PHYSICAL REVIEW B, VOLUME 63, 174513

Phase fluctuations, dissipation, and superfluid stiffness id-wave superconductors

L. Benfatto! S. Caprara,C. Castellani, A. Paramekantf,and M. Randeria
tUniversitadi Roma “La Sapienza” and Istituto Nazionale per la Fisica della Materia, UnitaRoma 1, Piazzale Aldo Moro, 5,
00185 Roma, Italy
°Tata Institute of Fundamental Research, Mumbai 400005, India
(Received 28 September 2000; published 16 April 2001

We study the effect of dissipation on quantum- and thermal-phase fluctuatiohsane superconductors.
Dissipation, arising from a nonzero low-frequency optical conductivity that has been measured in experiments
below T., has two effects(1) a reduction of zero-point phase fluctuations, @&da reduction of the tem-
perature at which one crosses over to classical thermal fluctuations. For parameter values relevant to the
cuprates, we show that the crossover temperature is still too large for classical phase fluctuations to play a
significant role at low temperature. Quasiparticles are thus crucial in determining the linear temperature de-
pendence of the in-plane superfluid stiffness. Thermal phase fluctuations become important at higher tempera-
tures and play a role nedr, .
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[. INTRODUCTION There are several reasons to believe that low-energy dis-
sipation is important in the higfi, cuprates. Theoretically,
There is considerable experimental evidence for a lineaweak disorder within a self-consistefitmatrix calculation
temperature dependence of the superfluid density at low temeads to a nonzero “universal’ low-frequency quasiparticle

peratures in high. superconducting cuprates, i.e., conductivity’® in d-wave SC’s. Experiments have also mea-
sured a nonzero low-frequency conductivify,’ much larger
ps(T)=ps(0)—aT (1)  than the “universal” value. While there is no consensus on

_ _ the origin of this large conductivity, one would definitely
wherea is a weakly doping-dependent constafitiowever,  expect this dissipation to affect the phase fluctuations in the
there is still some controversy regarding the low-energy exsystem, as first emphasized by Emery and Kivel&k).?

citations responsible for this thermal suppressiopofThe gy formalism and results, however, differ from those of EK
simplest explanation is in terms of quasiparticle excitations;g discussed in detail in the paper.

near thed-wave nodes—® An alternative explanation is in

terms ngﬂ‘frma' ﬂuctuatiqns of tr:a?sl phase of the order (1) We derive the Gaussian-effective action for phase
pal;l?f:geéxl;ste(r)]:::t(r)]]‘e\CVZﬁ!Igg]Eilxg dmoudasi. articles in the su er[luctuations in the presence of dissipation using a functional
conducting state of cupratesq is F;upported both pb)}ntegral approach and integrating out fermionic degrees of
transport?* and angle-resolved photoemission Sp(_}Ctros_freedom. While our effective action is derived microscopi-

copy (ARPES'® experimentsieven though there are some cally by looking at fluctuations around a BCS mean field
studies questioning their Fermi liquid descripii). How-  selution, we make contact with experiment by using param-

ever, the contributions of phase fluctuations to low-&ter values relevant to the high- SC's. We believe this
temperature properties could still be important, especially iPheénomenological approach of using the deritah for the
the underdoped regime where the superfluid densitpe-  action, with coefficientstaken from experiment, is valid for
comes vanishingly small as the Mott insulator is approachedhe SC state of the highi; materials, at least fol <T,
In the literature the role of quantum- and thermal-phase flucwhen quasiparticles are well defined. In addition, we also
tuations has been addressed in connection with various egresent in an appendix, a hydrodynamic derivation for the
perimental problems, ranging fromaxis transpoff to the  phase mode based on a two-fluid model, which serves as a
effect of these fluctuations on quasiparticle properties in theheck on the microscopic derivation.
pseudogap stafé-?* (2) A dissipative quantumXY model is obtained by

In this paper we study in particular the role of phase fluc-coarse graining the Gaussian action to the scale of the coher-
tuations in the depletion of the superfluid density. Within thisence length and analyzed within a self-consistent harmonic
context two important issues have to be addres€BdThe  approximation.
form of the phase-only action for layeredwave supercon- (3) We find that the magnitude of quantum fluctuations at
ductors(SC’g) taking into account the long-range Coulomb T=0 is reduced by the presence of dissipation. This outcome
interaction;(2) the crossover between quantum and classicais in agreement with similar results obtained within models
regimes of phase fluctuations. These questions were studied granular superconductors coupled to a dissipative Ohmic
in detail in Ref. 22 that, however, did not discuss the role ofbath?>2¢ as we shall discuss below.
dissipation. In this paper, we focus on dissipative effects and (4) Dissipative phase fluctuations alone, in the absence of
how they affect the form of the phase-only action and thequasiparticle excitations, are shown to lead to T34
guantum-to-classical crossover. reductior? of the superfluid stiffness. This behavior crosses

