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Effect of surface roughness on the universal thermal conductance
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We explain the reduction of the thermal conductance below the predicted universal value observed by
Schwabet al. [Nature (London 404, 974 (2000] in terms of the scattering of thermal phonons off surface
roughness using a scalar model for the elastic waves. Our analysis shows that the thermal conductance depends
on two roughness parameters: the roughness amplifuded the correlation length. At sufficiently low
temperatures the ratio of the conductance to the universal value decreases quadratically with temperature at a
rate proportional ta5?a. Values of 8 equal to 22% anc equal to about 75% of the width of the conduction
pathway give a good fit to the data.

DOI: 10.1103/PhysRevB.63.184306 PACS nuniger63.22+m, 63.50:+x, 68.65—k

[. INTRODUCTION zontal surfaces are MBE grown and have roughness at a
scale of a few atomic layers, while the side faces are chemi-
Ballistic transport in mesoscopic system has been an asally etched. Kambilet al> have used a similar model in a
tive area of study. Following Landauer's approach to elecnhumerical investigation of the effect of surface roughness on
tronic conductance, several groups have derived expressiotize mode propagation.
for the thermal conductance due to ballistic phonon transport In the following section, the details of the two-
in an ideal elastic beafT> The formula they derived shows dimensional2D) scalar model are introduced, and the scat-
that the only material and geometry dependence of the thetered field calculation using a Green function approach is
mal conductance arises through the long wavelength cutoffresented. In Sec. Ill, the scattering probabilities and trans-
frequencies of the elastic waves in the beam. As the temperanission coefficients are calculated and the latter is incorpo-
ture T—0, the conductance is dominated by the lowest fewrated into the modified Landauer formula for thermal con-
modes with zero cutoff frequency. The conductance themsluctance. In Sec. IV, the thermal conductance is evaluated
takes on a universal value K with the value numerically and compared to the experiments of Schwab
0(7r2k T)/(3h) with No the number of modes with zero €tal.

cutoff frequency at long wavelengths, which is four for a free
standing beam. Based on these theoretical predictions, great Il. MODE SCATTERING
efforts have been made to observe the universal thermal con- A. The model
ductance. Recently, Schwab al* successfully observed the '
universal thermal conductance in a suspended silicon nitride The expression for the thermal conductamicef a sus-
bridge. Their experiment shows a result consistent with th@ended mesoscopic beam connecting two thermal reservoirs
universal conductance at temperatures below about 0.08 Hs'
Above aboti1 K the conductance rises above this value, as

the modes with nonzero cutoff frequencies become excited E w?efhe q 1
and contribute to the heat transport. However in the range kBT2 20 Tin )W w- @
0.1-0.4 K the thermal conductance unexpectetigreases

below the universal value. Here the integration is over the frequeneoyof the modesn

Motivated by the results of Schwatt al. we theoretically ~propagating in the beam anad, is the cutoff frequency of
investigate a likely cause of the low-temperature thermathe mth mode. Alsog=1/(kgT), kg is the Boltzmann con-
conductance decrease. We suggest that the conductance d&ant,T is the temperature, anl is Planck’s constant. The
crease is caused by scattering due to rough surfaces. Receftect of scattering is introduced through the transmission
advanced crystal growth technology guarantees very few imeoefficient7,(w): for the ideal case with no scatteririg,
purities in the material during a substrate growth, thus elimi-=1. Thus, the change of the thermal conductivity due to the
nating the possibility of impurity scattering. On the otherrough surface is obtained by finding the transmission coeffi-
hand, chemical etching can produce surface roughness oncéent.
scale of tens of nanometers, large enough to cause significant As discussed in the introduction, we use a scalar model
scattering. for the elastic waves, and model a thin geometry at low

