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Theory of the metamagnetic crossover in CeRy5i,
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Based on the periodic Anderson model, it is shown that the competition between the quenching of magnetic
moments by local quantum spin fluctuations and a magnetic exchange interaction caused by the virtual ex-
change of pair excitations of quasiparticles in spin channels is responsible for the metamagnetic crossover in
CeRuySi,, cooperated with the electron-lattice interaction. The strength of the exchange interaction is propor-
tional to the bandwidth of quasiparticles and its sign changes with increasing magnetizations; it is antiferro-
magnetic in the absence of magnetizations, whereas it is ferromagnetic in the metamagnetic crossover region.
Experimental results of static quantities are well reproduced.
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I. INTRODUCTION properly treated; one-dimensional van Hove singularity is
irrelevant. Such an extremely sharp peak is inconsistent with

The metamagnetic crossover in CeRij is an important the experimental result of specific heat. Furthermore, it
issue. The compound has a large electronic specific-heat céhould give a discontinuous transition instead of the meta-
efficient of y=360 mJ/mol K,! and it shows a sharp in- magnetic crossover if the exchange interaction mentioned
crease of magnetization at the field lI9f,=7.7 T2® Other ~ above is properly taken into account. To reproduce the ex-
physical properties such as magnetostri¢tband specific  perimental results of magnetization and specific heat simul-
heaf are also anomalous in this field region. One of the mostaneously has not been achieved so far.
crucial experimental results to be explained is the single- A main purpose of this paper is to reformulate and im-
parameter scaling? independent experimental quantities for prove the previous theory based on the periodic Anderson
different pressures are scaled with a single energy parametgtodel so as to explain static properties of the system. We
ksTx, Where Ty is called the Kondo temperature. The Will also give a brief comment on intersite spin fluctuations
Kondo temperature is the energy scale of local quantum spiaround the zone center.
fluctuations and is approximately equal to the bandwidth of
guasiparticles.

The present authors showed in a previous gaget an
exchange interaction caused by the virtual exchange of pair The periodic Anderson model is written as
excitations of quasiparticles in spin channels plays a critical
role in the metamagnetic crossover as well as the electron-
lattice interaction called the Kondo volume-collapse effect.
This exchange interaction has the following two interesting
properties. First, it changes from being antiferromagnetic at
zero fields to being ferromagnetic in the metamagnetic cross-
over region because of a pseudogap structure in the density
of quasiparticle states, which is characteristic of heavy-
electron compounds. Second, the strength of the exchange
interaction is proportional to the bandwidth of quasiparticles.
Then, the single-parameter scaling can be easily explainedwith N the band index of conduction electronsy,

After the previous paper was submitted, a detailed mea=fiTUfiU, andH* =mgH, wherem is the saturation magne-
surement of the field dependence of specific heat was rdization perf electron. Other notations are standard. The ki-
ported by Aokiet al® At sufficiently low temperatures, a netic energy of conduction electrofg(k) and thef electron
single sharp peak was observedyj, while a double-peak level E; are measured from the chemical potential, respec-
structure was found at higher temperatures. They argued thévely.
such a result can be explained if a sharp peak exists in the When multiple conduction bands are assumed, a
density of states. A similar argument applies straightfor-pseudogap structure is expected in the density of states be-
wardly to our previous model; however, if the pseudogap iscause of the hybridization between theand and conduction
deep enough, the magnetization process shows a first-ordbands® Since the property of the magnetic exchange inter-
transition within the theoretical framework of the previous action that plays a critical role in the magnetization process
paper. Recently, two theories were propoSetf. They depends on the shape of the density of quasiparticle states as
claimed that an anisotropic-f mixing plays an important shown in subsequent sections, a phenomenological model for
role in the metamagnetic behavior. In both theories, howthe density of quasiparticle states is employed instead of con-
ever, the peak structure in the density of states is too shargidering explicit forms ofE, (k) and V, (k) for simplicity.
because thé& dependence of hybridization matrices is im- Furthermore, in order to make our treatment easy, we assume
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that the system is symmetrical. In other words, the Hamil-In the same way as the previous paper, the electron-lattice
tonian (2.1) is assumed to be invariant under the particle-interaction is taken into account simply through the volume

hole transformation. dependence of the Kondo temperature:
One of the most crucial issues in constructing a theory of .
strongly correlated electron systems is how properly local Tk(X)=Tk(0)e™7, 2.7

quantum spin fluctuations, which are responsible for thg i\, 1 AV/V,. Here,T
guenching of magnetic moments, are treated. They can b@f
correctly taken into account in the single-site approximationo
(SSA) (Ref. 14 that is rigorous for paramagnetic states in
infinite dimensions. Consider the zero-field case at fitst;
=0. Within the SSA, Green'’s functions fdrelectrons and
conduction electrons are respectively given by The self-energy function is expanded as