We summarize our main results below.
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over to a classical lineaf reduction at a scal&, which  stiffness Df. Further, the Coulomb interaction in a system
decreases with increasing dissipation. with layer spacingl, gets modified to*

(5) Choosing parameters appropriate to the higheu- , .
prates, and overestimating the dissipation, we nevertheless _2me dc sinh(qd.)
find that the crossover scalg, is still fairly large. Thus one 9= gje. |coshgyde)—cogq, d.)
cannot attribute the low-temperature linear reduction of h he in-ol d : f
ps(T) to classical phase fluctuations. This dependence whereq,q, are the in-plane and c-axis componentsgo

must therefore arise entirely from quasiparticle excitationgeSpe(_:t'Vely: I .
near thed-wave nodes. To investigate the contribution of the phase fluctuations to

the depletion of superfluid density it is necessary to go be-
yond the Gaussian approximation. The simplest model that
IIl. EFFECTIVE PHASE ACTION allows for such an analysis is the quantoty model, in

We find it convenient to express the superfluid dengity which the phase field is defined on a coarse-grained lattice,

in terms of a stiffnessD.=#2%p./m*, which in the with an in-plane lattice constant @f, and layer spacing.. .
London limit is related to the penetration depkhin a The coherence length enters as a short distance cutoff since

three-dimensional (3D) bulk system through 472 the mean-field assumption of a constant amplitude breaks

—47e?D /#2c%. The in-plane superfluid stiffness in a lay- 40Wn at shorter distances. .
ered system, with interlayer spacidg, is d.Dg with dimen- Following exactly the same procedure of coarse-graining

sion of energy. Henceforth, unless explicitly displayed, weUS€d in Ref. 22for the non-dissipative caseve now obtain

®)

seth = ks: 1. the dissipative quanturdY action:
We begin with the Gaussian-phase action for a 3D isotro- 1 wﬁfédc p
pic SC, Sl 0l=—— X' | ———+ =] %(Q ||6(Q )
8T Q,o, V(Q) 2w
as . , ,
Sel0]= g7 2 [whx+D(iwn)?10(g,iwy) 6(—d,~iwy). DPde o
don + f dr > {1-co§6(R,7)
(2) 4 R,a=X,y
For a derivation in thes-wave case see Refs. 27 and 28 and D%, &\ 2 ram
for the d-wave case see Ref. 22. We show in Appendix A —0(R+a,n)]}+ = (_) f dr
that the above action, and its generalization to layered sys- dec/ Jo

tems, can be also derived from hydrodynamic considerations
within a two-fluid model. In the above actig®), the com- XE {1—cog 6(R,7)— 6(R+z, 1} (6)
pressibility x(q—0)=1N, whereV,, is the Coulomb inter- R

action anda is the lattice spacing. On continuing to real o0 —=(4—2 cosO.—2 co with O being the di-
frequencyD(w) is the mean-field stiffness, which is related 7 (Q=( O« Q) Q 9

to the mean-field complex conductivity-(w) through mensionless momentum, find the scaled mteraiztlm(]Q_)
D(w)=[—iwo(w)/e?]. In arriving at the above action, we =V(Q/&,Q /d;). ~ While — all ~ momenta  with
have assumed that(g, )~ o(0,w), and ignored the de-  |Q,/,|Qy[,|Q,|=< contribute in Eq(6) above, the prime on
pendence of the conductivity fars 7/ &,, which we expect the summation denotes a Matsubara frequency cutoff dis-
to be small for frequencies of interesst. cussed belowsee also Ref. 22
We use the spectral representation dgrand find that In this derivation we have promoted the gradient terms in
the Gaussian action arising from the superfluid stiffness to

1 (*dew 22 the cosine form, while the dissipative terms have still been
D(iwn)=D2+ - —2—"2Reareg(w), ©)] retained at Gaussian level. A more sophisticated approach
e’Jo T (0"t wp) would probably end up with a nonlocal kernel within the