In this paper we use a simple scalar model for the elastitemperatures so that a two-dimensional calculation is ad-
waves. We also use a two-dimensional approximation, whickequate. Thus we consider(aD) wave-guide-like structure
is accurate at low enough temperatures that modes witextended in thex direction and bounded at=0,W in the
structure across the depth of the beam—the smallest dimemabsence of roughness. The waves satisfy the scalar wave
sion in the experimental geometry—are not excited. We alsequation, and we assume Neumann boundary conditions at
assume that the important roughness is on the sides of thibe edges of the wave guide, corresponding to a stress free
beam, rather than the top and bottom surfaces, since the hobioundary condition for the elastic waves. Note that Dirichlet
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FIG. 1. 2D model used for calclation of the scattering of elastic ax’

waves by rough surfaces. . . . .
y roud where the first integral is the integration along the smoothed

edges and the second is the integration over the distant ends

aken atx’ — *, and we have used the boundary condition

g. (5) for G to eliminate a second term in the first integral.
The Green functiorlG(x,y;x’,y’) satisfies Eq(4). Using

h'[he completeness relation, the right hand side can be written

boundaries do not support the modes with zero cutoff fre
guency that are a crucial feature of the elastic problem. W
calculate the scattering process by considering an elast
wave propagating in the wave guide in the direction with
wave vectolk, and entering a rough surface region of lengt
L(0<x<L) where the rough boundaries are gt=W 1 (e

+f, (x) andy="f_(x) so that the roughness is characterized —— | eKXNGKD @ (y) by, (7

by the functionsf .. (x) (see Fig. 1. We assume that the top 2m ) = n

and the bottom roughness functions are uncorrelated, anghere . is the normalized transverse eigenfunction for
that f. (x) is small and is differentiable. The incident wave gmo0th boundaries

V¥, interacts with the roughness, is scattered into other

modes¥ ., and leaves the rough region. The total fidids ¢n=N,cosy,y 8
the sum of the incident field and the scattered field

with y,=n#/W,n=0,1,2 ..., andN,, the normalization
V=V, +V,. (2)  factor N,=y2W for n#0 andN,=y1/W for n=0. The

Green function is then given by Fourier transforming
Our task is to find an expression fét,. and hence calculate

the transmission coefficients. We do this using a Green func-

! Gxy:x’ y,):ij“’ e 0D (y) nly”)
tion method. DA 27) KR+ (nm/W)P—K2

9
) ) The k integral in Eq.(9) is now evaluated by contour inte-
We start with the Helmholtz equation for a scalar wave atgration. The poles corresponding to propagating waves at
frequencyw = JKZ=(nw/W)? for K>nx/W must be given infinitesimal
imaginary partstie to yield outgoing waves. We then have

B. Green function method

V2W(x,y)+K>¥(x,y)=0, ()
where ¥ is the total field andK is w/c with ¢ the wave Gy =S iel Xl (y) pn(y”) 10
speed. Define the Green function as a solution to the point Y XY n 2k, '
sources
where
2 ! ’ 2 ! Ny — v/ _\y!
VoG (x,y;x"y") +KG(x,y;x",y") S(x—x")8(y y(i) KZ—nZa2W2  na/W<K,
= 11
" liVn?2mIWP-K2  na/W>K. 1y

with (x’,y’) the source coordinates and,y) the observa- . - . .
tion coordinates. It is convenient to defiéx,y:x'y’) such Using the explicit expression for the Green function the sec-

that it satisfies Neumann boundary conditions at the®™d t€rm in Eq.(6) can be shown to be just the incoming
smoothed boundariey=0W waveWiy(x,y), so that

_ o (x',y’
7610l =ow=0, ® aixy)- | ax ) g yrixy). 12
A smooth an’
wheren is the outward-pointing normal to the surface. We

then project the physical boundary conditions at the rough
surfaces onto the smoothed boundaries to calculate the scat-
tering. In the absence of roughness the fididsatisfies Neumann
Multiplying Eq. (3) by G(x,y;x’,y’) and Eg.(4) by  boundary conditions at the smooth boundary, and so the scat-
W¥(x,y), subtracting and integrating over a volume boundedered field would be identically zero as expected. Corre-
by the position of the smoothed surfaces yields the result o§pondingly, for a rough surface with smdll (x) we can
Green'’s theorem calculateg¥/gn at the smoothedsurface appearing in the

