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Low-frequency response of a collectively pinned vortex manifold
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A low-frequency dynamic response of a vortex manifold in a type-Il superconductor can be associated with
thermally activated tunneling of large portions of the manifold between pairs of metastable states. We suggest
that statistical properties of these states can be verified by using the same approach for the analysis of thermal
fluctuations the behavior of which is well known. The exponent describing the frequency dependence of a
linear response is found for the generic case of a vortex manifold with nondispersive elastic moduli and also
for the case of thin superconducting film in which the compressibility modulus is always nonlocal.
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I. INTRODUCTION results of Ref. 3 and Ref. 4 can be explained, in particular, to
the difference in assumptions on statistics of metastable
In various situations the theory of weak collective pinning states.

(for a review see Ref.)lireats a vortex medium in a type-II In the present work we revisit this problem following the
superconductor like an elastic manifold interacting with amore reliable(as is demonstrated belpvapproach of Ko-
random pinning potential. In particular, a vortex contributionshelev and Vinokuf.We start by deriving the value of the
to a low-frequency response to an applied currémiped-  exponenty for the generic case of a vortex manifold with a
ance is ascribed to the classicghermally activategtunnel- single elastic modulugbut with arbitrary dimensionalily
ing of large portions of the vortex manifold between differ- Any more complex system with differeribut loca) elastic
ent minima of the uncorrelated random potertidlin the moduli will be characterized by the same valueyofn Ref.
framework of this approach the pairs of states that allow fory .\ ,o1e ofy in nondispersive system has been found only
thermally activated tunneling between them are treated 38 the particular case of a single vortex pinning.

current-biased two-level systems. Earlier analogous ideas We then suggest a new independent way to check the

were applied for the description of the dynamic response OT/alidit of the numerous assumptions involved in calculation
spin glasses and of randomly pinned dislocations and y P

interfaced of the two-level systems contribution to a linear dynamic

The frequency dependence of the two-level systems cof€SPONSe by using the same set of assumptions for calcula-
tribution to specific impedanca, ()= py () +iwl (w) of tion of another quantitythe amplitude of thermal fluctua-

a type-Il superconductor penetrated by external magnetiion, which on the other hand can be calculated exactly,
field has been found by different groups of autfotdo be ~ because in the framework of a random manifold description
of the form it has to be the same as in absence of disofdeturns out
that application of the assumptions used in the previous cal-
culation indeed produces an answer which is in agreement
with the well-known result for the pure case.
The possibility of the additional check turns out to be very
pu()=|w|[In(Ur|w])]Y 1, (1b)  useful when we address the case of a thin superconducting
film in which the compressibility modulugs,; of vortex
but the conclusions of these three groups on the value of theaanifold is always nonlocal. It allows to draw some conclu-
exponenty are not compatible with each other. sions about size and shape distribution of two-level systems
Comparison shows that the discrepancy appears becausdich otherwise would be unavailable. Inclusion of these
the calculation of Fisher, Fisher, and Heise based on a conclusions into calculation leadior c4(q)=1/g?] to very
semiphenomenological conjecture that a contribution of anweak (double logarithmig frequency dependence bf(w)
active two-level system to inductance can be estimétedh corresponding ty=0.
above by replacing this two-level system with an insulating  The case of a thin superconducting film is also of a spe-
hole of the same volume. This assumption does not take intcial interest in relation with recent experimental investigation
account that the motion of vortices inside of a two-levelof z(w) in ultrathin YBaCu;O; films.#® Note that in a two-
system leads to a change of a phase distribution in supercodimensional2D) geometry with complete penetration of the
ductor (and of the energy of electric current in dlso out- magnetic field the frequency-dependent spedgireet im-
side of the limits of this particular two-level system. Accord- pedance directly determines the response of a film to external
ingly, it turns out to be in direct contradiction with the field, whereas in the case of a bulk superconductor it has to
explicit expression for a two-level system contribution to be extracted from the surface impedance.
impedance derived by Koshelev and Vinckand used in In all the cases we have considergdw) diverges for
their calculation ofz,(w), and naturally leads to a different w—0. Thus the important consequence of our results is that
value ofy. The less pronounced descrepancy between ththe random manifold approximation cannot be sufficient for

ly(@)>[In(L/7o| w])]Y; (1a
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the d%SlflifiPtiOU of a truely superconducting vortex glassanged random potential correlation functiar{u). In the
phasé®** with finite superfluid density. simplest situation(which would imply, in particular, full

