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Theoretical study of perpendicular giant magnetoresistance in multilayers
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We investigate the conductance and giant magnetoresistance~GMR! in the current perpendicular-to-the-
plane geometry in magnetic multilayers via a third-nearest-neighbor tight-binding model withs, p, and d
orbitals. An iterative method is used to calculate the Green’s function of the multilayer. The conductance, due
to both minority and majority spin channels, is calculated in the ferromagnetic and antiferromagnetic configu-
rations using the Landauer-Bu¨ttiker formula. Oscillations of GMR, both with spacer and magnetic layer
thicknesses, are observed and the contributions to the conductance due to various extremal points on the Fermi
surface are studied. Ballistic conductance and GMR are found to saturate very fast with the number of periods
in the multilayer.
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I. INTRODUCTION

The discovery of the giant magnetoresistance in Fe
multilayers1,2 has stimulated a great deal of research~for a
review, see Refs. 3 and 4!. The interest in the field has bee
fueled by the applications of giant magnetoresistance~GMR!
for magnetic recording. A lot of work has been done bo
experimentally and theoretically. On the experimental si
GMR was first found in trilayers and multilayers with near
perfect crystalline structure. Later, GMR was observed
sputtered samples and oscillations of GMR with change
the thickness of the nonmagnetic layer were observed.5 Most
of the GMR measurements are done in the current-in-
plane ~CIP! geometry because the sample has macrosc
size and thus significant resistance. However, there are m
surements of GMR in the current-perpendicular-to-the-pl
~CPP! geometry,6 and GMR observed in CPP geometry
often larger than GMR observed in CIP geometry. The te
perature dependence of the CPP GMR in multilayers is a
studied.7,8

The first theoretical works on GMR are based on the fr
electron model and semi-classical treatment of transpo9

This approach does not take into account the band struc
of the materials and employs many phenomenological
rameters. Spin-dependent scattering from the interfaces
the bulk is identified as the source of GMR. However, Sch
Kelly, and Bauer10 showed that the observed values of GM
can be obtained from the band structure alone. They c
mented that although the transport in real samples is di
sive rather than ballistic, it is very improbable that the ban
structure effects are completely subdued. This led to m
calculations of GMR based on rigorous quantum theory
scattering. All methods utilize either the Kubo-Greenwo
formula or the equivalent Landauer-Bu¨ttiker formula. The
band structure is taken into account eitherab initio or via
tight-binding ~TB! interpolation scheme. Theab initio
method has been applied to pure multilayers,10,11multilayers
with disorder12 within the coherent potential approximatio
and recently, spin-valve systems.13 The main problem with
this method is the computational overload that affects
versely the size of the systems that can be studied. The
0163-1829/2001/63~18!/184411~7!/$20.00 63 1844
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method offers the convenience of taking the band struc
as input and thus reducing the computational time. It is
pecially useful for multilayers because it discretizes the s
tial continuum in a natural way. The method has been u
by several groups so far. Tsymbal and Pettifor14 used the full
sp3d5 TB model to calculate GMR in infinite Co/Cu an
Fe/Cr superlattices with fixed slab sizes. Mathonet al.15 cal-
culated GMR of a Co/Cu trilayer from the Kubo formu
using full sp3d5 TB model. They studied the dependence
GMR from both magnetic and spacer layer thickness. In
other paper Mathon16 observed that ballistic conductance
multilayers saturates after a relatively small number of pe
ods. Later, Sanvitoet al.17 studied GMR of finite Co/A and
Ni/A ~A5Cu, Ag, Pb, Au, and Pt! multilayers from the Lan-
dauer formula also usingsp3d5 TB model. Another GMR
calculation of Co/Cu trilayers was given by Zwierzycki an
Krompiewski18 using reducedsd1 TB model and a simplify-
ing assumption of a simple cubic lattice. Despite all the wo
done, little attention was paid to Fe/Cr multilayers whe
GMR was originally observed.1 Furthermore, the experimen
tal observation that GMR increases when one adds e
magnetic layers2 and existing calculations,16 point to the
need for further study of the dependence of GMR on
number of periods in the multilayer.

