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Effect of surface roughness on the universal thermal conductance

D. H. Santamore and M. C. Cross
Condensed Matter Physics 114-36, California Institute of Technology, Pasadena, California 91125

~Received 22 November 2000; published 24 April 2001!

We explain the reduction of the thermal conductance below the predicted universal value observed by
Schwabet al. @Nature~London! 404, 974 ~2000!# in terms of the scattering of thermal phonons off surface
roughness using a scalar model for the elastic waves. Our analysis shows that the thermal conductance depends
on two roughness parameters: the roughness amplituded and the correlation lengtha. At sufficiently low
temperatures the ratio of the conductance to the universal value decreases quadratically with temperature at a
rate proportional tod2a. Values ofd equal to 22% anda equal to about 75% of the width of the conduction
pathway give a good fit to the data.

DOI: 10.1103/PhysRevB.63.184306 PACS number~s!: 63.22.1m, 63.50.1x, 68.65.2k
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I. INTRODUCTION

Ballistic transport in mesoscopic system has been an
tive area of study. Following Landauer’s approach to el
tronic conductance, several groups have derived express
for the thermal conductance due to ballistic phonon trans
in an ideal elastic beam.1–3 The formula they derived show
that the only material and geometry dependence of the t
mal conductance arises through the long wavelength cu
frequencies of the elastic waves in the beam. As the temp
ture T→0, the conductance is dominated by the lowest f
modes with zero cutoff frequency. The conductance th
takes on a universal value Ku with the value
N0(p2kB

2T)/(3h) with N0 the number of modes with zer
cutoff frequency at long wavelengths, which is four for a fr
standing beam. Based on these theoretical predictions, g
efforts have been made to observe the universal thermal
ductance. Recently, Schwabet al.4 successfully observed th
universal thermal conductance in a suspended silicon nit
bridge. Their experiment shows a result consistent with
universal conductance at temperatures below about 0.0
Above about 1 K the conductance rises above this value,
the modes with nonzero cutoff frequencies become exc
and contribute to the heat transport. However in the ra
0.1– 0.4 K the thermal conductance unexpectedlydecreases
below the universal value.

Motivated by the results of Schwabet al. we theoretically
investigate a likely cause of the low-temperature therm
conductance decrease. We suggest that the conductanc
crease is caused by scattering due to rough surfaces. R
advanced crystal growth technology guarantees very few
purities in the material during a substrate growth, thus eli
nating the possibility of impurity scattering. On the oth
hand, chemical etching can produce surface roughness
scale of tens of nanometers, large enough to cause signifi
scattering.

In this paper we use a simple scalar model for the ela
waves. We also use a two-dimensional approximation, wh
is accurate at low enough temperatures that modes
structure across the depth of the beam—the smallest dim
sion in the experimental geometry—are not excited. We a
assume that the important roughness is on the sides o
beam, rather than the top and bottom surfaces, since the
0163-1829/2001/63~18!/184306~6!/$20.00 63 1843
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zontal surfaces are MBE grown and have roughness
scale of a few atomic layers, while the side faces are che
cally etched. Kambiliet al.5 have used a similar model in
numerical investigation of the effect of surface roughness
the mode propagation.

In the following section, the details of the two
dimensional~2D! scalar model are introduced, and the sc
tered field calculation using a Green function approach
presented. In Sec. III, the scattering probabilities and tra
mission coefficients are calculated and the latter is incor
rated into the modified Landauer formula for thermal co
ductance. In Sec. IV, the thermal conductance is evalua
numerically and compared to the experiments of Schw
et al.

II. MODE SCATTERING

A. The model

The expression for the thermal conductanceK of a sus-
pended mesoscopic beam connecting two thermal reserv
is1–3

K5
\2

kBT2 (
m

1

2pEvm

`

Tm~v!
v2eb\v

~eb\v21!2
dv. ~1!

