,

B Bl : ; :
e?Pe+ 2 costiBlo) at fixed values oD, an increase of temperature induces a

second-order transition from the ferro-Il to the paramagnetic
phase. This transition is represented by a critical line that
meets the first-order line at a critical end pof.. This

critical end point separates the first-order line into two dis-
tinct regions:(i) at higher temperatures, there are transitions

where the random variablBg satisfies the probability dis-
tribution in Eq.(3). We can now calculate various expecta-
tion values. For example, we have

Q=f ¢(Dg)(S3)dDg between the usual, high-densit) {1 asT—0) ferromag-
netic phaseferro-1) and the paramagnetic phas) at lower
2coshiBlo) temperatures, the transitions are between the ferro-1 and
—f 9(Dg D Dg. (7) ferro-1l phases, the first-order boundary ending at a finite-
e%8+2costifJo) temperature critical poin®.

For p,,=0.04485 - - <p<3/59=0.05084 - -, the tricriti-
cal point is replaced by a critical end point and a simple
’ L2 critical point, separated by a first-order transition line be-
A—Z(K —1)—-35pK ) tween the ferromagnetic phasésee inset in Fig. 1, fop
1- 2pK? ' =0.05). Forp=3/59, the critical line is fully stablésee Fig.
1, for p=0.08). However, forp<0.1, there still exists a
whereA= 3D andK= BJ. The thermodynamic stability of small finite-temperature region where there éiest-orde)
the critical line depends on the sign of the fourth derivativetransitions between the ferromagnetic phases.

The critical line comes from the condition

Py

o2

o=0

184415-2



PHASE DIAGRAM OF A RANDOM-ANISOTROPY MIXED ... PHYSICAL REVIEW B 63 184415

A B wherey=gh, A= gD, andK = 8J. The effective fieldsy,
¥s, andA are determined by the consistency equations
(o)] alnZa 1f (D )aInZBdD 13

o=[{o)la=——=7%| ® —= ;

VI gya g S
S—[(S)] 1 {ﬂnZA_f (D )aInZBdD (14

@ spin-112 aa q (7”;/B v B Jve B

O spin-1 and
FIG. 2. Clusters used in the Bethe-Peierls approximation.
Sy - 1&InZA_ f b aInZBdD
IIl. BETHE-PEIERLS APPROXIMATION Q=[S )]a= qa o9& #(Dg) dAg B’

To give an estimate of the effects of thermal fluctuations, (15
which are not accounted for by the Curie-Weiss calculationswhere(- - -) and[ - - - ],, indicate thermal and disorder aver-
we now resort to a standard self-consistent Bethe-Peierls apges, respectively. We point out that the introduction of the
proximation. As the model is defined on a bipartite lattice,effective crystal fieldD is essential to achieve consistency
we have to consider two distinct clusters of coordinalipn petween the equations for the two clusters.

(see Fig. 2 In one of them, which we cah, the central site In order to analyze the critical behavior, it is convenient
is occupied by a spir=3, connected ta spins of theS  tg choose the magnetizatian, the temperaturd, and the

=1 type. In the other cluster, callddl there is a centrab  external fieldshg and Dg, as the independent thermody-
=1 spin surrounded by spin variables. According to the namic variables. Thus, the external figlg is written as a
standard prescription of the Bethe-Peierls approximation, w@nction of those variables, and the second-order transitions
assume that the boundary spins of clusteare under the i zero external fieldIfy=hg=0) are given by

action of an effective magnetic fiellg and an effective

crystal fieldD, while the boundary spins of clust&rare in %

an effective magnetic fieli, . The crystal field acting on the do
central site of a clusteB is a random variabl®z. We also
consider external magnetic fielths, and hg, acting on the
central sites of cluster8 andB, respectively.