The purpose of this work is to investigate the ballis
conductance and CPP GMR of finite Fe/Cr multilayers, a
in particular, the dependence of GMR on the number of
riods in the multilayer and layer thickness, taking into a
count the realistic band structures. The calculation is ba
on empirical third-nearest-neighbor tight-binding model w
s,p,d orbitals, fitted toab initio band structures of the con
stituent materials. Our main result is that the ballistic co
ductance and GMR saturate after a small number of per
(;2 –6) that agrees with the results of Ref. 16. Howev
our method differs in the calculation of the conductance a
the Green’s function~GF! that makes the agreement wit
Mathon even more significant. We calculate the conducta
from the Landauer-Bu¨ttiker formula instead of the Kubo for
mula and we use an iterative method and self-energie
calculate the GF instead of a recursive method and
Dyson equation. We go a step further to show that the s
©2001 The American Physical Society11-1
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ration value of GMR is related to the strength of the int
layer exchange coupling~IEC! because the same process p
vents the conductance from saturating early.

This work is organized as follows. In Sec. II, we summ
rize the scattering formalism for the conductance. We, th
describe a method of calculating the GF of the multilayer
reconnecting the GF’s of separate parts of the system.
state the expressions for the surface and slab GF’s. In
III, we present the results for the model system. In Sec.
we discuss possible implications of the results.

II. SCATTERING THEORY AND CONDUCTANCE

The calculation of the conductance is based on the La
auer formula, which was proposed by Landauer19 for one-
dimensional systems with a single channel, and later ge
alized for multiple dimensions and multiple channels.20 For a
multilayer sandwiched between two leads, the conducta
is given by

G5
e2

h E T̄~E!S 2
] f 0

]E DdE, ~2.1!

where f 0 is the equilibrium Fermi distribution function an
T̄(E) is related to the Green’s function of the system via21

T̄~E!5Tr@S̃LGR~1,n!S̃RGA~1,n!#, ~2.2!

where GR/A(1,n) is the retarded/advanced GF matrix e
ment between the first and the last principal layer of

sample andS̃5 i (SR2SA), whereSR(SA) is the retarded
~advanced! self-energy operator that will be defined belo
@see Eq.~2.6!#.

In the case of multilayers, the consecutive magnetic lay
can be ferromagnetically or antiferromagnetically coupl
GMR is defined as the normalized difference between
conductance of ferromagnetic and antiferromagnetic c
figurations:

RGMR5
G↑↑1G↓↓2G↑↓2G↓↑

G↑↓1G↓↑
. ~2.3!

In the trilayer geometry, we haveG↓↑5G↑↓ due to symme-
try. This does not need to be true for a general multila
system.

In the TB scheme the wave functions of the system
expressed in terms of orthogonal atomiclike orbitals. W
choose thez axis to be perpendicular to the plane of t
multilayer. Because the system has two-dimensional~2D!
translational invariance in the plane, we can construct
Bloch sums out of our atomiclike orbitals, labeled by t
in-plane wave vectorki . For simplicity we introduce the
principal layer ~PL! in the usual way: each PL interacts on
with itself and the adjacent PL’s; and a PL is a unit cell f
1D translations normal to it. A PL can contain one or mo
atomic planes. A layer orbital associated with wave vectoki
and thel th layer is defined as the following Bloch sum of th
TB orbitals:
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Ri

eiki•Rifa~r2Ri2 lRz!,

whereRi is an in-plane lattice vector,Rz is distance between
two consecutive layers, andfa(r2R) denotes a TB orbital
within the unit cell. The indexa is a composite label for both
the orbital type of each atom and different atoms within t
unit cell. The Hamiltonian matrix between the layer orbita
at mth and nth layer will be denoted asHmn with the ki
dependence left implicit. We use the standard two-cen
integral approximation described by Slater and Koster.22 The
TB parameters are obtained by fitting the TB band struct
to ab initio band structures.23

