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Linear renormalization transformation for weakly interacting spin chains
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The linear renormalization-group transformation is proposed to study critical temperatures and temperature
dependence of the thermodynamic val(fese energy, specific heaif the weakly interacting spin chains. The
method is examined in two classical systems: the standard Ising model on a rectangular lattice and the Ising
spin chains coupled by pair-pair interactions. In the latter case the transformation does not exhibit any non-
trivial fixed point. This result agrees with the exactly determined free energy of the system under consideration.
The method is also applied to the weakly interacting quantfrspin chains. The critical temperature as a
function of the interchain interactions and the temperature dependence of the specific heat are found.
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I. INTRODUCTION the inverse critical temperatuk€,=0.61 whereas the exact
value isK.=0.44. Similarly, for the s1/2 XY model ST
Compounds made of spin chains with the interchain couapproximation give«.=1.2 (Ref. 10 much larger than the
pling weaker than intrachain coupling attract continuous atvalue K.=0.64 estimated from the high-temperature series
tention both by theoreticians and experimentafistsThe ~ expansiof® or K.=0.71(0.67) found from Monte Carlo
reason is their model character as quasi-one-dimensionaimulations by fitting to the exponential lavand power
magnetic systems in which the interchain interactions can b&w," respectively. Much better quantitative results concern-
neglected in a wide range of temperature. It allows to treatng the location of the critical point of the two-dimensional
these compounds as really one-dimensional quartror 5= 1/2 XY modelK.=0.62 has been found by means of the
classical® spin systems. However, at sufficiently low tem- rotationally invariant RSRG transformatioh . However, in
perature, the interchain interaction that is responsible for athe case of weakly interacting spin chains the method based
eventual magnetic ordering becomes crucial a one and, ¢ the one-dimensional decimation seems to be a very natu-
course, it has to be taken into account. ral approximation especially since it does not have to be
In this paper we propose the linear real-spaceconnected with the MK bond-moving mechanism.

renormalization-group method that can be applied to study The outline of the remainder of this paper is as follows. In

weakly interacting classical and quantum spin chains. Th&ec. |l, the linear-perturbation renormalization-group

method is not based on the Migdal-Kadadaff1K) bond-  (LPRG) method for weakly interacting Ising spins chains is

moving approximation but uses the existence of the smalpresented. In Sec. lll, a generalization of the ST approximate

parameter—the ratio of interchain to intrachain coupling. ~decimation for one-dimensional quantum spin systems is dis-
The undisputable success of the Niemeijer and Van Leewcussed. In Sec. IV, the weakly interacting quantum spin

wen real-space renormalization-gro(®RSRG method as a  chains are studied by means of the LPRG method. Our con-

tool for the investigation of two-dimensional Ising spin sys- clusion are given in Sec. V.

tems has shown that many attempts have been made to gen-

eralize this method for quantum spin systems. However, the II. LINEAR-PERTURBATION RENORMALIZATION

first results were rather inconclusive not only regarding the ) i

character of the singularity near the transition temperature !N this section we present the LPRG method for weakly

but also the existence of a phase transition at #itke quan- interacting Ising spins chains described by the Hamiltonian

tum extension of the MK approach was proposed by Suzuki

and Takano(ST).*° The ST method has been based on an H=K;> S;Sj+1TKoD SiSiay (1)

approximate decimation for one-dimensional systems and () (1)

generalized to quantum spin systems in higher-dimension b\X/here the labei

means of the MK transformations. The authors pointed out_ 1ksT has already been absorbed in the Hamiltonian, and

that the simple MK approac_:h gives qualitatively re.asonabIeK2< K;. We define the renormalization transformation by
results for two- and three-dimensional quantum spin models

in the higher temperature region. The diszilgvantages of the exgH'(0)]=TrsP(o,S)exd H(S)]. 2
latter method were discussed by Bargtaal. = and Castel-

lani et al1? Here, we wish only to remind that the MK ap- The weight operatoP(o,S) is chosen in the linear form
proach gives rather poor quantitative results even for the

two-dimensional Ising model both for the location of the 1

critical point and critical indices and furthermore there is no P(.9)= NI, 1].10 (1+0i41j41500+12+1), )
possibility to construct any systematic approximation proce- '

dure within this method. For example, the MK procedureso the transformatiori2) is the decimation transformation
gives for the Ising model on the square lattice, the value ofind in the renormalization step, only every other spin from

refers to rows angl to columns, the factor
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every other row survives. For the Ising model in one dimen-

sion, i.e., forK,=0 this decimation can be carried out ex-

actly. So, it seems to be very natural to separate the Hamil-

tonian (1) in a manageable exactly unperturbed pHr§

containing all intrachain interactiorK() and a remaindeyY PY . e - o -

containing interchain interactiork().
With the notation

FIG. 1. The cluster used to get renormalized Hamiltor(ie4).

