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Theory of the metamagnetic crossover in CeRu2Si2

Hiroyuki Satoh and Fusayoshi J. Ohkawa
Division of Physics, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan

~Received 7 November 2000; published 26 March 2001!

Based on the periodic Anderson model, it is shown that the competition between the quenching of magnetic
moments by local quantum spin fluctuations and a magnetic exchange interaction caused by the virtual ex-
change of pair excitations of quasiparticles in spin channels is responsible for the metamagnetic crossover in
CeRu2Si2, cooperated with the electron-lattice interaction. The strength of the exchange interaction is propor-
tional to the bandwidth of quasiparticles and its sign changes with increasing magnetizations; it is antiferro-
magnetic in the absence of magnetizations, whereas it is ferromagnetic in the metamagnetic crossover region.
Experimental results of static quantities are well reproduced.
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I. INTRODUCTION

The metamagnetic crossover in CeRu2Si2 is an important
issue. The compound has a large electronic specific-hea
efficient of g.360 mJ/mol K2,1 and it shows a sharp in
crease of magnetization at the field ofHM.7.7 T.2,3 Other
physical properties such as magnetostriction4,5 and specific
heat6 are also anomalous in this field region. One of the m
crucial experimental results to be explained is the sing
parameter scaling;4,7 independent experimental quantities f
different pressures are scaled with a single energy param
kBTK , where TK is called the Kondo temperature. Th
Kondo temperature is the energy scale of local quantum
fluctuations and is approximately equal to the bandwidth
quasiparticles.

The present authors showed in a previous paper8 that an
exchange interaction caused by the virtual exchange of
excitations of quasiparticles in spin channels plays a crit
role in the metamagnetic crossover as well as the elect
lattice interaction called the Kondo volume-collapse effec9

This exchange interaction has the following two interest
properties. First, it changes from being antiferromagnetic
zero fields to being ferromagnetic in the metamagnetic cro
over region because of a pseudogap structure in the de
of quasiparticle states, which is characteristic of hea
electron compounds. Second, the strength of the excha
interaction is proportional to the bandwidth of quasiparticl
Then, the single-parameter scaling can be easily explain

After the previous paper was submitted, a detailed m
surement of the field dependence of specific heat was
ported by Aokiet al.10 At sufficiently low temperatures, a
single sharp peak was observed atHM , while a double-peak
structure was found at higher temperatures. They argued
such a result can be explained if a sharp peak exists in
density of states. A similar argument applies straightf
wardly to our previous model; however, if the pseudogap
deep enough, the magnetization process shows a first-o
transition within the theoretical framework of the previo
paper. Recently, two theories were proposed.11,12 They
claimed that an anisotropicc-f mixing plays an important
role in the metamagnetic behavior. In both theories, ho
ever, the peak structure in the density of states is too sh
because thek dependence of hybridization matrices is im
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properly treated; one-dimensional van Hove singularity
irrelevant. Such an extremely sharp peak is inconsistent w
the experimental result of specific heat. Furthermore
should give a discontinuous transition instead of the me
magnetic crossover if the exchange interaction mentio
above is properly taken into account. To reproduce the
perimental results of magnetization and specific heat sim
taneously has not been achieved so far.

A main purpose of this paper is to reformulate and i
prove the previous theory based on the periodic Ander
model so as to explain static properties of the system.
will also give a brief comment on intersite spin fluctuatio
around the zone center.

II. MODEL

The periodic Anderson model is written as

H5(
lks

El~k!alks
† alks1(

ks
~Ef2sH* ! f ks

† f ks

1(
lks

@Vl~k!alks
† f ks1H.c.#1

1

2
U(

is
nisni 2s ,

~2.1!

with l the band index of conduction electrons,nis

5 f is
† f is , andH* 5m0H, wherem0 is the saturation magne

tization perf electron. Other notations are standard. The
netic energy of conduction electronsEl(k) and thef electron
level Ef are measured from the chemical potential, resp
tively.

When multiple conduction bands are assumed,
pseudogap structure is expected in the density of states
cause of the hybridization between thef band and conduction
bands.13 Since the property of the magnetic exchange int
action that plays a critical role in the magnetization proc
depends on the shape of the density of quasiparticle state
shown in subsequent sections, a phenomenological mode
the density of quasiparticle states is employed instead of c
sidering explicit forms ofEl(k) and Vl(k) for simplicity.
Furthermore, in order to make our treatment easy, we ass
©2001 The American Physical Society01-1
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that the system is symmetrical. In other words, the Ham
tonian ~2.1! is assumed to be invariant under the partic
hole transformation.

