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Phase fluctuations, dissipation, and superfluid stiffness ind-wave superconductors
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We study the effect of dissipation on quantum- and thermal-phase fluctuations ind-wave superconductors.
Dissipation, arising from a nonzero low-frequency optical conductivity that has been measured in experiments
below Tc , has two effects:~1! a reduction of zero-point phase fluctuations, and~2! a reduction of the tem-
perature at which one crosses over to classical thermal fluctuations. For parameter values relevant to the
cuprates, we show that the crossover temperature is still too large for classical phase fluctuations to play a
significant role at low temperature. Quasiparticles are thus crucial in determining the linear temperature de-
pendence of the in-plane superfluid stiffness. Thermal phase fluctuations become important at higher tempera-
tures and play a role nearTc .
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I. INTRODUCTION

There is considerable experimental evidence for a lin
temperature dependence of the superfluid density at low t
peratures in high-Tc superconducting cuprates, i.e.,

rs~T!5rs~0!2aT ~1!

wherea is a weakly doping-dependent constant.1,2 However,
there is still some controversy regarding the low-energy
citations responsible for this thermal suppression ofrs . The
simplest explanation is in terms of quasiparticle excitatio
near thed-wave nodes.3–6 An alternative explanation is in
terms of thermal fluctuations of the phase of the or
parameter7–10 or other collective modes.11

The existence of well-defined quasiparticles in the sup
conducting state of cuprates is supported both
transport12–14 and angle-resolved photoemission spectr
copy ~ARPES!15 experiments~even though there are som
studies questioning their Fermi liquid description16,17!. How-
ever, the contributions of phase fluctuations to lo
temperature properties could still be important, especially
the underdoped regime where the superfluid densityrs be-
comes vanishingly small as the Mott insulator is approach
In the literature the role of quantum- and thermal-phase fl
tuations has been addressed in connection with various
perimental problems, ranging fromc-axis transport18 to the
effect of these fluctuations on quasiparticle properties in
pseudogap state.19–21

In this paper we study in particular the role of phase flu
tuations in the depletion of the superfluid density. Within th
context two important issues have to be addressed:~1! The
form of the phase-only action for layeredd-wave supercon-
ductors~SC’s! taking into account the long-range Coulom
interaction;~2! the crossover between quantum and class
regimes of phase fluctuations. These questions were stu
in detail in Ref. 22 that, however, did not discuss the role
dissipation. In this paper, we focus on dissipative effects
how they affect the form of the phase-only action and
quantum-to-classical crossover.
0163-1829/2001/63~17!/174513~9!/$20.00 63 1745
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There are several reasons to believe that low-energy
sipation is important in the high-Tc cuprates. Theoretically
weak disorder within a self-consistentT-matrix calculation
leads to a nonzero ‘‘universal’’ low-frequency quasipartic
conductivity23 in d-wave SC’s. Experiments have also me
sured a nonzero low-frequency conductivity,24,17much larger
than the ‘‘universal’’ value. While there is no consensus
the origin of this large conductivity, one would definite
expect this dissipation to affect the phase fluctuations in
system, as first emphasized by Emery and Kivelson~EK!.9

Our formalism and results, however, differ from those of E
as discussed in detail in the paper.

We summarize our main results below.
~1! We derive the Gaussian-effective action for pha

fluctuations in the presence of dissipation using a functio
integral approach and integrating out fermionic degrees
freedom. While our effective action is derived microscop
cally by looking at fluctuations around a BCS mean fie
solution, we make contact with experiment by using para
eter values relevant to the high-Tc SC’s. We believe this
phenomenological approach of using the derivedform for the
action, withcoefficientstaken from experiment, is valid fo
the SC state of the high-Tc materials, at least forT!Tc ,
when quasiparticles are well defined. In addition, we a
present in an appendix, a hydrodynamic derivation for
phase mode based on a two-fluid model, which serves
check on the microscopic derivation.

~2! A dissipative quantumXY model is obtained by
coarse graining the Gaussian action to the scale of the co
ence length and analyzed within a self-consistent harmo
approximation.

~3! We find that the magnitude of quantum fluctuations
T50 is reduced by the presence of dissipation. This outco
is in agreement with similar results obtained within mod
of granular superconductors coupled to a dissipative Oh
bath,25,26 as we shall discuss below.

~4! Dissipative phase fluctuations alone, in the absenc
quasiparticle excitations, are shown to lead to aT2

reduction5 of the superfluid stiffness. This behavior cross
©2001 The American Physical Society13-1
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over to a classical linearT reduction at a scaleTcl , which
decreases with increasing dissipation.

~5! Choosing parameters appropriate to the high-Tc cu-
prates, and overestimating the dissipation, we neverthe
find that the crossover scaleTcl is still fairly large. Thus one
cannot attribute the low-temperature linear reduction
rs(T) to classical phase fluctuations. ThisT dependence
must therefore arise entirely from quasiparticle excitatio
near thed-wave nodes.

