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Linear renormalization transformation for weakly interacting spin chains

J. Sznajd
Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Wroclaw, Poland
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The linear renormalization-group transformation is proposed to study critical temperatures and temperature
dependence of the thermodynamic values~free energy, specific heat! of the weakly interacting spin chains. The
method is examined in two classical systems: the standard Ising model on a rectangular lattice and the Ising
spin chains coupled by pair-pair interactions. In the latter case the transformation does not exhibit any non-
trivial fixed point. This result agrees with the exactly determined free energy of the system under consideration.
The method is also applied to the weakly interacting quantumXY spin chains. The critical temperature as a
function of the interchain interactions and the temperature dependence of the specific heat are found.
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I. INTRODUCTION

Compounds made of spin chains with the interchain c
pling weaker than intrachain coupling attract continuous
tention both by theoreticians and experimentalists.1–5 The
reason is their model character as quasi-one-dimensi
magnetic systems in which the interchain interactions can
neglected in a wide range of temperature. It allows to tr
these compounds as really one-dimensional quantum2,4 or
classical3,6 spin systems. However, at sufficiently low tem
perature, the interchain interaction that is responsible for
eventual magnetic ordering becomes crucial a one and
course, it has to be taken into account.

In this paper we propose the linear real-spa
renormalization-group method that can be applied to st
weakly interacting classical and quantum spin chains. T
method is not based on the Migdal-Kadanoff7 ~MK ! bond-
moving approximation but uses the existence of the sm
parameter—the ratio of interchain to intrachain coupling.

The undisputable success of the Niemeijer and Van Le
wen real-space renormalization-group~RSRG! method8 as a
tool for the investigation of two-dimensional Ising spin sy
tems has shown that many attempts have been made to
eralize this method for quantum spin systems. However,
first results were rather inconclusive not only regarding
character of the singularity near the transition tempera
but also the existence of a phase transition at all.9 The quan-
tum extension of the MK approach was proposed by Suz
and Takano~ST!.10 The ST method has been based on
approximate decimation for one-dimensional systems
generalized to quantum spin systems in higher-dimension
means of the MK transformations. The authors pointed
that the simple MK approach gives qualitatively reasona
results for two- and three-dimensional quantum spin mod
in the higher temperature region. The disadvantages of
latter method were discussed by Barmaet al. 11 and Castel-
lani et al.12 Here, we wish only to remind that the MK ap
proach gives rather poor quantitative results even for
two-dimensional Ising model both for the location of th
critical point and critical indices and furthermore there is
possibility to construct any systematic approximation pro
dure within this method. For example, the MK procedu
gives for the Ising model on the square lattice, the value
0163-1829/2001/63~18!/184404~7!/$20.00 63 1844
-
t-

al
e
t

n
of

e
y
e

ll

u-

en-
e
e
re

ki
n
d
y
t

e
ls
he

e

-

f

the inverse critical temperatureKc.0.61 whereas the exac
value is Kc.0.44. Similarly, for the s51/2 XY model ST
approximation givesKc.1.2 ~Ref. 10! much larger than the
value Kc.0.64 estimated from the high-temperature ser
expansion13 or Kc.0.71(0.67) found from Monte Carlo
simulations by fitting to the exponential law14 and power
law,15 respectively. Much better quantitative results conce
ing the location of the critical point of the two-dimension
s51/2 XY modelKc.0.62 has been found by means of th
rotationally invariant RSRG transformation.16 However, in
the case of weakly interacting spin chains the method ba
on the one-dimensional decimation seems to be a very n
ral approximation especially since it does not have to
connected with the MK bond-moving mechanism.

The outline of the remainder of this paper is as follows.
Sec. II, the linear-perturbation renormalization-gro
~LPRG! method for weakly interacting Ising spins chains
presented. In Sec. III, a generalization of the ST approxim
decimation for one-dimensional quantum spin systems is
cussed. In Sec. IV, the weakly interacting quantum s
chains are studied by means of the LPRG method. Our c
clusion are given in Sec. V.

II. LINEAR-PERTURBATION RENORMALIZATION

In this section we present the LPRG method for wea
interacting Ising spins chains described by the Hamiltoni

H5K1(̂
i j &

Si , jSi , j 111K2(̂
i j &

Si , jSi 11,j , ~1!

where the labeli refers to rows andj to columns, the factor
21/kBT has already been absorbed in the Hamiltonian, a
K2,K1. We define the renormalization transformation by

exp@H8~s!#5TrSP~s,S!exp@H~S!#. ~2!