02 cosine term; we will however continue to work with the
where we have used Rw)=mDse"5(w)+Reoreg(w).  gimplest action above. This actidf) is well known in the
For a frequency-independent Rgq(w) =0, this simpli-  |iterature as the resistively shunted Josephson junction
fies to (RSJJ model and its phases and quantum-phase transitions
have been extensively studi&t® Here we are interested in
o the effect of dissipation on quantum-phase fluctuations and
D(iw,) =D+ %|wn|. (4)  the classical crossover temperature, in the superconducting
€ state.
Unless indicate.‘d. otherwise, we will use this simplified form angvﬁhgto vgoﬂ;sicélésrzdthsydg}‘?gré;c%scﬁstev(\;ei? eogfffeacfitsﬁ?gf
of the conductivity below, and use=o_ d./(e*/h) as a  screening by replacing thé(Q) appearing in Eq(2) with
dimensionless measure of the dissipation. the screened interactioN(Q)=V(Q)/e(w). Here e(w)
It is straightforward to generalize the above results to a=1+4wio (w)/w is the dielectric function aQ=0, and
layered system with an in-plane stiffneﬁ) and ac-axis o (w) is the longitudinal optical conductivity. Considering
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the isotropic 3D Coulomb interaction,7%/€..Q?, the dy-  Bi2212, we have numerically checked that settiDQzO
namical term in the EK analysis reduces to the formdoes not affect our in-plane results.
wle..e(w)Q?/4me®. This expression has been shown to be The SCHA(Refs. 34, 26 and)7s carried out by replacing
correct328when the screening in the superconductor is prolhe above action by a trial harmonic theory with the renor-
duced by some external degrees of freedom with conductivnalized stiffnesD chosen to minimize the free energy of
ity o_(w). An example is provided by a coupled systemthe trial action. This leads to
consisting of a superconductor interacting via Coulomb in- 0 )
teractions with a normal metal. D =D/ exp(—(56))/2), @)
~ However, as discu_ssed in Ref. 22, the EK effective a_ctiothereM =(6, .—6,,. ) with a=x,y and the expectation
is not obtained for a single homogeneous SC. The longitudi- [ T ' . . L
nal conductivitye, of the SC does not explicitly appear in \l;alue evaluated in the renormalized harmonic theory is given
the expression of the density-density correlation funcjon y
Instead dissipation appears through the transverse current- 3

. ) ) . = d°Q
current correlation function, and affects the gradient term in <592>:2Tf
the action(2), so tha'D”HDH—in'T(w)/e{ whereor is the I - (2m)3
transverse conductivity.

If we would assumethat physical(i.e., gauge-invariant % % 7\\(Q)
correlation functions appear as the coefficients in the phase n="n, _ o '
action, then using the equality of the physical longitudinal wﬁggdc/VQJr DHdC+ 2—|wn|) yH(Q)
and transverse conductivities, it is easy to see that our action ™
(2) is identical to the EK actiof for the specific case of a SC (8)

with isotropic 3D Coulomb interactions. In this 3D case one
could associate the with either the gradient term, as we do,
or with the time derivative term as done by EK. The action idered. | : A di
used by EK is then formally the same as our action, and ongdered. 1n our nume2r|cs, we useac c corresponding
could argue that dissipation should appear in the same way “n= \/(DHdC)(ZWG l€€o), but we have checked that the
whether it is from an external battEK) or from internal ~ presence of a finite; has only a minor quantitative effect on
degrees of freedorfour case the results fox 66@ in the presence of dissipation, and one

The above assumption of gauge-invariant coefficients ismay setn.— o to obtain qualitatively correct results.
however, not valid in general for a single-homogeneous SC

As mentioned earlier, the dynamical phase distortions should
have a frequency cutoff for the simple action we have con-

where the screening arises from ttlew energy internal B. Analytical estimates of quantum and thermal fluctuations
degrees of freedom. The coefficients in the phase action are i ] )
then mean-field correlation functions. Thengitudinal We first present estimates of the magnitude of quantum

mean-field correlations are not gauge invariant since thfuctuations and the thermal crossover scale making certain
phase variable is yet to be integrated out. It is only uporsiMPlifying assumptions. The in-plane quantum fluctuations
integrating out the phase variable at Gaussian level that or® Seen to be dominated by relatively la@efrom phase-
restores gauge invariarfédor these. By contrast, Gaussian- space considerations and the form of the integrand in&gq.
phase fluctuations do not affect titeansversemean-field |n this case, we may S&(Q~1)/§§dc~2wezlem§o. Re-
correlation function$? Thus, the optical conductivity, which stricting ourselves to low, we ignore the Matsubara cutoffs
originates from the mean-fieltransversg current-current  gnd setn.—c. With these simplifications, we work in the
correlation function and appears in the phase-only ac8dn  |imiting cases of small and large dissipation. We report fur-
This will permit us below, to use the experimentally mea-ther analytical results in Appendix B. In particular, we cal-
sured conductivity to estimate the dissipation in the phasgulate the renormalization of the superfluid stiffness for an
action. anisotropic 3D Coulomb interactidinstead of the Coulomb

interaction in layered systems used in the papeat permits

us to analyze the case of arbitrary
1. QUANTUM AND CLASSICAL PHASE FLUCTUATIONS First recall the nondissipative c&éavhere the problem
involves only two energy scales: the Coulomb energy
(2me?le.&o) and the layer stiffnesi)”dc. The quantum

consistent harmonic approximatiG8CHA). We believe that Zero point quc’Fuati'ons of thze phase are givgn by the dimen-
this is adequate to calculate the effects of phase fluctuation onless coml_alnatloq/(Zw_e /6“50)/Dud°’ while the cross-

at low temperatures, where longitudirtapin-wave fluctua- ~ Over to classical fluctuations takes place at a temperature
tions dominate and transveréertex) excitations are expo- 1o~ \/(DHdc)(Zﬂez/fmfo)- Taking into account the tem-
nentially suppressed given their finite core energies. To experature dependence of the bare stiffness, a better estimate of
amine the low temperature in-plane properties, we assume crossover temperature g~ T,.