II. EFFECTIVE PHASE ACTION

We find it convenient to express the superfluid densityrs
in terms of a stiffnessDs5\2rs /m* , which in the
London limit is related to the penetration depthl in a
three-dimensional ~3D! bulk system through 1/l2

54pe2Ds /\2c2. The in-plane superfluid stiffness in a lay
ered system, with interlayer spacingdc , is dcDs with dimen-
sion of energy. Henceforth, unless explicitly displayed,
set\5k

B
51.

We begin with the Gaussian-phase action for a 3D iso
pic SC,

SG@u#5
a3

8T (
q,vn

@vn
2x1D~ ivn!q2#u~q,ivn!u~2q,2 ivn!.

~2!

For a derivation in thes-wave case see Refs. 27 and 28 a
for the d-wave case see Ref. 22. We show in Appendix
that the above action, and its generalization to layered
tems, can be also derived from hydrodynamic considerat
within a two-fluid model. In the above action~2!, the com-
pressibilityx(q→0).1/Vq whereVq is the Coulomb inter-
action anda is the lattice spacing. On continuing to re
frequencyD(v) is the mean-field stiffness, which is relate
to the mean-field complex conductivitys(v) through
D(v)5@2 ivs(v)/e2#. In arriving at the above action, w
have assumed thats(q,v)'s(0,v), and ignored theq de-
pendence of the conductivity forq&p/j0, which we expect
to be small for frequencies of interest.29

We use the spectral representation fors, and find that

D~ ivn!5Ds
01

1

e2E0

`dv

p

2vn
2

~v21vn
2!

Res reg~v!, ~3!

where we have used Res(v)5pDs
0e2d(v)1Res reg(v).

For a frequency-independent Res reg(v)5s
DC

, this simpli-
fies to

D~ ivn!5Ds
01

s
DC

e2
uvnu. ~4!

Unless indicated otherwise, we will use this simplified for
of the conductivity below, and uses̄5s

DC
dc /(e2/h) as a

dimensionless measure of the dissipation.30

It is straightforward to generalize the above results t
layered system with an in-plane stiffnessD

i
0 and ac-axis
17451
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stiffnessD
'

0. Further, the Coulomb interaction in a syste

with layer spacingdc gets modified to31

V~q!5
2pe2dc

qie`
F sinh~qidc!

cosh~qidc!2cos~q'dc!
G ~5!

whereqi ,q' are the in-plane and c-axis components ofq,
respectively.

To investigate the contribution of the phase fluctuations
the depletion of superfluid density it is necessary to go
yond the Gaussian approximation. The simplest model
allows for such an analysis is the quantumXY model, in
which the phase field is defined on a coarse-grained latt
with an in-plane lattice constant ofj0 and layer spacingdc .
The coherence length enters as a short distance cutoff s
the mean-field assumption of a constant amplitude bre
down at shorter distances.

Following exactly the same procedure of coarse-grain
used in Ref. 22~for the non-dissipative case! we now obtain
the dissipative quantumXY action:

SXY@u#5
1

8T
( 8

Q,vn
S vn

2j0
2dc

Ṽ~Q!
1

s̄

2p
UvnUg

i
~Q!D uu~Q,vn!u2

1
D

i
0dc

4
E

0

1/T

dt (
R,a5x,y

$12cos@u~R,t!

2u~R1a,t!#%1
D

'

0dc

4
S j0

dc
D 2E

0

1/T

dt

3(
R

$12cos@u~R,t!2u~R1 ẑ,t!#%. ~6!

Here g
i
(Q)5(422 cosQx22 cosQy) with Q being the di-

mensionless momentum, and the scaled interaction32 Ṽ(Q)
[V(Q

i
/j0 ,Q

'
/dc). While all momenta with

uQxu,uQyu,uQzu<p contribute in Eq.~6! above, the prime on
the summation denotes a Matsubara frequency cutoff
cussed below~see also Ref. 22!.

In this derivation we have promoted the gradient terms
the Gaussian action arising from the superfluid stiffness
the cosine form, while the dissipative terms have still be
retained at Gaussian level. A more sophisticated appro
would probably end up with at nonlocal kernel within the
cosine term; we will however continue to work with th
simplest action above. This action~6! is well known in the
literature as the resistively shunted Josephson junc
~RSJJ! model and its phases and quantum-phase transit
have been extensively studied.25,26 Here we are interested in
the effect of dissipation on quantum-phase fluctuations
the classical crossover temperature, in the superconduc
state.