The weight operatorP(s,S) is chosen in the linear form

P~s,S!5
1

2N/2 )
i , j 50

~11s i 11,j 11S2i 11,2j 11!, ~3!

so the transformation~2! is the decimation transformatio
and in the renormalization step, only every other spin fro
©2001 The American Physical Society04-1
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every other row survives. For the Ising model in one dime
sion, i.e., forK250 this decimation can be carried out e
actly. So, it seems to be very natural to separate the Ha
tonian ~1! in a manageable exactly unperturbed partH0
containing all intrachain interaction (K1) and a remainderV
containing interchain interaction (K2).

With the notation

z05TrSP~s,S!exp@H0~S!# ~4!

and

^A&05
1

z0
TrSAP~s,S!exp@H0~S!#, ~5!

the transformation~2! can be rewritten as

H8~s!5 ln@z0#1 ln@^exp~V!&0# ~6!

with the following cumulant expansion for^exp(V)&0

ln@^exp~V!&0#5^V&01
1

2!
~^V2&02^V&0

2!1•••. ~7!

To evaluate the cumulants~7! one has to know the aver
ageŝ Si , . . . ,Sn&. In our case we have to consider the av
ages in, say, ‘‘odd’’ rows where in the renormalization st
every other spin is decimated and in ‘‘even’’ rows where
spins are removed. LetS2i 12,j be a subset of decimated spin
from ‘‘even’’ removed rows then

^S2i 12,j&50, ^S2i 12,jS2i 12,j 1n&5tn,

t5tanh~K1!. ~8!

For the spins from ‘‘odd’’ rows the averages are

^S2i 11,2j 11&5s i 11,j 11 , ~9!

^S2i 11,2j 12&5
1

2
r ~s i 11,j 111s i 11,j 12!,

r 5tanh~2K1!, ~10!

^SiSj&5^Si&^Sj&. ~11!

It is seen from Eq.~8! that ^S2i 12,j& vanish so there is no
contribution from the first-order cumulant expansion

^V&05K2(̂
i j &

^S2i 11,j&^S2i 12,j&50. ~12!

In the next order inV as usual, new interactions appea
Unfortunately, in our case the number of this new inter
tions already in the second order is infinite for an infin
system because all possible bilinear couplings between
eral spins from the adjoining renormalized rows come i
play. Thus, in order to carry out the LPRG transformation
have to confine ourselves to a finite lattice. Notice that av
ages~9!–~11! are exact for any size of the chain provide
one uses a closed ring. If we restrict our considerations to
spin clusters, then to the second order in the cumulant
pansion, only one new interaction will be generated,
18440
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K3Si , jSi 11,j 11 . ~13!

It should be noted that in our procedure we make t
approximations. First, connected with the perturbation w
regard toK2, which is valid ifK2,K1 and second, related to
the truncation of the interactions generated in the LPRG p
cedure. The latter is better ift5tanh(K1)!1, it means at
higher temperatures.

Now it is relatively easy to find the renormalized Ham
tonianH8 @Eq. ~6!# for the cluster presented in Fig. 1 as

H85 ln@z0
(1)z0

(2)z0
(3)#1F01F1( s i , js i , j 11

1F2( s i , js i 11,j1F3( s i , js i 11,j 11 , ~14!

wherez0
(n) are exactly known renormalized interactions a

partition functions of the odd and even chains, respective

z0
(odd)5@cosh~2K1!11#1@cosh~2K1!21#s i , js i , j 11 ,

~15!

z0
(even)52@cosh~2K1!11#, ~16!

and functionsF can be written in the form

Fn5g1
(n)K2

21g2
(n)K3

21g3
(n)K2K3 . ~17!

The coefficientsgm
(n) as functions ofK1 are presented in

the Appendix.
Finally, the renormalized parameters are as follows:

K185
1

2
ln@cosh~2K1!11#1F1 , K285F2 , K385F3 ,

~18!

and the free energy per site

f 5 (
n51

` G~Ki
(n)!

2n
, ~19!

where

G~Ki !5
1

6
$ ln@4Acosh~6K1!13cosh~2K1!#1F0%.

~20!