The outline of the article can be summarized as followsjsotropy and absence of dispersidhe first term in Eq(2)
In Sec. Il the random manifold problem is briefly introduced can be chosen in the form

and some situations when it is appropriate for the description

of a vortex manifold in a superconductor are specified. In J aud\?
Sec. Il the statistical properties of the metastable states He|=§ f dPx 3 (5)
which have to be taken into account in the framework of the X

two-level system approach are discussed. In Sec. IV the apgith a single elastic modulud

plication of this approach to calculation of the vortex me-  Thq physical systems which can be described by the
dium contribution to impedance is presented in the systemggmiltonian of the form(2) include, in particular, a domain

atic form for the nondispersive case. In Sec. V the samgyq| in 4 2D or 3D Ising type ferromagnet/antiferromagnet
approach is used for the analysis of thermal fluctuations. W?D: 1,2:N=1): a dislocation in a crystall=1N=2): a

show that(with the same set of assumptions as used earlieging|e vortex line in a large area Josephson junctién (

in calculation of a linear dynamic responseindeed pro- —1N=1) or bulk superconductorD=1,N=2): a vortex
duces an answer which is consistent with expectations bas?‘ﬂeaium in superconducting filmD(=2 N’=2) oyr bulk su-
on consideration of pure system. perconductor D=3 N=2), a layered superconductor with

Sdectit_on \f/|| s de\;]c.)tidthto theldisci}:ssi??h of a thin SU.E.?r"ln-plane field D=3N=1) or a large area Josephson junc-
conducting fiim n which the noniocality ot the COmpressibi- o yith in-plane field D=2N=1). In all these cases the

ity modulus is always important. We show that if one a5 random pinning potential is automatically provided by impu-

sumes that the dominant two-level systems in this case arg;.q present in any solid or/and by geometrical inhomoge-
strongly anisotropi¢as suggested by the energy balance es:

. : . . neities.
timates used in the analysis of the nonlinear ct&ef), the

. . . Note, however, that the random manifold approximation
expression fpr thermal ﬂuct.uat|ons _amphtude turns out to b‘f’;lssumes the energy of the interaction with the inhomogene-
convergent in contrast to its logarithmic divergence in the

ities to be uncorrelated for different displacements, whereas

r‘applicability of the random manifold approximation for the
description of vortex crystal pinning is resticted. One can use
this approach if the relevant displacements do not exceed the
lattice period(Larkin regimé®) or when the ordering in the

Il. RANDOM MANIFOLD PROBLEM vortex crystal is destroyed by the presence of defects whose

An elastic manifoldwith internal dimensiorD) interact- motion with respect to the vortex manifold is dynamically

ing with a random pinning potential can be described by thdrozen in comparison with the motion of the manifold it;elf.
Hamiltonian Recent experiments of the Neutdlagroup on ultrathin

YBa,Cw,0; films® have demonstrated a crossover to the re-
H=Hg+Hy gime in which the contribution to resistivity associated with
the motion of pointlike defects is negligible in comparison
with the contribution which can be ascribed to collective
pinning behavior.

used for the calculation of the componentgzgfw). In Sec.
VII the results are summarized and discussed.

1
:EI dDle dDXz[Gal(Xl_Xz)]abua(xl)ub(xz)

+J dPx v[x,u(x)], (2 IIl. LOW-ENERGY METASTABLE STATES

The low-frequency dynamics of a weakly pinned elastic
manifold can be associated with the thermally activated tun-
neling of large domains of the manifold between different
minima of the random potentiélin a simple system with a
discrete spectrum only the tunneling between the ground
state and the first excited state is of importance at low tem-
aE)eratures, thus it can be reduced to a two-level system. For

an infinite manifold one should take into account that such
_ two-level systems appear at all scales and form a hierarchical
(v(X,u))¢=0, (3 p : . X
structure, i.e., if some domain of the manifold can tunnel
_ _ _ between some states one also has to consider the possibility
(01, U)o 0, U))a= Sy —xIW(UL ) (4) of tunneling of smaller domains inside this area between
Here and further on the angular brackets with subsdtipt different pairs of states.
stand for the average over disorder, and with substhmifur Each of such two-level systems can be characterized by
the thermal average. We discuss only the case of a shorits (linean sizel, its volumeV~LP (until specified we dis-

where theN-dimensional vectou(x) =u?(x) is the displace-
ment of the manifold. The first term in E¢R) describegin
a most general forinthe elastic energy of the manifold and
the second the energy of its interaction with a random pin
ning potentialv (x,u).