We now discuss the differences between our action~6!
and that considered by EK.9 EK included the effects of
screening by replacing theV(Q) appearing in Eq.~2! with
the screened interactionVs(Q)5V(Q)/e(v). Here e(v)
5114p isL(v)/v is the dielectric function atQ50, and
sL(v) is the longitudinal optical conductivity. Considerin
3-2
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PHASE FLUCTUATIONS, DISSIPATION, AND . . . PHYSICAL REVIEW B63 174513
the isotropic 3D Coulomb interaction, 4pe2/e`Q2, the dy-
namical term in the EK analysis reduces to the fo
vn

2e`e(v)Q2/4pe2. This expression has been shown to
correct33,28 when the screening in the superconductor is p
duced by some external degrees of freedom with conduc
ity sL(v). An example is provided by a coupled syste
consisting of a superconductor interacting via Coulomb
teractions with a normal metal.

However, as discussed in Ref. 22, the EK effective act
is not obtained for a single homogeneous SC. The longitu
nal conductivitysL of the SC does not explicitly appear i
the expression of the density-density correlation functionx.
Instead dissipation appears through the transverse cur
current correlation function, and affects the gradient term
the action~2!, so thatD

i
→D

i
2 ivsT(v)/e2, wheresT is the

transverse conductivity.
If we would assumethat physical~i.e., gauge-invariant!

correlation functions appear as the coefficients in the ph
action, then, using the equality of the physical longitudin
and transverse conductivities, it is easy to see that our ac
~2! is identical to the EK action,9 for the specific case of a SC
with isotropic 3D Coulomb interactions. In this 3D case o
could associate thes with either the gradient term, as we d
or with the time derivative term as done by EK. The acti
used by EK is then formally the same as our action, and
could argue that dissipation should appear in the same
whether it is from an external bath~EK! or from internal
degrees of freedom~our case!.

The above assumption of gauge-invariant coefficients
however, not valid in general for a single-homogeneous
where the screening arises from the~low energy! internal
degrees of freedom. The coefficients in the phase action
then mean-field correlation functions. Thelongitudinal
mean-field correlations are not gauge invariant since
phase variable is yet to be integrated out. It is only up
integrating out the phase variable at Gaussian level that
restores gauge invariance22 for these. By contrast, Gaussia
phase fluctuations do not affect thetransversemean-field
correlation functions.22 Thus, the optical conductivity, which
originates from the mean-field~transverse! current-current
correlation function and appears in the phase-only action~6!.
This will permit us below, to use the experimentally me
sured conductivity to estimate the dissipation in the ph
action.

III. QUANTUM AND CLASSICAL PHASE FLUCTUATIONS

A. Variational analysis

We analyze the quantumXY action within the self-
consistent harmonic approximation~SCHA!. We believe that
this is adequate to calculate the effects of phase fluctuat
at low temperatures, where longitudinal~spin-wave! fluctua-
tions dominate and transverse~vortex! excitations are expo
nentially suppressed given their finite core energies. To
amine the low temperature in-plane properties, we ass
D

'

050 in Eq. ~6! since it is very small in highly anisotropi

systems with a largel
'
. For parameter values appropriate
17451
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Bi2212, we have numerically checked that settingD
'

050
does not affect our in-plane results.

The SCHA~Refs. 34, 26 and 7! is carried out by replacing
the above action by a trial harmonic theory with the ren
malized stiffnessD

i
chosen to minimize the free energy o

the trial action. This leads to

D
i
5D

i
0 exp~2^du

i
2&/2!, ~7!

wheredu
i
[(u r ,t2u r1a,t) with a5x,y and the expectation

value evaluated in the renormalized harmonic theory is gi
by

^du
i
2&52TE

2p

p d3Q

~2p!3

3 (
n52nc

nc g
i
~Q!

vn
2j0

2dc /ṼQ1S D
i
dc1

s̄

2p
uvnu D g

i
~Q!

.

~8!

As mentioned earlier, the dynamical phase distortions sho
have a frequency cutoff for the simple action we have c
sidered. In our numerics, we use a cutoff22 nc corresponding
to vn&A(D

i
dc)(2pe2/e`j0), but we have checked that th

presence of a finitenc has only a minor quantitative effect o
the results for̂ du

i
2& in the presence of dissipation, and on

may setnc→` to obtain qualitatively correct results.

B. Analytical estimates of quantum and thermal fluctuations

We first present estimates of the magnitude of quant
fluctuations and the thermal crossover scale making cer
simplifying assumptions. The in-plane quantum fluctuatio
are seen to be dominated by relatively largeQ

i
from phase-

space considerations and the form of the integrand in Eq.~8!.
In this case, we may setṼ(Q;1)/j0

2dc'2pe2/e`j0. Re-
stricting ourselves to lowT, we ignore the Matsubara cutoff
and setnc→`. With these simplifications, we work in th
limiting cases of small and large dissipation. We report f
ther analytical results in Appendix B. In particular, we ca
culate the renormalization of the superfluid stiffness for
anisotropic 3D Coulomb interaction~instead of the Coulomb
interaction in layered systems used in the paper! that permits
us to analyze the case of arbitrarys̄.