We have evaluated numerically the renormalization tra
formation from the original set of coupling parametersKa ,
(a51,2,3) to the set of the renormalized parametersKa8 @Eq.
~18!# and have found two stable fixed points atKa50 and
Ka5`, and the critical surface in the space of the para

FIG. 1. The cluster used to get renormalized Hamiltonian~14!.
Small dots denote decimated spins.
4-2
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etersK1 , K2 , and K3. The critical inverse temperatureKc
51/Tc as a function ofK25K2 /K1 for K350 is presented
in Fig. 2 and compared with the exact results. In the sa
figure the critical inverse temperature found by using
LPRG method with a 333 spin cluster instead of the cluste
presented in Fig. 1 is also shown.

The simple LPRG procedure in the lowest nontrivial a
proximation gives forK25K1 ~standard Ising model! the
critical valueK1c.0.41, which is in reasonable agreeme
with the exact valueK1c.0.44. As mentioned above, th
LPRG is rather a high-temperature approximation and
give much worse results forK1.1. So, as one could expec
the deviation from the exact critical line is larger if a tran
tion shifts to lower temperatures~large K1) that occur for
K2!K1. As can be seen from Fig. 2 for 0.15,K2 /K1,1 the
deviations of the critical temperatures from the exact val
are only a few percent. Of course, the thermodynamic va
in the higher-temperature region (K1,1) can be the bette
estimated the smaller the ratioK2 /K1. Figures 3 and 4 show
the numerical results for the specific heat and internal ene
for several values ofK2 /K1 andK350.

A. Four-spin interaction

As mentioned above, the LPRG transformation in t
second-order calculation by using the cluster presente
Fig. 1 generates only one new bilinear interaction~13!. How-
ever, using the same cluster one can include the four-
interaction in the original Hamiltonian. Let us consider t

FIG. 2. Dashed curve, critical inverse temperature (Kc) found
from the recursion relations~18!; solid curve, exact result; dotte
curve, the results found by using 333 spin cluster

FIG. 3. Temperature dependence of the specific heat for sev
values ofK2 /K1 . K2 /K1 5 0 ~solid line!; 0.02 ~dashed line!; 0.05
~dashed-dotted line!; 0.2 ~dotted line!.
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Ising spin chains interacting only via four-spin interactio
with interacting spins located on a 232 square plaquette
This model corresponds to a Hamiltonian

H5K1(̂
i j &

Si , jSi , j 111K4(̂
i j &

Si , jSi , j 11Si 11,jSi 11,j 11 ,

~21!

with K4,K1.
Following the same procedure as in the previous case

finds the renormalized Hamiltonian~6! in the form

H85 ln@z0
(1)z0

(2)z0
(3)#1F0

(4)1F1
(4)( s i , js i , j 11

1F4( s i , js i , j 11s i 11,js i 11,j 11 , ~22!

where

F1
(4)5rtK 41F t2~12r 2!1

1

2
r 2~12t2!GK4

2 ,

F45
1

2
r 2~12t2!K4

2 , ~23!

and

F0
(4)52rtK 41F2~12r 2t2!1

1

2
r 2~12t2!GK4

2 . ~24!

Except for the contribution to the renormalized biline
intrachain coupling, four-spin interactionK4 generates only
four-spin interaction. Finally, the second-order transform
tion equations read

K185
1

2
ln@cosh~2K1!11#1F1

(4) , K485F4 . ~25!

It is easy to see that the transformation~25! has only trivial
fixed points, and the two-dimensional Ising model made w
spin chains coupled only by four-spin interaction~21! does
not exhibit any finite-temperature phase transition. Figur
shows the numerical results obtained for the specific hea
several original values ofK4. These results can be compare

ral

FIG. 4. Temperature dependence of the internal energy for
eral values ofK2 /K1 . K2 /K1 5 0 ~solid line!; 0.05~dashed-dotted
line!; 0.2 ~dotted line!.
4-3
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J. SZNAJD PHYSICAL REVIEW B 63 184404
with the exact specific heat that can be easily found for
model described by the Hamiltonian~21!.

Namely, after introducing a new variable

h i
j5Si j Si j 11 , ~26!

the Hamiltonian~21! can be rewritten in the form

H5(
j

FK1(
i

h i
j1K4(

i
h i

jh i 11
j G , ~27!

giving in the thermodynamic limitthe exact free energyper
spin

f /T5 ln@exp~bK4!cosh~bK1!

1Aexp~2bK4!sinh2~bK1!1exp~22bK4!#.

~28!