2o=TrsP(o,S)exg Hy(S)] (4) Small dots denote decimated spins.
and Kasi,j3+1,j+1- (13)
1 It should be noted that in our procedure we make two
(A)o=—TrsAP(a,S)exd Ho(S)1, (5) b

approximations. First, connected with the perturbation with
regard toK,, which is valid ifK,<K; and second, related to
the truncation of the interactions generated in the LPRG pro-

_ZO

the transformatiori2) can be rewritten as

H' (o) =In[z]+In[{exp(V))o] (6) cedure. The latter is better tf=tanh(K,)<1, it means at
. ) ) higher temperatures.
with the following cumulant expansion fd¢exp(v))o Now it is relatively easy to find the renormalized Hamil-

tonianH’ [Eq. (6)] for the cluster presented in Fig. 1 as

1
In[{exp(V))o]=(V)o+ §(<V2>o—<V>3)+ e (D)
: H' =Inl 2V 22,6+ E FE
=In[zy 25 z57 ]+ Fo+Fy 0i,j0ij+1
To evaluate the cumulant¥) one has to know the aver-
ages(S, . ..,Sy). In our case we have to consider the aver-
ages in, say, “odd” rows where in the renormalization step +F22 101+ Fa2 0011,
every other spin is decimated and in “even” rows where all
spins are removed. L&, ,; be a subset of decimated spins
from “even” removed rows then

(14

wherez{" are exactly known renormalized interactions and
partition functions of the odd and even chains, respectively,

(S2i4+2))=0, (Spis2jSsis2jrn)=t", ZgOdd):[COSHZKl)"'1]+[COSH2K1)_1]‘7i,i‘7i,1'+1'( )
' ' ' 15
t=tanh K,). 8
_ h(Ky) ® z{*eM =2 cosh2K ) +1], (16)
For the spins from “odd” rows the averages are ) ) .
and functiong= can be written in the form
' ) =T i, 9
<SZI+1,2J+1> i+1j+1 ( ) Fn:gg_n)Kg"‘g(zn)Kg'f‘ggn)Kng. (17)
1 The coefficientsgﬁr’]‘) as functions oK, are presented in
(Sait15+2)= Er(o'i+1,j+1+ Tit1j+2) the Appendix.
Finally, the renormalized parameters are as follows:
r=tanh(2K,), (10
Ki==zIn[cosh2K,)+1]+F;, Kj=F,, Kji=Fj,
(SS))=(S)(S)). (1D t2 ' e 3(18)
It is seen from Eq(8) that (S, ,;) vanish so there is no )
contribution from the first-order cumulant expansion and the free energy per site
o GKM™)
<V>o:Kz<iEj> (S2i+1)(S2i+2)=0. 12 f=2 o (19
n=

In the next order inV as usual, new interactions appear. where
Unfortunately, in our case the number of this new interac-
tions already in the second order is infinite for an infinite 1

system because all possible bilinear couplings between sev- G(Ki)= 5“”[4\/005“6}(1)+3C°SNZK1)]+FO}'

eral spins from the adjoining renormalized rows come into (20)
play. Thus, in order to carry out the LPRG transformation we

have to confine ourselves to a finite lattice. Notice that aver- We have evaluated numerically the renormalization trans-
ages(9)—(11) are exact for any size of the chain provided formation from the original set of coupling parametéts,
one uses a closed ring. If we restrict our considerations to sika=1,2,3) to the set of the renormalized paramekef$Eq.
spin clusters, then to the second order in the cumulant ex18)] and have found two stable fixed pointskat=0 and
pansion, only one new interaction will be generated, K,=, and the critical surface in the space of the param-
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FIG. 2. Dashed curve, critical inverse temperatukg)(found
from the recursion relation€l8); solid curve, exact result; dotted
curve, the results found by using<3 spin cluster