First recall the nondissipative case22 where the problem
involves only two energy scales: the Coulomb ener
(2pe2/e`j0) and the layer stiffnessD

i
dc . The quantum

zero point fluctuations of the phase are given by the dim
sionless combinationA(2pe2/e`j0)/D

i
dc, while the cross-

over to classical fluctuations takes place at a tempera
Tcl;A(D

i
dc)(2pe2/e`j0). Taking into account the tem

perature dependence of the bare stiffness, a better estima
the crossover temperature isTcl;Tc .

For the dissipative case atT50 we convert the Matsubar
sum to an integral. For larges̄, ignoring D

i
dc in the
3-3
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integrand, and introducing a lower-frequency cuto
2pD

i
dc /s̄, it is easy to show that the magnitude

quantum fluctuations may be estimated aŝdu
i
2&

.(8/s̄)ln@(s̄/2p)A(2pe2/e`j0)/(D
i
dc)#. This is similar to

the result obtained by Chakravartyet al.26 for a RSJJ mode
with short range charging energies. Increasing dissipa
thus leads to a decrease in quantum fluctuations as the
tem becomes more classical.

To evaluate the temperature scale at which one cro
over to classical fluctuations in the presence of dissipat
we have to consider the temperature above which only
n50 Matsubara frequency contributes, so that phase dyn
ics is unimportant. For larges̄, this may be estimated in
simple manner by setting (s̄/2p)uvnu*D

i
dc with n51,

which ensures that fluctuations withn@1 would contribute
very little to the fluctuation integral in Eq.~8!. This leads to
Tcl*D

i
dc /s̄. A better estimate is obtained below, whic

gives Tcl'3D
i
dc /s̄. It is clear that the classical limi

emerges as the limit of infinite dissipation,s̄→`, for which
Tcl→0. The crossover scale we obtain is similar in form
the estimate,Tcl'Tc /s̄, given in Ref. 10, but is much large
in magnitude.

C. Low-temperature behavior

We next turn to the temperature dependence of the re
malized stiffness in the presence of dissipation, where
have set the bare stiffness to be independent of tempera
This is of course an unphysical assumption for ad-wave SC,
but our aim is to explicitly check whether a linearT depen-
dence can be obtained within a model of purely dissipa
phase fluctuations even when temperatures are smaller
the thermal crossover scale estimated above. The fluctua
^du

i
2& at low T can be evaluated analytically again by setti

the cutoffnc→`. We can then cast the Matsubara sum in
form

(
n52`

`
A~Q,T!

n21B~Q,T!unu1C~Q,T!

52(
n50

`
A~Q,T!

n21B~Q,T!n1C~Q,T!
2

A~Q,T!

C~Q,T!
.

~9!

Rewriting the denominator of the first term in the form (n
1n1)(n1n2), we separate out the terms using partial fra
tions and express the resulting sums in terms of digam
functions. As T→0, n1,2→` that allows us to use the
asymptotic expansion for the digamma function. The lineaT
term arising from the infinite sum is precisely canceled
the linearT term from theA(Q,T)/C(Q,T) term, leaving
only a quadratic temperature dependence as was pointe
in Ref. 5. We thus finally arrive at̂du

i
2&(T)5^du

i
2&(0)

1(s̄/3)(T/D
i
dc)

2 at low T, from which
17451
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D
i
~T!

D
i
~0!

'12
s̄

6 S T

D
i
~0!dc

D 2

. ~10!

Thus, ignoring the effects of nodal quasiparticles, t
asymptotic low-temperature stiffness decreases asT2 in the
presence of dissipation.

At high temperature, above the thermal crossover sc
we recover the classical result^du

i
2&(T)'2T/(D

i
dc). An

improved estimate of the thermal crossover scaleTcl is ob-
tained by matching the slope of this high-temperature re
for ^du

i
2& with the low-temperature result of Eq.~10!. This

gives usTcl53D
i
dc /s̄ as stated earlier.

At this stage, we turn to the recent results of Lember
and co-workers,35 who use a circuit analogy and model
Josephson junction as an inductance (L0) shunted by a resis
tance ~R! and capacitance (C). To make correspondenc
with this work, we note that the inductanceL0;(D

i
dc)

21,

the charging energye2/2C;(e2/ebj0) and the resistanceR
;(1/s̄)(h/e2). Up to numerical factors of order unity, ou
expressions for the magnitude of quantum fluctuations
the thermal crossover scale are then in agreement. The
dicted quantum to thermal crossover has also been rece
observed in experiments on conventional s-wave superc
ducting films.36

D. Numerical results

In order to obtain the various scales for the cuprates,
will choose parameters of the above action appropriate
the bilayer system Bi2212 and evaluate the above estima
We then present results of detailed-numerical calculati
that are shown to agree with these simple estimates.