Here the integration is over the frequencyv of the modesm
propagating in the beam andvm is the cutoff frequency of
the mth mode. Alsob51/(kBT), kB is the Boltzmann con-
stant,T is the temperature, and\ is Planck’s constant. The
effect of scattering is introduced through the transmiss
coefficientTm(v): for the ideal case with no scatteringTm
51. Thus, the change of the thermal conductivity due to
rough surface is obtained by finding the transmission coe
cient.

As discussed in the introduction, we use a scalar mo
for the elastic waves, and model a thin geometry at l
temperatures so that a two-dimensional calculation is
equate. Thus we consider a~2D! wave-guide-like structure
extended in thex direction and bounded aty50,W in the
absence of roughness. The waves satisfy the scalar w
equation, and we assume Neumann boundary condition
the edges of the wave guide, corresponding to a stress
boundary condition for the elastic waves. Note that Dirich
©2001 The American Physical Society06-1
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D. H. SANTAMORE AND M. C. CROSS PHYSICAL REVIEW B63 184306
boundaries do not support the modes with zero cutoff
quency that are a crucial feature of the elastic problem.
calculate the scattering process by considering an ela
wave propagating in the wave guide in the1x direction with
wave vectork0 and entering a rough surface region of leng
L(0,x,L) where the rough boundaries are aty5W
1 f 1(x) andy5 f 2(x) so that the roughness is characteriz
by the functionsf 6(x) ~see Fig. 1!. We assume that the to
and the bottom roughness functions are uncorrelated,
that f 6(x) is small and is differentiable. The incident wav
C in interacts with the roughness, is scattered into ot
modesCsc, and leaves the rough region. The total fieldC is
the sum of the incident field and the scattered field

C5C in1Csc. ~2!

Our task is to find an expression forCsc and hence calculate
the transmission coefficients. We do this using a Green fu
tion method.

B. Green function method

We start with the Helmholtz equation for a scalar wave
frequencyv

¹2C~x,y!1K2C~x,y!50, ~3!

where C is the total field andK is v/c with c the wave
speed. Define the Green function as a solution to the p
sources

¹2G~x,y;x8,y8!1K2G~x,y;x8,y8!52d~x2x8!d~y2y8!

~4!

with (x8,y8) the source coordinates and (x,y) the observa-
tion coordinates. It is convenient to defineG(x,y;x8y8) such
that it satisfies Neumann boundary conditions at
smoothed boundaries, y50,W

]G/]nuy50,W50, ~5!

where n̂ is the outward-pointing normal to the surface. W
then project the physical boundary conditions at the rou
surfaces onto the smoothed boundaries to calculate the
tering.

Multiplying Eq. ~3! by G(x,y;x8,y8) and Eq. ~4! by
C(x,y), subtracting and integrating over a volume bound
by the position of the smoothed surfaces yields the resu
Green’s theorem

FIG. 1. 2D model used for calclation of the scattering of elas
waves by rough surfaces.
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C~x,y!5E
smooth

dx8
]C~x8,y8!

]n8
G~x8,y8;x,y!

6E
x8→6`

dy8F ]C~x8,y8!

]x8
G~x8,y8;x,y!

2C~x8,y8!
]G~x8,y8;x,y!

]x8
G , ~6!

where the first integral is the integration along the smooth
edges and the second is the integration over the distant
taken atx8→6`, and we have used the boundary conditi
Eq. ~5! for G to eliminate a second term in the first integra

The Green functionG(x,y;x8,y8) satisfies Eq.~4!. Using
the completeness relation, the right hand side can be wri

2
1

2pE2`

`

eik(x2x8)dk(
n

fn~y!fn~y8!, ~7!

where fn is the normalized transverse eigenfunction f
smooth boundaries

fn5Nn cosxny ~8!

with xn5np/W,n50,1,2, . . . , and Nn the normalization
factor Nn5A2/W for nÞ0 and Nn5A1/W for n50. The
Green function is then given by Fourier transforming

G~x,y;x8,y8!5
1

2pE2`

`

dk(
n

eik(x2x8)fn~y!fn~y8!

k21~np/W!22K2
.

~9!