FIG. 4. Temperature dependence of the internal energy for sev-
eral values oK, /K;. K,/K; = 0 (solid line); 0.05 (dashed-dotted
line); 0.2 (dotted ling.

etersKy, Ky, andKs. The critical inverse temperatui€; sing spin chains interacting only via four-spin interactions

=1/T¢ as a function oK2=K;/K, for K3=0 is presented yith interacting spins located on ax2 square plaquette.
in Fig. 2 and compared with the exact results. In the samgpis model corresponds to a Hamiltonian

figure the critical inverse temperature found by using the

LPRG method with a &3 spin cluster instead of the cluster

presented in Fig. 1 is also shown. H=Ki> SSj+1+KaX SjSj+1S41S1j+10
The simple LPRG procedure in the lowest nontrivial ap- <”> <”> (21)

proximation gives forK,=K; (standard Ising modglthe

critical valueK,.=0.41, which is in reasonable agreementwith K,<Kj.

with the exact valueK,.=0.44. As mentioned above, the  Following the same procedure as in the previous case one

LPRG is rather a high-temperature approximation and cafiinds the renormalized Hamiltoni&) in the form

give much worse results fa€,>1. So, as one could expect,

the deviation from the exact critical line is larger if a transi- r_ (1)5(2)5(3) (4), (4 o

tion shifts to lower temperaturegarge K,) that occur for H'=In(z6022671+ Fe™+ Fi9 2 00,21

K,<Kj. As can be seen from Fig. 2 for 0.4%,/K,<1 the

deviations of the critical temperatures from the exact values + |:4E 0101 +10i+1j0i+1j+1, (22

are only a few percent. Of course, the thermodynamic values

in the higher-temperature regioiK{<1) can be the better \yhere

estimated the smaller the ratio, /K. Figures 3 and 4 show

the numerical results for the specific heat and internal energy @)

for several values oK,/K; andK3=0. Fi/=rtK,+

1
t2(1—r?)+ Erz(l—tz)}Ki,

| A. Four-spin interaction o F4=;r2(1—t2)Kﬁ, 23
As mentioned above, the LPRG transformation in the

second-order calculation by using the cluster presented igng
Fig. 1 generates only one new bilinear interactib®). How-

ever, using the same cluster one can include the four-spin

. o = e . 4)_
interaction in the original Hamiltonian. Let us consider the Fi=2rtK,+

2(1—r2t2)+%r2(1—t2)}K§. (24)

¢ Except for the contribution to the renormalized bilinear
. . intrachain coupling, four-spin interactidf, generates only
! four-spin interaction. Finally, the second-order transforma-

0.8 ! . tion equations read
1 .
0.6 . 1
o4 Kizzln[cosh2K1)+l]+F(4), Ki=F,. (25
0.2

It is easy to see that the transformati@¥b) has only trivial
T fixed points, and the two-dimensional Ising model made with
spin chains coupled only by four-spin interacti(®1) does
FIG. 3. Temperature dependence of the specific heat for sever&lot exhibit any finite-temperature phase transition. Figure 5
values ofK,/K;. K,/K; = 0 (solid line); 0.02(dashed ling 0.05  shows the numerical results obtained for the specific heat for
(dashed-dotted line0.2 (dotted ling. several original values df,. These results can be compared
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C -1 1-1

0.5 equ'(§o,§>]=(i[[1 Trg)exp[iEO H(S.S 1) |-

0.4 (30

0.3 This procedure takes quantum effect into account within a
single cluster and neglects the effects of noncommutativity