In the absence of detailed information on the bilayer co
plings, we make the assumption that the two layers withi
bilayer are strongly coupled and phase locked. Experim
tally, the in-plane penetration depth of optimally dop
Bi2212 is around 2100 Å and this translates into a bila
stiffness'75 meV. We usee`'10, anddc /a'4, with the
in-plane coherence lengthj0 /a'10. This leads to a Cou
lomb scale (e2/e`j0)'35 meV. Using the above param
eters, we find large quantum fluctuations in the nondissi
tive case (s̄50) with ^du

i
2&*1. The thermal crossover sca

as estimated from the zero-temperature bilayer stiffness,Tcl
@Tc;100 K. A more sensible estimate is obtained by co
sidering the temperature dependence of the bare stiffn
and this leads to a crossover scale forTcl;Tc for s̄50.

To study the effect of dissipation, we use conductiv
data obtained from experiments performed in the superc
ducting state. Consistent with our assumption of stron
coupled phases within a bilayer for Bi2212, the dissipat
parameters̄ for this system will be taken to be the dimen
sionlessbilayer conductivity. Recent measurements by Co
sonet al.17 on Bi2212 films give a Drude conductivity with
large low-frequency value corresponding tos̄'75 and a
width of a few terahertz. Similar large conductivities ha
been measured in the microwave regime.24 We note that the
3-4
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PHASE FLUCTUATIONS, DISSIPATION, AND . . . PHYSICAL REVIEW B63 174513
‘‘universal’’ quasiparticle conductivity predicted by Lee23

for the bilayer conductivity~at T50,v→0) corresponds to37

s̄'24 for Bi2212. The difference between this ‘‘universa
value, and thes̄'150 inferred from microwave data24 may
be due to vertex corrections.38 In our calculations, we use
constantdissipation withs̄'150 ~as anoverestimate! over
the entire frequency range of interest:vn with unu<nc . This
frequency range corresponds tov&100 meV atT50.

In the presence of dissipation, we find that quantum fl
tuations are reduced to a very small value^du

i
2&&0.2. The

thermal crossover scale is thenTcl53D
i
dc /s̄;18 K. This is

consistent with our numerics, where we find that linearT
behavior from thermal phase fluctuations only sets
above a temperature;20 K, for this magnitude of dissipa
tion. While this is a low-temperature scale, penetration-de
measurements39,24 observe a smooth linearT behavior down
to much lower temperatures;5 K, which cannot be recon
ciled with this crossover scale.

Turning to YBCO, and treating this system as weak
coupled single layers, far infrared reflectan
measurements40 appear to be consistent withs̄;10215
over a wide-frequency range;52100 meV. This smaller
value of s̄ compared to Bi2212 implies that dissipative e
fects are less important in YBCO. The ‘‘universal
conductivity23 for this case37 corresponds tos̄'9, not in-
consistent with the above data. However, low-frequency
crowave measurements41 on YBCO observe a strong fre
quency and temperature dependent quasipar
conductivity, of the Drude form. We have checked that us
a temperature-dependent Drude conductivity in this very
frequency regime, in addition to a constant dissipation o
the entire frequency range, does not significantly affect
results.

In Fig. 1 we compare our analytical results and estima

FIG. 1. Low-temperature behavior of the renormalize

superfluid stiffness for the dimensionless dissipations̄5150. The
bare stiffness was chosen to beD

i
0dc580 meV, independent o

temperature, and the renormalizedD
i
dc(T50)'75 meV, corre-

sponding to^du
i
2(T50)&'0.1. The values obtained from the nu

merics are shown as squares while the solid line is the analyticaT2

form given in Eq. ~10!. Linear temperature dependence sets
above a temperature;20 K as seen from the asymptote in the ins
which compares well with the estimate of the thermal crosso

scale 3D
i
dc /s̄'18 K.
17451
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obtained above, for Bi2212, with a numerical solution of t
SCHA equations~7! and ~8!. We find that the purely qua
dratic dependence persists up to about 6 K for the parameters
discussed above, while linearT dependence only sets in a
temperatures*20 K, consistent with the above estimate f
Tcl . Thus, it is impossible to ignore quasiparticles for und
standing the smooth linearT behavior of the penetration
depth that has been observed39,24 down to temperatures;5
K.

We next include the linearT effect of quasiparticle exci-
tations in the bare stiffness and ask how dissipative ph
fluctuations renormalize this. The numerical result is plot
in Fig. 2 and shows that both theT50 stiffness and its slope
are renormalized by small amounts. This is completely c
sistent with our estimates for a small-quantum renormali
tion in the presence of dissipation and a temperature sca
about 20 K below which classical thermal effects are uni
portant.