szo in Eq. (6) since it is very small in highly anisotropic For the dissipative case &t=0 we convert the Matsubara

systems withalargal. For parameter values appropriate tosum to an integral. For Iarge_r, ignoring D”dC in the

A. Variational analysis

We analyze the quantunXY action within the self-
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integrand, and introducing a lower-frequency cutoff, D”(T) ;( T )2
. (10

27-rDHdC/a, it is (_easy to show that tthe magnitude of m~1—€ m
quantum fluctuations may be estimated a(sﬁef I I

=(8lo)In[(a/27) \/(27-re2/em§o)/(DHdC)]. This is similar to  Thus, ignoring the effects of nodal quasiparticles, the
the result obtained by Chakravamy al2® for a RSJJ model asymptotic low-temperature stiffness decrease$?am the
with short range charging energies. Increasing dissipatiopresence of dissipation.
thus leads to a decrease in quantum fluctuations as the sys- At high temperature, above the thermal crossover scale,
tem becomes more classical. we recover the classical I’eSL(|50”2>(T)~2T/(DHdC). An

To evaluate the temperature scale at which one crossésproved estimate of the thermal crossover sdleis ob-
over to classical fluctuations in the presence of dissipationained by matching the slope of this high-temperature result
we have to consider the temperature above which only theor (56%) with the low-temperature result of E¢LO). This
n=0 Matsubara frequency contributes, so that phase dynam- ”

ics is unimportant. For larae. thi be estimated in a 2VES usT,=3D d./o as stated earlier.
1S 15 Uimportant. For 'arge, fis may be estmated in At this stage, we turn to the recent results of Lemberger

simple manner by Settingf’@”)|_‘°n|2DHdc with n=1, " and co-workers® who use a circuit analogy and model a
which ensures that fluctuations witt»1 would contribute  Josephson junction as an inductantg)(shunted by a resis-

very little to the fluctuation integral in E48). This leads to  tance (R) and capacitance@). To make correspondence
Te= DHdC/a. A better estimate is obtained below, which with this work, we note that the inductant@~(DHdc)*1,

gives TC|~3DHdc/;. It is clear that the classical limit the charging energg?/2C~(e’/eyé;) and the resistanch
~(1/o)(h/€?). Up to numerical factors of order unity, our

expressions for the magnitude of quantum fluctuations and

_ - . _ ) the thermal crossover scale are then in agreement. The pre-

the estimateT~T./o, given in Ref. 10, butis much larger gicted quantum to thermal crossover has also been recently

in magnitude. observed in experiments on conventional s-wave supercon-
ducting films®®

emerges as the limit of infinite dissipatioﬁﬁw, for which
To—0. The crossover scale we obtain is similar in form to

C. Low-temperature behavior

We next turn to the temperature dependence of the renor- D. Numerical results
malized stiffness in the presence of dissipation, where we
have set the bare stiffness to be independent of temperature;

This is of course an unphysical assumption fa-aave SC, the bilayer system Bi2212 and evaluate the above estimates.

but our aim is 1o exphmtly_check whether a Ime'ﬁrde_zpe_n- . We then present results of detailed-numerical calculations
dence can be obtained within a model of purely dissipative, .+ -.e shown to agree with these simple estimates.

phase fluctuations even when temperatures are smaller than, y,o ahsence of detailed information on the bilayer cou-