The k integral in Eq.~9! is now evaluated by contour inte
gration. The poles corresponding to propagating wavesk
5AK22(np/W)2 for K.np/W must be given infinitesima
imaginary parts6 i« to yield outgoing waves. We then hav

G~x,y;x8,y8!5(
n

ieiknux2x8ufn~y!fn~y8!

2kn
, ~10!

where

kn5H AK22n2p2/W2 np/W,K,

iAn2p2/W22K2 np/W.K.
~11!

Using the explicit expression for the Green function the s
ond term in Eq.~6! can be shown to be just the incomin
waveC in(x,y), so that

Csc~x,y!5E
smooth

dx8
]C~x8,y8!

]n8
G~x8,y8;x,y!. ~12!

C. Boundary perturbation

In the absence of roughness the fieldC satisfies Neumann
boundary conditions at the smooth boundary, and so the s
tered field would be identically zero as expected. Cor
spondingly, for a rough surface with smallf 6(x) we can
calculate]C/]n at the smoothedsurface appearing in the

c

6-2
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EFFECT OF SURFACE ROUGHNESS ON THE . . . PHYSICAL REVIEW B 63 184306
integral by expanding about the stress-free rough surfa6

We will present the calculation for the rough lower surfac
and simply double the scattering probabilities assuming
correlated roughness on the two surfaces.

Firstly, express the unit normal vector as

n̂52 ŷ1 f 28 ~x!x̂. ~13!

Then impose the Neumann boundary condition aty5 f 2(x)

S 2
]C~x,y!

]y
1 f 28 ~x!

]C~x,y!

]x D U
y5 f 2(x)

50. ~14!

Now expand this equation abouty50 in terms of f 2 and
retain only terms that are first order inf and f 8. This gives
for the normal derivative at the smooth surface up to fi
order in f , f 8

]nC~x,y!uy505@ f 28 ]xC~x,y!2 f 2]y
2C~x,y!#uy50 .

~15!

Thus the scattered field to first order in the roughness am
tude is

Csc~x,y!.E dx8G~x8,y8;x,y!@2 f 2~x8!]y8
2 C in~x8,y8!

1 f 28 ~x8!]x8C in~x8,y8!#uy850 , ~16!

where we can replace the field appearing in the integra
the incident fieldC in at this order.

It is now straightforward to insert the explicit expressi
for the Green function Eq.~10! to calculate the scatterin
from a normalized incident wave entering in them th mode
C in(x,y)5Cm(x,y)5Nmcos(xmy)eikmx:

Csc~x,y!.E dx8(
n

iNn
2Nm

2kn
cos~xny!eiknux2x8u

3@xm
2 f 2~x8!1 ikmf 28 ~x8!#eikmx8. ~17!

D. Scattered field

Outside the scattering region, we may take an asympt
form for the scattered field Eq.~17!

Csc~x→1`,y!

5(
n

eiknx cos~xny!E
2`

`

dx8
iNn

2Nm

2kn

3@xm
2 f 2~x8!1 ikmf 28 ~x8!#ei (km2kn)x8,

Csc~x→2`,y!

5(
n

e2 iknx cos~xny!E
2`

`

dx8i
iNn

2Nm

2kn

3@xm
2 f 2~x8!1 ikmf 28 ~x8!#ei (km1kn)x8 ~18!
18430
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giving the forward scattered field and back scattered fie
respectively. The terms inf 28 can be simplified by integra
tion by parts

E
2`

`

dx8i f 28 ~x8!kmei (km7kn)x85km~km7kn! f̃ 2~km7kn!,

~19!

where f̃ 2 is the Fourier transform off 2 , and we have used
the fact that the roughness is confined to 0,x,L so that
f 2(6`)50.

Now usingK5v/c5Axm
2 1km

2 , wherec is the velocity of
the elastic wave, we get

Csc~x→6`,y!5(
n

iNnNm

2kn
f̃ 2~km7kn!

3~K27knkm!Cn~x,y!, ~20!

for the forward and backward scattered waves, expresse
a sum over normalized wavesCn .