The system can be divided into three parts: the left le
the multilayer slab, and the right lead. The correspond
GF’s are denoted byGL , GS , and GR , respectively. To
connect the multilayer slab to the infinite leads, we have
define TB matrix elements in the interface region. As in ty
cal empirical TB calculations, we take them to be the ari
metic average of the hopping integrals associated with
constituent materials on both sides of the interface. The
trix equation for the full GF of the system takes the form

U GL GLS GLR

GSL GS GSR

GRL GRS GR

U
5U ~E12HL! HLS 0

HSL ~E12HS! HSR

0 HRS ~E12HR!
U21

.

~2.4!

If we do the inversion analytically, we can obtain the G
associated with the slab in terms of the self-energies that
into account the effects of coupling with the leads,

GS5~E12HS2SL2SR!21, ~2.5!

where the self-energies have the form

SL5HSLGLHLS ,

SR5HSRGRHRS. ~2.6!

The Hamiltonian matrix for the multilayer slab has th
form

HS5UH0
F1 H21

F1 0 0 . . . 0

H1
F1 H0

F1 H21
F12S1 0 0

0 H1
F12S1 H0

S1 H21
S1 0

0 0 H1
S1 H0

S1 0

A �

0 0 0 0 . . . H0
Fn

U ,

~2.7!
1-2



ist
G

all

s

l
e
e/

by

e/
e/

by
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whereF1 is the first magnetic slab,S1 is the first nonmag-
netic slab, etc.

To treat the semi-infinite leads we need a more soph
cated technique. The starting point is the equation for the
in TB representation

H̄n,n11Gn11,n81H̄n,nGn,n81H̄n,n21Gn21,n8521,
~2.8!

where H̄5H2E1 for brevity. We first calculate iteratively
an object calledamplitude transfer matrix(T), using the

FIG. 1. Conductance~in units ofe2/h) vs spacer layer thicknes
in Fe/Cr~001! multilayers. The Fe layers are 4 ML thick~in this
case 1 ML51.44 Å). ~a! Minority and majority spins in paralle
configuration, either one in antiparallel configuration in a F
Cr~001! trilayer. ~b! Parallel and antiparallel conductance in F
Cr~001! multilayers. The lines represent: solid,N52; long dashes,
N55; dashes,N58. Parallel conductance points are labeled
triangles, antiparallel by circles.
18441
i-
F

method derived in Ref. 24. We then construct through it
GF matrix elements via the relations

Gn11,m5TGn,m~n.m!, Gn21,m5T̄Gn,m~n,m!,

Gn,m115Gn,mS~n,m!, Gn,m215Gn,mS̄~n.m!,
~2.9!

where

S5H̄21T~H̄1!21, S̄5H̄1T̄~H̄21!21. ~2.10!

/

FIG. 2. Conductance~in units ofe2/h) vs magnetic layer thick-
ness in Fe/Cr~001! multilayers. The Cr layer is 3 ML thick~in this
case 1 ML51.44 Å). ~a! Minority and majority spins in parallel
configuration, either one in antiparallel configuration in a F
Cr~001! trilayer. ~b! Parallel and antiparallel conductance in F
Cr~001! multilayers. The lines represent: solid,N52; long dashes,
N55; dashes,N58. Parallel conductance points are labeled
triangles, antiparallel by circles.
1-3
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Thus, the transfer matrices can be solved iteratively o
with the knowledge of the Hamiltonian matrix elements.

Next, the GF’s of the semi-infinite leads are obtained

GL52~H̄01H̄21T!21, ~2.11!

for the left surface, and

GR52~H̄01H̄1T̄!21 ~2.12!

for the right surface. We only need to evaluate the ma
elements ofGL andGR in the interface principal layers.