~ 190 is the Graeisen constant
Tk . For the sake of simplicity, the argumextwill be
mitted unless particularly required hereafter.

lll. FERMI-LIQUID DESCRIPTION

1 S (e)=3,(+i0)+[1—dplient ..., (3.1

) ~ . Vy(K)[?
Isn—Ef—Ea(lsn)—E}\: %

foc’(isnlk): -
for small|e,|, whereg,, is a mass enhancement factor in the
2.2 SSA. Note thats (+i0)=—E; in the symmetrical case.

' Then the coherent part of E(R.2) is written as

with io the single-site self-energy function, and
1

Gonr (0 :K) = By (0, K)+ Gy (i, KOV, (K) Gifyien k)=— AR
Prien— D —— =
N |8n_E)\(k)

X Girylien KVL (K)gy (ien k),

(2.3 and correspondinegG(C)

o 1S given by Eq.(2.3 with re-
placingGg;, by G%?Z,. Quasiparticles are defined as the poles
of Eq. (3.2), namely, the dispersion relation of quasiparticles
is obtained by solving the following equation

with g, (ie,,k)=[ie,—E,\(k)] 1. Here,ie, is an imaginary
fermion energy withn an integer. To obtain the single-site
self-energy function is reduced to solving a single-impurity

Anderson modéf that has the same localized electron level IV, (K) |2
E; and on-site Coulomb repulsidd as those in Eq(2.1). PR M o, 3.3
Call this Anderson model a mapped Anderson model 27 EvKk)

(MAM). Other parameters in the MAM are determined

through the mapping condition We write the solutions ag=¢,(k) with v representing the

branch of quasiparticles. By dividing the right-hand side of
Eq. (3.2 into partial fractions, it follows that

~ . 1 ]
Gitolien) =15 2 Girolien k), (2.4
k G (ien k)= o (3.4
~ o n» . ’ .
whereN is the number of unit cells an@;, is the Green’s v Zi(k) Ten—&u(K)
function of the MAM written as N L
where the renormalization factor is given by
Giolien) : (2.9 1 1
ftoll&n) =" = . X ) . _
ien—Ei—3,(ieq) —L(iepn) 7l 3.5

bt (K
with L(ie,)=(1/m)[”..de A(e)/(ie,—¢). Here, A(g) is Pm ; k)
the hybridization energy of the MAM. Once a trial function with  7,,(K) = [V, (K) [T &,(K) —E, (K) T2 Similarly, we
for A(e) is given,3 (ie,) is obtained by solving the MAM  have . ’ M ’
numerically. Therefore, Eq2.4) is a self-consistency condi-
tion for A(e). However, we do not perform this self- 1
consistent calculation in this paper. Instead, several approxi- Gﬁ?g(isn k)= ) e EK)
mations will be taken in subsequent sections with the use of v Z,(k) 1&n &l
well-known results for the Kondo problem. with

Consider the spin susceptibility of the MAMs(iw),

whereiw, is a boson energy with an integer. The Kondo 1 oK)
temperature for the periodic Anderson model, which is the VI . 3.7
energy scale of local quantum spin fluctuations, is defined by Z,(k) bt ; Mo(K)

(3.6

lim }5(+iO)EF_ (2.6) It immed.iate_ly follows from Eqs(3.5 e_md (3.7 that the
T—0 B'K renormalization factors satisfy the relation
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1 .
n,= 2 e+|€n0

NG > [Gmasn,k)@ Gmusn.m},

(3.16

With the use of Eq(3.8), the density of quasiparticle states with B=1/kgT. At T=0 K, Eq.(3.16 can be transformed to

can be written in the form

1
pre)=r5 2 dle—£,(K)]
vk

2 Im[ RERACINS

+ G, (e ,k>]. (3.9
A

with e , =& +10. The energy scale for quasiparticl@s,, is
defined by

1
4kgTq'

p*(0)= (3.10

On the other handeV(k) obeys the following condition:

1 _1
Y 2K b

which can be proved by comparing Eq48.2) and(3.4) for

(3.1)

the limiting case of|e,|— +«. It should be noted that

0
n”:f de p*(e), (3.17
which is an exact relation and is identical to the Luttinger's
theorem. Let us derive an expression for the specific heat.
Recently an exact expression for the entropy of an interact-
ing system was establishé®.For the periodic Anderson
model, it is written as

7TN ko f

+ImIn[—Gi(e, k)]

ﬁf(s)

[2 ImIn[—gy 2+ k)]

+Re fo,,(s+,k)-lm§(,(s+)}, (3.19

where f(e)=1/(ef¢+1). In Eq. (3.18, Im3 ,(e,) can be
ignored andGs¢, can be replaced by its coherent part be-
cause the derivative df(¢) is nonzero only for smalle| at

low temperatures. Furthermore, thielependence of,, can

be neglected in the temperature region of interest because its
T dependence should be given by/Tk)? at low tempera-
tures as long as the system is in a normal Fermi-liquid state.

Z7(k)=9,, for the quasiparticle band that is closest to theSince the chemical potential does not change as a function of

Fermi level andZV(k)> ., for other branches for a given
that is,

|§V(k)|52kBTQ
|€,(K)|>2kgTq

¢>m

7' (k)

1 for
[ (3.12

0 for

Consider a spectral function of renormaliZeglectronsp? ,
defined by

1 1 (= pfle)
— (©) (i -
5 Giienk gmfwdsi%_s, (313
or equivalently
1o dm
p¢<s>=NEk 1 5[s—§<k>] (3.1
Equation(3.12) tells that
p*(e) for |e|=2kgTq
* —_
PiE)=1" 5 o |&|>2ks o' (319

and it follows from Eq.(3.11) that p; satisfies the normal-
ization condition of[” , de pf (¢)=1.
The Luttinger's argumerit applies straightforwardly to

temperature in a symmetrical model, the specific heat at con-
stant volume is given by

S © of
Cv=Tﬁ=2f de T o),

0T (3.19

where the identityTo?f/dT?=— 9/ 9e(edf/9T) has been
made use of.

The zero-temperature limit of E@3.19 is given byC,,
=T with y=(272k3/3)p* (0). On theother hand, a com-
bination of Egs.(2.4), (3.13, and (3.15 gives p*(0)
:p}*(O):Em/TrA(O). When A(g) is constant, one can
prove that

In_ L
7TA 4kBTK ’

and then it followsTc=Tg, in the SSA, wherdy and T are
defined by Eqgs(2.6) and (3.10), respectively. We take this
approximation in order to estimate the Kondo temperature.
From the experimental value of, we haveT¢(0)=38 K.

Let us consider the finite-field cagd 0. In the previous
paper® we constructed a perturbation method to derive a
microscopic Landau free energy, one of whose independent
variables is the magnetization=3% a(f,g io)- In the pres-
ence of magnetizations, physical quantities, such as self-
energy and polarization functions, can be expressed as a

(3.20

the periodic Anderson model. Consider the number of elecfunction of minstead of the magnetic field. The equation

trons per unit cell:

that defines quasiparticles becomes
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~ ~ [V, (k)|? $m>€*. Taking notice of Eq.(3.12, we have p¥ (&;X)
$mZ— 62 5(M) — ; z—E,(K) =0, (3.2 =e*p¥(€%0) and LO(ig,;x)=L(ie,e*;0). Therefore
_ Egs. (3.23 and (3.25 give AE(m)xe * and AEA(m)
with 8% ,(m) a magnetic part of the self-energy. In Eq. <e™*, respectively.
(3.2, m dependence of the mass enhancement factor has
been ignored’ The solutions for Eq(3.21) are denoted by IV. MAGNETIC EXCHANGE INTERACTION
¢,-(k,m). All arguments for the finite-field case can be de-
veloped in parallel with those for the zero-field case with In this section, we study magnetic exchange interactions
replacing &,(k) by &,,(k,m). For example,&m/ZfW(k,m) Work_ln_g betwe_en quasiparticles. Consider the magnetic sus-
satisfies a similar property as E@.12. Therefore it follows ceptibility to this end. In the presence of magnetizations, spin