III. THERMAL CONDUCTANCE

Let t6n,m be the scattering amplitude from modem to
6n, where the plus sign is for forward scattering and t
minus sign is for back scattering. Then

t6n,m5
iNnNm

2kn
~K27knkm! f̃ 2~km7kn!. ~21!

To calculate the transmission coefficient appearing in
expression for the thermal conductance we need the en
flux scattering probabilitiess6n,m given by multiplying
utn,mu2 by the ratio of the group velocities

s6n,m5
kn

km
^ut6n,mu2&, ~22!

where we can also now average over the ensemble of sur
roughness represented by the angular brackets. This fin
gives

s6nm5
Nn

2Nm
2

4knkm
@K27knkm#2d2g̃~km7kn!L ~23!

using

^u f̃ 2~k!u2&5d2g̃~k!L, ~24!

whered2g̃(k) is the Fourier transform of the surface roug
ness correlation function withd the roughness amplitude
For the characterization of the rough surface, we assum
Gaussian correlation functiong(x)5e2x2/a2

wherea is the
correlation length of the roughness, so that

g̃~k!5Apa exp@2a2k2/4#. ~25!

To calculate the thermal conductance we must recogn
that not all scattering processes decrease the heat transp
wave entering in modem has four possible outcomes: afte
6-3
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the scattering events it may stay in modem propagating for-
ward; it may be converted to moden also propagating for-
ward; it may stay in modem but propagating backward; an
finally it may be converted to moden and propagating back
ward. The former two cases do not change the heat trans
since each mode at frequencyv contributes the same amou
to the conductance. The two back scattering events do re
the heat transport, however. Thus the backward scatte
rate s2n,m contributes to the reduction of the thermal co
ductance whiles1n,m is the coefficient for forward scatter
ing, and leaves the conductance unchanged. We there
define the conductance attenuation coefficient per unit len
of the rough surface waveguide asgm[(2/L)(ns2n,m
~where the factor of 2 is to include the scattering off the t
surface!

gm5(
n

~K21knkm!2

knkm

ApNn
2Nm

2 d2a

2
e2a2(kn1km)2/4.

~26!

The conductance attenuation coefficientgm gives the ex-
ponential decay rate of the wave in modem, so that over a
lengthL the transmission is

Tm5e2gmL. ~27!

To calculate the thermal conductance at a given tempera
we insert Eqs.~26!,~27! into Eq. ~1!:

K5
\2

kBT2 (
m

1

2pEvm

`

dv
v2eb\v

~eb\v21!2

3expF2(
n

~K21knkm!2

knkm

Nn
2Nm

2 Apd2aL

2

3e2a2(kn1km)2/4G . ~28!

The contributions to the conductance attenuation coe
cients per unit lengthgm for the first few modes are shown a
a function of the mode frequency in Fig. 2. A roughne
correlation length ofa/W50.75 was used in the figure. Th
backscattering amplitude from the lowest mode~mode 0) to
its reverse is

g00~v,a,d!52p1/2
ad2

W2

v2

c2
e2a2v2/c2

. ~29!

This expression is finite for all frequencies. It has a ma
mum at a frequencyv5c/a depending on the roughnes
correlation length, with a peak value of order (d2/aW2). The
higher modes have a diverging back scattering proportio
to (v2vm)21 at the cutoff frequenciesvm . In addition each
gm has a contribution diverging as (v2vn)21/2 at the onset
of the nth mode. These divergence are due to the flat sp
trum at the mode cutoff frequencies, and will also be fou
in a full elastic wave calculation.

At low enough temperatures only the lowest mode w
k05v/c contributes to the thermal conductance, and o
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the backscattering of this mode given by Eq.~29! reduces the
conductance below the universal value. This reduction
plotted as a function of the temperature scaled by\c/kBa in
Fig. 3. The temperature of maximum reduction depends
the roughness correlation lengtha, whereas both the rough
ness amplitude and correlation length change the magni
of the reduction. For small roughness, we can expand
exponential term in Eq.~28! and at low temperatures onl
smallv contributes to the integral so that the Gaussian fac
may be replaced by unity, exp@2a2v2/c2#.1. This leads to

K

T
.

p2kB
2

3h F12
8p9/2

5

d2aL

W4 S kBT

\D D 2G , ~30!

where D5pc/W is the spacing between the mode cuto
frequencies. Thus at low temperatures, the conductance

FIG. 2. Scaled attenuation coefficient (W4/d2aL)us2n,mu2 as a
function of reduced frequency,v/D where D5pc/W with c the
velocity of the waves: solid—from modem50 to mode2n, n
50•••3 and dashed—mode m to mode 2m, m
51•••3. A value of the roughness correlation lengtha50.75W
was used.