Finally, the GF of the combined system~multilayer plus
leads! is obtained via Eqs.~2.5! and~2.6!. The most demand
ing operation in the whole calculation is the matrix inverse

FIG. 3. ~a! GMR vs spacer layer thickness in Fe/Cr~001! multi-
layers. The Fe layers are 4 ML thick~in this case 1 ML
51.44 Å). ~b! GMR vs magnetic layer thickness in Fe/Cr~001!
multilayers. The Cr layers are 3 ML thick~in this case 1 ML
51.44 Å).
18441
ly

a

x

Eq. ~2.5!, because the matrix tends to grow very large wh
one includes full set of orbitals, thick slabs, and many pe
ods, as frequently needed in realistic calculations. To ov
come this difficulty we use a modified Gauss eliminati
algorithm, utilizing the fact that the matrix is banded and w
only need the matrix elements ofGS linking the two PL’s at
the left and right interface@see Eq.~2.2!#.

III. DISCUSSION OF RESULTS

Using the results stated above we study the dependenc
GMR on the number of periods in the multilayer as well
the individual layer thicknesses. We define the multilayer
be a sandwich ofN magnetic layers of thicknessLm andN
21 nonmagnetic~spacer! layers of thicknessLs in between.
The whole stack is sandwiched between semi-infinite le
made of the nonmagnetic material. There are no impuritie
the bulk and the interfaces are perfectly flat. First, we c

FIG. 4. ~a! Parallel and antiparallel conductance vs number
periods in Fe/Cr~001! multilayers.~b! GMR vs number of periods
in Fe/Cr~001! multilayers. Every period has 2 ML of Fe andN ML
of Cr (N55, 7, 9, and 11!.
1-4
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FIG. 5. Contributions to the
conductance and GMR in a Fe
Cr~001! trilayer due to differentki
in the surface Brillouin zone. The
Fe is 4 ML and Cr is 3 ML thick.
~a! Majority spin. ~b! Minority
spin. ~c! Either spin in antiparallel
configuration. ~d! GMR. Darker
areas indicate bigger contribution
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the
sidered the dependence of the conductance in Fe/Cr~001!
multilayers on the Cr thickness~Fig. 1!. The Fe layer thick-
ness is fixed at 4 ML. Figure 1~a! shows the conductance i
a trilayer (N52) vs spacer layer thickness in ML. As ex
pected, the conductance is dominated by the minority ca
ers that have transmission amplitude larger than the majo
carriers due to their smaller density of states near the Fe
level. Figure 1~b! shows the overall conductance in paral
and anti-parallel configurations for several multilayers. W
an increase ofN two things happen: the conductance initia
decreases and then saturates, and the quantum oscilla
become more pronounced.

Second, we study the dependence of the conductanc
the magnetic layer thickness~Fig. 2!. The Cr layer thickness
is fixed at 3 ML. Figure 2~a! shows the conductance in
trilayer as a function of the magnetic layer thickness. Fig
2~b! compares the overall conductance in several multil
ers. Qualitatively, the behavior is very similar to Fig. 1.
ballistic regime the electrons propagate without scattering
the slabs so they see the difference between the magnetic
nonmagnetic material only at the interfaces. The oscillati
in conductance are due to multiple scattering of the electr
in the multilayer. At certain thicknesses electrons form re
nance states in the magnetic layer~as a result of quantum
confinement! and thus do not contribute to the curre
appreciably.25

Third, we calculated GMR as a function of both th
18441
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spacer and magnetic layer thicknesses~Fig. 3!. Figure 3~a!
shows GMR vsLs for several multilayers,Lm is fixed to 4
ML. Figure 3~b! shows GMR vsLm , Ls is fixed to 3 ML.
We assume that consecutive magnetic layers are always
tiferromagnetically aligned. However, in real systems this
only possible at certain spacer thicknesses. Methods for id
tifying when antiferromagnetic alignment naturally occu
have been well established.26 In cases when antiferromag
netic alignment is not possible the antiferromagnetic cond
tance is not defined and GMR is by definition zero.