0.2 of several clusters. In the previous pageve have proposed

0.1 a simple extension of the Suzuki and Takano idea generaliz-
ing the linear RSRGEQ. (3)]. The linear RSRG transforma-

tion can be used to study more general models, for example,
models with many-spin interactions, and allows a systematic
FIG. 5. Temperature dependence of specific heatkipfK,  improvement of the ST approximation. We divide the Hamil-
=0.05 (dashed ling 0.2 (dotted ling, solid lines denote the ad- tgnian (29) into six spin clusters, and consider only one
equate exact results. cluster—six spins on a ring. The renormalized Hamiltonian

is defined
with the exact specific heat that can be easily found for théS elined as

model described by the Hamiltonida1). o 1 2 o
Namely, after introducing a new variable exp[H’(al,oz,ag)]=§Tr§i=Ho (1+0y11S5i+1)
7=5S+1, (26) 5
the Hamiltonian(21) can be rewritten in the form Xexr{ kZl H(§k,§k+1)}. (31
H=2 K> 7 +K> 7l (27 Similarly as in the ST procedure the quantum effects are
j i i

taking into account only within a single cluster. In the ST
giving in the thermodynamic limithe exact free energger ~ decimation the renormalization transformation with scale

spin factor! (I-spin clustersis used to find the effective interac-
tion between the first and the last spin of the clugteq.
f/T=In[expBK,)cosH BK;) (30)]. In the transformatioii31) every other spin is removed
i and the renormalized interaction depends on three spins
+ Vexp(28K4)sintF(BK1) +exp —25K,)]. (generally onn/2, where n denotes number of spins in a

(28) single cluster.

Applying the transformatioii31) to the Hamiltoniar(29),
one obtains the transformed Hamiltoniél in the same
form as the original Hamiltonian for new spin operatoa;s (
Jith new parametert;, andK; '/

From Eq.(28) we may, of course, calculate the exact specific
heat that is presented in Fig. 5 for two valueskof/K;
=0.05 and 0.2. It is seen that for sufficiently smidll /Ky
the LPRG results are in very good agreement with the exa
results.

1 1
K;:g(hl_)\z)a K£:1_2(3)\3_2)\2_)\1), (32
IIl. LINEAR RSRG FOR ONE-DIMENSIONAL QUANTUM

SYSTEM where

Below in this section, we consider a one-dimensional N, =In(Fo+4F —F,)
. . . . 1 0 X z/»
guantum spin system defined by the Hamiltonian

)\2:|n(F0_2FX_ FZ)!

H=K S+ ) K2 SIS, (29
2 (SIS TS ) TR SIS (29 Ns=In(Fo+3F,), (33

For a quantum system, because of the noncommutativityith
of several terms of the Hamiltonian the decimation transfor-
mation cannot be carried out exactly even for a one-
dimensional lattice. However, Suzuki and Tak&hwoposed
some approximate decimation that leads to reasonable values
of the free energy for the one-dimensional quantum anisogng
tropic Heisenberg model, especially in the high-temperature
region. In fact, the authors applied the standard decimation 1.2 .
proceduré. Dividing the chain into I-spin clusters and con- P=2I1 (1+0141S40). (39
sidering only one cluster, they found the renormalized =0

nearest-neighbor interaction between the remaining sijns  As usual in each step of the transformation a constant
andS, by using the transformation term independent o appears,

Fo=Trg(PexdH]),

Fo=Trg(PS{SzexfH]),  (a=x.2), 34
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1 2 3 4 5

FIG. 6. The free energy of the quantu¥Y model obtained by
decimation(dotted ling; linear RSRG(dashed ling and the exact
free energy obtained by Katsu¢solid line).

1

and the free energy per site can be calculated by using fo

mula (19). The found free energy for the XY model is

shown in Fig. 6 and compared with the exact result obtaine

by Katsurd®
Takano®® For example, for inverse temperatutg=1, our

[-

PHYSICAL REVIEW B63 184404

V= le% (S%jsrﬂ,j+S.V,J-S|y+1,,~)++<u<i2j> 7Sy

+ K2X<i2j> (S8 141t S iy

+K22% S Sy (37)

with K,,<K, (n=1,2 a=x,2). In comparison with the
Ising model the application of the LPRG method to interact-
ing quantum spins chains encounters some additional diffi-
culties connected with lack of the exact solutions for a one
chain, necessity of a decomposition of the exponential opera-
tors, and additional proliferation of the new interactions due
to the vector character of the spin operator. Consequently,
one has to use supplementary approximations.