: and charge channels of the susceptibility are coupled with

by comparing Eqs(3.3) and (3.21) that each other in general. In the symmetrical case, however, they
£,0(k,my=¢&,(k)— cAE(m), (3.2  are separated and the magnetic susceptibility can be ex-
- 5 pressed as
where cAE(m)=— 6% ,(m)/¢,,. With the use of Eq. _
(3.22), the Luttinger’s theorem gives (o .q.m) = 27g(iw,q,m) .1
. xsttenq, 1-Umg(iw,q,m)’ '
m= ; o f de pile+oAE(M)], (323 with we=(1/2)3,, 00 7, , Wherem,, is the irreducible

polarization function. Similarly, the magnetic susceptibility
where the polarization of conduction electrons has been igef the MAM is given by
nored. In Eq(3.23), we have replaced* with p} ; because _
the right-hand side of E3.23 is a difference between the ~ 2m(iw,m)
contributions from up and down spin directions, only the Xs(iw) ,m):ma
low-energy part is relevant. From E¢3.23, the magnetic suEb
part of the self-energyA E(m), can be determined as a func- with 7, the single-site polarization function for the spin

tion of m. . L~
. . . channel. The static and zero-temperature limitygfis ap-
A similar treatment for the MAM is also possible. Con- proximately given b

sider the coherent part of Ed2.5), which is defined by
ég%(ian)z(l/N)zkegﬁz,(isn,k) and written asG{? (ie,)
=[¢mie,—LO(ie,)] * at zero fields. In the presence of
magnetizations, it becomes

4.2

lim xs(+i0,m)= (1-m?)%2 4.3

T—0 kBTK

Becausey is also of order KTy, Eq.(4.1) can be rewrit-
= (0) 1 ten in the form

Gir(iey,m)== .
e ) et GAEAMI—L(ic,) o)
. X |,
(3.24 Xsliwp,g,m)=——7—= . (4.4
Note that AE,(m) is different from AE(m) because the 1- - 1(iw,q,m)xs(iw ,m)
MAM is determined in the absence of magnetizations by Eq. 4

(2.4) and then magnetic one-body potentials are added Qhere |

N iw;,q,m) is the intersite exchange interaction,
both the periodic Anderson model and MAM separafeliy. io,qm) g

which is given by

other wordsAE,(m) is a single-site term even with respect
to m, whereas\ E(m) includes multisite magnetizations. Be- 1 o120 (i ~
' . . lw,q,m)=2U lw,q,m)— mg(iw ,m)},
cause the magnetization in the MAM is also given o s(tor,gm) (s, qm)=mg(io,m} 45
leading order inkgTx /U2 AEA(m) can be approximately '
evaluated from to leading order irkg T /U. Note that Eq(4.4) is consistent
with the physical picture of the Kondo lattice that local quan-
0 1\~ - tum spin fluctuations at each site are connected with one
- _ (©)
m_g ‘Tf_wds( M| énGiip(e+.m). (329 another by the intersite interaction. In order to calculate
o _ we consider a two-line diagram shown in Fig. 1 for the po-
In case of a constant hybridization energy, E&25 is a larization partm,, , which remains finite even in infinite
rigorous relation and is nothing bgt the Friedel sum rule. ltdimensions for specifig’s. In other words, the two-line dia-
should be noted that the evaluation AE and AE, from  gram is a leading term with respect tadlfor specificq’s,
Eqs.t(3.2|3) ?I:d (3.29 is one of the most essendtlat!hlmprove- with d the spatial dimensionality. In Fig. 2 is a three-
rfen S n_ © Previous papef, we assume &(m) point vertex function of the MAM and . denotes that of
=AEA(M)=(4kgTk /) tan(mm/2). o o ~A)
Before closing this section, it is helpful to mention the the periodic Anderson model df— + = limit. Note thatk ;-

volume dependence of the physical quantities that have aps a single-site term, whila ., contains multisite terms with
peared above. First, it follows from Eq.7) and(3.20 that  respect to bottd andm. It follows from Fig. 1 that
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i ] and
U (+i0.4+100,m) =5, *2EM 41
—E S(+I 1+| ) |m)_¢m(7—ml ( . Q
o/ FW A G’
o1 7\@’1: respectively. Therefore we have
) JAE, JAE -
Joliw;,q,m)=4 om -a—m{P(|w|,q,m)—P(|w|,m)},

(4.1)

FIG. 1. Diagram form,, in the site representation. A thick line
with an arrow stands for the Green’s function. Overcounted contriwith
butions should be subtractésee the tejt

i 2 f(fv’a’(k—i_qim))_f(gvo(kvm))

