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Low-frequency response of a collectively pinned vortex manifold

S. E. Korshunov
L. D. Landau Institute for Theoretical Physics, Kosygina 2, Moscow 117940, Russia
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A low-frequency dynamic response of a vortex manifold in a type-II superconductor can be associated with
thermally activated tunneling of large portions of the manifold between pairs of metastable states. We suggest
that statistical properties of these states can be verified by using the same approach for the analysis of thermal
fluctuations the behavior of which is well known. The exponent describing the frequency dependence of a
linear response is found for the generic case of a vortex manifold with nondispersive elastic moduli and also
for the case of thin superconducting film in which the compressibility modulus is always nonlocal.
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I. INTRODUCTION

In various situations the theory of weak collective pinni
~for a review see Ref. 1! treats a vortex medium in a type-
superconductor like an elastic manifold interacting with
random pinning potential. In particular, a vortex contributi
to a low-frequency response to an applied current~imped-
ance! is ascribed to the classical~thermally activated! tunnel-
ing of large portions of the vortex manifold between diffe
ent minima of the uncorrelated random potential.2–4 In the
framework of this approach the pairs of states that allow
thermally activated tunneling between them are treated
current-biased two-level systems. Earlier analogous id
were applied for the description of the dynamic response
spin glasses5 and of randomly pinned dislocations an
interfaces.6

The frequency dependence of the two-level systems c
tribution to specific impedanceztl(v)[r t l(v)1 iv l t l(v) of
a type-II superconductor penetrated by external magn
field has been found by different groups of authors2–4 to be
of the form

l t l~v!}@ ln~1/t0uvu!#y; ~1a!

r t l~v!}uvu@ ln~1/t0uvu!#y21, ~1b!

but the conclusions of these three groups on the value of
exponenty are not compatible with each other.

Comparison shows that the discrepancy appears bec
the calculation of Fisher, Fisher, and Huse2 is based on a
semiphenomenological conjecture that a contribution of
active two-level system to inductance can be estimated~from
above! by replacing this two-level system with an insulatin
hole of the same volume. This assumption does not take
account that the motion of vortices inside of a two-lev
system leads to a change of a phase distribution in super
ductor ~and of the energy of electric current in it! also out-
side of the limits of this particular two-level system. Accor
ingly, it turns out to be in direct contradiction with th
explicit expression for a two-level system contribution
impedance derived by Koshelev and Vinokur4 and used in
their calculation ofztl(v), and naturally leads to a differen
value of y. The less pronounced descrepancy between
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results of Ref. 3 and Ref. 4 can be explained, in particular
the difference in assumptions on statistics of metasta
states.

In the present work we revisit this problem following th
more reliable~as is demonstrated below! approach of Ko-
shelev and Vinokur.4 We start by deriving the value of th
exponenty for the generic case of a vortex manifold with
single elastic modulus~but with arbitrary dimensionality!.
Any more complex system with different~but local! elastic
moduli will be characterized by the same value ofy. In Ref.
4 the value ofy in nondispersive system has been found o
for the particular case of a single vortex pinning.

We then suggest a new independent way to check
validity of the numerous assumptions involved in calculati
of the two-level systems contribution to a linear dynam
response by using the same set of assumptions for calc
tion of another quantity~the amplitude of thermal fluctua
tions!, which on the other hand can be calculated exac
because in the framework of a random manifold descript
it has to be the same as in absence of disorder.7 It turns out
that application of the assumptions used in the previous
culation indeed produces an answer which is in agreem
with the well-known result for the pure case.

The possibility of the additional check turns out to be ve
useful when we address the case of a thin superconduc
film in which the compressibility modulusc11 of vortex
manifold is always nonlocal. It allows to draw some conc
sions about size and shape distribution of two-level syste
which otherwise would be unavailable. Inclusion of the
conclusions into calculation leads@for c11(q)}1/q2# to very
weak ~double logarithmic! frequency dependence ofl t l(v)
corresponding toy50.

The case of a thin superconducting film is also of a s
cial interest in relation with recent experimental investigati
of z(v) in ultrathin YBa2Cu3O7 films.8,9 Note that in a two-
dimensional~2D! geometry with complete penetration of th
magnetic field the frequency-dependent specific~sheet! im-
pedance directly determines the response of a film to exte
field, whereas in the case of a bulk superconductor it ha
be extracted from the surface impedance.