We apply the cluster made with three six-spin rings. Ac-
cording to the procedure described in the Sec. Il in the rings
1 and 3(odd chaingevery other spin survives whereas in the
ring 2 all spins are removed. Because we do not know the
exact form of the partition functions for several chains, we

k " dse the results of the previous section. Thus, the partition
and the results obtained by Suzuki and fnction is given by

method leads té=1.4266 that differs by less than 1% from . i=3 =3
the exact valud=1.4152. It is interesting to note that even 2§99 =Fo+ inzl (ofoi  tolal, )+ inzl ofoiq,

the ground-state internal energy found by using transforma-

38
tion (28), E=4/3, is in a good agreement with the exact (38)
result E=4/7=1.2732 (ST approximation gives E  where functions= are defined in Eq(34) and
~1.4142). ]
Figure 7 shows the results for the specific heat of the (even) _ o > 2
isotropic-HeisenbergX Y, and anisotropic-Heisenberg model Zo = Trsex k; H(Se S |- (39

obtained from Eq(36).
If we confine ourselves to the second order in the cumu-
lant expansion, we can use the following second-order

IV. LPRG FOR COUPLED QUANTUM CHAINS decompositiort?

+0(x%y,xy?),

X X
We consider the Heisenberg spins chains defined by theeXF[XAerB]:eXF{EA exp[yB]ex;{EA

Hamiltonian (29) and coupled with adjacent chains by the (40)
interaction
and then
(H+V) \/. 1_2
C T Pe l=zp+V+ EV , (41
0-35 F N with
0.3F ¢ .y,
0.25p IS Vv _ 1
A S A zo=TrPe"], V=T P(e'V+Vvel)],
. . . 2
0.15} & \\.;«.. ______
0.1 O — 1
0.05 = VE=ZTIP(e"V2+2Velv +v2el], (42)
~— - K}( - -
12 3 4 5 6 7 and the average of V is defined as
FIG. 7. The specific heat of the quantum spin models: the 1
isotropic-Heisenberg modésolid line), the anisotropic-Heisenberg V== (z-WW+Vz L 43
modelK,/K,=0.5 (dotted ling, and theXY model (dashed ling (V) 2( 0 o) (43
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Xc V. CONCLUSION
1.8 We have proposed a simple perturbation method, LPRG,
1.6 for a broad class of classical and quantum lattice systems

made with weakly interacting chains. The method is based
on the linear renormalization-group transformation, which
1.2 for the Ising spins is the standard decimation procedure and
for the quantum spins the generalization of the Suzuki-

0.15 0.2 Dv 0.3 0.35 0.4°0F Takano approximate decimation. This generalization re-
0.8 \ solves itself into construction of the effective interactions
betweem effective spins in a cluster by performing a partial
FIG. 8. Critical inverse temperatut€, of the XY model. trace over every other spin. In the original ST approximation
the effective interaction between the first and the last spin in
IIge cluster is constructed by taking the trace over all other
spins of the cluster. In the first case the scale fatt
always 2 whereas in the second one it can be, in principle,
arbitrary. It has been shown that for t&¥ quantum spin
chain our method gives the free energy in better agreement

1.4

The expressions for the average of the spins are now mo
complicated than in the Ising caé® and, for example, foz
component of the spin from odd rows one obtains

(S1)=a101,+ay(0p,+ 03,) +8,01,05,03, with the exact results than th.e ST one. Moreovgr, the results
of the ST method cannot be improved by enlarging the scale
+ 1501 T2k T3¢+ 02y03y) + A0 02,( 015073« factor|.1°

(44) To find the renormalized Hamiltonian we have used the
perturbation theory with the interchain interactions as the
perturbation parameters, which seems to be very natural

where coefficientsa, are numerically determined functions choice for weakly interacting chains. The calculations have

of the interaction parametel$;. For the spins from even been performed in the second-order cumulant expansion for
rows the averages of single operators var(iSh,)=0, and  afinite cluster. It should be emphasized that such an approxi-
consequently there is no contribution from the first-order cu-mation is only reliable for small values of the ratio interchain
mulant expansion. and intrachain interactions and in higher temperatures. So,

It is easy to see from Eq44) that in the second-order the method can be used to evaluate the temperature depen
calculation inV the transformatiori31), contrary to the Ising dence of the thermodynamic values in the high temperatures
case, generates four- and six-spin couplings. The evaluatioand to find the critical line if a transition does not take place
of the contributions to the four- and six-spin interactions isin a very low temperature. In fact, the method based on the
rather straightforward but labor consuming and these interinear transformation is not appropriate to define the charac-
actions should not considerably affect the critical temperater of the critical singularities, i.e., to calculate the values of
ture of the XY model. Thus, we will neglect them in the the critical indices.