C. Boundary perturbation
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integral by expanding about the stress-free rough suffacegiving the forward scattered field and back scattered fields,
We will present the calculation for the rough lower surface,respectively. The terms ifi’. can be simplified by integra-
and simply double the scattering probabilities assuming untion by parts

correlated roughness on the two surfaces.
Firstly, express the unit normal vector as

n=—y+f" (X)X (13

Then impose the Neumann boundary conditioly atf _ (x)

vy ., dV(Xy)
T Ty +f,(x)—ax )

=0. (14
y="f_(x)

Now expand this equation aboyt=0 in terms off_ and
retain only terms that are first order frand f'. This gives
for the normal derivative at the smooth surface up to first

order inf,f’

I W (X Y)y=0=[FLaW ()~ F W (x,)]ly=o-
(15

Thus the scattered field to first order in the roughness ampli-

tude is

Walxy)= [ dGOCy = WXy

+f’—(X,)&x’\Pin(X,vy,)]|y’:0! (16)

f dx/if " (X" ke Cm™ kX =k (ko F k)T (KT Kp),
(19

wheref_ is the Fourier transform of _ , and we have used
the fact that the roughness is confined te<L so that
f_(£)=0.

Now usingK=w/c= \/sz + kzm, wherec is the velocity of
the elastic wave, we get

iN,N
Welx—2,y)= 2 = (K kn)
n

X (K*FKkokm) Wn(x,y),  (20)
for the forward and backward scattered waves, expressed as
a sum over normalized wavels,, .
I1l. THERMAL CONDUCTANCE

Let t., n be the scattering amplitude from mode to
+n, where the plus sign is for forward scattering and the
minus sign is for back scattering. Then

iN,N ~
ttn,m:&(Kziknkm)ff(kmikn)- (21

where we can replace the field appearing in the integral by 2kn

the incident field¥;, at this order.

To calculate the transmission coefficient appearing in the

It is now straightforward to insert the explicit expression expression for the thermal conductance we need the energy

from a normalized incident wave entering in tireth mode

Win(%,Y) =¥ (X,Y) = NmCOS(xmy) €

2

iN“N
Wx,y)= | dX' > —i—

ikp|x—x"|
2 i codxny)e

X x2f_(X) +iknf (x)]ekm<.  (17)

D. Scattered field

Outside the scattering region, we may take an asymptotic

form for the scattered field Eq17)

T (X—+00,y)
_ o iN2N
=, ek cog xyy) f dX' ——
o e 2k,

XIXAE - (X)) Fikpf (%) Je! Kk

Wsd X— —0,y)

_ % iN2N
= ek cos(xny)J dx'i ——
n — 00 2kn

X XEf—(X") +ikpf L (x") etk (18)

|t.ml? by the ratio of the group velocities

k
Uin,m:ﬁ<|tin,m|2>v (22

where we can also now average over the ensemble of surface
roughness represented by the angular brackets. This finally
gives

2n12
n"'m

Utnm:m

[K?FKokm]26%9(kmF ko)L (29)
using

([f_(k)|*)=6%(KL, (24)

where §2g(k) is the Fourier transform of the surface rough-
ness correlation function witl$ the roughness amplitude.
For the characterization of the rough surface, we assume a

Gaussian correlation functiogm(x)=e‘x2""12 wherea is the
correlation length of the roughness, so that

(k)= /maexq —a2k%4]. (25)