562 at low T b luated ticall inb i cB]ings, we make the assumption that the two layers within a
( u> atlow1 can be evaluated analytically again ysg Ingbilayer are strongly coupled and phase locked. Experimen-
the CUtOffnC—>°0. We can then cast the Matsubara sum in theta”y, the in-p|ane penetration depth of Optima”y doped
form Bi2212 is around 2100 A and this translates into a bilayer
stiffness~75 meV. We use:.,~ 10, andd./a~4, with the
* AQ,T) in-plane cohezrence lengthy/a~10. .This leads to a Cou-
5 lomb scale €“/€.£3)~35 meV. Using the above param-
n===n*+B(Q,T)|n[+C(Q,T) eters, we find large quantum fluctuations in the nondissipa-
w i . ; 2
2S AQ,T) A(Q,T) tive C?se (tr dOf) W|trt1h( 50 )21. The thtermzlllcrosso:ffr;cale
= - . as estimated from the zero-temperature bilayer stiffiggs,
P T . . . .
n=0 n?+B(Q,T)n+C(Q,T) C(Q,T) >T.~100 K. A more sensible estimate is obtained by con-
9 sidering the temperature dependence of the bare stiffness,
and this leads to a crossover scale Tgy~ T, for o=0.
Rewriting the denominator of the first term in the form ( To study the effect of dissipation, we use conductivity
+ny)(n+ny), we separate out the terms using partial frac-data obtained from experiments performed in the supercon-
tions and express the resulting sums in terms of digammeucting state. Consistent with our assumption of strongly
functions. AsT—0, n;,— that allows us to use the coupled phases within a bilayer for Bi2212, the dissipation
asymptotic expansion for the digamma function. The liflar parameters for this system will be taken to be the dimen-
term arising from the infinite sum is precisely canceled bysjonlesspilayer conductivity. Recent measurements by Cor-
thel‘ Imear'l('jter_m from theA(%,T)/CéQ,T) term, Ieav_lngd sonet all” on Bi2212 films give a Drude conductivity with a
only a quadratic temperature dependence as was pointed quf P
) . . 5 BT ge low-frequency value corresponding éo=75 and a
n Eef. 5. We thus finally arrive a(5¢9”)(T)—<60H>(0) width of a few terahertz. Similar large conductivities have
+(a/3)(T/DHdc)2 at low T, from which been measured in the microwave regifh&Ve note that the

In order to obtain the various scales for the cuprates, we
| choose parameters of the above action appropriate for
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FIG. 1. Low-temperature behavior of the renormalized-  FiG. 2. The bare and renormalized{(T) plotted using dashed
superfluid stiffness for the dimensionless dissipaion150. The  and solid line, respectively, for a dimensionless dissipation
bare stiffness was chosen to BE'd,=80 meV, independent of =150, The bare value of;, and its slope were chosen such that
temperature, and the renormaliz€dd.(T=0)~75 meV, corre-  the renormalized values, calculated using the SCHA equations
sponding t0<50F(T=0)>~0.1. The values obtained from the nu- and (8), A|=~2100 A and its sloped\ | /dT~10.0 AIK, are in
merics are shown as squares while the solid line is the analjitfcal agreement with experimentRef. 24 on Bi2212. The renormaliza-
form given in Eq.(10). Linear temperature dependence sets intion due to quantum fluctuations is seen to8%, much smaller
above a temperature 20 K as seen from the asymptote in the inset, than the~50% renormalization obtained in the nondissipative case
which compares well with the estimate of the thermal crossovefRef. 22.
scale 3)Hdc/;~ 18 K.

obtained above, for Bi2212, with a numerical solution of the
“universal” quasiparticle conductivity predicted by L€e SCHA equationg7) and (8). We find that the purely qua-
for the bilayer conductivitfat T=0,0— 0) corresponds f§  dratic dependence persists up to a®K for the parameters

o~ 24 for Bi2212. The difference between this “universal” discussed above, while linedr dependence only sets in at
temperaturesz 20 K, consistent with the above estimate for

\kl)zltzjieatr(])dvtrij igrorelg'{i?) rrgg(?nfrgl;? gliﬁ\;vﬁ/ﬁsdﬁrzzg a T . Thus, it is impossible to ignore quasiparticles for under-
R T = standing the smooth lineaf behavior of the penetration

the entire frequency range of interest; with [n|<n.. This g

frequency range correspondsdes100 meV atT =0. We next include the lineaF effect of quasiparticle exci-

In the presence of dissipation, we find tht’;‘t quantum flucations in the bare stiffness and ask how dissipative phase
tuations are reduced to a very small valu®7)<0.2. The  flyctuations renormalize this. The numerical result is plotted
thermal crossover scale is th&g=3D d./o~18 K. Thisis  in Fig. 2 and shows that both tffe=0 stiffness and its slope

I are renormalized by small amounts. This is completely con-

consistent with our numerics, where we find that lindar < : ) .
behavior from thermal phase fluctuations only sets insistent with our estimates for a small-quantum renormaliza-

above a temperature 20 K, for this magnitude of dissipa- t'gn ”t1 ;r(l)errbeslence ﬁf ﬂlssllpat_lor} ?f:‘d a tlemf?er?ture scaje of
tion. While this is a low-temperature scale, penetration—deptl"i‘l ou elow which classical thermal efiects are unim-

measurement&?4 observe a smooth linedr behavior down ~ Portant.

to much lower temperatures5 K, which cannot be recon-

ciled Wi"[h this crossover scale. . _ E. High-temperature behavior
Turning to YBCO, and treating this system as weakly

coupled single layers, far infrared reflectance Although quasiparticles dominate at low temperature