In all the cases we have consideredl t l(v) diverges for
v→0. Thus the important consequence of our results is
the random manifold approximation cannot be sufficient
©2001 The American Physical Society14-1
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S. E. KORSHUNOV PHYSICAL REVIEW B 63 174514
the description of a truely superconducting vortex gla
phase10,11 with finite superfluid density.

The outline of the article can be summarized as follow
In Sec. II the random manifold problem is briefly introduc
and some situations when it is appropriate for the descrip
of a vortex manifold in a superconductor are specified.
Sec. III the statistical properties of the metastable sta
which have to be taken into account in the framework of
two-level system approach are discussed. In Sec. IV the
plication of this approach to calculation of the vortex m
dium contribution to impedance is presented in the syst
atic form for the nondispersive case. In Sec. V the sa
approach is used for the analysis of thermal fluctuations.
show that~with the same set of assumptions as used ea
in calculation of a linear dynamic response! it indeed pro-
duces an answer which is consistent with expectations b
on consideration of pure system.

Section VI is devoted to the discussion of a thin sup
conducting film in which the nonlocality of the compressib
ity modulus is always important. We show that if one a
sumes that the dominant two-level systems in this case
strongly anisotropic~as suggested by the energy balance
timates used in the analysis of the nonlinear creep11–14!, the
expression for thermal fluctuations amplitude turns out to
convergent in contrast to its logarithmic divergence in
pure system. The only way to resolve this contradiction c
sists in assuming that the statistics of metastable state
dominated by the presence of hierarchical sequence of qu
isotropic two-level systems. The same distribution is th
used for the calculation of the components ofztl(v). In Sec.
VII the results are summarized and discussed.

II. RANDOM MANIFOLD PROBLEM

An elastic manifold~with internal dimensionD) interact-
ing with a random pinning potential can be described by
Hamiltonian

H5Hel1Hd

5
1

2E dDx1E dDx2@G0
21~x12x2!#abua~x1!ub~x2!

1E dDx v@x,u~x!#, ~2!

where theN-dimensional vectoru(x)[ua(x) is the displace-
ment of the manifold. The first term in Eq.~2! describes~in
a most general form! the elastic energy of the manifold an
the second the energy of its interaction with a random p
ning potentialv(x,u).

The simplest assumption would consist in assuming
the random potentialv(x,u) has a Gaussian distribution wit

^v~x,u!&d50, ~3!

^v~x1 ,u1!v~x2 ,u2!&d5d~x12x2!w~u12u2! ~4!

Here and further on the angular brackets with subscripd
stand for the average over disorder, and with subscriptth for
the thermal average. We discuss only the case of a sh
17451
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ranged random potential correlation functionw(u). In the
simplest situation~which would imply, in particular, full
isotropy and absence of dispersion! the first term in Eq.~2!
can be chosen in the form

Hel5
J

2E dDxS ]ua

]xbD 2

~5!

with a single elastic modulusJ.
The physical systems which can be described by

Hamiltonian of the form~2! include, in particular, a domain
wall in a 2D or 3D Ising type ferromagnet/antiferromagn
(D51,2;N51); a dislocation in a crystal (D51,N52); a
single vortex line in a large area Josephson junctionD
51,N51) or bulk superconductor (D51,N52); a vortex
medium in superconducting film (D52,N52) or bulk su-
perconductor (D53,N52), a layered superconductor wit
in-plane field (D53,N51) or a large area Josephson jun
tion with in-plane field (D52,N51). In all these cases th
random pinning potential is automatically provided by imp
rities present in any solid or/and by geometrical inhomo
neities.

Note, however, that the random manifold approximati
assumes the energy of the interaction with the inhomoge
ities to be uncorrelated for different displacements, wher
the energy of the interaction of an ideal vortex crystal w
the inhomogeneities does not change if the vortex crysta
shifted as a whole by one lattice constant. Thus, the are
applicability of the random manifold approximation for th
description of vortex crystal pinning is resticted. One can u
this approach if the relevant displacements do not exceed
lattice period~Larkin regime15! or when the ordering in the
vortex crystal is destroyed by the presence of defects wh
motion with respect to the vortex manifold is dynamica
frozen in comparison with the motion of the manifold itse

Recent experiments of the Neuchaˆtel group on ultrathin
YBa2Cu3O7 films9 have demonstrated a crossover to the
gime in which the contribution to resistivity associated w
the motion of pointlike defects is negligible in compariso
with the contribution which can be ascribed to collecti
pinning behavior.