To calculate the thermal conductance we must recognize
that not all scattering processes decrease the heat transport. A
wave entering in moden has four possible outcomes: after
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the scattering events it may stay in madegropagating for- 4 T
ward; it may be converted to modealso propagating for- [
ward; it may stay in moden but propagating backward; and

finally it may be converted to modeand propagating back-

ward. The former two cases do not change the heat transport
since each mode at frequeneycontributes the same amount : : :
to the conductance. The two back scattering events do reduce‘§ of : : : ]
the heat transport, however. Thus the backward scatterlngq, [ : : :
rate o_, , contributes to the reduction of the thermal con- S
ductance whileo ., ,, is the coefficient for forward scatter- 3 [
ing, and leaves the conductance unchanged. We therefor [
define the conductance attenuation coefficient per unit length

ion Coefficient

L

of the rough surface waveguide ag,=(2/L),0_pm ol : h . s
(where the factor of 2 is to include the scattering off the top 0 1 2 3 4
surface Reduced Frequency /A

(K24 knkm)? 7N2N2Z 5% 22k +k) 24 FIG. 2. Scaled attenuation coefficiend/{/ 5%aL)|o_, .| as a

szzn: KK 2 € e function of reduced frequencyy/A where A=c/W with ¢ the

(26) velocity of the waves: solid—from modm=0 to mode—n, n

=0.--3 and dashed—modem to mode —-m, m

The conductance attenuation coefficient gives the ex- =1---3. A value of the roughness correlation lengtk 0.7V
ponential decay rate of the wave in moghe so that over a  Wwas used.

lengthL the transmission is

the backscattering of this mode given by E2P) reduces the
T,=e Ymk, (27)  conductance below the universal value. This reduction is
. lotted as a function of the temperature scaledibikga in
To (_:alculate the thermz_il conductance at a given temperatur ig. 3. The temperature of maximum reduction depends on
we insert Eqs(26),(27) into Eq. (1): the roughness correlation lenggh whereas both the rough-
ness amplitude and correlation length change the magnitude
2 of the reduction. For small roughness, we can expand the
27 om (eﬁhw—l)Z exponential term in Eq(28) and at low temperatures only
smallw contributes to the integral so that the Gaussian factor
(K24 kokm)2 NaNZ V7 6%al may be replaced by unity, ekpa’w?/c?]=1. This leads to

n™m
xXexg —
-3 (k" M
kBT)

x g~ @kt km)2/4} (28) hA

ZG,Bﬁw

kBT2

8w 92 s2aL
5

K 72k3

T~ "3h (30)

where A= 7c/W is the spacing between the mode cutoff

The contributions to the conductance attenuation coeffilféquencies. Thus at low temperatures, the conductance di-

cients per unit length,, for the first few modes are shown as

a function of the mode frequency in Fig. 2. A roughness 10 X ' ' '
correlation length o&/W=0.75 was used in the figure. The ‘
backscattering amplitude from the lowest mqdede 0) to E 08} ! -
its reverse is c !
5 !
2 2 g 061 1 1
Yool 0,8, 8) = 2771’2?/\/—52 %efazw%z. (29) g ',’
= 04 3
This expression is finite for all frequencies. It has a maxi- g !
mum at a frequencyw=c/a depending on the roughness § o2k i
correlation length, with a peak value of orde(aW?). The /
higher modes have a diverging back scattering proportional

to (0 — oy, " at the cutoff frequencies,. In addition each 0-000 2 o4 oe w10

¥m has a contribution diverging ast- w,) ~*? at the onset ' ' ’ ) ' '

of the nth mode. These divergence are due to the flat spec-

trum at the mode cutoff frequencies, and will also be found FiG. 3. Reduction in the thermal conductance divided by tem-

in a full elastic wave calculation. perature due to back scattering of the lowest mode, expressed as the
At low enough temperatures only the lowest mode withratio to the universal conductance divided by temperature and then

ko= w/c contributes to the thermal conductance, and onlyscaled byaW?/ §°L, as a function of temperature scaled/y/kga.