Next, we studied GMR as a function of the number
periodsN in the multilayer with fixed thickness of each pe
riod ~Fig. 4!. Figure 4~a! shows the conductance vsN for
several differentLs (Lm fixed at 2 ML!. Figure 4~b! shows
the correspondent GMR. We find that, initially, GMR in
creases very fast but approaches a constant value after a
tively small number of periods (N;2 –6). Also, the maxi-
mum value of GMR is inversely proportional to the Cr lay
thickness and the saturation point is reached earlier
thicker Cr slabs. This is explained as follows: while the m
nority conductance is almost unaffected by the increa
number of interfaces, the majority conductance~due to stron-
ger scattering! dips sharply with the introduction of new in
terfaces, especially at small slab thicknesses. Knowing
the IEC strength decreases with the slab thickness,26 we con-
clude that the same mechanism is responsible for both
1-5
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saturation value of GMR and the IEC strength.
We also investigated the contributions from variouski

points in the surface Brillouin zone~SBZ! to the conductance
and GMR. Becauseki is a good quantum number, we ca
calculate conductance for differentki and then sum them up
to get the total conductance. The results we obtained fo
Fe/Cr/Fe~001! trilayer ~with Ls53, Lm54 ML) are shown
in Fig. 5. One can easily see the similarities with the Fe
surface of Cr in~001! orientation. Figure 5~a! and 5~b! show
the majority and minority conductance in SBZ, respective
We find that for the majority-spin channel the dominant co
tributions are from electrons withki near the extremal vec

tors N̄2 with coordinates (60.5,60.5)2p/a andN̄1 with co-
ordinates (0,60.5)2p/a and (60.5,0)2p/a, while for the
minority channel, electrons withki near the zone center con
tribute the most. Figure 5~c! shows the contributions to th
antiparallel conductance due to differentki in SBZ. In this

case many extremal vectors includingN̄1 , N̄2, and L̄ @with
coordinates (0,60.29)2p/a and (60.29,0)2p/a# all con-
tribute evenly to the conductance because what are mino
electrons in the one ferromagnetic layer become majo
electrons in the other. Figure 5~d! shows the contributions to
GMR due to differentki in SBZ. We find that the mos
dominant contributions are from electrons withki near the

zone center, while secondary contributions are from theN̄1

extremal points.
Finally, there has been considerable interest in the t

perature dependence of GMR. Our calculation, using
finite-temperature Landauer formula, predicts a weak te
perature dependence of GMR, while the experimental ob
vation indicates a strong decay of GMR signal as tempe
.
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ture increases.7 This behavior is analyzed extensively in th
literature27,28,8 and it is attributed primarily to thermal exci
tation of magnons.

IV. CONCLUSION

We presented a theoretical study of GMR of Fe/Cr~001!
multilayers. We examined the dependence of GMR on
number of periods and the thicknesses of magnetic
spacer layers. Oscillatory behaviors in the thickness dep
dence of GMR due to quantum interference are found, wh
are consistent with previous studies. We find that the os
latory behavior in GMR as a function of the slab thickness
is related to the similar oscillatory behavior in IEC. The M
effect calculated withs or sp orbitals only is found to be
very small. This leads to the conclusion that GMR is main
due to thesp-d hybridization. Thus, calculations based o
free electron model or TB model withs andp orbitals only
cannot adequately describe this effect. We also calculated
contribution to the conductance from various points in t
SBZ, for both minority and majority electrons. The extrem
points in the BZ are found to play a more important role
producing GMR than other points. GMR of multilayers in
creases with the multilayer size but saturates at a relativ
small size. The saturation value of GMR is found to be p
portional to the IEC strength. The model does not adequa
describe the observed temperature dependence of GMR.
is expected because the mechanisms of electron-magnon
electron-phonon scattering are not included. However,
calculations show that the observed magnitudes of GMR
be adequately described from the band structure of the c
stituent materials. For full understanding of the observ
GMR and conductance one has to consider scattering f
impurities and interface roughness. For adequate descrip
of the finite temperature behavior, electron-lattice a
electron-electron interactions must also be included.
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