III. LOW-ENERGY METASTABLE STATES

The low-frequency dynamics of a weakly pinned elas
manifold can be associated with the thermally activated t
neling of large domains of the manifold between differe
minima of the random potential.6 In a simple system with a
discrete spectrum only the tunneling between the gro
state and the first excited state is of importance at low te
peratures, thus it can be reduced to a two-level system.
an infinite manifold one should take into account that su
two-level systems appear at all scales and form a hierarch
structure, i.e., if some domain of the manifold can tunn
between some states one also has to consider the possi
of tunneling of smaller domains inside this area betwe
different pairs of states.

Each of such two-level systems can be characterized
its ~linear! sizeL, its volumeV;LD ~until specified we dis-
4-2
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LOW-FREQUENCY RESPONSE OF A COLLECTIVELY . . . PHYSICAL REVIEW B63 174514
cuss the simplest isotropic case with a single nondisper
elastic modulus!, the typical vortex displacement betwee
the two statesu, which, for example, can be defined by

u25
1

VE dDx u2~x!, ~6!

the energy difference between the two statesD and the en-
ergy barrierU which has to be overcome for moving th
manifold ~the vortex bundle! from one of the two states to
the other.

The universality hypothesis introduced by Ioffe a
Vinokur6 suggests that for each length scaleL there should
exist only one relevant energy scaleE(L) such that, in par-
ticular, the typical values ofD andU for a system of sizeL
are proportional toE(L). The magnitude ofE(L) can be
then estimated by estimating the elastic energy associ
with the displacement of the vortex bundle of the sizeL:

E~L !;JV~L !
u2~L !

L2
. ~7!

If the scale dependence of the typical displacementu(L) is
given byu(L)}Lz ~wherez is usually called the wanderin
exponent! Eq. ~7! leads toE(L)}Lx with

x52z1D22. ~8!

On the other hand Fisher, Fisher, and Huse2 have suggested
that the scale dependence of the typical energy barrierU(L)
can be described by another exponentc not necessariliy
coinsiding withx (c>x). For the sake of generality in th
following we will keep~for a while! the separate notation fo
c, although we will assume that the typical value ofD ~for
the given length scaleL) can be estimated with the help o
Eq. ~7!.

Various properties of the manifold depend also on
form of the size distribution functionn(L) of the two-level
systems. The hierarchical distribution implies that any tw
level system can include smaller two-level systems wh
size differ from that of the ‘‘parent’’ two-level system b
some numerical factor of the order of one. Thus the ratio
the typical ‘‘neighboring’’ length scales has to be more
less constant across the whole length-scale range involv5

This is compatible with a uniform distribution of the loga
rithms of the length scales. However, for each length sc
one should also include the factor 1/V(L) proportional to the
largest possible concentration of nonoverlapping two-le
systems of sizeL. Thusn(L) has to be of the form

dLn~L !}
dL

L

1

V~L !
. ~9!

Koshelev and Vinokur4 have introduced the first factor~im-
posed by the hierarchical structure! in the right-hand side of
Eq. ~9! in the formdU/U ~without any explanation!, which
for U(L) algebraically dependent onL is equivalent todL/L,
whereas in Ref. 3 the hierarchical nature of the size distri
tion of two-level systems has not been taken into accoun
17451
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IV. TWO-LEVEL SYSTEMS CONTRIBUTION
TO IMPEDANCE

The contribution of the two-level systems to the spec
impedance of a superconductor is given4 by

ztl~v!5n
g

T K ~Vū!2

cosh2~D/2T!

iv

11 i tvL
d

, g5
B2

4c2
,

~10!