Scaled Temperature T
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vided by temperature should show a quadratic temperature 207
decrease with an amplitude depending on the combination of
roughness parametefda/W?°. i
1.5

IV. COMPARISON WITH EXPERIMENT I

To compare with the experiments of Schweabal® we 1ol
use the following geometry and material parameters. Weg '
take a wave guide structure of rectangular cross section with
width W=160 nm and length =1 xm. In the experimental
geometry the width varied along the length to provide
smooth junctions with the reservoirs. This was done to elimi-
nate scattering off abrupt changes in the geometry. We use
the width at the narrowest point as our estimate. For the 005
length we use the length of the central portion over which the
width is fairly constant. Since the length only occurs in the
combination §°L, changing the value of used will only FIG. 4. Contributions to the thermal conductarncelivided by
change the estimated value &fWe use a wave propagation the universal valu&, from the first few modes for the ideal no
speedc=8250 m/s which is the average of the velocity of scattering case, and for the rough case with scattering, as a function
longitudinal and transverse elastic waves in silicon nitride. of the scaled temperatutgT/%A: solid line—total thermal con-
The roughness parameters are not knawpriori. As a  ductance for the rough surface case; dotted line and short-dotted
first attempt we might try to estimate the combinationline—conductance of mode @deal and rough dashed line and
5%aL/W* from the quadratic decrease in the thermal conducshort-dashed line—conductance of modgdeal and rough dash-
tance at low temperatures, E(B0). This would give the dotted line and short-dash-dotted line—conductance of mode 2
valueas®L/W*~0.05. However, from Fig. 3 we see that the (ideal and rough Values of the roughness parameters wefe/
quadratic low-temperature fit is only good up to about a=0-75 ands/W=0.22.

quarter of the temperature of the maximum back scattering .- Fig. 3 we can suggest two mechanisms that might
of the first mode. If we estimate this temperature from the i

. in th d duct find that the d taccountforthe observed minimum in the dependend¢/of
minimum in thé measured conductance, we find that the da temperature. The first mechanism ascribes the minimum

dolgsblnoft. ext((ejnd tohllow Ienough telm[t))eraturgs to prov&deq@ K/T to the behavior of the first mode alone, as plotted in

:ﬁalta .? (;t’ aln fsott IS va uet ??n on{) Ie use ats an order ig. 3. The upturn irk/T arises from the reduced scattering
gnitude. In fact our “best fit(see eov)zlovez EMPETa- 4t the lowest mode as the wave vectors of the important

tures up 6 1 K corresponds to a valuad™L/W* about a modes increase with temperature. The second mechanism

factor O.f 4 Iarg_er . supposes that the scattering of the lowest mode is responsible
It is interesting to use the estimated value of the rough-

ters t timate the st th of th tterin foi the decreasing/T at low temperatures, but that the sub-
Ness parameters to estimate the strengih of Ine scattering g guent increase is from the thermal excitation of the higher
the higher modes. For example, for the first mode, with cut-

off frequencyA, and at a wave vectar/W corresponding to modes. For our “best fit" values of, & (see below the

i T results are summarized in Fig. 4. The picture is quite com-
2afrrneemrjne§§g\/§A we find for the back scattering into the ,jiaied. with both the reduced scattering of the lowest mode