One of the most crucial issues in constructing a theory
strongly correlated electron systems is how properly lo
quantum spin fluctuations, which are responsible for
quenching of magnetic moments, are treated. They can
correctly taken into account in the single-site approximat
~SSA! ~Ref. 14! that is rigorous for paramagnetic states
infinite dimensions. Consider the zero-field case at firstH
50. Within the SSA, Green’s functions forf electrons and
conduction electrons are respectively given by

Gf f s~ i«n ,k!5
1

i«n2Ef2S̃s~ i«n!2(
l

uVl~k!u2

i«n2El~k!

,

~2.2!

with S̃s the single-site self-energy function, and

Gll8s~ i«n ,k!5dll8gl~ i«n ,k!1gl~ i«n ,k!Vl~k!

3Gf f s~ i«n ,k!Vl8
* ~k!gl8~ i«n ,k!,

~2.3!

with gl( i«n ,k)5@ i«n2El(k)#21. Here,i«n is an imaginary
fermion energy withn an integer. To obtain the single-sit
self-energy function is reduced to solving a single-impur
Anderson model14 that has the same localized electron lev
Ef and on-site Coulomb repulsionU as those in Eq.~2.1!.
Call this Anderson model a mapped Anderson mo
~MAM !. Other parameters in the MAM are determin
through the mapping condition

G̃f f s~ i«n!5
1

N (
k

Gf f s~ i«n ,k!, ~2.4!

whereN is the number of unit cells andG̃f f s is the Green’s
function of the MAM written as

G̃f f s~ i«n!5
1

i«n2Ef2S̃s~ i«n!2L~ i«n!
, ~2.5!

with L( i«n)5(1/p)*2`
` d« D(«)/( i«n2«). Here, D(«) is

the hybridization energy of the MAM. Once a trial functio

for D(«) is given,S̃s( i«n) is obtained by solving the MAM
numerically. Therefore, Eq.~2.4! is a self-consistency condi
tion for D(«). However, we do not perform this sel
consistent calculation in this paper. Instead, several appr
mations will be taken in subsequent sections with the us
well-known results for the Kondo problem.

Consider the spin susceptibility of the MAM,x̃s( iv l),
where iv l is a boson energy withl an integer. The Kondo
temperature for the periodic Anderson model, which is
energy scale of local quantum spin fluctuations, is defined

lim
T→0

x̃s~1 i0![
1

kBTK
. ~2.6!
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In the same way as the previous paper, the electron-la
interaction is taken into account simply through the volum
dependence of the Kondo temperature:

TK~x!5TK~0!e2x, ~2.7!

with x5G DV/V0. Here,G ; 190 is the Gru¨neisen constan
of TK . For the sake of simplicity, the argumentx will be
omitted unless particularly required hereafter.

III. FERMI-LIQUID DESCRIPTION

The self-energy function is expanded as

S̃s~ i«n!5S̃s~1 i0!1@12f̃m# i«n1 . . . , ~3.1!

for small u«nu, wheref̃m is a mass enhancement factor in t

SSA. Note thatS̃s(1 i0)52Ef in the symmetrical case
Then the coherent part of Eq.~2.2! is written as

Gf f s
(c) ~ i«n ,k!5

1

f̃mi«n2(
l

uVl~k!u2

i«n2El~k!

, ~3.2!

and correspondingly,Gll8s
(c) is given by Eq.~2.3! with re-

placingGf f s by Gf f s
(c) . Quasiparticles are defined as the po

of Eq. ~3.2!, namely, the dispersion relation of quasiparticl
is obtained by solving the following equation

f̃mz2(
l

uVl~k!u2

z2El~k!
50. ~3.3!

We write the solutions asz5jn(k) with n representing the
branch of quasiparticles. By dividing the right-hand side
Eq. ~3.2! into partial fractions, it follows that

Gf f s
(c) ~ i«n ,k!5(

n

1

Zn
f ~k!

•

1

i«n2jn~k!
, ~3.4!

where the renormalization factor is given by

1

Zn
f ~k!

5
1

f̃m1(
l

hln~k!