IS(iwI'q'm):_FnZ )\-(SA)(i8n|i8n+iw|1m) vv'ko gva( 1m)_§v’a'( +q!m)+|((z|12
XNe(ien,ientio,q,m) where Eq.(3.12 has been used and
1 ~2
— i ien+i = . b ~(c) /s Q) i L
XN % CrrolienomGry(ientionk g, m=— 5 3 B G, MR iy tiorm).
(4.13

+0,m) —Gyrolien,MGrolieg+io,m,

In the following part of this section, we study the static
(4.8 and uniform component of Ed4.11), Jo(+i0,0,m). It is

wherex(V=X" X andX=X;;—X ;, respectively. In abbreviated talo(m,x) with the argumenk explicitly writ-

Eq. (4.6), the second term is necessary not only to subtracten. Because excitations between different branches in Eq.

the single-site portion but also to avoid overcountings.  (4-12 can be neglected for low-energy phenomena, we ob-
The main contribution td is divided into two parts® tain
Is(iwlyq,m):JS(Q)"'\]Q(iwI,q,m)- (47) P(+i0,0,m)=2 p?[O'AE(m)]. (4_14)

The first term is an exchange interaction caused by the vir-

tual exchange of high-energy spin excitations, whichOn the other hand, Eq4.13 is expanded as
scarcely depends om. It is composed of three terms; the

conventional superexchange interaction, an extended super- - | JAEp 1o =N
exchange interaction and an extended Ruderman-Kittel- Plw,,m= om tolo ) —0 T
Kasuya-YosidaRKKY) interaction'® Because the property (4.15

of J; depends on the whole band structure, we treat it as a.

: ; th the use of Eq.(3.25, where w,=w+i0. It can be
phenomenological parameter. The second tdgnijs due to W' +
the virtual exchange of low-energy spin excitations within €asily shown from Egs(4.11, (4'14)’ and (4.19 that the
quasiparticle bands: volume dependence dfy(m,x) is the same as that dfy,

namely, Jo(m,x)=e *Jo(m,0) and the magnitude of

_ u? o, _ Jo(m,x) is of orderkg Ty . ThusJg(m,Xx) is scaled withT,
Joliw;,q,m)=— B > X (+io+iom) or the bandwidth of quasiparticles. This property is respon-
B ne sible for the single-parameter scalifiy.Once an explicit
XNg(+10,+i0,0,m) form of p¥ (&) is given,Jo(m,0) is straightforwardly calcu-
lated as a function ofm. As a phenomenological model for
XN ; Gi§(ien kMG (i, +iny K p¥ (), we employ the following model in the same way as

the previous paper:

+a,m) -G (ie,, MG (i, +iw ,m)t, 1 (¢, — _
P?(S)ZF[E[D(S:Cz,csHD(S:—Cz,Cs)]
(4.9 BIK
where energy dependence agddependence of the vertex
parts have been ignored. The vertex functions in(BE@) are

related to the magnetic parts of the corresponding self-energy _

functions: with 7D (y;a,b) =b/[(y—a)?+b?] ande =e/kgTk . In this
paper,c,=0.60 andc;=0.15 are assumed, which are differ-

U. o ~ JAEA(M) ent from previous ones. Because of the conditign(0)

g () _g oA p

2)\S (+10+10m)= ¢ om (4.9 =1/4kgTx, only c, is variable. Figure 2 represent§ (&)

+(1—cl)D(s_;0,c4)], (4.16
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- PFE®) <

HI[T]

FIG. 4. Magnetization and magnetostriction. Experimental data
FIG. 2. Phenomenological model fpi (¢) for three values of are shown by dots and circles, respectivid®efs. 2 and &
c;. Energies are in units dgT .

, tisite terms; they are defined by2Q/om?=1iy(+i0m),
for three values ofc,, and the corresponding results for 504 52A 0 /om2= — «(+10,0,m)/4, respectively. By inte-
Jo(m,0) are shown in Fig. 3. The exchange interactign grating them, we obtain
changes from being antiferromagnetic to being ferromag-
netic with increasingm, which is consistent with the previ-

ous result. The maximum value df becomes larger when Q(Mx)=kgT(X) (1~ 1-m?), 5.3
we raise the height of the peaksgdf . Furthermore, it can be and
checked by changing, with ¢; fixed that shifting of the
location of the peaks to the band-edge side also enhances 34(0) m o Jo(M",X)
ferromagnetic instability. AQ(M,X)=— 88 m2_f dm’f dm"QT"
0 0
(5.9