For the sake of simplicity, we assume that the same ef- 2 cosii K

fective crystal fieldD acts on all boundary spins of clust&r QOEQ|U:0:J 9(Dg)—————dDg. (17
(and impose self-consistency between both thermal and dis- e*8+2 cosiiK

ordgr averages assomateq W'th the two clgs;tdnsa MOr€ T4 calculate the derivative in E¢l6), we take theimplicit)
refined approach, we might introduce different effective

, ' ) “derivative of the consistency equations with respectrto
crystal fields to mimic the extended disorder of real materl—imposing the conditionr=0 and eliminating the derivatives

als. However, we expect that, in the absence of external magﬁvolving S Q, and the effective fields. Also, far=0, we

netic fields, the assumption of a sindleis reasonable, at haveS=7y,=vs=0, since those variables are odd functions
least in the paramagnetic phase, where there is no Iong-ran% o for hAZhBZO' Thus, the consistency equation fr
order; in particular, we expect that the paramagnetic phas ads to AT TR ' y €d

boundaries obtained by the two approaches are equivalen

1

-0 (q—1)%tant K’ 19

where the derivative is taken for fixed values of the remain-
ing independent variables, and

within the Bethe-Peierls approximation. We will see that this ~ -Q,
is indeed supported by the calculations. Aly—o=1n ( 2 coshK), (18
The partition functions associated with the two clusters Qo
are given by and the final result is
ZA:eyA[1+Ze—Z COSH’:}'/B"_ K)]q % :1+[2(q_1)_q2]vo+(q_1)2\/(2) (19)
i~ 90|, 0  1+(@=2)Vot(g-1V5
+e "A[1+2e * cosl{yg—K)]9 (11
where V= Qqtant? K. For q=2, Eq. (19) reproduces the
and exact one-dimensional expression for tAesublattice sus-
ceptibility (see Appendix A In fact, forq=2, it is not dif-
ficult to check that we regain all the exact one-dimensional
Zs=[2costiys)]9+e “8{e8[ 2 cosliya+K)] results.
_ It is easy to see that, in the uniform case, corresponding to
+e7 78[2 cosltiya—K) 1%, (120 p(Dg)=48(Dg—D), the critical line is given by
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A= In{2(coshK)9~?[q(q—2)cost K—(q—1)?]}, which agrees with Eq8) for the Curie-Weiss version of the
(200  model.
The tricritical points are determined by E@.6) supple-

in agreement with the results from the Bethe-laftiard the mented by the condition

cluster-variationdl calculations.

Using the binary distribution in Eq3), we obtain Pryn
o 2 cosli K H(1-p) 2 cosi K 2 g | _, '
=P P s
1+2cosliK e*+2 costi K which is equivalent to
Therefore, the critical line is given b
Jven Dy 20%— 100+ 6 (9-2)(q-3)
————— +3qWp tanf K= ————,
eA_z(l—p)—d)(K) coshi K (22 (q—1)%tanif K (q—1)3
- H(K) ’ (27)
where whereW, is given by
2 cosi K
5(K)= 1 coslf K . 2 cosi K @3 Wo=f #(Do)| - dDg. 29)
(q—1)? cosfK—1  1+2 cosiK e*e+2 costK
In the T—0 (K—c) limit, we have The tricritical points are stable if
5
e (g-1)2-1 I"Yn
o (q-1) , (24) = o=0>0.
297t 1-p(q—1)?
. . . To calculate this derivative, we again take implicit deriva-
which has a real solution fak if tives of the consistency equatioiisp to fifth ordej with
1 respect tar, ato=0, and eliminate all derivatives involving
1-p(g—1)2>0=p<p,=——s. (251 S Q, and the effective fields. Unlike the previous analysis,
(q—1)? we have not been able to obtain closed-form expressions for

the stability condition of the tricritical point, but it is not

This last result should be anticipated for a Bethe lattice, aglifficult to perform a number of numerical calculations.
we can see from the following arguments. Consider a Cayley For the uniform model, we ha\M/O:Qg. Therefore, Eq.
tree where the sites belonging to every other shell, say those?) takes the form
on odd-numbered shells, are occupied with probabitity
while the remaining sites are always occupiedqlfs the 1 5q—3
coordination of the tree, the average number of paths from tanhK= ——\/——, (29