, ~3.5!

with hln(k)5uVl(k)u2/@jn(k)2El(k)#2. Similarly, we
have

Glls
(c) ~ i«n ,k!5(

n

1

Zn
l~k!

•

1

i«n2jn~k!
, ~3.6!

with

1

Zn
l~k!

5
hln~k!

f̃m1(
l

hln~k!

. ~3.7!

It immediately follows from Eqs.~3.5! and ~3.7! that the
renormalization factors satisfy the relation
1-2
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f̃m

Zn
f ~k!

1(
l

1

Zn
l~k!

51. ~3.8!

With the use of Eq.~3.8!, the density of quasiparticle state
can be written in the form

r* ~«![
1

N (
nk

d@«2jn~k!#

52
1

pN (
k

ImH f̃mGf f s
(c) ~«1 ,k!

1(
l

Glls
(c) ~«1 ,k!J , ~3.9!

with «15«1 i0. The energy scale for quasiparticles,TQ , is
defined by

r* ~0![
1

4kBTQ
. ~3.10!

On the other hand,Zn
f (k) obeys the following condition:

(
n

1

Zn
f ~k!

5
1

f̃m

, ~3.11!

which can be proved by comparing Eqs.~3.2! and ~3.4! for
the limiting case ofu«nu→1`. It should be noted tha
Zn

f (k).f̃m for the quasiparticle band that is closest to t

Fermi level andZn
f (k)@f̃m for other branches for a givenk,

that is,

f̃m

Zn
f ~k!

.H 1 for ujn~k!u&2kBTQ

0 for ujn~k!u@2kBTQ
. ~3.12!

Consider a spectral function of renormalizedf electrons,r f* ,
defined by

1

N (
k

Gf f s
(c) ~ i«n ,k!5

1

f̃m
E

2`

`

d«
r f* ~«!

i«n2«
, ~3.13!

or equivalently

r f* ~«!5
1

N (
nk

f̃m

Zn
f ~k!

d@«2jn~k!#. ~3.14!

Equation~3.12! tells that

r f* ~«!.H r* ~«! for u«u&2kBTQ

0 for u«u@2kBTQ
, ~3.15!

and it follows from Eq.~3.11! that r f* satisfies the normal
ization condition of*2`

` d« r f* («)51.
The Luttinger’s argument15 applies straightforwardly to

the periodic Anderson model. Consider the number of e
trons per unit cell:
18440
c-

ns5
1

Nb (
nk

e1 i«n0H Gf f s~ i«n ,k!1(
l

Glls~ i«n ,k!J ,

~3.16!

with b51/kBT. At T50 K, Eq. ~3.16! can be transformed to

ns5E
2`

0

d« r* ~«!, ~3.17!

which is an exact relation and is identical to the Luttinge
theorem. Let us derive an expression for the specific h
Recently an exact expression for the entropy of an inter
ing system was established.16 For the periodic Anderson
model, it is written as

S52
1

pN (
ks

E
2`

`

d«
] f ~«!

]T H(
l

Im ln@2gls
21~«1 ,k!#

1Im ln@2Gf f s
21 ~«1 ,k!#

1Re Gf f s~«1 ,k!•Im S̃s~«1!J , ~3.18!

where f («)51/(eb«11). In Eq. ~3.18!, Im S̃s(«1) can be
ignored andGf f s can be replaced by its coherent part b
cause the derivative off («) is nonzero only for smallu«u at
low temperatures. Furthermore, theT dependence off̃m can
be neglected in the temperature region of interest becaus
T dependence should be given by (T/TK)2 at low tempera-
tures as long as the system is in a normal Fermi-liquid st
Since the chemical potential does not change as a functio
temperature in a symmetrical model, the specific heat at c
stant volume is given by

CV5T
]S

]T
5(

s
E

2`

`

d« «
] f ~«!

]T
r* ~«!, ~3.19!

where the identityT]2f /]T252]/]«(«] f /]T) has been
made use of.

The zero-temperature limit of Eq.~3.19! is given byCV

5gT with g5(2p2kB
2/3)r* (0). On theother hand, a com-

bination of Eqs. ~2.4!, ~3.13!, and ~3.15! gives r* (0)
.r f* (0)5f̃m /pD(0). When D(«) is constant, one can
prove that8

f̃m

pD
5

1

4kBTK
, ~3.20!

and then it followsTK.TQ in the SSA, whereTK andTQ are
defined by Eqs.~2.6! and ~3.10!, respectively. We take this
approximation in order to estimate the Kondo temperatu
From the experimental value ofg, we haveTK(0).38 K.