The simplest assumption would consist in assuming th
the random potential (x,u) has a Gaussian distribution with
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cuss the simplest isotropic case with a single nondispersive IV. TWO-LEVEL SYSTEMS CONTRIBUTION
elastic modulus the typical vortex displacement between TO IMPEDANCE

the two states, which, for example, can be defined by The contribution of the two-level systems to the specific

impedance of a superconductor is gifdry

2_ 1f D 2
u v d”xu“(x), (6) ) (VU)Z o B2
. Zy(w)=n= . Y=
the energy difference between the two stateand the en- T\ cost(A/2T) 1tiTw g 4c
ergy barrierU which has to be overcome for moving the (10)
manifold (the vortex bundlgfrom one of the two states to

the other wheren is the concentration of such systersis the mag-

The universality hypothesis introduced by loffe andnetic induction, andr is the temperature, where&s u, A,
Vinokur® suggests that for each length schl¢here should and = are parameters characterizing a particular two-level
exist only one relevant energy sca&i¢L) such that, in par- System:V is the volume in which the vortices are displaced
ticular, the typical values oA andU for a system of sizé& (or the area in the case of a 2D supercondygtoris the
are proportional toE(L). The magnitude oE(L) can be average displacement of the vortices inside the bundle in the
then estimated by estimating the elastic energy associatetirection of current-induced force ard is the difference in

with the displacement of the vortex bundle of the dize energy between the two states. The relaxation tirdescrib-
ing the rate of the thermally activatéohcoherenk tunneling
u?(L) between the two states depends exponentially
E(L)~IV(L) ——. (7)
L =T1oexp(U/T) (11)

If the scale dependence of the typical displacem#ht) is  on the barrielJ separating them.
given byu(L)=L¢ (where{ is usually called the wandering If one splitsz;,(w) into real and imaginary parts
exponent Eq. (7) leads toE(L) o LX with ]

Zy(w)=py(w) tioly(w) (12)

x=2{+D-2. (®) and assumes that the average over disorder can be estimated

On the other hand Fisher, Fisher, and Husave suggested PY taking for each length scale the typicatale dependent

that the scale dependence of the typical energy badr{ér) }[/alu?s Olf all tthe pararr:e_tbertg |n\iolved, t.pe _exprc(ejssmn for the
can be described by another expon@ntnot necessariliy wo-level systems contribution to specific impedaiigw)

coinsiding withy (= x). For the sake of generality in the is reduced to
following we will keep(for a while) the separate notation for

L, —_
, although we will assume that the typical value/of(for ly(w)~ ZJ dL v(L)VZ(L)u?(L)(cosh 2(A/2T))4(L).
the given length scalk) can be estimated with the help of T
Eq. (7). (13

Various properties of the manifold depend also on thepuye to the exponentially fast increasemofith L, instead of
form of the size distribution functiom(L) of the two-level including in Eq.(13) the factor
systems. The hierarchical distribution implies that any two-
level system can include smaller two-level systems whose 1
size differ from that of the “parent” two-level system by D (14
some numerical factor of the order of one. Thus the ratio of 1+[7(L)e]
the typical “neighboring” length scales has to be more orthe integration in it is cut off(at the upper limit at a
less constant across the whole length-scale range inVBWed‘requency-dependent length scale defined by the relation
This is compatible with a uniform distribution of the loga- (L )w~1. ForU(L)=e(L/L.)"
rithms of the length scales. However, for each length scale
one should also include the factoMIL) proportional to the
largest possible concentration of nonoverlapping two-level
systems of sizé&. Thuswv(L) has to be of the form

T 1 \W
—In—) : (15)
€ Tolol

L,xL,

The integration interval in Eq13) is limited from below
dL 1 by the (temperature dependerdollective pinning length. .
dLy(L)« T m ©) (Ref. 1) which determines the boundary between the differ-
ent regimes of fluctuations. At length scales lower than
Koshelev and Vinokdrhave introduced the first factéim-  the manifold can be considered as fluctuating within one of
posed by the hierarchical structliia the right-hand side of the minima of the(thermally renormalizedrandom poten-
Eqg. (9) in the formdU/U (without any explanation which  tial, whereas for larger scales only the jumps between differ-
for U(L) algebraically dependent dnis equivalent taL/L, ent valleys of the potential are of importance. The contribu-
whereas in Ref. 3 the hierarchical nature of the size distribution to I (w) from length scales smaller thdn, has a finite
tion of two-level systems has not been taken into account. limit for o—0.
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SinceA is the difference in energy between the two spa-film in which the strong dispersion of the compressibility
tially separated states in the uncorrelated random potentiainodulus is unavoidable is considered in Sec. VI.
the distribution functionp(A) can be expected to remain  For finite values of the current densityeq. (10), which
finite for A— 0 (the broad distribution assumpt®dnThe last has been the starting point of our calculation, is applicable