V. THERMODYNAMIC QUANTITIES

=0.17. The equilibrium values oh andx are determined by

_ ~ solving the simultaneous equationg{l/dm=H* and
Q(MX)=Qpaed X) TQ(MX)+AQMX). (5D 50/5x=0: they are shown in Fig. 4. Here, we have set the

Here, the first term is that for the paramagnetic state includ\-/"ilues_Of three parameters ag0) =0.XgT(0), x=2.4,
) oo ) ; . andmg=2.0wp in order to have a better fit with experiments.
ing a contribution from the lattice system. It is writterf as

The value ofx corresponds to 1.09 Mbat in the ordinary
2 unit. It should be mentioned that if the magnetization process
Qoo )= (0)+KgTy(0) — 5.2 is calculated with volume fixed constant against the magnetic
pard X) = pad 0) ke T(0)- 5 62 field, the metamagnetic crossover is considerably
suppressetl.
wherek is a dimensionless compressibility. The second term

and the last term if) are the magnetic single-site and mul- r
600
drdgm,0) e ¢, =012 b
-\ ----- ¢, =0.17 M
o
=(0.22 g
S 400
2 E )
B~
~
=S
$)
200
0
"""" 0 5 10 15
) L . HI[T]
0 0.2 0.4 0.6

FIG. 5. Cy/T as a function oH. Experimental data at constant
pressure foiT =0.25 K are shown by dotéRef. 10. Circles repre-

FIG. 3. Exchange interactiodig(m,0) (in units ofkgTx) as a  sent the values o€, /T at T=1.5 K evaluated from experimental
function of m. data(Ref. 19.
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TIK ] HI[T]
FIG. 6. Cy /T versusT for various values of the magnetic field. FIG. 7. Isothermal compressibility as a functiontbf

Let us next study the specific heat. In the presence of
magnetizations, it is given by E@3.19 with p* (¢) replaced 1 1
by pf[e+oAE(m)]. Figure 5 show<C, /T—H curves for
three values of temperatur€=0, 1.5, and 3 K. The double-
peak structure is qualitatively reproduced in the presenBecause thev-linear terms in Eqs(4.15 and(6.2) can be
model. Note that the experiméﬂ'was performed at constant neglected compared with the/q term in Eq.(6.1) for small
pressure. From the experimental data, the specific heat gt?! the total susceptibility is written in the form
constant volume has been estimatdt is also shown in

ko
= == — =i ce 6.2
XS(w+1m) XS(+IOvm) 2Iw+ ( )

Fig. 5 for T=1.5 K. In our calculation, no double peak ap- 1
pears aff =1.5 K, whereas it is observed above=1.0 K in Xs(@4,9,m)= Re 1/xs(w+ ,q,m)]—iC(m)- w/q’
the experiment. A probable reason for this discrepancy is the (6.3

easy estimation of the value dfx based on Eq(3.20. In

addition to that, a contribution from ferromagnetic spin fluc-with C(m) =JAE,/dm- JAE/dm-c(m). Since the system is
tuations or paramagnons, which is excluded in the SSA, maglose to ferromagnetic instability in the metamagnetic cross-
not be negligible. Figure 6 shows the temperature deperpver region; REL/ys(+i0,0,m)]<kgTy, the imaginary part
dence ofC,, /T for various values of the field, which is con- of Eq.(6.3) is expected to be enhanced around the metamag-

sistent with the experimertFig. 2 of Ref. 6. netic point for smallw.

Finally, the isothermal compressibility is given by On the other hand, spin fluctuations in the Kondo lattice
have been studied assuming théndependent RKKY inter-
action,

1 NI?(s%0 . P2 &m) } 55
kt(H Y, 2 gxdm |\ ox ' ' ®,,m
e L " PP S— L (6.4

1_|RKKY(q)}s(w+ ,m) ,

instead of Eq.(4.4) without any justification. In the low-
nergy region, however, E¢6.4) is expressed as

As shown in Fig. 7, it is strongly enhancedHy, . Matsuhira

et al!® have studied the field variation of the compressibility
by using thermodynamic relations and assuming the single®
parameter scaling. Our calculation shows a good agreement

: X 1
with their result. xs(w. ,q,m)=

RE o .qmi-miez &9

VI. DISCUSSION and behaves quite differently from E@.3) around the zone
) ) ) ) center. Thus the argument based on B34 is apparently
It is worthwhile to comment on spin fluctuations around jhadequate. Indeed, recent results of neutron-scattering

the zone centerq=0. The imaginary part of Eq4.12 is  measurement& cannot be understood from E¢§.4).
expanded as
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