wheren is the concentration of such systems,B is the mag-
netic induction, andT is the temperature, whereasV, ū, D,
and t are parameters characterizing a particular two-le
system:V is the volume in which the vortices are displac
~or the area in the case of a 2D superconductor!, ū is the
average displacement of the vortices inside the bundle in
direction of current-induced force andD is the difference in
energy between the two states. The relaxation timet describ-
ing the rate of the thermally activated~incoherent! tunneling
between the two states depends exponentially

t5t0 exp~U/T! ~11!

on the barrierU separating them.
If one splitsztl(v) into real and imaginary parts

ztl~v!5r t l~v!1 iv l t l~v! ~12!

and assumes that the average over disorder can be estim
by taking for each length scale the typical~scale dependent!
values of all the parameters involved, the expression for
two-level systems contribution to specific impedancel t l(v)
is reduced to

l t l~v!;
g

TELc

Lv
dL n~L !V2~L !ū2~L !^cosh22~D/2T!&d~L !.

~13!

Due to the exponentially fast increase oft with L, instead of
including in Eq.~13! the factor

1

11@t~L !v#2
~14!

the integration in it is cut off~at the upper limit! at a
frequency-dependent length scaleLv defined by the relation
t(Lv)v;1. ForU(L)}e(L/Lc)

c

Lv}LcS T

e
ln

1

t0uvu D
1/c

. ~15!

The integration interval in Eq.~13! is limited from below
by the ~temperature dependent! collective pinning lengthLc
~Ref. 1! which determines the boundary between the diff
ent regimes of fluctuations. At length scales lower thanLc
the manifold can be considered as fluctuating within one
the minima of the~thermally renormalized! random poten-
tial, whereas for larger scales only the jumps between dif
ent valleys of the potential are of importance. The contrib
tion to l (v) from length scales smaller thanLc has a finite
limit for v→0.
4-3
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SinceD is the difference in energy between the two sp
tially separated states in the uncorrelated random poten
the distribution functionp(D) can be expected to remai
finite for D→0 ~the broad distribution assumption5!. The last
factor in the right-hand side of Eq.~13! ~the fraction of
‘‘thermally active’’ two-level systems! can be then
estimated5,6 as

^cosh22~D/2T!&d~L !;
T

D~L !
, ~16!

whereD(L) is the typical value ofD for the length scaleL
@for example, the width ofp(D)#. Note that~for any scale!
only small fraction of two-level systems is assumed to be
frozen and therefore involved in linear dynamic response~or
thermal fluctuations!. Thus they are expected to be we
separated from each other, which justifies neglecting th
interaction.

Substitution of Eq.~16! into Eq. ~13! leads to

l t l~v!;gE
Lc

Lv
dLn~L !

V2~L !ū2~L !

D~L !
. ~17!

According to the universality hypothesis6 D(L) has to be of
the same order of magnitude as the elastic contribution
energy estimated in Eq.~7!, which for ū;u gives

V2~L !ū2~L !

D~L !
;V~L !

L2

J
. ~18!

Substitution of Eqs.~9! and ~18! into Eq. ~17! then leads to

l t l~v!}
g

JELc

Lv dL

L
L2}

g

J
Lc

2S T

e
ln

1

t0uvu D
y

, ~19!

wherey52/c.
With the same assumptions that have been used for

derivation of Eq.~19! the two-level system contribution t
the resistivity is given by

r t l~v!}
g

JELc

`

dL L
t~L !v2

11@t~L !v#2
. ~20!

Alternatively r t l(v) can be restored froml t l(v) with the
help of the simplified form16,17 of the Kramers-Kronig rela-
tion

r t l~v!'2uvu
p

2

d

d lnuvu
l t l~v! ~21!

which is applicable forl t l(v)5 f (lnuvu). Both methods give

r t l~v!}
g

J S T

e D y

uvuS ln
1

t0uvu D
y21

. ~22!

It can be shown thaty is equal to 2/c not only for the
simplest case of a single elastic modulus, but for the gen
case of nondispersive moduli. In a bulk superconducto
large enough scales~which corresponds to low enough fre
quencies! all elastic moduli become local. The case of a th
17451
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film in which the strong dispersion of the compressibili
modulus is unavoidable is considered in Sec. VI.