From Eq.~28! we may, of course, calculate the exact spec
heat that is presented in Fig. 5 for two values ofK4 /K1
50.05 and 0.2. It is seen that for sufficiently smallK4 /K1
the LPRG results are in very good agreement with the ex
results.

III. LINEAR RSRG FOR ONE-DIMENSIONAL QUANTUM
SYSTEM

Below in this section, we consider a one-dimensio
quantum spin system defined by the Hamiltonian

H5Kx(
i

~Si
xSi 11

x 1Si
ySi 11

y !1Kz(
i

Si
zSi 11

z . ~29!

For a quantum system, because of the noncommutat
of several terms of the Hamiltonian the decimation transf
mation cannot be carried out exactly even for a o
dimensional lattice. However, Suzuki and Takano10 proposed
some approximate decimation that leads to reasonable va
of the free energy for the one-dimensional quantum an
tropic Heisenberg model, especially in the high-temperat
region. In fact, the authors applied the standard decima
procedure.7 Dividing the chain into l-spin clusters and con
sidering only one cluster, they found the renormaliz
nearest-neighbor interaction between the remaining spinS0

W

andSn
W by using the transformation

FIG. 5. Temperature dependence of specific heat forK4 /K1

50.05 ~dashed line!; 0.2 ~dotted line!, solid lines denote the ad
equate exact results.
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exp@H8~S0
W ,Sl

W !#5S )
i 51

l 21

TrSW D expF(
i 50

l 21

H~Si
W ,SW i 11!G .

~30!

This procedure takes quantum effect into account within
single cluster and neglects the effects of noncommutati
of several clusters. In the previous paper17 we have proposed
a simple extension of the Suzuki and Takano idea genera
ing the linear RSRG@Eq. ~3!#. The linear RSRG transforma
tion can be used to study more general models, for exam
models with many-spin interactions, and allows a system
improvement of the ST approximation. We divide the Ham
tonian ~29! into six spin clusters, and consider only on
cluster—six spins on a ring. The renormalized Hamiltoni
is defined as

exp@H8~sW 1 ,sW 2 ,sW 3!#5
1

8
TrSW)

i 50

2

~11sW i 11SW 2i 11!

3expF (
k51

5

H~SW k ,SW k11!G . ~31!

Similarly as in the ST procedure the quantum effects
taking into account only within a single cluster. In the S
decimation the renormalization transformation with sc
factor l ( l -spin clusters! is used to find the effective interac
tion between the first and the last spin of the cluster@Eq.
~30!#. In the transformation~31! every other spin is removed
and the renormalized interaction depends on three s
~generally onn/2, where n denotes number of spins in
single cluster!.

Applying the transformation~31! to the Hamiltonian~29!,
one obtains the transformed HamiltonianH8 in the same
form as the original Hamiltonian for new spin operators (sW )
with new parametersKx8 andKz8 ,17

Kx85
1

6
~l12l2!, Kz85

1

12
~3l322l22l1!, ~32!

where

l15 ln~F014Fx2Fz!,

l25 ln~F022Fx2Fz!,

l35 ln~F013Fz!, ~33!

with

F05TrSW~Pexp@H# !,

Fa5TrSW~PS1
aS3

aexp@H# !, ~a5x,z!, ~34!

and

P5
1

8)i 50

2

~11sW i 11SW 2i 11!. ~35!

As usual in each step of the transformation a const
term independent ofsa appears,
4-4
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G~Ki !5
1

12
~l112l21l3!, ~36!

and the free energy per site can be calculated by using
mula ~19!. The found free energyf for the XY model is
shown in Fig. 6 and compared with the exact result obtai
by Katsura18 and the results obtained by Suzuki a
Takano.10 For example, for inverse temperatureKx51, our
method leads tof .1.4266 that differs by less than 1% from
the exact valuef .1.4152. It is interesting to note that eve
the ground-state internal energy found by using transfor
tion ~28!, E54/3, is in a good agreement with the exa
result E54/p.1.2732 ~ST approximation gives E
.1.4142).

Figure 7 shows the results for the specific heat of
isotropic-Heisenberg,XY, and anisotropic-Heisenberg mod
obtained from Eq.~36!.

IV. LPRG FOR COUPLED QUANTUM CHAINS

We consider the Heisenberg spins chains defined by
Hamiltonian ~29! and coupled with adjacent chains by th
interaction

FIG. 6. The free energy of the quantumXY model obtained by
decimation~dotted line!; linear RSRG~dashed line!; and the exact
free energy obtained by Katsura~solid line!.