48 0 b istent with— 10— 15 eventually phal_se fIl_Jc_tuations do b_e_come important at higher
measurements appear 1o be consistent wittr- temperatures in driving the transition to the nonsupercon-
over a v@e-frequency range 5—100 meV. This smaller ducting state. The approximation used thus (B€HA) by
value of ¢ compared to Bi2212 implies that dissipative ef- jtself is clearly inadequate to address the problerfi agince
fects are less important in YBCO. The “universal” it only includes longitudinal phase fluctuations. We thus pro-
conductivity’® for this casd’ corresponds tar~9, not in-  ceed in two steps: first we calculate the temperature depen-
consistent with the above data. However, low-frequency midence of the superfluid stiffness within the SCHA, and then
crowave measuremefitson YBCO observe a strong fre- we supplement it with the Nelson-Kosterlitz condition for
gquency and temperature dependent quasiparticlthe universal jump in the stiffness at a 2D Kosterlitz-
conductivity, of the Drude form. We have checked that usingThouless transitidtt mediated by the unbinding of vortices.
a temperature-dependent Drude conductivity in this very lowNe do not take into account, for simplicity, the effect of
frequency regime, in addition to a constant dissipation ovefayering in this calculation, but this could be easily done
the entire frequency range, does not significantly affect ouusing well-known results for dimensional crossover.
results. Our numerical results, obtained by solving the SCHA
In Fig. 1 we compare our analytical results and estimategquations for parameter values relevant to Bi2212, are plot-
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1

] reduced drastically. However, for parameter values relevant
] to the highT. cuprates, we find that the thermal crossover
0.8 - scale is still large, so that quasiparticles dominate the
=) ] asymptotic low-temperature properties. In particular, they
\Q’= 0.6 - must be responsible for linedar dependence of the low-
} ] temperature penetration depth.

5‘; 0.4 = A similar conclusion was reached in a recent paper that
A ] used a phenomenological approach based on the fluctuation-
0.2 7 dissipation theorerf? which however did not contain ex-

0 b plicit estimates of the quantum-to-classical crossover tem-

0 50 100 perature. Large quantum phase fluctuations have also been
obtained in Ref. 44 using a continuum BCS model with
d-wave symmetry and no dissipation. However, their quan-
FIG. 3. The bare and renormalized stiffness plotted as a functiofitative result for the renormalization of the superfluid stiff-
of temperature, using dashed and solid lines, respectively, to obtaiR€Ss is smaller than our estimate, since they consider a trans-
an estimate of the transition temperatdigin Bi2212. We chose lationally invariant model, in contrast to our dissipative
the bare bilayer stiﬁnesch‘("(T):ch‘?(O)—aoT with param-  quantumxy model?® It thus appears from various calcula-
eterschﬁ’(O)~80 meV anda®~0.7 meV/K, relevant to bilayer tions that the low-temperature state of the cuprates may be
Bi2212. This leads to a renormalized-bilayer stiffness-as mev ~ Well described by quasiparticle excitations around a ground
and a low-temperature slope0.7 meV/K for the bilayer stiffness, State with quantum-phase fluctuations. It would be interest-
consistent with low-temperature penetration depth experimenté1g to look for direct signatures of these quantum fluctua-
(Ref. 24 in Bi2212. The renormalized stiffness is computed usingtions in recently proposed Josephson junctforand
the SCHA equationg7) and (8) with a dimensionless dissipation penetration-depﬂfi experiments.
o=150. The renormalized stiffnegsolid line), within the SCHA,
shows a jump neaf~90 K, but that is likely an artifact of the
approximation. The temperature at whittansverse excitations
drive the transition to a nonsuperconducting state is estimated from We acknowledge C. Di Castro, M. Grilli, S. De Palo, and
the Nelson-Kosterlitz condition, as the point at which the dottedT \/. Ramakrishnan for useful discussions and comments.
Iim_a intersects theenormalizeql s_tiffneswrve(see text for detgibs We are particularly grateful to T. Lemberger for helpful dis-
This temperatureT«r~80 K, is in reasonable agreement with ex- ¢yssjons and detailed comments on the paper. The work of
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ted in Fig. 3. We take the bare stiffne@be dashed line in