For finite values of the current densityj Eq. ~10!, which
has been the starting point of our calculation, is applica
only if VūB/c is small in comparison with temperature. Th
determines the current dependence of the length scaleL j
}(T/ j )1/(D1z) at which the integration in Eq.~13! should be
cut off if L j!Lv . In that case the growth ofl t l(v) with
decreasingv saturates atl t l(v50,j )}(T/ j )2/(D1z).

V. COMPARISON OF TWO APPROACHES TO
CALCULATION OF THERMAL
FLUCTUATIONS AMPLITUDE

In the present work we suggest an independent way
check the validity of the two-level system approach for t
description of the linear dynamic response of a collectiv
pinned manifold. This can be done because in the rand
manifold problem the static irreducible correlation functio

^^ua~x1!ub~x2!&&[^^@ua~x1!2^ua~x1!& th#

3@ub~x2!2^ub~x2!& th#& th&d ~23!

~which can be associated with thermal fluctuations! accord-
ing to Shultzet al.7 should be exactly the same as in th
absence of disorder

^^ua~x1!ub~x2!&&5TG0
ab~x12x2!. ~24!

~a brief derivation can be found in the Appendix!. An analo-
gous relation for the case of periodic behavior ofw(u) with
respect to displacement has been suggested by Dotsenk
Feigel’man.18

In the presence of disorder the long-distance behavio
the correlation function~23! has to be mediated by the two
level systems. Therefore, the investigation of thermal fl
tuations in terms of the two-level system approach and co
parison of the result with well known result for the pu
system allows us to check the validity of different conje
tures involved in the calculation of a linear dynamic r
sponse. Instead of considering the dependence
^^ua(x1)ub(x2)&& on ux12x2u one can alternatively investi
gate the dependence of^^u2&& on the size of the systemL0,
which also has to be the same as in the pure case.

For a single two-level system with the energy gapD the
amplitude of the thermal fluctuations of the displacemen
given by

^^u2&&[^~u2^u& th!2& th5
~u12u2!2

4 cosh2~D/2T!
. ~25!

For a collectively pinned manifold the dominant large-sc
contribution to ^^u2(x…&& should come from the two-leve
systems which include the pointx and@on the same assump
tions as have been used while calculatingl t l(v) andr t l(v)#
can be estimated as

^^utl
2 &&;TE

Lc

L0
dLn~L !

V~L !u2~L !

D~L !
, ~26!
4-4
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where the upper limit of integration is now imposed by t
size of the system and@in accordance with Eq.~16!#
^cosh22(D/2T)&d has been already replaced withT/D(L).

Substitution of Eqs.~7! and ~9! into Eq. ~26! then gives

^^utl
2 &&}

T

JELc

L0 dL

LD21
~27!

which, if compared with the trivial result for the case witho
disorder~for which ^^u2&&[^u2& th):

^^u2&&'
T

JEuqau.p/L0

dDq

~2p!D

1

q2
~28!

reproduces all its important features. Namely, the right-h
side of Eq.~27! ~i! contains the correct prefactorT/J, ~ii !
demonstrates the correct dependence on the size of the
tem

^^u2&&}H L0
22D , D,2,

ln~L0!, D52,

Lc
22D2L0

22D , D.2,

~29!

and ~iii ! the system-size dependent contribution to^^utl
2 &&

does not depend on the unknown disorder-related param
Lc ande.

This allows us to conclude that different assumptio
which have been used while calculatingl t l(v), r t l(v), and
^^utl

2 && @the universality hypothesis, the hierarchical distrib
tion of two-level systems, the broad distribution assumpt
for p(D)# were indeed chosen in a reasonable way.

VI. THIN SUPERCONDUCTING FILM IN
PERPENDICULAR MAGNETIC FIELD

The long-range interaction of vortices makes the co
pressibility modulusc11 of a bulk superconductor strongl
nonlocal for the wavelengths smaller than the magnetic fi
penetration depthl. In a thin superconducting film the pen
etration depthL is strongly increased in comparison wi
that of a bulk superconductor:L52l2/d,19 whered!l is
the thickness of the film. Therefore, in a thin film the depe
dencec11(q)' c̄11/q2 ~wherec̄11'B2/2pL}c66a

22) result-
ing from a nonscreened vortex-vortex interaction holds i
much wider range of length scales than in a bulk superc
ductor. Herec66'F0B/32p2L is the shear modulus of th
film ~which in contrast toc11 is always local!, F05hc/2e is
the flux quantum anda225B/F0 is the vortex density.