FIG. 7. The specific heat of the quantum spin models:
isotropic-Heisenberg model~solid line!, the anisotropic-Heisenber
modelKz /Kx50.5 ~dotted line!, and theXY model ~dashed line!.
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V5K1x(̂
i j &

~Si , j
x Si 11,j

x 1Si , j
y Si 11,j

y !1K1z(̂
i j &

Si , j
z Si 11,j

z

1K2x(̂
i j &

~Si , j
x Si 11,j 11

x 1Si , j
y Si 11,j 11

y !

1K2z(̂
i j &

Si , j
z Si 11,j 11

z , ~37!

with Kna,Ka (n51,2 a5x,z). In comparison with the
Ising model the application of the LPRG method to intera
ing quantum spins chains encounters some additional d
culties connected with lack of the exact solutions for a o
chain, necessity of a decomposition of the exponential op
tors, and additional proliferation of the new interactions d
to the vector character of the spin operator. Consequen
one has to use supplementary approximations.

We apply the cluster made with three six-spin rings. A
cording to the procedure described in the Sec. II in the rin
1 and 3~odd chains! every other spin survives whereas in th
ring 2 all spins are removed. Because we do not know
exact form of the partition functions for several chains, w
use the results of the previous section. Thus, the parti
function is given by

z0
(odd)5F01Fx(

i 51

i 53

~s i
xs i 11

x 1s i
ys i 11

y !1Fz(
i 51

i 53

s i
zs i 11

z ,

~38!

where functionsF are defined in Eq.~34! and

z0
(even)5TrSWexpF (

k51

5

H~SW k ,SW k11!G . ~39!

If we confine ourselves to the second order in the cum
lant expansion, we can use the following second-or
decomposition:19

exp@xA1yB#5expF x

2
AGexp@yB#expF x

2
AG1O~x2y,xy2!,

~40!

and then

Tr@Pe(H1V)#'z01V̄1
1

2
V̄2, ~41!

with

z05Tr@PeH#, V̄5
1

2
Tr@P~eHV1VeH!#,

V̄25
1

4
Tr@P~eHV212VeHV1V2eH#, ~42!

and the average of V is defined as

^V&5
1

2
~z0

21V̄1V̄z0
21!. ~43!

e

4-5
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The expressions for the average of the spins are now m
complicated than in the Ising case~9! and, for example, forz
component of the spin from odd rows one obtains

^s1z&5a1s1z1a2~s2z1s3z!1azs1zs2zs3z

1a1xs1z~s2xs3x1s2ys3y!1a2x@s2z~s1xs3x

1s1ys3y!1s3z~s1xs2x1s1ys2y!#, ~44!

where coefficientsaa are numerically determined function
of the interaction parametersKi . For the spins from even
rows the averages of single operators vanish^Sia&50, and
consequently there is no contribution from the first-order
mulant expansion.

It is easy to see from Eq.~44! that in the second-orde
calculation inV the transformation~31!, contrary to the Ising
case, generates four- and six-spin couplings. The evalua
of the contributions to the four- and six-spin interactions
rather straightforward but labor consuming and these in
actions should not considerably affect the critical tempe
ture of theXY model. Thus, we will neglect them in th
following. The critical inverse temperature and the tempe
ture dependence of the free energy and specific heat o
XY weakly coupled chains are shown in Figs. 8 and 9,
spectively.

The value of the critical temperature found for the sta
dard XY model, e.g., forK1x5Kx , Kc'0.5 is about 20%
smaller than expected, but of course the LPRG approxi
tion should be better forK1x,Kx .

FIG. 8. Critical inverse temperatureKc of the XY model.

FIG. 9. Free energy~dashed line! and specific heat~solid line!
of the XY model withK1x50.2Kx .
18440
re

-

on

r-
-

-
he
-

-

a-

V. CONCLUSION

We have proposed a simple perturbation method, LPR
for a broad class of classical and quantum lattice syste
made with weakly interacting chains. The method is ba
on the linear renormalization-group transformation, whi
for the Ising spins is the standard decimation procedure
for the quantum spins the generalization of the Suzu
Takano approximate decimation. This generalization
solves itself into construction of the effective interactio
betweenn effective spins in a cluster by performing a parti
trace over every other spin. In the original ST approximat
the effective interaction between the first and the last spin
the cluster is constructed by taking the trace over all ot
spins of the cluster. In the first case the scale factorl is
always 2 whereas in the second one it can be, in princi
arbitrary. It has been shown that for theXY quantum spin
chain our method gives the free energy in better agreem
with the exact results than the ST one. Moreover, the res
of the ST method cannot be improved by enlarging the sc
factor l.10