following. The critical inverse temperature and the tempera- The LPRG method has been examined in the two-

ture dependence of the free energy and specific heat of trmensional(2D) Ising-type spin models. For the standard

XY weakly coupled chains are shown in Figs. 8 and 9, relsing model on the rectangular lattice with the interaction

spectively. parameteK in the vertical direction larger than the param-

The value of the critical temperature found for the stan-eterK, in the horizontal direction we have found the critical
dard XY model, e.g., forK,,=K,, K,~0.5 is about 20% line as a function of the rati&,/K;. For 0.15<K,/K;<1
smaller than expected, but of course the LPRG approximathis line is in very good agreement with the exact re€kil.

tion should be better foK 1, <K,. 2) The results are worse fit,/K,<<0.15 but then the phase

transition takes place at low temperatures where the present

approach is invalid. We have also considered a two-
dimensional Ising model made with the chains coupled only
via pair-pair (four-spin interactions of the adjacent chains

2 [Eq. (21)]. In this case the LPRG transformation does not

exhibit any nontrivial fixed point. In other words, the 2D

Ising model described by Hamiltoniaf21) undergoes no

phase transition at any nonzero temperature. This result

agrees with the exactly determined free energy of the model
under consideration. The LPRG approximation gives also

------------------ proper temperature dependence of the specific heat for the

T sufficiently small four-spin interactiofFig. 5).

The application of the LPRG method to quantum systems
FIG. 9. Free energydashed lingand specific heatsolid line ~ needs some additional approximations and consequently our
of the XY model withK,,=0.2K, . approach deteriorates especially at low temperatures. How-

+ U'lyO'Sy) + 03( 0150t UlyUZy)]v

1.2 1.4 1.6 1.8 2

184404-6
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ever, for sufficiently high temperature and for small inter- 1 1
chain interactions we have found reasonable results for the g =rt+t?+rtd+ §r2t2+ Zr2t4'
critical line and the temperature dependence of the free en-

ergy of the two-dimensional quantuXY model. Because,

contrary to the nonlinear renormalization-group transforma- 9(21):(1+t2)2
tion, the proposed method does not require the choice of the

weight operator, it can be used to study more complicated

classical and quantum systems. The calculations can be ) ) 5 , 1,4

made, for example, for the systems with higher values of 95 =1+t 2t+2r+rit+2rt™+ Sro )y (A2)
spins or for systems of interacting fermions. Of course the

approximation can be improved by taking into account the 1

higher orders in the cumulant expansion and by increasing g(lz)z—(r2+4rt+r2t2+ 2),

the used cluster. 2

2 4

1 1
1+rt+=r?+ —rztz) +rt(3+t?),

1
APPENDIX 0 =5[2r2(1+1) + 4rt(3+17) +r2(1+1) 2+ 4(1+17)],

In this appendix we present the coefficiegf? [Eq. (17)]
as functions oK using the notations introduced in Sec. I,

(2)— 2 2 2 2y.
t=tanh,) andr =tanh(X,): g3 =4At+2rt+Ar(1+t)+rt(1+t9);  (A3)
5 1 1.,,1 11 1/22
O=34 —rt+ =r2t2+ —r2*= et (B)_Z|Z,2 242 o412 3 4
03 3+2rt+2rt+4rt2rt, 03 2(2r +2rt+ratc+2t°+ 2rt°+ ; t),

O)26(1+ )+ 21(3+ D)1 + = (1427 1
92 =6(1+t)+ StEF)r+ S (1+t9)% 08)=5 | P14 D)2+ 2rt (14 12)24 2rt(3+17) + 2(1+12)?

1
+1t2(1+1t2)%r?/4+ §t3(1+t2)2r,

1
+r2(1+t%)+ §r2t2(1+t2)2

g =120+ 5(1+t)r +1(1+t3)r2+ 1t3(1+t2)r2 5 1
2 0= (1+1)| rPt+2rt?+2r+ 2t+ Sr2 |+,

+t4(1+td)r; (A1) (A4)
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