If one tries to shift a vortex bundle in such a system~in
search of the next potential minimum!, it turns out that the
optimal shape of the bundle is strongly anisotropic11–14with
the size in the direction of the displacementL much larger
than the size in the perpendicular directionL' . The optimal
relation betweenL andL' can be found by minimizing the
total elastic energy for the given area of a bundleS}LL' .
Minimization ~for fixed S! of Ecom1Esh, where14,20
17451
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Ecom; c̄11S
2S ū

L
D 2

~30!

and

Esh;c66SS u

L'
D 2

~31!

or a simple comparison ofEcom with Esh for ū;u gives

L}
L'

3

a2
@L' . ~32!

Note, however, that when the energy scale defined by
~31! is used as an estimate forD, the factorSu2/D in the 2D
version of Eq.~26! is reduced to

Su2

D
;

L'
2

c66
~33!

for arbitrary relation betweenL andL' .
The calculation of Sec. V has confirmed that the form

the size distribution of two-level systems can be correc
estimated by assuming that they do not overlap with e
other, but can be situated inside each other forming hie
chical structures. Such estimate is consistent with the con
ture that the number of metastable states to which a part
lar domain of a manifold can tunnel~without moving a much
larger part of the manifold! is always of the order of 1.6 In
what follows we assume that the same property holds als
presence of dispersion.

The most optimistic estimate forn(L) can be then ob-
tained by assuming that for all scales the strongly anisotro
two-level systems are arranged in the most advantage
way to cover all the area available, which corresponds to

dL n~L !⇒ dL

L

1

LL'

. ~34!

The more realistic estimate should probably take into
count that independent anisotropic two-level systems
likely to have uncorrelated orientations, so the requirem
of nonoverlapping will lead ton(L)}L23.

After substitution of Eq.~33! into the integral@of the form
~26!# defining^^utl

2 && one obtains that forL}L'
3 it is conver-

gent at the upper limit

^^utl
2 &&}

T

c66
E

Lc

` dL

L S L'

L D,` ~35!

even for the optimistic form ofn(L) given by Eq.~34!. On
the other hand, we know that in a pure system the contri
tion of the transverse modes~which depends only on the
shear modulus which is local! leads to the logarithmic diver
gence of ^^u2&&[^u2& th . It follows from the results of
Schulzet al.7 that in the presence of disorder the same
havior should be mediated by the large-scale two-level s
tems.

A plausible way to explain the logarithmic divergence
^^utl

2 && consists in assuming that the film should contain n
only anisotropic two-level systems withL@L' , but also a
hierarchical sequence of quasi-isotropic two-level system
which L' is of the same order asL. For such two-level
4-5
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systems the requirement of the balance between the diffe
contributions to the elastic energy (Ecom;Esh) leads toū
}(a/L)u!u, which means that the displacement of the v
tices in quasi-isotropic bundles is mostly of rotational typ

The linear dynamic response has to be associated with
same degrees of freedom as are taken into account in
calculation of the static thermal fluctuations. Howev
ztl(v) cannot be obtained by direct application of t
fluctuation-dissipation theorem tô̂ utl

2 &&, since these two
quantities include different linear combinations of the d
grees of freedom involved. Nonetheless, when calcula
ztl(v) one should take into account the same set of two-le
systems as for the calculation of^^utl

2 &&, in contrast to the
case of the nonlinear creep for which the shape of the m
ing vortex bundles is imposed by the applied current.12–14

Application of the expression~30! for Ecom as an estimate
for D shows that the factorS2ū2/D in the 2D version of Eq.
~17! does not depend onL' and can be estimanted a
L2/ c̄11;L2L/B2. For the hierarchical sequence of qua
isotropic two-level systems withn(L)}L23 this leads to the
extremely weak~double logarithmic! frequency dependenc
of

l t l~v!}
gL

B2 ELc

Lv dL

L
}

L

c2
lnS T

e
ln

1

t0uvu D , ~36!

which can hardly be expected to be resolvable from the ba
ground superfluid contributionl 0 in the experiments probing
the low-frequency response of thin films.