FIG. 3. Reduction in the thermal conductance divided by te
perature due to back scattering of the lowest mode, expressed a
ratio to the universal conductance divided by temperature and
scaled byaW2/d2L, as a function of temperature scaled by\c/kBa.
6-4
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vided by temperature should show a quadratic tempera
decrease with an amplitude depending on the combinatio
roughness parametersd2a/W3.

IV. COMPARISON WITH EXPERIMENT

To compare with the experiments of Schwabet al.4 we
use the following geometry and material parameters.
take a wave guide structure of rectangular cross section
width W5160 nm and lengthL51 mm. In the experimenta
geometry the width varied along the length to provi
smooth junctions with the reservoirs. This was done to eli
nate scattering off abrupt changes in the geometry. We
the width at the narrowest point as our estimate. For
length we use the length of the central portion over which
width is fairly constant. Since the length only occurs in t
combinationd2L, changing the value ofL used will only
change the estimated value ofd. We use a wave propagatio
speedc58250 m/s which is the average of the velocity
longitudinal and transverse elastic waves in silicon nitrid

The roughness parameters are not knowna priori. As a
first attempt we might try to estimate the combinati
d2aL/W4 from the quadratic decrease in the thermal cond
tance at low temperatures, Eq.~30!. This would give the
valuead2L/W4;0.05. However, from Fig. 3 we see that th
quadratic low-temperature fit is only good up to abou
quarter of the temperature of the maximum back scatte
of the first mode. If we estimate this temperature from
minimum in the measured conductance, we find that the d
does not extend to low enough temperatures to provid
reliable fit, and so this value can only be used as an orde
magnitude. In fact our ‘‘best fit’’~see below! over tempera-
tures up to 1 K corresponds to a valuead2L/W4 about a
factor of 4 larger

It is interesting to use the estimated value of the rou
ness parameters to estimate the strength of the scatterin
the higher modes. For example, for the first mode, with c
off frequencyD, and at a wave vectorp/W corresponding to
a frequencyA2D we find for the back scattering into th
same mode

g1~k15p/W!L;16 exp~2p2a2/W2!. ~31!

The scattering increases for smaller wave vectors, diverg
at onset as shown in Fig. 2. Remember that the transmis
amplitude ise2g1L. This means that the scattering of th
higher modes isstrong over the 1m length, unless suffi-
ciently reduced by the exponential factor arising from t
reduced roughness at short length scales. To fit the hig
temperature data using Eq.~28! we will find that we need a
value ofa comparable toW. Although this strongly reduce
the value ofg1(k15p/W), there remain frequency range
where the scattering of this mode and other modes is str
An interesting consequence is that a significant fraction
the thermally excited phonons at temperatures of order
are predicted to belocalized in the experiments of Schwa
et al., with a localization length less than the length of t
bridge. Unfortunately, in this regime the estimate of the c
tribution to the conductance from these modes predicted
our lowest order scattering calculation, will not be accura
18430
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From Fig. 3 we can suggest two mechanisms that mi
account for the observed minimum in the dependence ofK/T
on temperature. The first mechanism ascribes the minim
in K/T to the behavior of the first mode alone, as plotted
Fig. 3. The upturn inK/T arises from the reduced scatterin
of the lowest mode as the wave vectors of the import
modes increase with temperature. The second mecha
supposes that the scattering of the lowest mode is respon
for the decreasingK/T at low temperatures, but that the su
sequent increase is from the thermal excitation of the hig
modes. For our ‘‘best fit’’ values ofa,d ~see below! the
results are summarized in Fig. 4. The picture is quite co
plicated, with both the reduced scattering of the lowest mo
and the thermal excitation of the higher modes contribut
to the rise inK/T with increasing temperature. Furthermor
due to the strong scattering of the higher modes near t
cutoff frequencies, these modes become important in
transport at a higher temperature than would be estima
simply from their cutoff frequencies. The higher modes e
cited near their threshold frequencies are localized and
not contribute significantly to the transport.

