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Theoretical study of perpendicular giant magnetoresistance in multilayers
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We investigate the conductance and giant magnetoresist&M®&) in the current perpendicular-to-the-
plane geometry in magnetic multilayers via a third-nearest-neighbor tight-binding modek,wjth and d
orbitals. An iterative method is used to calculate the Green’s function of the multilayer. The conductance, due
to both minority and majority spin channels, is calculated in the ferromagnetic and antiferromagnetic configu-
rations using the Landauer-Biker formula. Oscillations of GMR, both with spacer and magnetic layer
thicknesses, are observed and the contributions to the conductance due to various extremal points on the Fermi
surface are studied. Ballistic conductance and GMR are found to saturate very fast with the number of periods
in the multilayer.
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[. INTRODUCTION method offers the convenience of taking the band structure
as input and thus reducing the computational time. It is es-
The discovery of the giant magnetoresistance in Fe/Cpecially useful for multilayers because it discretizes the spa-
multilayers-? has stimulated a great deal of reseaffdr a tial continuum in a natural way. The method has been used
review, see Refs. 3 and.4The interest in the field has been by several groups so far. Tsymbal and Pettffased the full
fueled by the applications of giant magnetoresista{@dR)  sp°d®> TB model to calculate GMR in infinite Co/Cu and
for magnetic recording. A lot of work has been done bothFe/Cr superlattices with fixed slab sizes. Mattesral ™ cal-
experimentally and theoretically. On the experimental sideculated GMR of a Co/Cu trilayer from the Kubo formula
GMR was first found in trilayers and multilayers with nearly using full sp>d®> TB model. They studied the dependence of
perfect crystalline structure. Later, GMR was observed inGMR from both magnetic and spacer layer thickness. In an-
sputtered samples and oscillations of GMR with changes i®ther paper Mathdfi observed that ballistic conductance in
the thickness of the nonmagnetic layer were obsetwddst ~ multilayers saturates after a relatively small number of peri-
of the GMR measurements are done in the current-in-theeds. Later, Sanvitet al'’ studied GMR of finite CoA and
plane (CIP) geometry because the sample has macroscopidi/A (A=Cu, Ag, Pb, Au, and Rtmultilayers from the Lan-
size and thus significant resistance. However, there are medauer formula also usingp®d® TB model. Another GMR
surements of GMR in the current-perpendicular-to-the-plan€alculation of Co/Cu trilayers was given by Zwierzycki and
(CPP geometry® and GMR observed in CPP geometry is Krompiewsk#® using reducedd* TB model and a simplify-
often larger than GMR observed in CIP geometry. The teming assumption of a simple cubic lattice. Despite all the work
perature dependence of the CPP GMR in multilayers is alsdone, little attention was paid to Fe/Cr multilayers where
studied”® GMR was originally observetiFurthermore, the experimen-
The first theoretical works on GMR are based on the freetal observation that GMR increases when one adds extra
electron model and semi-classical treatment of transportmagnetic layers and existing calculation€, point to the
This approach does not take into account the band structurgeed for further study of the dependence of GMR on the
of the materials and employs many phenomenological paaumber of periods in the multilayer.
rameters. Spin-dependent scattering from the interfaces and The purpose of this work is to investigate the ballistic
the bulk is identified as the source of GMR. However, Schepgonductance and CPP GMR of finite Fe/Cr multilayers, and
Kelly, and Bauet’ showed that the observed values of GMR in particular, the dependence of GMR on the number of pe-
can be obtained from the band structure alone. They contiods in the multilayer and layer thickness, taking into ac-
mented that although the transport in real samples is diffucount the realistic band structures. The calculation is based
sive rather than ballistic, it is very improbable that the band-on empirical third-nearest-neighbor tight-binding model with
structure effects are completely subdued. This led to mang,p,d orbitals, fitted toab initio band structures of the con-
calculations of GMR based on rigorous quantum theory ofstituent materials. Our main result is that the ballistic con-
scattering. All methods utilize either the Kubo-Greenwoodductance and GMR saturate after a small number of periods
formula or the equivalent Landauer-fiker formula. The (~2-6) that agrees with the results of Ref. 16. However,
band structure is taken into account eitladr initio or via  our method differs in the calculation of the conductance and
tight-binding (TB) interpolation scheme. Theab initio  the Green’s functiofGF) that makes the agreement with
method has been applied to pure multilay@rs: multilayers ~ Mathon even more significant. We calculate the conductance
with disordef? within the coherent potential approximation, from the Landauer-Bttiker formula instead of the Kubo for-
and recently, spin-valve systerhisThe main problem with mula and we use an iterative method and self-energies to
this method is the computational overload that affects adealculate the GF instead of a recursive method and the
versely the size of the systems that can be studied. The TByson equation. We go a step further to show that the satu-
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ration value of GMR is related to the strength of the inter- ,
layer exchange couplingEC) because the same process pre- (rlkp;al)=2 e Rig,(r—R—IR,),
vents the conductance from saturating early. i