However, substitution of Eq.~36! into Eq. ~21! gives

r t l~v!}
L

c2

uvu
ln~1/t0uvu!

~37!

which, in contrast to Eq.~36!, does not exhibit any speciall
weak dependence onv. Note that two unknown disorder
related parametersLc and e as well as the magnetic fiel
dependence have dropped out from Eq.~37!.

The presence of the hierarchical sequence of qu
isotropic two-level systems still leaves enough place
more optimal anisotropic two-level systems withL'!L. Al-
though they do not contribute much to^^utl

2 &&, their contri-
butions to the components ofztl(v) could be of importance
However, their size distribution will be forced by the pre
ence of hierarchical sequence of quasi-isotropic two-le
systems to be of the same formn(L)}L23 and, therefore,
their contribution tol t l(v) and r t l(v) will be of the same
form as given by Eqs.~36!, ~37!.

In a thin superconducting film the compressibility mod
lus c11 is nonlocal not only for Lq@1 where c11(q)
' c̄11/q2, but also forLq!1 wherec11(q)'B2/2pq. An
analogous calculation for such form ofc11(q) produces for
the components ofztl(v) the answers of the form~1! with
y51/c.
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VII. CONCLUSION

In the present work we argue that thermal fluctuations
a collectively pinned vortex manifold are determined by t
same degrees of freedom~related to thermally activated tun
neling between the pairs of low-lying metastable state
two-level systems! as its low-frequency linear dynamic re
sponse. Therefore one can use the known dependenc
thermal fluctuations amplitude on the size of the syst
~which has to be exactly the same as in absence of disord7!
for checking the consistency of the conjectures which
used in the calculation of the linear dynamic response. T
set of the assumptions which are necessary to produce
correct answer for the thermal fluctuations amplitude
cludes, in particular, the conjecture on hierarchical distrib
tion of two-level systems~which means that they can b
situated inside each other! and also the universality hypoth
esis. If the same set of assumptions is used for the calcula
of a vortex manifold contribution to impedance its frequen
dependence~in absence of dispersion! is given by Eqs.~1!
with y52/c, wherec is the exponent~which depends both
on D andN) describing the scale dependence of the typi
energy barrierU(L).

The same result is also applicable in the limit af sm
fields, when one can neglect the interaction between diffe
vortices and treat each vortex separately as 1D manifold
that case one should take the value ofc corresponding to
D51.

Note that in the framework of our analysis the univers
ity hypothesis has been used only for the estimate ofD(L). If
~as suggested by Ioffe and Vinokur6! it is further assumed
that the same energy scale can be used for the estima
U(L), the value ofc will coinside with x given by Eq.~8!.
Different approaches including scaling arguments,11,21 func-
tional renormalization group22,23 and a self-consistent calcu
lation incorporating replica symmetry breaking,24 lead to

z5
42D

41bN
~38!

with 1/2<b<1. For the case of thin superconducting fil
(D52,N52) or bulk superconductor (D53,N52) Eqs.~8!
and~38! give the values ofx in the interval from 2/3 to 7/5,
that is around 1.

Koshelev and Vinokur4 have found the value of the expo
nenty only for the particular values ofz andx correspond-
ing to D51 andN52 and not in the general form as abov
In Ref. 3 the hierarchical nature of the size distribution~of
the two-level systems! has not been taken into account a
the estimate ofr t l(v) has been obtained without integratin
over the scales, which has led~in our notation! to
y52/c11. As has been already mentioned in the Introdu
tion the analogous calculation in Ref. 2 has been perform
using the assumption which is in contradiction with Eq.~10!
and therefore cannot be used for comparison.

Note that l t l(v) diverges in the limit ofv→0, which
corresponds to supression of superfluid density@inversely
proportional to lim

v→0
l (v)#. Thus the results of this work

are not in agreement with the popular point of view th
4-6
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random manifold approach provides an exhaustive desc
tion of dynamic properties of a truely superconducting v
tex glass phase~which is supposed to be formed at low tem
peratures due to pinning10,11!, at least if superconductivity is
understood as the ability to carry a superconducting~nondis-
sipative! current and not only as the vanishing of the line
resistance. Our analysis suggests that in the framewor
random manifold approach the finite value ofl t l(v→0) is
incompatible with the correct scale dependence of^^utl

2 &&.
Therefore one has to conclude that the accurate descrip
of a vortex glass phase which can carry a superconduc
current~if such phase exists at all! requires a more sophisti
cated treatment than the description of vortex medium
terms of an elastic manifold interacting with a random p
tential. For example, it possibly should take into account t
some of the defects of a vortex lattice are generated b
disorder and cannot freely move with a vortex manifold.