Let us consider the finite-field case;HÞ0. In the previous
paper,8 we constructed a perturbation method to derive
microscopic Landau free energy, one of whose independ
variables is the magnetizationm5(ss^ f is

† f is&. In the pres-
ence of magnetizations, physical quantities, such as s
energy and polarization functions, can be expressed a
function of m instead of the magnetic fieldH. The equation
that defines quasiparticles becomes
1-3



q.
h

e
ith

i

e
he

c-

-

f

Eq

ct
-

. I

e-

e
a

ons
us-
pin
ith

they
ex-

ty

in

n,

n-
one

o-

-

HIROYUKI SATOH AND FUSAYOSHI J. OHKAWA PHYSICAL REVIEW B63 184401
f̃mz2dS̃s~m!2(
l

uVl~k!u2

z2El~k!
50, ~3.21!

with dS̃s(m) a magnetic part of the self-energy. In E
~3.21!, m dependence of the mass enhancement factor
been ignored.17 The solutions for Eq.~3.21! are denoted by
jns(k,m). All arguments for the finite-field case can be d
veloped in parallel with those for the zero-field case w
replacingjn(k) by jns(k,m). For example,f̃m /Zns

f (k,m)
satisfies a similar property as Eq.~3.12!. Therefore it follows
by comparing Eqs.~3.3! and ~3.21! that

jns~k,m!.jn~k!2sDE~m!, ~3.22!

where sDE(m)[2dS̃s(m)/f̃m . With the use of Eq.
~3.22!, the Luttinger’s theorem gives

m5(
s

sE
2`

0

d« r f* @«1sDE~m!#, ~3.23!

where the polarization of conduction electrons has been
nored. In Eq.~3.23!, we have replacedr* with r f* ; because
the right-hand side of Eq.~3.23! is a difference between th
contributions from up and down spin directions, only t
low-energy part is relevant. From Eq.~3.23!, the magnetic
part of the self-energy,DE(m), can be determined as a fun
tion of m.

A similar treatment for the MAM is also possible. Con
sider the coherent part of Eq.~2.5!, which is defined by
G̃f f s

(c) ( i«n)[(1/N)(kGf f s
(c) ( i«n ,k) and written asG̃f f s

(c) ( i«n)

5@f̃mi«n2L (c)( i«n)#21 at zero fields. In the presence o
magnetizations, it becomes

G̃f f s
(c) ~ i«n ,m!5

1

f̃m@ i«n1sDEA~m!#2L (c)~ i«n!
.

~3.24!

Note that DEA(m) is different from DE(m) because the
MAM is determined in the absence of magnetizations by
~2.4! and then magnetic one-body potentials are added
both the periodic Anderson model and MAM separately.8 In
other words,DEA(m) is a single-site term even with respe
to m, whereasDE(m) includes multisite magnetizations. Be
cause the magnetization in the MAM is also given bym to
leading order inkBTK /U,8 DEA(m) can be approximately
evaluated from

m5(
s

sE
2`

0

d«S 2
1

p
ImD f̃mG̃f f s

(c) ~«1 ,m!. ~3.25!

In case of a constant hybridization energy, Eq.~3.25! is a
rigorous relation and is nothing but the Friedel sum rule
should be noted that the evaluation ofDE and DEA from
Eqs.~3.23! and ~3.25! is one of the most essential improv
ments. In the previous paper, we assumed thatDE(m)
5DEA(m)5(4kBTK /p)tan(pm/2).

Before closing this section, it is helpful to mention th
volume dependence of the physical quantities that have
peared above. First, it follows from Eqs.~2.7! and~3.20! that
18440
as
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f̃m}ex. Taking notice of Eq.~3.12!, we have r f* («;x)
5exr f* («ex;0) and L (c)( i«n ;x)5L (c)( i«nex;0). Therefore
Eqs. ~3.23! and ~3.25! give DE(m)}e2x and DEA(m)
}e2x, respectively.