This work is organized as follows. In Sec. I, we summa-whereR is an in-plane lattice vectoR, is distance between
rize the scattering formalism for the conductance. We, thentwo consecutive layers, andl,(r —R) denotes a TB orbital
describe a method of calculating the GF of the multilayer bywithin the unit cell. The indext is a composite label for both
reconnecting the GF's of separate parts of the system. Wihe orbital type of each atom and different atoms within the
state the expressions for the surface and slab GF's. In Seanit cell. The Hamiltonian matrix between the layer orbitals
1, we present the results for the model system. In Sec. IVat mth and nth layer will be denoted asi,, with the k|

we discuss possible implications of the results. dependence left implicit. We use the standard two-center-
integral approximation described by Slater and Ko&taie
Il. SCATTERING THEORY AND CONDUCTANCE TB parameters are obtained by fitting the TB band structure

_ . to ab initio band structure$®
The calculation of the conductance is based on the Land- The system can be divided into three parts: the left lead,
auer formula, which was proposed by Landadidor one-  the multilayer slab, and the right lead. The corresponding
dimensional systems with a single channel, and later genegg's are denoted by, , Gs, and Gg, respectively. To
alized for multiple dimensions and multiple chan@i§or a  connect the multilayer slab to the infinite leads, we have to
multilayer sandwiched between two leads, the conductancgefine TB matrix elements in the interface region. As in typi-
is given by cal empirical TB calculations, we take them to be the arith-
metic average of the hopping integrals associated with the

e? [ __ afo constituent materials on both sides of the interface. The ma-
= Ff T(E)| - —g|dE, (2.1 trix equation for the full GF of the system takes the form
wheref, is the equilibrium Fermi distribution function and G G G
— ] ) ] L LS LR
T(E) is related to the Green'’s function of the systenf¥ia
GSL GS GSR
_ ~ ~ G G G
T(E) =T, GRS GALN)], 2.2 RL RS OTR
(Eﬂ - HL) HLS O -1

where GR'A(1n) is the retarded/advanced GF matrix ele-
ment between the first and the last principal layer of the

sample and® =i(SR—34), whereSR(ZA) is the retarded 0 Hrs  (El—Hg)
(advanced self-energy operator that will be defined below (2.4

Eq.(2.6)].
[see Eq(2.6)] H we do the inversion analytically, we can obtain the GF

In the case of multilayers, the consecutive magnetic layer _ _ . .
can be ferromagnetically or antiferromagnetically Cmmled:assomated with the slab in terms of the self-energies that take

GMR is defined as the normalized difference between thdtC account the effects of coupling with the leads,
conductance of ferromagnetic and antiferromagnetic con-
figurations: Gs=(El-Hg—3, —3p) 7% (2.9

where the self-energies have the form

= Hsi (El=Hy) Hsr

ATy -1 -0y

R 2.3
eMR FH"'FH EL:HSLGLHLSu
In the trilayer geometry, we havé ;=1I";, due to symme-
try. This does not need to be true for a general multilayer 3 r=HsGRrHRs. (2.6)
system.

In the TB scheme the wave functions of the system are The Hamiltonian matrix for the multilayer slab has the
expressed in terms of orthogonal atomiclike orbitals. Weform
choose thez axis to be perpendicular to the plane of the
multilayer. Because the system has two-dimensiq2éal) Hgl Hfll 0 0 0
translational invariance in the plane, we can construct 2D HFl  QFl RSt g 0
Bloch sums out of our atomiclike orbitals, labeled by the 1 0 -1
in-plane wave vectok;. For simplicity we introduce the 0 HFSt o pSt HE 0
principal layer (PL) in the usual way: each PL interacts only ~ Hs= 0 0 st st 0
with itself and the adjacent PL’s; and a PL is a unit cell for 1 0
1D translations normal to it. A PL can contain one or more : .
atomic planes. A layer orbital associated with wave vekfor 0 0 0 0 HEn
and thelth layer is defined as the following Bloch sum of the 0
TB orbitals: (2.7
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(b) L, [ML] FIG. 2. Conductancén units ofe?/h) vs magnetic layer thick-
ness in Fe/GO01) multilayers. The Cr layer is 3 ML thickin this
FIG. 1. Conductancén units ofe?/h) vs spacer layer thickness case 1 MI=1.44 A).(a) Minority and majority spins in parallel
in Fe/C(001) multilayers. The Fe layers are 4 ML thidkn this configuration, either one in antiparallel configuration in a Fe/
case 1 MI=1.44 A).(a) Minority and majority spins in parallel Cr(001) trilayer. (b) Parallel and antiparallel conductance in Fe/
configuration, either one in antiparallel configuration in a Fe/Cr(001) multilayers. The lines represent: soli=2; long dashes,
Cr(001) trilayer. (b) Parallel and antiparallel conductance in Fe/ N=5; dashesN=8. Parallel conductance points are labeled by
Cr(001) multilayers. The lines represent: solld=2; long dashes, triangles, antiparallel by circles.
N=5; dashesN=8. Parallel conductance points are labeled by
triangles, antiparallel by circles. method derived in Ref. 24. We then construct through it all
GF matrix elements via the relations
whereF1 is the first magnetic slalg1 is the first nonmag-
netic slab, etc. _
To treat the semi-infinite leads we need a more sophisti-  Gn+1m=TGnm(N>M),  Gp_1;n=TG, m(N<m),
cated technique. The starting point is the equation for the GF