factor in the right-hand side of Eq13) (the fraction of  only if VuB/c is small in comparison with temperature. This
“thermally active” two-level systems can be then determines the current dependence of the length dcale

estimated® as o« (T/j)¥P*9 at which the integration in Eq13) should be
T cut off if L;<L,. In that case the growth df;(w) with
~2 o decreasingy saturates alty(w=0,j)o (T/j)%C*9,
(cosh “(A/2T))4(L) AL (16) t
whereA(L) is the typical value ofA for the length scalé V. COMPARISON OF TWO APPROACHES TO
[for example, the width op(A)]. Note that(for any scalg CALCULATION OF THERMAL
only small fraction of two-level systems is assumed to be not FLUCTUATIONS AMPLITUDE

frozen and therefore involved in linear dynamic respaiuse In the present work we suggest an independent way to

thermal fluctuations Thus they are expected to be well .check the validity of the two-level system approach for the

separated from each other, which justifies neglecting theifesqription of the linear dynamic response of a collectively

interaction. : ; ; ;
L . pinned manifold. This can be done because in the random
Substitution of Eq(16) into Eg. (13) leads to manifold problem the static irreducible correlation function

(@)~ Ldev(L)—Vz(L_zEj(L) o (U)W 0x0) ) = (U3 (%) = (U200 ]
e X[UP(Xp) = (UP(X2))inDenda (23)

6Which can be associated with thermal fluctuatjoascord-
ing to Shultzet al.” should be exactly the same as in the
absence of disorder

According to the universality hypothe8ia (L) has to be of
the same order of magnitude as the elastic contribution t

energy estimated in Eq7), which foru~u gives

VA(L)u*(L) L? ((UA(x)UP(x2))) = TGR(x, — Xp). (24

A ~V(L)T. (18
o _ (a brief derivation can be found in the AppendiAn analo-
Substitution of Eqs(9) and(18) into Eq.(17) then leads to  gous relation for the case of periodic behaviomdiu) with
respect to displacement has been suggested by Dotsenko and
y(todl , v (T 1V Feigel'mant®
ly(w)oe = —Lc<Lgl =In——] , (19 . . .
JJi, L J € Tolw| In the presence of disorder the long-distance behavior of
the correlation functior§23) has to be mediated by the two-

wherey=2/y. level systems. Therefore, the investigation of thermal fluc-

With the same assumptions that have been used for theations in terms of the two-level system approach and com-
derivation of Eq.(19) the two-level system contribution to parison of the result with well known result for the pure

the resistivity is given by system allows us to check the validity of different conjec-
) tures involved in the calculation of a linear dynamic re-
p (w)oczfmdL L (Lo (20) sponse. Instead of considering the dependence of
t JJL, 1+[7(L)w]? ((ud(x1)uP(x,))) on |x;—x,| one can alternatively investi-

) ) gate the dependence gfu?)) on the size of the systein,,
Alternatively py(w) can be restored fromy(w) with the  \yhich also has to be the same as in the pure case.

help of the simplified forrtf*” of the Kramers-Kronig rela-  For a single two-level system with the energy grphe
tion amplitude of the thermal fluctuations of the displacement is
given by
(@)= —lol 7 (o) 2
w)~ — ~ a7
Pu 2 dinfw] o ) (u;—uy)?
o . _ (U =(u=(Wn)In=""—"5 - (29
which is applicable fot(w) = f(In|w|). Both methods give 4 cosi(A/2T)
y [T\ 1 \v-1 For a collectively pinned manifold the dominant large-scale
pt|(w)ocj ;) |w|(lnm> . (220  contribution to({u?(x))) should come from the two-level
0

systems which include the poirtand[on the same assump-
tions as have been used while calculatipfw) andp(w)]

It can be shown thay is equal to not only for the X
y q 2 Y gan be estimated as

simplest case of a single elastic modulus, but for the gener
case of nondispersive moduli. In a bulk superconductor at Lo V(L)u(L)

large enough scalgsvhich corresponds to low enough fre- <<uﬁ>>~-rf dLy(L) ———", (26)
quencies all elastic moduli become local. The case of a thin Le A(L)
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where the upper limit of integration is now imposed by the . u\?

size of the system andin accordance with Eq(16)] Ecom™ €115 E) (30
(cosh 2(A/2T))4 has been already replaced wilihA (L).