and the thermal excitation of the higher modes contributing
_ - 2227\ f2 to the rise inK/T with increasing temperature. Furthermore,
vilka=m/W)L~16 exit = ma’ /W @D due to the strong scattering of the higher modes near their
The scattering increases for smaller wave vectors, divergingutoff frequencies, these modes become important in the
at onset as shown in Fig. 2. Remember that the transmissiaransport at a higher temperature than would be estimated
amplitude ise” "t This means that the scattering of the simply from their cutoff frequencies. The higher modes ex-
higher modes isstrong over the Iu length, unless suffi- cited near their threshold frequencies are localized and do
ciently reduced by the exponential factor arising from thenot contribute significantly to the transport.
reduced roughness at short length scales. To fit the higher In Fig. 5 the thermal conductance calculated using Eq.
temperature data using E(®8) we will find that we need a (28) is plotted together with the ide@hoscatteringconduc-
value ofa comparable td/N. Although this strongly reduces tance and the measurements of Schwahl. The conduc-
the value ofy,(k,=m/W), there remain frequency ranges tance is scaled such that the universal conductance appears
where the scattering of this mode and other modes is strongs unity. The roughness paramete®®V=0.75 and §/W
An interesting consequence is that a significant fraction of=0.22 (so thatas?L/W*=0.23) were used, and yield a rea-
the thermally excited phonons at temperatures of order 1 Isonable fit to the data. Our 2D model shows the same trend
are predicted to béocalizedin the experiments of Schwab as the experimental data: a decrease in the thermal conduc-
et al, with a localization length less than the length of thetance below the universal value at low temperatures where
bridge. Unfortunately, in this regime the estimate of the con-only the lowest modes are excited, then a gradually increas-
tribution to the conductance from these modes predicted bing conductance as other modes are excited and the scatter-
our lowest order scattering calculation, will not be accurateing of the lowest mode is reduced. Comparison to the ideal

05F

Scaled Temperature
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30 . T . T . T y T y expect the roughness to be largest at a scale of order the
-] minimum dimension of the structure, and reduced at larger
25 -7 A scales than this. However, since the scalar model does not

account for the mode structure of the elastic beam accurately,
it is probably unwise to use the discrepancies in Fig. 5 to
make any firm deductions. Such conclusions must await a
more accurate treatment of the modes within elasticity
theory.

V. CONCLUSION

We have investigated the cause of the thermal conduc-
. tance decrease below the universal value at low temperatures
0.0 0.2 0.4 0.6 0.8 10 by employing a Green function approach to calculate the
Temperature T (K) reduced transmission of the elastic waves due to surface
roughness, and then using Landauer’s formula for the ther-
FIG. 5. Thermal conductance relative to the universal vilye mal conductance. At low temperatures, the conductance di-
as a function of temperature for the ideal cadashed ling the  vided by the temperature is dominated by the lowest mode.
rough surface casesolid line), and the data of Schwabtal.  The scattering of this mode reduces the conductance divided
(circles. The roughness parameters used wet&/=0.75, /W py the temperature below the universal value with a qua-
=0.22. dratic dependence on temperature for low temperatures with
an amplitude proportional to the combination of roughness
(nonscatteringcurve shows that the scattering is importantparameters 2. As the temperature increases, higher modes
over the whole temperature range examin€b<( K).  begin to play a role, and the scattering of the lowest modes is
These values o6=35 nm anda=120 nm appear reason- reduced, so that the conductance increases. We find that the
able when one considers the physical process of constructingffect of scattering is always significant, reducing the con-
the mesoscopic bridge structure. For example, a typicaductance below the ideal ballistic value over the whole tem-
chemical etch of silicon nitride can easily produce a few tengerature range we investigafe<1 K. Considering the sim-
of nm in roughness amplitude. Electron micrographs of thelicity of our model our results agree well with the
actual structure used in the experinfestiow roughness on experiment of Schwabt al. In future work we will present

scales comparable to the ones we estimate. results for a full elastic theory treatment of the thin bridge.
There are small but systematic differences between the fit

and the data at very low temperatures, where the conduc-
tance is dominated by the lowest modes, and the theory
should be most accurate. The discrepancy suggests that we The authors are grateful to Keith Schwab for providing

are overestimating the scattering at long wavelengths. Ahe data and an electron micrograph of the experimental
roughness spectruﬁj(k)~k2e*e‘2"2’4 with a reduced ampli- structure, and Miles Blencowe for carefully reading the

tude at small wave numbers gives a better fit to the datamanuscript and providing useful suggestions. This work was
Such a form might be physically reasonable, since we mighsupported by NSF Grant No. DMR-9873573.
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