. R . qg—-1V g-3

the root(shell 0) to the first shell is given by(q—1), while
we havep(q—1)? paths from there to the second shell. Ac- which is again identical to the result obtained from the
cording to this reasoning, the average number of paths froBethe-latticé and cluster-variation&l calculations. Notice
the root to the (2)th shell is given byp"(q—1)?". In order  that this equation has real solutions onlyif4.561553 - .
to have at least one path to the surface of the tree¢), it  Thus, the Bethe-Peierls approximation does not predict a tri-
is required thap(g—1)?=1, which is just the condition in critical point for the square latticeg&4).
Eg. (25). This result, together with the reproduction of the  For the binary distribution in Eq(3), we have
exact one-dimensional solution, would suggest that the

present treatment also gives exact results on the Bethe lattice 9 p 1 2cosHK |?
even in the presence of disorder. However, as remarked in Wo=Qp| 1+ 1-p 1- Qo 1+ 2 cosl K (30
. - 130 01+2cosiK
previous similar treatment$;*® this works for the paramag-
netic phase only, because only then it is correct to assumka the infinite-coordination limit we can write
that all boundary sites are under the action of the s@em)
effective field. The existence of a percolating cluster, which p 2, 2
we do not take into account in this treatment, prevents this Wo:@ 1+ p 1=3K7] |, (3D
approximation from still giving correct results for the or-
dered phases. which leads to the equation
We now consider Eq(22), in the infinite coordination
imi =K ~ 4. 4.
limit (gq—o, K—0, gKk=K). We then have R2_3[14 p 1- °R24 °k4| | —2=0, (32
B 1-p 3 9
(K2—1)— 1 pk? . . . :
er=— ———— (26)  at the tricritical point. Indeed, one of the solutions of this
1- 2pk?2 equation corresponds to E(), for the Curie-Weiss version
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TABLE |. Values of the critical percolation concentratiqm, 1.5 T T I . T
and the concentratiop,, at which the tricritical point becomes q= 6 1.008 ———71—
unstable, as functions of the coordinatignin the Bethe-Peierls para p=0.011 i para/ferro-ll 1]
approximation. sy ;,C:_
q Per Pm - ! o et T
5 6.25¢10°2 7.4161x 104 N o on oz
6 4x1072 2.0454<10°3 Q ferro-
10 1.2346<10 2 9.8265¢10 3 0.5k |
11 1x10°2 1.1665< 102
20 2.770x 1073 2.3001x 102 |
100 1.020% 10 * 3.9707< 10 2
o 0 4.4850< 102 0 ! ! ! .
0 0.2 0.4 0.6 0.8
k,T/q]

of the model, while the other solution represents a thermo
dynamically unstable situation.

In Table |, for various values of the coordination number
g, and using the binary distribution given by Eg), we give
the corresponding values of the concentratign at which
the tricritical point becomes unstable, and the critical perco
lation concentratiomp.,. We see that, fog=< 10, the tricriti-
cal behavior is suppressed fpr,<p., while, for g=11,
that suppression occurs f@r,>p.. As shown in Table |,
pn increases withg, which indicates that disorder is more
effective for small coordination numbers.

As the effects of binary disorder strongly depend on th
coordination, we now discuss the phase diagrams for th
typical cases. Fog=3 and 4, there are no tricritical points.
The DX T phase diagram displays just a fully stable critical
line. The main effect of disorder is to make the paramagneti
phase unstable &t=0, regardless of the value &, for p
larger than the critical percolation concentratipg. The
phase diagrams in Fig. 3, for=3, are in qualitative agree-
ment with the exact results for the honeycomb lattiwkich
is also three-coordinatgdinder annealed disord&t.At T
=0, there is even quantitative agreement with the value o
the critical crystal field ap,,, given byD,=5J/3, although
of course this agreement does not extend to the valyg,of

k T/ qJ

FIG. 3. Phase diagrams for coordinatigs- 3 according to the
Bethe-Peierls approximation.