E. High-temperature behavior

Although quasiparticles dominate at low temperatu
eventually phase fluctuations do become important at hig
temperatures in driving the transition to the nonsuperc
ducting state. The approximation used thus far~SCHA! by
itself is clearly inadequate to address the problem ofTc since
it only includes longitudinal phase fluctuations. We thus p
ceed in two steps: first we calculate the temperature dep
dence of the superfluid stiffness within the SCHA, and th
we supplement it with the Nelson-Kosterlitz condition f
the universal jump in the stiffness at a 2D Kosterlit
Thouless transition42 mediated by the unbinding of vortices
We do not take into account, for simplicity, the effect
layering in this calculation, but this could be easily do
using well-known results for dimensional crossover.

Our numerical results, obtained by solving the SCH
equations for parameter values relevant to Bi2212, are p

-

,
r

FIG. 2. The bare and renormalized 1/l i
2(T) plotted using dashed

and solid line, respectively, for a dimensionless dissipations̄
5150. The bare value ofl i ,0 and its slope were chosen such th
the renormalized values, calculated using the SCHA equations~7!
and ~8!, l i'2100 Å and its slopedl i /dT'10.0 Å /K, are in
agreement with experiments~Ref. 24! on Bi2212. The renormaliza-
tion due to quantum fluctuations is seen to be'5%, much smaller
than the'50% renormalization obtained in the nondissipative ca
~Ref. 22!.
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ted in Fig. 3. We take the bare stiffness~the dashed line in
Fig. 3! to decrease linearly with temperature, consistent w
experiments, as a result of quasiparticle excitations. We
tend this linearT dependence of the bare stiffness to high
temperatures assuming that the gap function is unaffected
T,Tc . This is probably a good assumption in underdop
systems and may not be unreasonable for optimal dop
The renormalized stiffness calculated within SCHA is sho
as the full line. This stiffness shows a jump at a temperat
;90 K, but that is likely an artifact of the SCHA. Th
Kosterlitz-Thouless transition occurs at TKT

5pDs(TKT
2 )dc/8, where thefully renormalized stiffnessDs

is evaluated just belowTKT . We use the renormalized stiff
ness within the SCHA and the above condition, to obtain
approximate location of this transition. As can be seen fr
Fig. 3, this gives us a reasonable estimate ofTc'80 K, when
compared with experiments39,24 on optimal Bi2212 that give
Tc'90 K.

IV. CONCLUSIONS

In this paper we have derived and analyzed the effec
action for phase fluctuations in the presence of dissipa
arising from low-frequency absorption in ad-wave supercon-
ductor. We find that including dissipation reduces the m
nitude of quantum-phase fluctuations. The temperature
which one crosses over to thermal phase fluctuation is

FIG. 3. The bare and renormalized stiffness plotted as a func
of temperature, using dashed and solid lines, respectively, to ob
an estimate of the transition temperatureTc in Bi2212. We chose
the bare bilayer stiffnessdcD i

0(T)5dcD i
0(0)2a0T with param-

etersdcD i
0(0)'80 meV anda0'0.7 meV/K, relevant to bilayer

Bi2212. This leads to a renormalized-bilayer stiffness of'75 meV
and a low-temperature slope'0.7 meV/K for the bilayer stiffness
consistent with low-temperature penetration depth experim
~Ref. 24! in Bi2212. The renormalized stiffness is computed us
the SCHA equations~7! and ~8! with a dimensionless dissipatio

s̄5150. The renormalized stiffness~solid line!, within the SCHA,
shows a jump nearT;90 K, but that is likely an artifact of the
approximation. The temperature at whichtransverse excitations
drive the transition to a nonsuperconducting state is estimated
the Nelson-Kosterlitz condition, as the point at which the dot
line intersects therenormalized stiffnesscurve~see text for details!.
This temperature,TKT'80 K, is in reasonable agreement with e
perimental values~Ref. 24! for Tc;90 K in optimal Bi2212.
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reduced drastically. However, for parameter values relev
to the high-Tc cuprates, we find that the thermal crossov
scale is still large, so that quasiparticles dominate
asymptotic low-temperature properties. In particular, th
must be responsible for linearT dependence of the low
temperature penetration depth.