Substitution of Eqs(7) and (9) into Eq. (26) then gives and

2
u
T dL Esh~0668( _> (31
(ui)=g JL 5 (27) o 3
¢ or a simple comparison &, with Eg, for u~u gives
which, if compared with the trivial result for the case without L3
disorder(for which ((u?))=(u?)): Lo a—;> L, . (32
o T dq 1 Note, however, that when the energy scale defined by Eq.
(u >>*jf . 270 o (28)  (31) is used as an estimate far, the factorSt?/A in the 2D
la“l>mlLo (2)° q version of Eq.(26) is reduced to
reproduces all its important features. Namely, the right-hand S Lf
side of Eq.(27) (i) contains the correct prefactdJ, (i) o (33
demonstrates the correct dependence on the size of the sys- _ _ 6
tem for arbitrary relation betweeh andL, .
The calculation of Sec. V has confirmed that the form of
L2-D D<? the size distribution of two-level systems can be correctly
0 1 )

estimated by assuming that they do not overlap with each
((u?))e{ In(Lo), D=2, (29  other, but can be situated inside each other forming hierar-

L2-D_|2-D  p=o chical structures. Such estimate is consistent W't.h the conjec-

c o ' ture that the number of metastable states to which a particu-

. o 5 lar domain of a manifold can tunnékithout moving a much
and (iii) the system-size dependent contribution({o;;))  |arger part of the manifoldis always of the order of $.In
does not depend on the unknown disorder-related parameteffat follows we assume that the same property holds also in
L. ande. presence of dispersion.

This allows us to conclude that different assumptions The most optimistic estimate for(L) can be then ob-
which have been used while calculatihg ), py(w), and  tained by assuming that for all scales the strongly anisotropic
((u?)) [the universality hypothesis, the hierarchical distribu-two-level systems are arranged in the most advantageous
tion of two-level systems, the broad distribution assumptiorivay to cover all the area available, which corresponds to
for p(A)] were indeed chosen in a reasonable way. dL 1

dLv(L)= C L (34)
The more realistic estimate should probably take into ac-
count that independent anisotropic two-level systems are

The long-range interaction of vortices makes the comdikely to have uncorrelated orientations, so the requirement
pressibility modulusc,; of a bulk superconductor strongly of nonoverlapping will lead to/(L)oL 2.
nonlocal for the wavelengths smaller than the magnetic field After substitution of Eq(33) into the integra[of the form
penetration depth. In a thin superconducting film the pen- (26)] defining((ufj)) one obtains that fok =L $ it is conver-
etration depthA is strongly increased in comparison with gent at the upper limit
that of a bulk superconductok =2x?/d,*® whered<x is T = dL/L
the thickness of the film. Therefore, in a thin film the depen- <<ut2|>>oc —f T(f) o0
dencec,(q)~c1,/9? (Wherec,;~B?/27A xcga2) result- Coo/ L
ing from a nonscreened vortex-vortex interaction holds in aven for the optimistic form of(L) given by Eqg.(34). On
much wider range of length scales than in a bulk superconthe other hand, we know that in a pure system the contribu-
ductor. Herecge~®,B/3272A is the shear modulus of the tion of the transverse moddsvhich depends only on the
film (which in contrast ta@,, is always local, ®o=hc/2eis  shear modulus which is logdeads to the logarithmic diver-
the flux quantum and~?=B/® is the vortex density. gence of ((u?))=(u?),. It follows from the results of

If one tries to shift a vortex bundle in such a systém  Schulzet al.” that in the presence of disorder the same be-
search of the next potential minimypit turns out that the havior should be mediated by the large-scale two-level sys-
optimal shape of the bundle is strongly anisotrépi&*with  tems.
the size in the direction of the displaceménmuch larger A plausible way to explain the logarithmic divergence of
than the size in the perpendicular direction. The optimal  ((u3)) consists in assuming that the film should contain not
relation betweerl. andL, can be found by minimizing the only anisotropic two-level systems with>L, , but also a
total elastic energy for the given area of a bun8tel L | . hierarchical sequence of quasi-isotropic two-level systems in
Minimization (for fixed S) of Egom+ Egn, Wheré®2° which L, is of the same order ak. For such two-level