Fig. 3 to decrease linearly with temperature, consistent with

experiments, as a result of quasiparticle excitations. We ex- APPENDIX A: TWO-FLUID HYDRODYNAMICS AND
tend this lineafT dependence of the bare stiffness to higher =~ COLLECTIVE MODES AT LOW TEMPERATURE

temperatures_ assuming that the gap funct_ion i.s unaffected for | this appendix we analyze the finite-temperature prop-
T<Tc. This is probably a good assumption in underdoped,jes of the two-fluid model to determine the collective

systems and may not be unreasonable for optimal dopingn,qes of a4 superconductor in the presence of dissipative
The renormalized stiffness calculated within SCHA is shown rocesses. We first consider a 3D Galilean invariant system

as the full line. This stiffness shows a jump at a temperature ,q |ater generalize the result to a layered system, still main-
~90 K, but that is likely an artifact of the SCHA. The (5ihing Galilean invariance in the planes. Our goal is to de-
Kosterlitz-Thouless  transition ~ occurs  at Tkt termine the phase action that gives rise to this collective

=mD(Tk7)dc/8, where thefully renormalized stiffnes®s  mode, which serves as another way to arrive at the Gaussian
is evaluated just beloWr. We use the renormalized stiff- 5ction derived microscopically in the text.

ness within the SCHA and the abOVe Condition, to Obtain an The Ordinary equations Of a Superflﬁﬁ@re altered by the
approximate location of this transition. As can be seen frompqdition of a dissipative contribution. The longitudinal
Fig. 3, this gives us a reasonable estimat& of 80 K, when  modes arising in the presence of long-range Coulomb forces

compared with experimenits** on optimal Bi2212 that give ghey the following set of linearized equations:
T,~90 K.

wdp=0q-j, (A1)
IV. CONCLUSIONS

In this paper we have derived and analyzed the effective Sps
action for phase fluctuations in the presence of dissipation w8s+ 7q'(VS_Vn):0’ (A2)
arising from low-frequency absorption indawave supercon-
ductor. We find that including dissipation reduces the mag-
nitude of quantum-phase fluctuations. The temperature at j:[i%Jr
which one crosses over to thermal phase fluctuation is also Mo

O'reg(w)
e

E+E6P, (A3)
w
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eE (5). Referring to the components in-plane and across planes
lovs—igqou+ ——=0, (Ad4)  with a subscripi| and_, respectively, we then assume that
m, =%, mj=m, ¢, =0 and denotingr|°*?=¢) . The longi-
) 4me tudinal electric fieldE has component€ = —iq;¢(q) and
Iq-E= Sp. (AS)  E =—iq, ¢(q), where the the electrostatic potentia(q)

o

for a density disturbancedp(—q) is given by &(Q)
=[V(q)/e]dp. As m, = and o, =0, only the in-plane
componentE enters in the linear response E#3) and
determines the ballistic motion of the superfluid electrons,
Eq. (A4). Rewriting Egs.(A1)—(A5) and decoupling again

internal longitudinal electr'lc,t f'?ldrfeg(“f) Is the regular part the first and second sound as before, we obtain the density
of the complex conductivity; and,, is the background- mode

dielectric constant. Further the thermodynamic variables, the

Here the symbols have their usual meaningsg are the
frequency and wave vector; the subscripta refer to the
superfluid or normal component;j are the particle density
and particle-current density; indicates a velocityE is the

pressureP, the entropy per particls, and the chemical po- i wo(©)
tential u, are related by the identity w?= ﬁ_—uz qfV(a). (A10)
m e
Su=—s6T+ ;5P- (AB) Equation(A10) allows us to deduce the correct expression

S .. for the phase-only Lagrangian in the layered case. Indeed,
Note that dissipative processes due to thermal conduchwtyaCCOr dir?g to the grevigus egquation in th)(/a presence of dissi-

which should appear on the right-hand side of &), can pation, the superfluid stiffness must be transformed as

be neglected at low temperature and anyway, affect only L 2 . )
second sound, which is decoupled from the density mode, g/ M—Lps/m—iwo(w)/e”]. We thus obtain, at the Gauss
ian level, the Lagrangian density

we shall see below. Moreover, the Lorentz force and the

Joule heating are second order in the fluctuations and do not

affect the linearized equations that we are investigating. g(q,w)zi VvV H{q)w?— Ps_ M) q21|0(q,w)|2,
The equations for first and second sound, i.e., for density 8 m e? I
and entropy fluctuations, respectively, are in principle (Al11)

coupled via the pressure variations which is the same as the Gaussian action used in the paper.