A similar conclusion was reached in a recent paper t
used a phenomenological approach based on the fluctua
dissipation theorem,43 which however did not contain ex
plicit estimates of the quantum-to-classical crossover te
perature. Large quantum phase fluctuations have also b
obtained in Ref. 44 using a continuum BCS model w
d-wave symmetry and no dissipation. However, their qu
titative result for the renormalization of the superfluid sti
ness is smaller than our estimate, since they consider a tr
lationally invariant model, in contrast to our dissipativ
quantumXY model.45 It thus appears from various calcula
tions that the low-temperature state of the cuprates may
well described by quasiparticle excitations around a grou
state with quantum-phase fluctuations. It would be intere
ing to look for direct signatures of these quantum fluctu
tions in recently proposed Josephson junction44 and
penetration-depth46 experiments.
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APPENDIX A: TWO-FLUID HYDRODYNAMICS AND
COLLECTIVE MODES AT LOW TEMPERATURE

In this appendix we analyze the finite-temperature pr
erties of the two-fluid model to determine the collecti
modes of a superconductor in the presence of dissipa
processes. We first consider a 3D Galilean invariant sys
and later generalize the result to a layered system, still m
taining Galilean invariance in the planes. Our goal is to d
termine the phase action that gives rise to this collect
mode, which serves as another way to arrive at the Gaus
action derived microscopically in the text.

The ordinary equations of a superfluid47 are altered by the
addition of a dissipative contribution. The longitudin
modes arising in the presence of long-range Coulomb for
obey the following set of linearized equations:

vdr5q• j , ~A1!

vds1
srs

r
q•~vs2vn!50, ~A2!

j5F i
ers

mv
1S s reg~v!

e D GE1
q

v
dP, ~A3!

n
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m
d
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ivvs2 iqdm1
eE

m
50, ~A4!

iq•E5
4pe

e`
dr. ~A5!

Here the symbols have their usual meanings:v,q are the
frequency and wave vector; the subscriptss,n refer to the
superfluid or normal component;r,j are the particle density
and particle-current density;v indicates a velocity;E is the
internal longitudinal electric field,s reg(v) is the regular part
of the complex conductivity; ande` is the background-
dielectric constant. Further the thermodynamic variables,
pressureP, the entropy per particles, and the chemical po
tential m, are related by the identity

dm52sdT1
1

r
dP. ~A6!

Note that dissipative processes due to thermal conductiv
which should appear on the right-hand side of Eq.~A3!, can
be neglected at low temperature and anyway, affect o
second sound, which is decoupled from the density mode
we shall see below. Moreover, the Lorentz force and
Joule heating are second order in the fluctuations and do
affect the linearized equations that we are investigating.

The equations for first and second sound, i.e., for den
and entropy fluctuations, respectively, are in princip
coupled via the pressure variations

v2dr5F4pe2rs

me`
2 i

4pvs reg~v!

e`
Gdr1q2dP,

v2ds5q2
rss

2

rn
dT2F4pe2rn

me`
1 i

4pvs reg~v!

e`
G rss

rnr
dr.

~A7!

However, observing that we can rewrite

dP5S ]P

]r D
T

dr1S ]P

]T D
r

dT, ~A8!

and using (]P/]T)r50 as T→0 as a consequence o
Nernst’s theorem,48 we can conclude that, at low temper
ture, second sound does not mix with the longitudinal d
sity modes. From Eqs.~A7! and ~A8!, we then deduce the
dispersion for density fluctuations, given by

v25F4pe2rs

me`
2 i

4pvs reg~v!

e`
G1cp

2q2, ~A9!

wherecp is a constant. From now on we neglect the te
cp

2q2 that is unimportant in the long-wavelength limit. This
the plasmon dispersion and coincides with result of the
croscopic derivation in Ref. 22.@To make connection with
Eq. ~29! of that reference, note that the real part of the rig
hand side of Eq.~A9! above is 4pv Im s(v), wheres(v)
is the total conductivity.#

Since we are interested in layered systems, Eq.~A9! must
be modified. For simplicity we consider the case of carri
confined to stacked~Galilean invariant! planes interacting
via an anisotropic Coulomb potentialV(q) defined in Eq.
17451
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~5!. Referring to the components in-plane and across pla
with a subscripti and', respectively, we then assume th
m'5`, mi5m, s'50 and denotings i

reg5s i . The longi-
tudinal electric fieldE has components,Ei52 iqif(q) and
E'52 iq'f(q), where the the electrostatic potentialf(q)
for a density disturbancedr(2q) is given by f(q)
5@V(q)/e#dr. As m'5` and s'50, only the in-plane
componentEi enters in the linear response Eq.~A3! and
determines the ballistic motion of the superfluid electro
Eq. ~A4!. Rewriting Eqs.~A1!–~A5! and decoupling again
the first and second sound as before, we obtain the den
mode

v25Frs

m
2

ivs i~v!

e2 Gqi
2V~q!. ~A10!