To find the renormalized Hamiltonian we have used
perturbation theory with the interchain interactions as
perturbation parameters, which seems to be very nat
choice for weakly interacting chains. The calculations ha
been performed in the second-order cumulant expansion
a finite cluster. It should be emphasized that such an appr
mation is only reliable for small values of the ratio intercha
and intrachain interactions and in higher temperatures.
the method can be used to evaluate the temperature de
dence of the thermodynamic values in the high temperatu
and to find the critical line if a transition does not take pla
in a very low temperature. In fact, the method based on
linear transformation is not appropriate to define the char
ter of the critical singularities, i.e., to calculate the values
the critical indices.

The LPRG method has been examined in the tw
dimensional~2D! Ising-type spin models. For the standa
Ising model on the rectangular lattice with the interacti
parameterK1 in the vertical direction larger than the param
eterK2 in the horizontal direction we have found the critic
line as a function of the ratioK2 /K1. For 0.15,K2 /K1,1
this line is in very good agreement with the exact result~Fig.
2! The results are worse forK2 /K1,0.15 but then the phas
transition takes place at low temperatures where the pre
approach is invalid. We have also considered a tw
dimensional Ising model made with the chains coupled o
via pair-pair ~four-spin! interactions of the adjacent chain
@Eq. ~21!#. In this case the LPRG transformation does n
exhibit any nontrivial fixed point. In other words, the 2
Ising model described by Hamiltonian~21! undergoes no
phase transition at any nonzero temperature. This re
agrees with the exactly determined free energy of the mo
under consideration. The LPRG approximation gives a
proper temperature dependence of the specific heat for
sufficiently small four-spin interaction~Fig. 5!.

The application of the LPRG method to quantum syste
needs some additional approximations and consequently
approach deteriorates especially at low temperatures. H
4-6
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ever, for sufficiently high temperature and for small inte
chain interactions we have found reasonable results for
critical line and the temperature dependence of the free
ergy of the two-dimensional quantumXY model. Because
contrary to the nonlinear renormalization-group transform
tion, the proposed method does not require the choice of
weight operator, it can be used to study more complica
classical and quantum systems. The calculations can
made, for example, for the systems with higher values
spins or for systems of interacting fermions. Of course
approximation can be improved by taking into account
higher orders in the cumulant expansion and by increas
the used cluster.

APPENDIX

In this appendix we present the coefficientsgm
(n) @Eq. ~17!#

as functions ofK1 using the notations introduced in Sec.
t5tanh(K1) and r 5tanh(2K1):

g1
(0)531

5

2
rt 1

1

2
r 2t21

1

4
r 2t4

1

2
rt 5,

g2
(0)56~11t2!1

5

2
t~31t2!r 1

1

2
~11t2!2r 2

1t2~11t2!2r 2/41
1

2
t3~11t2!2r ,

g3
(0)512t15~11t2!r 1t~11t2!r 21

1

2
t3~11t2!r 2

1t4~11t2!r ; ~A1!
,

a

B.
A.

i,

18440
-
e

n-

-
he
d
be
f
e
e
g

g1
(1)5rt 1t21rt 31

1

2
r 2t21

1

4
r 2t4,

g2
(1)5~11t2!2S 11rt 1

1

2
r 21

1

4
r 2t2D1rt ~31t2!,

g3
(1)5~11t2!S 2t12r 1r 2t12rt 21

1

2
r 2t3D ; ~A2!

g1
(2)5

1

2
~r 214rt 1r 2t212!,

g2
(2)5

1

2
@2r 2~11t2!14rt ~31t2!1r 2~11t2!214~11t2!#,

g3
(2)54t12r 2t14r ~11t2!1r 2t~11t2!; ~A3!

g1
(3)5

1

2 S 1

2
r 212rt 1r 2t212t212rt 31

1/22

r
t4D ,

g2
(3)5

1

2 F r 2~11t2!212rt ~11t2!212rt ~31t2!12~11t2!2

1r 2~11t2!1
1

2
r 2t2~11t2!2G ,

g3
(3)5~11t2!S r 2t12rt 212r 12t1

1

2
r 2t3D1r 2t.

~A4!
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