VI. THIN SUPERCONDUCTING FILM IN
PERPENDICULAR MAGNETIC FIELD

(39
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systems the requirement of the balance between the different VII. CONCLUSION

contributions to the elastic energ¥ {n~Egy) leads tou In the present work we argue that thermal fluctuations of
(a/L)u<u, which means that the displacement of the vor-5 ¢olectively pinned vortex manifold are determined by the
tices in quasi-isotropic bundles is mostly of rotational type. g3 me degrees of freedofrelated to thermally activated tun-
The linear dynamic response has to be gssociated wi_th th’f‘eling between the pairs of low-lying metastable states—
same degrees of freedom as are taken into account in thg jevel systemsas its low-frequency linear dynamic re-
calculation of the static thermal fluctuations. However,sponse_ Therefore one can use the known dependence of
zy(w) cannot be obtained by d'rECt application of the thermal fluctuations amplitude on the size of the system
fluctuation-dissipation theorem t(ug)), since these two (which has to be exactly the same as in absence of digorder
quantities include different linear combinations of the de-for checking the consistency of the conjectures which are
grees of freedom involved. Nonetheless, when calculatingised in the calculation of the linear dynamic response. The
zy(w) one should take into account the same set of two-levebet of the assumptions which are necessary to produce the
systems as for the calculation 6fu?)), in contrast to the correct answer for the thermal fluctuations amplitude in-
case of the nonlinear creep for which the shape of the moveludes, in particular, the conjecture on hierarchical distribu-
ing vortex bundles is imposed by the applied curfént? tion of two-level systemgwhich means that they can be
Application of the expressio(80) for E., as an estimate situated inside each otheand also the universality hypoth-
for A shows that the factd82u?/A in the 2D version of Eq. esis. If the same set of assumptions is used for the calculation
(17) does not depend oh, and can be estimanted as of a vortex manifold contribution to impedance its frequency
L2/c,;~L2A/B2. For the hierarchical sequence of quasi-déPendencéin absence of dispersions given by Eqs.(1)
isotropic two-level systems with(L)<L ~2 this leads to the With y=2/¢, wherey is the exponentwhich depends both

extremely weakdouble logarithmit frequency dependence ©" D and N)_ describing the scale dependence of the typical
of energy barrietJ(L).

The same result is also applicable in the limit af small
fields, when one can neglect the interaction between different

yA (LodL A [T 1 vortices and treat each vortex separately as 1D manifold. In
() — —oc—In(—In ) (36)  that case one should take the valueyoftorresponding to
Bz Le L C2 € 0| | D=1.

Note that in the framework of our analysis the universal-

which can hardly be expected to be resolvable from the backly hypothesis has been used only for the estimat(@f). If

ground superfluid contributiohy in the experiments probing (&S suggested by loffe and VinoRuiit is further assumed
the low-frequency response of thin films. that the same energy scale can be used for the estimate of

Different approaches including scaling argumeénts, func-
tional renormalization groi$**and a self-consistent calcu-
A |w| lation incorporating replica symmetry breakiffglead to
@)X — 3
pu(®) c2 In(L/rp|w)) (37 4-D
= BN

(38

which, in contrast to Eq.36), does not exhibit any specially
weak dependence om. Note that two unknown disorder- with 1/2<g<1. For the case of thin superconducting film
related parameters, and € as well as the magnetic field (D=2N=2) or bulk superconductoi(=3N=2) Eqgs.(8)
dependence have dropped out from Ej). and(38) give the values oj in the interval from 2/3 to 7/5,
The presence of the hierarchical sequence of quaskhat is around 1.
isotropic two-level systems still leaves enough place for Koshelev and Vinokudrhave found the value of the expo-
more optimal anisotropic two-level systems with<L. Al- nenty only for the particular values of and y correspond-
though they do not contribute much ¢¢u3)), their contri-  ing toD=1 andN=2 and not in the general form as above.
butions to the components afi(w) could be of importance. In Ref. 3 the hierarchical nature of the size distributioh
However, their size distribution will be forced by the pres- the two-level systemshas not been taken into account and
ence of hierarchical sequence of quasi-isotropic two-levethe estimate op;(w) has been obtained without integrating
systems to be of the same fornfL)xL 2 and, therefore, oOver the scales, which has ledn our notation to
their contribution tol () and py(w) will be of the same Y=2/#+1. As has been already mentioned in the Introduc-
form as given by Eqs(36), (37). tion the analogous calculation in Ref. 2 has been performed
In a thin superconducting film the compressibility modu- using the assumption which is in contradiction with Et0)
lus cy; is nonlocal not only forAgq>1 where c;4(q) and therefore cannoF be useq for co.mparison. _
%al/qz, but also forAq<1 wherecyy(q)~B2/27q. An Note thatl(w) dlverges in the I|m|t. ofw—>9, which
analogous calculation for such form ofy(q) produces for CO'Tesponds to supression of superfluid dengityersely