in TB representation _
Gn,m+1:Gn,mS(n<m)v Gn,m,1=Gn‘mS(n>m),

_ _ _ (2.9
Hn,n+1Gn+1,n’ + Hn,nGn,n’ + Hn,n—lGn—l,n’ =-1,
(2.8 where
whereH=H—EI for brevity. We first calculate iteratively o o o
an object calledamplitude transfer matriXT), using the S=H_;T(H) Y S=H,T(H_, % (2.10
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© L,[ML] FIG. 4. (a) Parallel and antiparallel conductance vs number of

periods in Fe/QO01) multilayers.(b) GMR vs number of periods
FIG. 3. (a) GMR vs spacer layer thickness in Fe(@1) multi-  in Fe/C(001) multilayers. Every period has 2 ML of Fe ahiML
layers. The Fe layers are 4 ML thickin this case 1 ML ©of Cr(N=5,7,9, and 11
=1.44 A). (b)) GMR vs magnetic layer thickness in Fe(Qd1)
multilayers. The Cr layers are 3 ML thickn this case 1 ML  Eq. (2.5, because the matrix tends to grow very large when
=1.44 A). one includes full set of orbitals, thick slabs, and many peri-
ods, as frequently needed in realistic calculations. To over-
Thus, the transfer matrices can be solved iteratively onlycome this difficulty we use a modified Gauss elimination
with the knowledge of the Hamiltonian matrix elements.  algorithm, utilizing the fact that the matrix is banded and we
Next, the GF’s of the semi-infinite leads are obtained viaonly need the matrix elements Gfs linking the two PL'’s at
the left and right interfacésee Eq(2.2)].

GL=—(Ho+H_;T)7 L, (2.11)

Ill. DISCUSSION OF RESULTS
for the left surface, and
Using the results stated above we study the dependence of
T T GMR on the number of periods in the multilayer as well as
Gr=~(HotHiT) 212 ihe individual layer thickﬁesses. We define th>(/a multilayer to
for the right surface. We only need to evaluate the matrixoe a sandwich oN magnetic layers of thickneds,, and N
elements ofG, andGg in the interface principal layers. —1 nonmagnetig¢spacey layers of thickness ¢ in between.
Finally, the GF of the combined systefmultilayer plus  The whole stack is sandwiched between semi-infinite leads
leads is obtained via Eq92.5) and(2.6). The most demand- made of the nonmagnetic material. There are no impurities in
ing operation in the whole calculation is the matrix inverse inthe bulk and the interfaces are perfectly flat. First, we con-
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sidered the dependence of the conductance in F&0Or spacer and magnetic layer thicknes¢efy. 3). Figure 3a)
multilayers on the Cr thickneg&ig. 1). The Fe layer thick- shows GMR vs_ for several multilayersl.,, is fixed to 4
ness is fixed at 4 ML. Figure(d) shows the conductance in ML. Figure 3b) shows GMR vsL,,, L, is fixed to 3 ML.

a trilayer (N=2) vs spacer layer thickness in ML. As ex- We assume that consecutive magnetic layers are always an-
pected, the conductance is dominated by the minority carritiferromagnetically aligned. However, in real systems this is
ers that have transmission amplitude larger than the majoritynly possible at certain spacer thicknesses. Methods for iden-
carrlers_due to their smaller density of states near the Fernyfying when antiferromagnetic alignment naturally occurs
level. Figure 1b) shows the overall conductance in parallel h3ve been well establish@din cases when antiferromag-
and anti-parallel configurations for several multilayers. With i alignment is not possible the antiferromagnetic conduc-