47e? ATwoaq( )
w?5p= Ps 4 regl Sp+q2sP,
Mme., € APPENDIX B: ANALYTICAL RESULTS FOR PHASE
2 2 FLUCTUATIONS WITH ARBITRARY o
2 56— 5 PsS ST— 4me’py .47Tw0'reg(w) psS
@roS=QT T me. ! . 0P It is useful to calculate the fluctuatic(rzﬁaf) for arbitrary
(A7) dissipation o, even approximately. To make progress we
However, observing that we can rewrite work with the anisotropic Coulomb interaction
5P (ap) sp+| ) o7 (A8) (a) _Amet (B1)
=\ == Y T ’ \ q)= 2 2" Bl
ol L, RN

and using ¢P/dT),=0 as T—0 as a consequence of \hich is different from the Coulomb potentiéd) for layered

i 8
Nernst's theorerf? we can conclude that, at low tempera- systems used in the paper. In particular, one cannot take a 2D
ture, second sound does not mix with the longitudinal denyimit of Eq. (B1) unlike in the layered case. However, it

sity modes. From Eq9A7) and (A8), we then deduce the permits us a simple evaluation of the integrals appearing for
dispersion for density fluctuations, given by (56?) in Eq. (8)
I S

On using the appropriate scaled Coulomb interaction and
+ch0?, (A9)  simplifying yH(Q)zQHZ, the renormalized-Gaussian action

(with D = 0) takes the form
wherec, is a constant. From now on we neglect the term
2
snwndc ( Qf)
1+9p—

w?=

47e?pq _ AT w0 eg( )

me.. €

cf,q2 that is unimportant in the long-wavelength limit. This is 1

the plasmon dispersion and coincides with result of the mi- Se[ 0]= ==

croscopic derivation in Ref. 22To make connection with 8T Gay | 4me?

Eq. (29 of that reference, note that the real part of the right-

hand side of Eq(A9) above is 4rw Im o(w), whereo(w)

is thetotal conductivity] +
Since we are interested in layered systems,(Bf) must

be modified. For simplicity we consider the case of carriers

confined to stackedGalilean invariant planes interacting With ﬂE(ELfg)/(SHdE)- Settingw,=4me?/d,, we then ob-

via an anisotropic Coulomb potenti&l(q) defined in Eq. tain the fluctuation

D de+ —
(et gl

Qfle@n* (B2

174513-7
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= dQ d*Q
2\ _ 1 I
<50H> 2Twcf_ﬂ—(277)3

Dd o B
I C+E|wﬂ| !

(B3)

XX

@n

s”(l-i- n{o)wﬁ-i- g

with ngQf/Qf.
The integrand in Eq(B3) depends oi@ only through{q .

PHYSICAL REVIEW B 63 174513

562\ (T 2w (+=dz
(86°)( )_T o
ZwCE/Zﬂ's— z

(- 022+ (cw2me)? |\ 2T
(B6)

ot
wherew?= (DHdC)(wC/s_) =4me?p/em*.
The above expression allows us to explicitly calculate the

The Q integral can therefore be transformed to an integravalue of(6°)(T=0). Introducing the dimensionless param-

over the variablg, with densityN(¢{) = 1/3\/¢ for <1 and
N(Z)=1/3¢2 for {>1, and

(86%)= J:dzN@)@[(lwosH]

—d(s) f:dzN@):cb(s_), (B4)

where

p -1
Ddet o -lanl ||
(B5)

D(e)=2Tw.D

@n

2
gwpt we

and ¢ is a suitable average value of {-]oyg)su. We have

written Eq.(B4) such that the effect of th® integral appears
as a renormalization of the bare in-plane dielectric consta

g| to a larger values. Of course, the value of is tempera-

ture dependent. However, the leading temperature depeRyhen largeQ

dence of(é&f} is, in most casesg independen{with the

noticeable exception of the dissipation-less ca_seO).

Therefore, to proceed further analytically, we takéo be a
constant henceforth.

eter s=(o/4m) (wc/ewy)=(ol4m) Jo.leDd, and
evaluating the above integral at zero temperature we obtain
the zero-point-motion contribution

(562)(0) = — 22 |n(S+ 52—1) (B7)
I 2mewp\s?—1 | s—s?—1

in the cases>1, which is physically relevant for the cu-
prates, and

2

2w, 1-s
<56§>(0) =— arctan—— (B8)

7T£a)p\/1—52
in the cases<1. Fors—1 both the above expressio(B7)
and (B8) reduce to ./mew,. Fors>1, from Eq.(B7),

(5.0@(0):(8/0) .|n{(0'/27'r)\. /wcl(eD”dC)} in agreement
with the expression used in the text, except the relevant en-
nérgy scalew.=4me?/d., for the anisotropic Coulomb po-
tential appears instead ofn2%/¢,, the scale appropriate

| contributes and we are closer to a 2D limit in

the fluctuation integral. The quantum fluctuations are large
for smalls and decrease monotonically with increasméor
S—00, <80;>*>0, and the classical limit is recovered.

At finite temperature and for a bare stiffness that is inde-

The quantum corrections can be calculated analyticallypendent of temperature, the analytical result for the quadratic

expressing 50@ by means of the spectral representation fo

the Matsubara phase propagator deduced from(EB5), so
that

rtemperature dependence <03‘6'f>(T) for arbitrary o, given

in Eq. (10), has been derived in the text. The same result also
follows from a low-temperature analysis of E@6) above.
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