Equation~A10! allows us to deduce the correct expressi
for the phase-only Lagrangian in the layered case. Inde
according to the previous equation, in the presence of di
pation, the superfluid stiffness must be transformed
rs /m→@rs /m2 ivs i(v)/e2#. We thus obtain, at the Gauss
ian level, the Lagrangian density

L~q,v!5
1

8 FV21~q!v22S rs

m
2

ivs i~v!

e2 D q
i
2G uu~q,v!u2,

~A11!

which is the same as the Gaussian action used in the pa

APPENDIX B: ANALYTICAL RESULTS FOR PHASE
FLUCTUATIONS WITH ARBITRARY s̄

It is useful to calculate the fluctuation^du
i
2& for arbitrary

dissipation s̄, even approximately. To make progress w
work with the anisotropic Coulomb interaction

V~q!5
4pe2

«
i
q

i
21«

'
q

'

2
. ~B1!

which is different from the Coulomb potential~5! for layered
systems used in the paper. In particular, one cannot take a
limit of Eq. ~B1! unlike in the layered case. However,
permits us a simple evaluation of the integrals appearing
^du

i
2& in Eq. ~8!.

On using the appropriate scaled Coulomb interaction
simplifying g

i
(Q).Q

i
2, the renormalized-Gaussian actio

~with D
'

50) takes the form

SG@u#5
1

8T (
Q,vn

F «
i
vn

2dc

4pe2 S 11h
Q

'

2

Q
i
2D

1S D
i
dc1

s̄

2p
uvnu D GQ

i
2uu~Q,n!u2 ~B2!

with h[(«
'
j0

2)/(«
i
dc

2). Settingvc[4pe2/dc , we then ob-
tain the fluctuation
3-7
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^du
i
2&52TvcE

2p

p dQ
'
d2Q

i

~2p!3

3(
vn

F«
i
~11hzQ!vn

21vcS D
i
dc1

s̄

2p
uvnu D G21

,

~B3!

with zQ[Q
'

2/Q
i
2.

The integrand in Eq.~B3! depends onQ only throughzQ .
The Q integral can therefore be transformed to an integ
over the variablez, with densityN(z)51/3Az for z<1 and
N(z)51/3z2 for z.1, and

^du
i
2&5E

0

`

dzN~z!F@~11hz!« i#

[F~«̄!E
0

`

dzN~z!5F~«̄!, ~B4!

where

F~«!52Tvc(
vn

F«vn
21vcS D

i
dc1

s̄

2p
uvnu D G21

,

~B5!

and «̄ is a suitable average value of (11hz)«
i
. We have

written Eq.~B4! such that the effect of theQ integral appears
as a renormalization of the bare in-plane dielectric cons
« i to a larger value«̄. Of course, the value of«̄ is tempera-
ture dependent. However, the leading temperature de
dence of^du

i
2& is, in most cases,«̄ independent~with the

noticeable exception of the dissipation-less cases̄50).
Therefore, to proceed further analytically, we take«̄ to be a
constant henceforth.

The quantum corrections can be calculated analytica
expressinĝ du

i
2& by means of the spectral representation

the Matsubara phase propagator deduced from Eq.~B5!, so
that
g,

.

no
.

ki,
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^du
i
2&~T!5

2vc

«̄
E

2`

1` dz

2p

3
zvcs̄/2p«̄

~z22vp
2!21z2~ s̄vc/2p«̄!2

cothS z

2TD ,

~B6!

wherevp
25(D

i
dc)(vc / «̄)54pe2rs / «̄m* .

The above expression allows us to explicitly calculate
value of^du2&(T50). Introducing the dimensionless param

eter s5(s̄/4p) (vc / «̄vp)5(s̄/4p) Avc / «̄D idc, and
evaluating the above integral at zero temperature we ob
the zero-point-motion contribution

^du
i
2&~0!5

2vc

2p«̄vpAs221
lnS s1As221

s2As221
D ~B7!

in the cases.1, which is physically relevant for the cu
prates, and

^du
i
2&~0!5

2vc

p«̄vpA12s2
arctan

A12s2

s
~B8!

in the cases,1. Fors→1 both the above expressions~B7!

and ~B8! reduce to 2vc /p«̄vp . For s@1, from Eq. ~B7!,

^du
i
2&(0).(8/s̄) ln$(s̄/2p)Avc /( «̄D

i
dc)% in agreement

with the expression used in the text, except the relevant
ergy scale,vc54pe2/dc , for the anisotropic Coulomb po
tential appears instead of 2pe2/j0, the scale appropriate
when largeQ

i
contributes and we are closer to a 2D limit

the fluctuation integral. The quantum fluctuations are la
for smalls and decrease monotonically with increasings. For
s→`, ^du

i
2&→0, and the classical limit is recovered.

At finite temperature and for a bare stiffness that is ind
pendent of temperature, the analytical result for the quadr
temperature dependence of^du

i
2&(T) for arbitrary s̄, given

in Eq. ~10!, has been derived in the text. The same result a
follows from a low-temperature analysis of Eq.~B6! above.
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