the components af, () the answers of the fornl) with proportional to Iin:anOI(w)]. Thus the results of this work
y=1/¢. are not in agreement with the popular point of view that
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random manifold approach provides an exhaustive descrip- ACKNOWLEDGMENTS
tion of dynamic properties of a truely superconducting vor-
tex glass phaseévhich is supposed to be formed at low tem- |,

peratures due to pinning"), at least if superconductivity is  ~" 7 : . . )
understood as the ability to carry a superconductirandis- 00-15-96747 and by the Swiss National Science Founda

sipative current and not only as the vanishing of the Iineartlon' The author is grateful to G. Blatter, V. B. Geshkenbein,

resistance. Our analysis suggests that in the framework (%nd P. Martinoli for interesting discussions and useful com-
. . : ments.

random manifold approach the finite value lg{w—0) is

incompatible with the correct scale dependence (of)).

Therefore one has to conclude that the accurate description APPENDIX

of a vor.tex glass phase_which can carry a supercondut_:ting In the case of a random manifold described by HEgs-

current(if such phase exists at alilequires a more sophisti- (4) it is possible to show that the irreducible correlation func-

cated treatment than the description of vortex medium injgn of the form (23) remains the same as in absence of

terms of an elastic manifold interacting with a random po-gisorder’ To this end one can express this correlation func-
tential. For example, it possibly should take into account thatjgp, through the second derivative
some of the defects of a vortex lattice are generated by a

This work has been supported in part by the Program
Scientific Schools of the Russian FederatioiGrant No.

disorder and cannot freely move with a vortex manifold. Pris
However, both in the case of Larkin regime and in the ((ua(xl)ub(xz)»:T — (A1)
case of dynamically frozen thermally excited defgétszen $19S;| a_ca_g
vortex liquid regime the frequency range of the applicability v
of the random manifold description of a vortex medium in aof the (disorder-averagedree energy
superconductor is anyway restricted from below. Moreover,
the two-level system contribution to impedankg w) is _ H
only logarithmic inw and in a practical situation may be F=-TlIn f du GXD( _T> (A2)
d

negligible in comparison with “bare” impedandg down to
exponentially low frequencies. , with respect to the coefficients in the auxildsource terms
On the other handg;(w) produces in the low frequency 5qded to the Hamiltonian
limit the dominant contribution to the resistivity in compari-
son with the contributions related with the normal channel ™ a a a a
conductance and with the oscillations of manifold within H=H+s1u%(x) —S5U%(x). (A3)
each minimum of a random potential, both of which at low ~ .. ) ) )
frequencies are proportional to?. In order to calcu_lateF it is convenient to shlft_t_he vari-
In thin superconducting films the compressibility modulus@P!€su(x) (over which the integration in the partition func-
of vortex manifold is always nonlocal. This leads to thefion is performegaccording to
strong anisotropy of the vortex bundles participating in the
nonlinear creep~**However, our analysis has shown that
the correct length-scale dependence of thermal fluctuations
amplitude requires the presence of a hierarchical sequence of (A4)
quasi-isotropic two-level systems. A linear dynamic response |, . _ o
(which has to be calculated assuming that the applied currer’ffh'Ch .allows us to split the nonrandom f:ontnbutu.)n to
does not change the properties of the systeroduced by ~H{u®} into two termsHg{ug}+E(s],s?), the first of which
the same set of the two-level systems correspondy to does not depend osf , and the second
=1/i for c14(q) < 1/g (Aq<1) and toy=0 [with | () still
diverging at o—0 but only as a double logarithjrfor
c11(9)*1/g®> (Ag>1). The contribution from the more op-
timal anisotropic two-level systems can be expected to be of

ud(x)=us (x)=u?(x) + ng(x—xl)s'{— ng(x—xz)sg,

1
E(s}.83) =~ 5 G5"(0)sis)+ G3 (X1~ x2)ss3

the same form. In both regimdgs,4(q)oc1l/q and cq4(Q) _}Gab(o)sasb (A5)
«1/g?] the value of the magnetic field drops out from the 270 272

expression foz,(w).