€

C

FIG. 4. Phase diagram for coordinatige= 6 and disorder con-
centrationp=0.011 according to the Bethe-Peierls approximation.

itself. Our results forq=3 andg=4 are also in qualita-
tive agreement with those obtained by a real-space
renormalization-group approach for the two-dimensional
Blume-Emery-Griffiths model in a random crystal fiéfd.

For 5=<q=10, the concentratiop,, above which the tri-
critical point becomes unstable is lower thagp.. For p
<pm, disorder depresses the tricritical temperature, and
shortens the first-order transition line. Foy<p<p, the
gicritical point is replaced by a critical end poiRt., and a
Simple critical pointP ¢ as in the Curie-Weiss version of the
model. However, the paramagnetic phase is stable=ad if
D>qJ, and the first-order line reachBs=qJ at T=0. Asp
increases, first the critical end poiRt. and then the simple
critical point P reach theT=0 axis, at values op which
can be determined by a low-temperature expansion of the
consistency equationsee Appendix B In Fig. 4, we plot
the DX T phase diagram foq=6 andp=0.011. To deter-
pwine the first-order lines shown in that figure, we numeri-
cally solve the consistency equations to obtain the conditions

hA(O'l):hA(O'Q):O and

f “ha(o)do=0, 33)
(Tl

which correspond to a Maxwell construction. Fpe 11, we
havep,,>p¢, SO the behavior of the system is quite similar
to the predictions of the Curie-Weiss version of the model.

IV. CONCLUSIONS

We performed detailed calculations for the phase diagram
of a random-anisotropy mixed-spin Ising model both in the
mean-field limit (Curie-Weiss version of the modelin
which thermal fluctuations are neglected, and according to a
standard self-consistent Bethe-Peierls approximaiidmich
turns out to be exact in one dimensjofor a binary distri-
bution of crystal fields, we obtained closed-form expressions
for the critical lines and the location of the tricritical points.
Depending on the concentratipnthe mean-field results for
theD X T phase diagrams predict further first-order lines and
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multicritical points(in addition to a ferromagnetic region, for dimensional model in zero field, the thermal avera¢®s

all values of the crystal field, extending down to the lowestand(o;) are zero. Performing the disorder average, we ob-
temperaturgs The Bethe-Peierls approximation shows thattain the expectation value

this additional ferromagnetic region is suppressed for con-
centrations below a certain percolation threshold. Also, the 5 )

Bethe-Peierls results point out to the absence of a tricritical Q:f <Sj >i1;[l ¢(Di)dD;= f 50(Dj)<sj>{D} db;.

behavior for lattices with coordinatiop<4. All results re- (A7)
ported in this paper are in agreement with general predictions

for the effects of disorder on first-order transitions and mul-  For a given disorder configuration, the magnetic suscep-
ticritical points(for a recent review, see a paper by Cdrily tibilities of the o and S sublattices are given by

N/2

N/2+1 N/2+1
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APPENDIX A: EXACT SOLUTION IN ONE DIMENSION xsiD}= TImy 121 kzl (SS90} - (A9)

For an open chain wittN+ 1 sites (N ever), and in zero
external field, the Hamiltonian of the mixed-spin Ising model
can be written as 1

<‘7j(7k>{D}:m > > gjoe M (A10)