In Fig. 5 the thermal conductance calculated using
~28! is plotted together with the ideal~noscattering! conduc-
tance and the measurements of Schwabet al. The conduc-
tance is scaled such that the universal conductance app
as unity. The roughness parametersa/W50.75 andd/W
50.22 ~so thatad2L/W450.23) were used, and yield a rea
sonable fit to the data. Our 2D model shows the same tr
as the experimental data: a decrease in the thermal con
tance below the universal value at low temperatures wh
only the lowest modes are excited, then a gradually incre
ing conductance as other modes are excited and the sca
ing of the lowest mode is reduced. Comparison to the id

FIG. 4. Contributions to the thermal conductanceK divided by
the universal valueKu from the first few modes for the ideal n
scattering case, and for the rough case with scattering, as a fun
of the scaled temperaturekBT/\D: solid line—total thermal con-
ductance for the rough surface case; dotted line and short-do
line—conductance of mode 0~ideal and rough!; dashed line and
short-dashed line—conductance of mode 1~ideal and rough!; dash-
dotted line and short-dash-dotted line—conductance of mod
~ideal and rough!. Values of the roughness parameters werea/W
50.75 andd/W50.22.
6-5
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~nonscattering! curve shows that the scattering is importa
over the whole temperature range examined (T,1 K).
These values ofd535 nm anda5120 nm appear reason
able when one considers the physical process of construc
the mesoscopic bridge structure. For example, a typ
chemical etch of silicon nitride can easily produce a few te
of nm in roughness amplitude. Electron micrographs of
actual structure used in the experiment7 show roughness on
scales comparable to the ones we estimate.

There are small but systematic differences between th
and the data at very low temperatures, where the cond
tance is dominated by the lowest modes, and the the
should be most accurate. The discrepancy suggests tha
are overestimating the scattering at long wavelengths
roughness spectrumg̃(k);k2e2a2k2/4 with a reduced ampli-
tude at small wave numbers gives a better fit to the d
Such a form might be physically reasonable, since we m

FIG. 5. Thermal conductance relative to the universal valueKu

as a function of temperature for the ideal case~dashed line!, the
rough surface case~solid line!, and the data of Schwabet al.
~circles!. The roughness parameters used werea/W50.75, d/W
50.22.
M

s,

18430
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expect the roughness to be largest at a scale of order
minimum dimension of the structure, and reduced at lar
scales than this. However, since the scalar model does
account for the mode structure of the elastic beam accura
it is probably unwise to use the discrepancies in Fig. 5
make any firm deductions. Such conclusions must awa
more accurate treatment of the modes within elastic
theory.

V. CONCLUSION

We have investigated the cause of the thermal cond
tance decrease below the universal value at low temperat
by employing a Green function approach to calculate
reduced transmission of the elastic waves due to sur
roughness, and then using Landauer’s formula for the th
mal conductance. At low temperatures, the conductance
vided by the temperature is dominated by the lowest mo
The scattering of this mode reduces the conductance div
by the temperature below the universal value with a q
dratic dependence on temperature for low temperatures
an amplitude proportional to the combination of roughne
parametersad2. As the temperature increases, higher mod
begin to play a role, and the scattering of the lowest mode
reduced, so that the conductance increases. We find tha
effect of scattering is always significant, reducing the co
ductance below the ideal ballistic value over the whole te
perature range we investigateT,1 K. Considering the sim-
plicity of our model our results agree well with th
experiment of Schwabet al. In future work we will present
results for a full elastic theory treatment of the thin bridg
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