3” Increase olf\(ljt\g]o thlngts hatlppen: 't(;\?hconductflnce 'n't_'l?"%_/ tance is not defined and GMR is by definition zero.
ecreases an én salurates, an € quantum oscilla IonSNext, we studied GMR as a function of the number of

becsc;nggnrgo\r,\tleepsrtoundou?;g%e endence of the conductance BFriodsN in the multilayer with fixed thickness of each pe-
' y p riod (Fig. 4). Figure 4a) shows the conductance V¢ for

the magnetic layer thicknegBig. 2). The Cr layer thickness _ , )
is fixedgat 3 M{. Figure fa) ghows the con)éuctance in a several different; (L, fixed at 2 ML. Figure 4b) shows

trilayer as a function of the magnetic layer thickness. Figurdn® correspondent GMR. We find that, initially, GMR in-
2(b) compares the overall conductance in several multilayCr€ases very fast but apprqaches a constant value after_a rela-
ers. Qualitatively, the behavior is very similar to Fig. 1. In tively small number of periodsN~2-6). Also, the maxi-
ballistic regime the electrons propagate without scattering ifhum value of GMR is inversely proportional to the Cr layer
the slabs so they see the difference between the magnetic aHickness and the saturation point is reached earlier for
nonmagnetic material only at the interfaces. The oscillationghicker Cr slabs. This is explained as follows: while the mi-
in conductance are due to multiple scattering of the electrongority conductance is almost unaffected by the increased
in the multilayer. At certain thicknesses electrons form resonumber of interfaces, the majority conductardee to stron-
nance states in the magnetic lay@s a result of quantum ger scatteringdips sharply with the introduction of new in-
confinement and thus do not contribute to the current terfaces, especially at small slab thicknesses. Knowing that
appreciably?® the IEC strength decreases with the slab thicki2ss con-
Third, we calculated GMR as a function of both the clude that the same mechanism is responsible for both the
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saturation value of GMR and the IEC strength. ture increase5.This behavior is analyzed extensively in the
We also investigated the contributions from varidys ~literaturé”**®and it is attributed primarily to thermal exci-

points in the surface Brillouin zon@&B2) to the conductance tation of magnons.

and GMR. Becausg is a good quantum number, we can

calculate conductance for differekit and then sum them up

to get the total conductance. The results we obtained for an W€ presented a theoretical study of GMR of F&fog)
Fe/Cr/F€001) trilayer (with Ly=3, L,,=4 ML) are shown multilayers. We examined the dependence of GMR on the
s m number of periods and the thicknesses of magnetic and

in Fig. 5. One can easily see the similarities with the Fermigpacer Jayers. Oscillatory behaviors in the thickness depen-
surface of Cr in(001) orientation. Figure &) and §b) show  dence of GMR due to quantum interference are found, which
the majority and minority conductance in SBZ, respectively.are consistent with previous studies. We find that the oscil-
We find that for the majority-spin channel the dominant con-latory behavior in GMR as a function of the slab thicknesses
tributions are from electrons WIthH near the extremal vec- is related to the similar OSCi”atory behavior in IEC. The MR

torsﬁz with coordinates 0.5+ 0.5)2x/a andﬁl with co- effect calculated withs or sp orbitals only is found to be

, , very small. This leads to the conclusion that GMR is mainly
ordinates (0;0.5)2m/a and (+0.5,0)2n/a, while for the  que 1o thesp-d hybridization. Thus, calculations based on

minority channel, electrons witky near the zone center con- free electron model or TB model withandp orbitals only
tribute the most. Figure(b) shows the contributions to the cannot adequately describe this effect. We also calculated the
antiparallel conductance due to differdqtin SBZ. In this contribution to the conductance from various points in the
case many extremal vectors includih_g, Nz, andf[with SBZ, for both minority and majority electrons. The extremal

) points in the BZ are found to play a more important role in
coordinates (@;0.29)2m/a and (+0.29,0)2r/a] all con- raqcing GMR than other points. GMR of multilayers in-

tribute evenly to the conductance because what are minority,eases with the multilayer size but saturates at a relatively
electrons in the one ferromagnetic layer become majoritysmall size. The saturation value of GMR is found to be pro-
electrons in the other. Figurdd shows the contributions to portional to the IEC strength. The model does not adequately
GMR due to differentk; in SBZ. We find that the most describe the observed temperature dependence of GMR. This
dominant contributions are from electrons wkh near the is expected because the mechanisms of electron-magnon and
zone center, while secondary contributions are fromNhe ~€l€ctron-phonon scattering are not included. However, our
extremal points. calculations show that the observed magnitudes of GMR can

; . . . be adequately described from the band structure of the con-
Finally, there has been considerable interest in the Mgy ent materials. For full understanding of the observed
perature dependence of GMR. Our calculation, using thesMR and conductance one has to consider scattering from
finite-temperature Landauer formula, predicts a weak temimpurities and interface roughness. For adequate description
perature dependence of GMR, while the experimental obsebf the finite temperature behavior, electron-lattice and
vation indicates a strong decay of GMR signal as temperaelectron-electron interactions must also be included.

IV. CONCLUSION
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