The two-spin correlation functions

N/2 N/2 {o} {S}
H:—JJZ1 (ajsj+siaj+l)+;l D;S. (Al g
Given a disorder configuratiofD}={D, ... ,Dy;}, we _ _ 1 o o pH
perform a partial trace over the spin variab{&} to write (SiSdo) Z{D} % {25; SiSe (ALD)
can be calculated if we introduce the transformation
z{D}=2> > e "
{o} {8} Tj=0j0j41 With 7o=07. (A12)
N/2
After some algebraic manipulations, fpk, we have
:2 H {1+2e*AJ coshiK(oj+aj41) 1}, g P pr
{o} =1 k—1 .
(A2) (gio)io=11 _2sinffK_ (A13)
IZKIADI L 6Ai 42 cosR K
whereK=3J andA;=gD; . Introducing a prefactod;, and
A?=(1+2e %)[1+2e % cosh2K)] (A3) _
B sinh 2K
and an effective interactiol;, such that (§Sd01= i1k edi+2 cosRK
i 1+2e”% cosh2K) K1 2sinK
ehi= A , (A4) X AN a2l (A14)
1+2e 4 i=j+1 edi+2 cosK
the partition function can be written as the factorized form
from which we obtain the expectation values
N/2 ~ N/2
Z{D}={E} [T Ajefivivica=T] 2[1+2e%i cosk K]. | 1’“_’[2
7 -1 1 Alk=iD= [ (7,090 IT o(D)aD,
(AS) g ] < ] k>{D}i:l | |
From Eq.(A5), we obtain the thermal average = (QtanitK)! (A15)
and
() dlnz  2e “icostK (A6)
I} T A, 14264 ; ' N/2
) Lr2eTcosffK 0:(k-ih= [ (5891 o(D)dD
which depends on the value of the crystal field onjttesite _
only. Since we are considering a nearest-neighbor one- :Q(Qtanrf-K)“‘*J', (Al6)
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which depend on the distance between sjtemd k. The
expectation values of the susceptibilities are given by

1 . _ 11+QtankK
Dxelav=5| 1422, 040 | = 3 =S o
(A17)
and
1 - ~ Q 1+QtanifK
[Xs]av_-l- Q+221 gs(r)}_ T 1—Qtal’l|’?K’
(A18)

whereQ is determined by EqA7).

APPENDIX B: LOW-TEMPERATURE EXPANSION

For the binary distribution, in the low-temperature limit

(K=pBJ>1), if we neglect terms of order exp@K) and
higher, the consistency equatioii8)—(15) for clusterA lead
to the expressions

1 1te g 1-C, a1
(R s Ly B
S—1+UC l—ch B2
=—5-C.~—5C (B2)
and
e+ % B3
Q="5-C.+5C., (B3)
where
e*7e
Ci__n—p_eA*KJrein' (B4)

For clusterB, we have

m(ya)tanh(y,) + Stanh(qya)

o=ptanh(qys)+(1-p)

m(yp)+ 6
(B5)
- 5 5
S=ptanfqya) +(1—p) —=——tanRys), (B6)
T(ya)+ 6

PHYSICAL REVIEW B 63 184415

=p+(1-p)——, B7)
Q=p+( |0)T(7A)+(S (
where
S=expgK—A), (B8)
and
24
7(X) (B9)

- (1+tanhx)%+ (1—tanhx)%’

Solving Egs.(B2) and (B3) for C.. in terms ofc, S and
Q, and using Eqs(B5)—(B7), we can write Eq(B1) in the
form

1_
ya(o)= =5 In

g ~

1-0
whereya(o) is determined from the solution of E¢.B5).
Notice that, according to Eq$B10) and (B5), ya(o) and

va(o) depend on the temperature through the paraméter
only. As T—0, this parameter goes to zefid D>qJ), or
infinity (if D<<qJ), except in the vicinity of the poinP
with coordinate® =qJ, andT=0, whereé can assume any
value.

Since the equation of stat810) becomes asymptotically
exact asT—0, it can be used to determine the valuep @t
which the critical end point and the simple critical point
reach Py, and thus disappear. To do that calculation, we
impose the conditions

PPy
_ da?

(J'*O'e

-0, (B1D

(T:O'e

from which we obtain the values af,, ., andp, at which
the critical end point reachd®,, and the conditions

7N
Jo

ya(02)= - f:smo-mo-:o, (B12

U'*(Ts

which give the corresponding values, Js, andpg for the
simple critical point.
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