IV. MAGNETIC EXCHANGE INTERACTION

In this section, we study magnetic exchange interacti
working between quasiparticles. Consider the magnetic s
ceptibility to this end. In the presence of magnetizations, s
and charge channels of the susceptibility are coupled w
each other in general. In the symmetrical case, however,
are separated and the magnetic susceptibility can be
pressed as

xs~ iv l ,q,m!5
2ps~ iv l ,q,m!

12Ups~ iv l ,q,m!
, ~4.1!

with ps5(1/2)(ss8ss8pss8 , wherepss8 is the irreducible
polarization function. Similarly, the magnetic susceptibili
of the MAM is given by

x̃s~ iv l ,m!5
2p̃s~ iv l ,m!

12Up̃s~ iv l ,m!
, ~4.2!

with p̃s the single-site polarization function for the sp
channel. The static and zero-temperature limit ofx̃s is ap-
proximately given by8

lim
T→0

x̃s~1 i0,m!5
1

kBTK
~12m2!3/2. ~4.3!

Becausexs is also of order 1/kBTK , Eq. ~4.1! can be rewrit-
ten in the form

xs~ iv l ,q,m!5
x̃s~ iv l ,m!

12
1

4
I s~ iv l ,q,m!x̃s~ iv l ,m!

, ~4.4!

where I s( iv l ,q,m) is the intersite exchange interactio
which is given by

I s~ iv l ,q,m!52U2$ps~ iv l ,q,m!2p̃s~ iv l ,m!%,
~4.5!

to leading order inkBTK /U. Note that Eq.~4.4! is consistent
with the physical picture of the Kondo lattice that local qua
tum spin fluctuations at each site are connected with
another by the intersite interaction. In order to calculateI s ,
we consider a two-line diagram shown in Fig. 1 for the p
larization partpss8 , which remains finite even in infinite
dimensions for specificq’s. In other words, the two-line dia
gram is a leading term with respect to 1/d for specificq’s,
with d the spatial dimensionality. In Fig. 1,l̃st

(A) is a three-

point vertex function of the MAM andl̃st denotes that of
the periodic Anderson model ofd→1` limit. Note thatl̃st

(A)

is a single-site term, whilel̃st contains multisite terms with
respect to bothU andm. It follows from Fig. 1 that
1-4
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I s~ iv l ,q,m!52
U2

b (
ns

l̃s
(A)~ i«n ,i«n1 iv l ,m!

3l̃s~ i«n ,i«n1 iv l ,q,m!

3H 1

N (
k

Gf f s~ i«n ,k,m!Gf f s~ i«n1 iv l ,k

1q,m!2G̃f f s~ i«n ,m!G̃f f s~ i«n1 iv l ,m!J ,

~4.6!

wherel̃s
(A)[l̃↑↑

(A)2l̃↓↑
(A) and l̃s[l̃↑↑2l̃↓↑ , respectively. In

Eq. ~4.6!, the second term is necessary not only to subtr
the single-site portion but also to avoid overcountings.

The main contribution toI s is divided into two parts:18

I s~ iv l ,q,m!5Js~q!1JQ~ iv l ,q,m!. ~4.7!

The first term is an exchange interaction caused by the
tual exchange of high-energy spin excitations, wh
scarcely depends onm. It is composed of three terms; th
conventional superexchange interaction, an extended su
exchange interaction and an extended Ruderman-Ki
Kasuya-Yosida~RKKY ! interaction.18 Because the propert
of Js depends on the whole band structure, we treat it a
phenomenological parameter. The second term,JQ, is due to
the virtual exchange of low-energy spin excitations with
quasiparticle bands:

JQ~ iv l ,q,m!52
U2

b (
ns

l̃s
(A)~1 i0,1 i0,m!

3l̃s~1 i0,1 i0,0,m!

3H 1

N (
k

Gf f s
(c) ~ i«n ,k,m!Gf f s

(c) ~ i«n1 iv l ,k

1q,m!2G̃f f s
(c) ~ i«n ,m!G̃f f s

(c) ~ i«n1 iv l ,m!J ,

~4.8!

where energy dependence andq dependence of the verte
parts have been ignored. The vertex functions in Eq.~4.8! are
related to the magnetic parts of the corresponding self-en
functions:

2
U

2
l̃s

(A)~1 i0,1 i0,m!5f̃m

]DEA~m!

]m
, ~4.9!