However, both in the case of Larkin regime and in t
case of dynamically frozen thermally excited defects~frozen
vortex liquid regime! the frequency range of the applicabilit
of the random manifold description of a vortex medium in
superconductor is anyway restricted from below. Moreov
the two-level system contribution to impedancel t l(v) is
only logarithmic in v and in a practical situation may b
negligible in comparison with ‘‘bare’’ impedancel 0 down to
exponentially low frequencies.

On the other hand,r t l(v) produces in the low frequenc
limit the dominant contribution to the resistivity in compar
son with the contributions related with the normal chan
conductance and with the oscillations of manifold with
each minimum of a random potential, both of which at lo
frequencies are proportional tov2.

In thin superconducting films the compressibility modul
of vortex manifold is always nonlocal. This leads to t
strong anisotropy of the vortex bundles participating in
nonlinear creep.11–14 However, our analysis has shown th
the correct length-scale dependence of thermal fluctuat
amplitude requires the presence of a hierarchical sequen
quasi-isotropic two-level systems. A linear dynamic respo
~which has to be calculated assuming that the applied cur
does not change the properties of the system! produced by
the same set of the two-level systems corresponds ty
51/c for c11(q)}1/q (Lq!1) and toy50 @with l t l(v) still
diverging at v→0 but only as a double logarithm# for
c11(q)}1/q2 (Lq@1). The contribution from the more op
timal anisotropic two-level systems can be expected to b
the same form. In both regimes@c11(q)}1/q and c11(q)
}1/q2# the value of the magnetic fieldB drops out from the
expression forztl(v).

Although in thin films the dc resistivity is always finit
due to thermally activated motion of pointlike defects of vo
tex lattice~vacancies, interstitials, dislocation pairs!,12,13 the
collective pinning behavior has been found to be access
to experimental observation9 in the range of frequencies an
temperatures where the activated contribution to resistivit
too small.
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APPENDIX

In the case of a random manifold described by Eqs.~2!–
~4! it is possible to show that the irreducible correlation fun
tion of the form ~23! remains the same as in absence
disorder.7 To this end one can express this correlation fun
tion through the second derivative

^^ua(x1)ub(x2)&&5T
]2F̃

]s1
a]s2

bU
s
1
a5s

2
a50

~A1!

of the ~disorder-averaged! free energy

F̃52TK lnF E du expS 2
H̃

T
D G L

d

~A2!

with respect to the coefficients in the auxilary~source! terms
added to the Hamiltonian

H̃5H1s1
aua~x1!2s2

aua~x2!. ~A3!

In order to calculateF̃ it is convenient to shift the vari-
ablesu(x) ~over which the integration in the partition func
tion is performed! according to

ua~x…⇒u
*
a ~x![ua~x!1G0

ab~x2x1!s1
b2G0

ab~x2x2!s2
b ,

~A4!

which allows us to split the nonrandom contribution
H̃$ua% into two termsHel$u*

a %1E(s1
a ,s2

a), the first of which
does not depend ons1,2

a and the second

E~s1
a ,s2

a!52
1

2
G0

ab~0!s1
as1

b1G0
ab~x12x2!s1

as2
b

2
1

2
G0

ab~0!s2
as2

b ~A5!

does not depend onu
*
a (x).

On the other hand, the distribution function of the rando
potentialv(x,u) is not affected by the shift defined by Eq
~A4!. Therefore the free energy defined by Eq.~A2! differs
from its value for original problem~that is for s1

a5s2
a50)

only by addition of the termE(s1
a ,s2

a), differentiation of
which leads to Eq.~24!.
4-7
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24M. Mézard and G. Parisi, J. Phys. A23, L1229~1990!; J. Phys. I

1, 809 ~1991!.
4-8