Although in thin films the dc resistivity is always finite does not depend ouf (). _
due to thermally activated motion of pointlike defects of vor- ~ On the other hand, the distribution function of the random
tex lattice (vacancies, interstitials, dislocation pajté'3the  potentialv(x,u) is not affected by the shift defined by Eq.
collective pinning behavior has been found to be accessibleA4). Therefore the free energy defined by E42) differs
to experimental observatidin the range of frequencies and from its value for original problenithat is for sj=s3=0)
temperatures where the activated contribution to resistivity i©nly by addition of the termE(s],s5), differentiation of
too small. which leads to Eq(24).

174514-7



S. E. KORSHUNOV PHYSICAL REVIEW B 63 174514

1G. Blatter, M.V. Feigel'man, V.B. Geshkenbein, A.l. Larkin, and (1995.

V.M. Vinokur, Rev. Mod. Phys66, 1125(1994). 15 1. Larkin, Zh. Eksp. Teor. Fiz.58 1466 (1970 [Sov. Phys.
2D.S. Fisher, M.P.A. Fisher, and D.A. Huse, Phys. Revi33130 JETP31, 784(1970].
(1991). 18|, Lundgren, P. Svedlindh, and O. Beckman, J. Magn. Magn.
3K.H. Fischer and T. Nattermann, Phys. Rev4® 10 372(1991). Mater. 25, 33 (1981).
4A.E. Koshelev and V.M. Vinokur, Physica €73 465 (1991). E. Pytte and Y. Imry, Phys. Rev. 85, 1465(1987.
5D.S. Fisher and D.A. Huse, Phys. Rev. Ld6, 1601(1986;  '8Vik.S. Dotsenko and M.V. Feigel'man, ZhkEp. Teor. Fiz.86,
Phys. Rev. B38, 386(1988. 1544(1984 [Sov. Phys. JETB9, 904 (1984].
SL.B. loffe and V.M. Vinokur, J. Phys. @0, 6149(1987. 193, Pearl, inLow Temperature Physics - LT&dited by J.D. Daunt,
7U. Schulz, J. Villain, E. Brein, and H. Orland, J. Stat. Phys1, D.O. Edwards, F.J. Milford, and M. Yacu®lenum Press, New
1(1988. York, 1965, p. 566.
8M. Calame, S. Blaser, Ch. Leemann, and P. Martinoli, Physica B°The analogous estimate f&,, in Ref. 14 differs from Eq(30)
284-288 891 (2000. by the additional logarithmic factor, which we believe to be
9M. Calame, thesis, University of Neudes Switzerland, 1998; unjustified. If the size of a moving bundle is small in comparison
M. Calame, S.E. Korshunov, Ch. Leemann, and P. Martinoli, with the screening length of the logarithmic vortex-vortex inter-
cond-mat/0009308unpublished, Phys. Rev. Lett(to be pub- action, the compression energy associated with the displacement
lished 16 April 2001 cannot depend on this length. This can be shown, for example,
OM.P.A. Fisher, Phys. Rev. Let62, 1415(1989. by integration by parts in Eq4) of Ref. 14.
IM.V. Feigel'man, V.B. Geshkenbein, A.l. Larkin, and V.M. Vi- 2*M. Kardar, J. Appl. Phys61, 3601(1987).
nokur, Phys. Rev. Let63, 2303(1989. 22D S, Fisher, Phys. Rev. Let66, 1964 (1986; L. Balentz and
VAV Feigel’'man, V.B. Geshkenbein, and A.l. Larkin, Physica C D.S. Fisher, Phys. Rev. B8, 5949(1993.
167, 177 (1990. 237, Halpin-Healy, Phys. Rev. Let62, 442 (1989; Phys. Rev. A
13v.M. Vinokur, P.H. Kes, and A.E. Koshelev, Physical68 29 42, 711(1990.
(1990. 24M. Mézard and G. Parisi, J. Phys. 28, L1229(1990; J. Phys. |
4/ .M. Vinokur, P.H. Kes, and A.E. Koshelev, Physica2@8, 179 1, 809(1991).

174514-8