FIG. 1. Diagram forpss8 in the site representation. A thick lin
with an arrow stands for the Green’s function. Overcounted con
butions should be subtracted~see the text!.
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U

2
l̃s~1 i0,1 i0,0,m!5f̃m

]DE~m!

]m
, ~4.10!

respectively. Therefore we have

JQ~ iv l ,q,m!54
]DEA

]m
•

]DE

]m
$P~ iv l ,q,m!2 P̃~ iv l ,m!%,

~4.11!

with

P~ iv l ,q,m!5
1

N (
nn8ks

f „jn8s~k1q,m!…2 f „jns~k,m!…

jns~k,m!2jn8s~k1q,m!1 iv l

,

~4.12!
where Eq.~3.12! has been used and

P̃~ iv l ,m!52
f̃m

2

b (
ns

G̃f f s
(c) ~ i«n ,m!G̃f f s

(c) ~ i«n1 iv l ,m!.

~4.13!

In the following part of this section, we study the stat
and uniform component of Eq.~4.11!, JQ(1 i0,0,m). It is
abbreviated toJQ(m,x) with the argumentx explicitly writ-
ten. Because excitations between different branches in
~4.12! can be neglected for low-energy phenomena, we
tain

P~1 i0,0,m!5(
s

r f* @sDE~m!#. ~4.14!

On the other hand, Eq.~4.13! is expanded as

P̃~v1 ,m!5F]DEA

]m G21

1
p

2
iv•F]DEA

]m G22

1 . . . ,

~4.15!

with the use of Eq.~3.25!, where v15v1 i0. It can be
easily shown from Eqs.~4.11!, ~4.14!, and ~4.15! that the
volume dependence ofJQ(m,x) is the same as that ofTK ,
namely, JQ(m,x)5e2xJQ(m,0) and the magnitude o
JQ(m,x) is of orderkBTK . ThusJQ(m,x) is scaled withTK ,
or the bandwidth of quasiparticles. This property is resp
sible for the single-parameter scaling.4,8 Once an explicit
form of r f* («) is given,JQ(m,0) is straightforwardly calcu-
lated as a function ofm. As a phenomenological model fo
r f* («), we employ the following model in the same way
the previous paper:

r f* ~«!5
1

kBTK
H c1

2
@D~ «̄;c2 ,c3!1D~ «̄;2c2 ,c3!#

1~12c1!D~ «̄;0,c4!J , ~4.16!

with pD(y;a,b)5b/@(y2a)21b2# and«̄5«/kBTK . In this
paper,c250.60 andc350.15 are assumed, which are diffe
ent from previous ones. Because of the conditionr f* (0)
.1/4kBTK , only c1 is variable. Figure 2 representsr f* («)

i-
1-5
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for three values ofc1, and the corresponding results fo
JQ(m,0) are shown in Fig. 3. The exchange interactionJQ
changes from being antiferromagnetic to being ferrom
netic with increasingm, which is consistent with the previ
ous result. The maximum value ofJQ becomes larger when
we raise the height of the peaks inr f* . Furthermore, it can be
checked by changingc2 with c1 fixed that shifting of the
location of the peaks to the band-edge side also enha
ferromagnetic instability.

V. THERMODYNAMIC QUANTITIES

The thermodynamic potential is expressed as

V~m,x!5Vpara~x!1Ṽ~m,x!1DV~m,x!. ~5.1!

Here, the first term is that for the paramagnetic state incl
ing a contribution from the lattice system. It is written as8

Vpara~x!5Vpara~0!1kBTK~0!•
x2

2k
, ~5.2!

wherek is a dimensionless compressibility. The second te
and the last term inV are the magnetic single-site and mu

FIG. 2. Phenomenological model forr f* («) for three values of
c1. Energies are in units ofkBTK .

FIG. 3. Exchange interactionJQ(m,0) ~in units of kBTK) as a
function of m.
18440
-

es

-

tisite terms; they are defined by]2Ṽ/]m2[1/x̃s(1 i0,m),
and ]2DV/]m2[2I s(1 i0,0,m)/4, respectively. By inte-
grating them, we obtain

Ṽ~m,x!5kBTK~x!~12A12m2!, ~5.3!

and

DV~m,x!52
Js~0!

8
m22E

0

m

dm8E
0

m8
dm9

JQ~m9,x!

4
.

~5.4!

In this section, we confine our study to the case ofc1
50.17. The equilibrium values ofm andx are determined by
solving the simultaneous equations,]V/]m5H* and
]V/]x50; they are shown in Fig. 4. Here, we have set t
values of three parameters asJs(0)50.3kBTK(0), k52.4,
andm052.0mB in order to have a better fit with experiment
The value ofk corresponds to 1.09 Mbar21 in the ordinary
unit. It should be mentioned that if the magnetization proc
is calculated with volume fixed constant against the magn
field, the metamagnetic crossover is considera
suppressed.8

FIG. 4. Magnetization and magnetostriction. Experimental d
are shown by dots and circles, respectively~Refs. 2 and 5!.

FIG. 5. CV /T as a function ofH. Experimental data at constan
pressure forT50.25 K are shown by dots~Ref. 10!. Circles repre-
sent the values ofCV /T at T51.5 K evaluated from experimenta
data~Ref. 19!.
1-6
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Let us next study the specific heat. In the presence
magnetizations, it is given by Eq.~3.19! with r* («) replaced
by r f* @«1sDE(m)#. Figure 5 showsCV /T2H curves for
three values of temperature;T50, 1.5, and 3 K. The double
peak structure is qualitatively reproduced in the pres
model. Note that the experiment10 was performed at constan
pressure. From the experimental data, the specific hea
constant volume has been estimated;19 it is also shown in
Fig. 5 for T51.5 K. In our calculation, no double peak a
pears atT51.5 K, whereas it is observed aboveT.1.0 K in
the experiment. A probable reason for this discrepancy is
easy estimation of the value ofTK based on Eq.~3.20!. In
addition to that, a contribution from ferromagnetic spin flu
tuations or paramagnons, which is excluded in the SSA, m
not be negligible. Figure 6 shows the temperature dep
dence ofCV /T for various values of the field, which is con
sistent with the experiment~Fig. 2 of Ref. 6!.

Finally, the isothermal compressibility is given by

1

kT~H !
5

NG2

V0
H ]2V

]x2
1

]2V

]x]m
•S ]m

]x D
H
J . ~5.5!

As shown in Fig. 7, it is strongly enhanced atHM . Matsuhira
et al.19 have studied the field variation of the compressibil
by using thermodynamic relations and assuming the sin
parameter scaling. Our calculation shows a good agreem
with their result.

VI. DISCUSSION

It is worthwhile to comment on spin fluctuations arou
the zone center,q.0. The imaginary part of Eq.~4.12! is
expanded as

Im P~v1 ,q,m!5c~m!•
v

q
1 . . . , ~6.1!

for small q and smallv/uqu, where the coefficientc(m) de-
pends on the band structure. On the other hand, the inv
of the local susceptibility is expanded as20

FIG. 6. CV /T versusT for various values of the magnetic field
18440
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1

x̃s~v1 ,m!
5

1

x̃s~1 i0,m!
2

p

2
iv1 . . . . ~6.2!

Because thev-linear terms in Eqs.~4.15! and ~6.2! can be
neglected compared with thev/q term in Eq.~6.1! for small
q,21 the total susceptibility is written in the form

xs~v1 ,q,m!.
1

Re@1/xs~v1 ,q,m!#2 iC~m!•v/q
,

~6.3!

with C(m)5]DEA /]m•]DE/]m•c(m). Since the system is
close to ferromagnetic instability in the metamagnetic cro
over region; Re@1/xs(1 i0,0,m)#!kBTK , the imaginary part
of Eq. ~6.3! is expected to be enhanced around the metam
netic point for smallv.

On the other hand, spin fluctuations in the Kondo latt
have been studied assuming thev-independent RKKY inter-
action,

xs~v1 ,q,m!5
x̃s~v1 ,m!

12I RKKY~q!x̃s~v1 ,m!
, ~6.4!

instead of Eq.~4.4! without any justification. In the low-
energy region, however, Eq.~6.4! is expressed as

xs~v1 ,q,m!.
1

Re@1/xs~v1 ,q,m!#2p iv/2
, ~6.5!

and behaves quite differently from Eq.~6.3! around the zone
center. Thus the argument based on Eq.~6.4! is apparently
inadequate. Indeed, recent results of neutron-scatte
measurements22 cannot be understood from Eq.~6.4!.
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FIG. 7. Isothermal compressibility as a function ofH.
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